JP6516268B2 - Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent - Google Patents

Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent Download PDF

Info

Publication number
JP6516268B2
JP6516268B2 JP2017091918A JP2017091918A JP6516268B2 JP 6516268 B2 JP6516268 B2 JP 6516268B2 JP 2017091918 A JP2017091918 A JP 2017091918A JP 2017091918 A JP2017091918 A JP 2017091918A JP 6516268 B2 JP6516268 B2 JP 6516268B2
Authority
JP
Japan
Prior art keywords
fire
silicate
temperature
water
inorganic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017091918A
Other languages
Japanese (ja)
Other versions
JP2018187071A (en
Inventor
隆志 真
隆志 真
鉄治 菅原
鉄治 菅原
弘一郎 塩盛
弘一郎 塩盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki
Original Assignee
University of Miyazaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki filed Critical University of Miyazaki
Priority to JP2017091918A priority Critical patent/JP6516268B2/en
Publication of JP2018187071A publication Critical patent/JP2018187071A/en
Application granted granted Critical
Publication of JP6516268B2 publication Critical patent/JP6516268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Fireproofing Substances (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、火災等の高温環境下にて固体の無機高分子膜或いは泡を形成するケイ酸化合物をベースとした感温性組成物を含有してなる無機組成の消火剤及び延焼抑止剤に関する。   The present invention relates to a fire extinguishing agent and a fire spread suppressing agent of an inorganic composition comprising a thermosensitive composition based on a silicate compound which forms a solid inorganic polymer film or foam under high temperature environment such as fire. .

従来から知られる代表的な消火剤として、水、粉末消火剤(非特許文献1)、強化液(特許文献1)や泡消火剤(特許文献2)等がある。   Water, a powder extinguishant (non-patent document 1), a strengthening liquid (patent document 1), a foam extinguishant (patent document 2), and the like are known as typical extinguishing agents conventionally known.

消火剤としての水は、消火メカニズムや消火能力の定量化研究(非特許文献2〜5)から、機械散布の開発(特許文献3)、及び文化財が水損した場合の修復に関する研究(非特許文献6)まで、非常に幅広く研究開発が行われている。   Water as a fire extinguishing agent, from the research on quantification of fire extinguishing mechanism and fire extinguishing ability (Non-patent documents 2 to 5), development of mechanical spraying (Patent document 3), and research on restoration when cultural property is lost (non- A very wide range of research and development has been carried out up to Patent Document 6).

安価で尚且つ広域に消火栓が設置されていることから、使用環境が整った水は、最も頻繁に使用されているものの、一方では水で一旦消火したはずの物体が、水の蒸発後に再燃する欠点を有する。   Due to the low cost and wide area of the fire hydrant installed, although water with a working environment is used most frequently, on the other hand, objects that should have been extinguished with water will reburn after evaporation of the water It has a drawback.

アンモニア成分を含有する粉末消火剤は、熱分解で生成したアンモニアラジカルによって燃焼の連鎖反応を抑制(非特許文献1)し、消火する能力を発揮するが、噴霧した空間領域の酸素濃度を気相のラジカル停止反応によって低下させるため、風向きによっては、消防隊員の活動を制限する可能性がある。   The powder extinguishing agent containing an ammonia component suppresses the chain reaction of combustion by ammonia radicals generated by thermal decomposition (Non-Patent Document 1) and exhibits the ability to extinguish, but the oxygen concentration of the sprayed space region is Depending on the wind direction, the fire brigade's activities may be limited because it is reduced by the radical termination reaction.

また、粉末消火剤は貯蔵中に吸湿し、固化する欠点(非特許文献1)を有するため、素早い消火活動に対応しづらい指摘もある。   In addition, it has been pointed out that it is difficult to cope with quick fire-extinguishing activities, since the powder extinguishant has a drawback that it absorbs moisture during storage and solidifies (Non-Patent Document 1).

強化液は、A火災での消火効果とB火災で油を鹸化して消火する特性があり、優れた消火剤であるが、A火災において液の乾燥後に消火したはずの物の表面上で消火液に含有する成分が粉体になるため、再燃を防止できない欠点(特許文献4)を有する。   The strengthening solution is an excellent fire extinguishing agent because it has excellent fire extinguishing effect in A fire and saponification of oil in B fire, and it is an excellent extinguishing agent, but it extinguishes on the surface of the material that should extinguish after drying in A fire. Since the component contained in a liquid turns into powder, it has the fault (patent document 4) which can not prevent recombustion.

泡消火剤(特許文献2)では、界面活性剤由来の表面張力の低減により、水を効率的に燃焼物に付着させ、水による気化熱の冷却効果と、尚且つ液体泡による燃焼物表面への被覆による窒息効果を発揮する優れた消火能力をもっている。しかしながら、原理的に親油性と親水性を併せ持つ界面活性剤は、環境や魚類に与える影響が問題視されている。   In the foam extinguishing agent (Patent Document 2), the surface tension derived from the surfactant reduces the water efficiently to be attached to the combustion material, and the effect of cooling the heat of vaporization by the water and the surface of the combustion material due to the liquid foam It has an excellent ability to extinguish asphyxiation due to its coating. However, surfactants having both lipophilicity and hydrophilicity in principle are considered to have problems with the environment and fish.

上述のように各消火剤は夫々有用であり、また夫々欠点も有する。現状では、火災に対して、消火能力の性能が良く、また環境に優しい消火剤の開発が望まれていると考えられる。   As described above, the respective extinguishing agents are respectively useful and also have their respective drawbacks. At present, it is considered that the development of fire extinguishing agents that are good in fire extinguishing performance and environmentally friendly is desired for fires.

ケイ酸化合物については、近年、環境に優しく消火能力の性能も考慮したケイ酸化合物を含有する消火剤は幾つか報告されている。特許文献5には、スメクタイト等の粘土鉱物と水、或いは消火液と混合して消火材料を調製し、A火災の能力単位を測定する際に用いる第一模型に対して、2台の消火器で消火を試みたところ、木材は炭化したまま、完全に鎮火したとある。この消火効果は、化学的に縮合反応し得ない粘土鉱物が、単純にゲル状になって燃焼面に接着した窒息効果と、水の蒸発による冷却効果によるものである。   In the case of silicate compounds, recently, there have been some reports of fire extinguishing agents containing silicate compounds, which also consider the performance of environment-friendly fire extinguishing ability. In Patent Document 5, two fire extinguishers are prepared for the first model used in preparing a fire extinguishing material by mixing it with a clay mineral such as smectite and water, or a fire extinguishing fluid and measuring the capacity unit of A fire. I tried to extinguish the fire, and it was said that the wood was completely extinguished with carbonizing. This fire extinguishing effect is due to the asphyxiation effect in which the clay mineral which can not be chemically condensed is simply gelled and adhered to the combustion surface, and the cooling effect due to the evaporation of water.

特許文献5のケイ酸化合物は、粘土鉱物そのものであるため、燃焼物表面上にて火災時の熱を利用した脱水縮合反応によるシリケート層の生成に由来する固体膜又は固体泡の形成ができないことが本発明品とは異なる。   Since the silicate compound of Patent Document 5 is a clay mineral itself, it can not form a solid film or a solid foam derived from the formation of a silicate layer by dehydration condensation reaction utilizing heat at the time of fire on the surface of a combustion material Are different from the present invention.

特許文献6には、水、水ガラス及び粘土を混合して調製した懸濁液を、消火剤として使用している。このとき水ガラスは粘土の分散安定剤として作用させている。特許文献6の水ガラスの添加による作用は、砂を塊状にすることと、塊状砂中に水を保持する事である。そのため基本的な消火作用は、燃焼物に粘土が付着する砂消火である。   In Patent Document 6, a suspension prepared by mixing water, water glass and clay is used as a extinguishing agent. At this time, the water glass acts as a clay dispersion stabilizer. The action of the addition of the water glass of Patent Document 6 is to aggregate sand and to retain water in the aggregate sand. Therefore, the basic fire extinguishing action is sand extinguishing in which clay adheres to the burning matter.

消火原理が砂消火のため、粘土と水ガラスの合計含量が大きくなると(砂を燃焼物に盛ることと同じであるため)、消火効果が高くなるとしている。特許文献6では、ケイ酸化合物は砂のバインダーとしての作用を発揮するのみで、燃焼物に対して直接的な消火の効果を発揮していない。   Because the fire extinguishing principle is sand fire extinguishing, if the total content of clay and water glass becomes large (as it is the same as putting sand on a burning material), the fire extinguishing effect is said to be high. In Patent Document 6, the silicic acid compound only exerts an action as a binder of sand, but does not exert a direct fire-extinguishing effect on the combustion material.

これらの文献(非特許文献5、非特許文献6)に記されるケイ酸化合物を利用した消火剤は、水に溶解しない粘土鉱物の懸濁液であるため、消防法第二十一条の二第二項の規定に基づいた「消火器用消火剤の技術上の規格を定める省令」に照らし合わせると不適切であるという問題点も有している。   The fire extinguishing agent using a silicate compound described in these documents (Non-patent document 5 and Non-patent document 6) is a suspension of a clay mineral which does not dissolve in water. There is also the problem that it is inappropriate in light of the "Ministry of Ordinance for Establishing Technical Specifications of Fire Extinguishers for Fire Extinguishers" based on the provision of paragraph 2, paragraph (2).

特許文献7には、乾燥水ガラスを油タンク火災に限定して使用する記載がある。網目状の骨材に水ガラスをコーティングし、乾燥させたものを中空浮体とし、その中にカレットとした乾燥水ガラスを充填した構造体を油タンクに連結して浮遊させている。油火災で発生した熱により、浮体の殻が崩壊し、内部のカレットが漏出発泡することで油表面を覆うとしている。   Patent Document 7 describes that dry water glass is used by being limited to an oil tank fire. A reticulated aggregate is coated with water glass and dried to form a hollow floating body, into which a structure filled with cullet dried water glass is connected and floated in an oil tank. The heat generated by the oil fire collapses the shell of the floating body, and the inside cullet leaks and foams to cover the oil surface.

特許文献7では、水ガラスが有機溶媒と接触すると、発泡しないケイ酸が固油接触界面に析出する化学的問題と、さらに市販水ガラスの比重は約1.5程度あることは既知であるが、その乾燥物は比重がさらに大きくなることは自明であり、比重が1.0よりも小さい油の気液界面に水ガラス乾燥カレットが存在したとしても沈降する速度が速い物理的問題がある。   Patent Document 7 discloses a chemical problem in which non-foaming silicic acid precipitates on a solid-oil contact interface when water glass comes into contact with an organic solvent, and further, it is known that the specific gravity of commercially available water glass is about 1.5. It is obvious that the dried product has an even higher specific gravity, and there is a physical problem that the settling speed is fast even if the water glass dried cullet is present at the gas-liquid interface of oil whose specific gravity is smaller than 1.0.

もし火災の熱により発泡を開始したとしても、比重の軽い油の上に設置した乾燥水ガラスのカレットは、常に固油接触界面で生成したケイ酸で発泡を阻まれ、発泡が不十分なままカレットの大部分は油に沈むという速度論的な問題も有している。   Even if the heat of fire starts foaming, the dried water glass cullet placed on light oil with low specific gravity is always blocked by silica generated at the solid oil contact interface, and the foaming remains insufficient Most of the cullet also has the kinetic problem of sinking in oil.

泡消火剤については、消火の窒息作用に最も効果的であると考えられる泡を利用した消火剤は、界面活性剤を基に開発され、既に市販されている。しかしながら、特許文献2のような欠点も有している。ところが現在、泡消火剤の欠点を解決しつつある消火剤が開発されている。   With regard to foam extinguishing agents, foam extinguishing agents that are considered to be most effective for suffocating action of extinguishing have been developed based on surfactants and are already commercially available. However, it also has disadvantages as described in Patent Document 2. However, fire extinguishing agents are being developed which are currently solving the drawbacks of foam extinguishing agents.

人体に対する高い安全性を有する泡消火剤(特許文献8)や、加えて生物や環境への負荷の少ない泡消火剤(特許文献9)が開発されている。これらの優位性は高く、これまで認識されてきた泡消火剤の欠点はほぼクリアーしたと考えられる。しかしながら、これら泡消火剤の泡は、界面活性剤由来の液体の泡である。火災時における液体泡の状態を考えると、火災の熱が液体泡に供給されれば、泡を形成する骨格成分の水が蒸発する事により、泡構造を維持できなくなる。   A foam extinguishant having high safety for the human body (Patent Document 8) and a foam extinguishant having a low impact on organisms and the environment (Patent Document 9) have been developed. These superiorities are high, and it is considered that the drawbacks of the foams that have been recognized until now are almost cleared. However, the foam of these foams is a liquid foam derived from a surfactant. Considering the state of the liquid foam at the time of fire, if the heat of the fire is supplied to the liquid foam, the water of the skeletal component that forms the foam evaporates, and the foam structure can not be maintained.

このように液体泡の熱に対する泡骨格維持温度は水が蒸発するまでである。また泡の形成は、泡消火剤を専用のノズルや混合装置を介することで強制的に生成するものであり、火事の熱を感じて自発的に発泡する現象は起こりえない。一方、消火完了した後の液体泡を考えると、火災の熱に晒されること無く、液体泡の維持がある程度可能であるが、これも5時間程度で消泡する報告(非特許文献7)がある。   Thus, the foam skeleton maintenance temperature to the heat of the liquid foam is until the water evaporates. Also, the formation of the foam is a foam extinguishing agent that is forcedly generated through a dedicated nozzle or mixing device, and the phenomenon of spontaneous foaming without feeling the heat of the fire can not occur. On the other hand, considering the liquid foam after the fire extinguishing is completed, it is possible to maintain the liquid foam to some extent without being exposed to the heat of the fire, but this has also been reported to defoam in about 5 hours (Non-patent Document 7) is there.

この様に液体泡の消泡は水の蒸発に起因し、泡消火剤の組成によって積極的に泡骨格の維持を制御する事ができない。   Thus, the defoaming of the liquid foam is due to the evaporation of water, and the composition of the foam can not actively control the maintenance of the foam skeleton.

特開平3-500252号公報Japanese Patent Laid-Open No. 3-500252 特開2009-201695号公報JP, 2009-201695, A 特開平11-146928号公報JP 11-146928 A 特開2006-130210号公報JP, 2006-130210, A 特開平7-558号公報JP-A-7-558 特表2000-512517号公報Japanese Patent Publication No. 2000-512517 特開2008-206849号公報JP 2008-206849 A 特開2009-291636号公報JP, 2009-291636, A 特開2012-254101号公報JP 2012-254101 A

若園吉一、安藤直次郎;消火に関する(第2報)粉末消火剤について, 京大防災研究所年報, 6, pp1-5(昭和38年7月).Wakazono Yoshikazu, Ando Naojiro; on fire extinguishing (Part 2) Powder fire extinguishing agent, Annual report of the Kyoto University Disaster Prevention Research Institute, 6, pp1-5 (July 1958). 高橋哲;クリブモデル火災の消火諸現象の定量化, 日本火災学会論文集, 29, pp.33-40(1979).Takahashi, Tetsu; Quantification of fire extinguishing phenomena of crib model fires, Proceedings of the Japan Society of Fire Science, 29, pp. 33-40 (1979). 高橋哲;燃焼木炭の消火, 消防研究所報告, 49, pp.7-13(1980).TAKAHASHI Satoshi; Firefighting of burning charcoal, Fire Research Institute Report, 49, pp. 7-13 (1980). 高橋哲;木材火災の消火-注水中の重量増加速度および消火時間-, 日本火災学会論文集, 30, pp.31-40(1980).TAKAHASHI Satoshi; Fire extinguishing of wood fires-Weight increase rate and extinguishing time of water injection-, Proceedings of the Fire Society of Japan, 30, pp. 31-40 (1980). 高橋哲;“水系消火剤の作用機構と効率, 消防研究所報告, 56, pp.7-11(1983).Takahashi, T .; "Action mechanism and efficiency of water extinguishing agents, Report of Fire Research Institute, 56, pp. 7-11 (1983). 高妻洋成; 水損資料の処置, 緊急保全活動・現況調査事業研究会, 「これからの文化財防災-防災の備え」セッション1 レスキュー後に得られた技術的知見と課題, 独立行政法人国立文化財機構東京文化財研究所(平成27年).Takatsuma Yosei; Treatment of water loss materials, Emergency Maintenance Activities / Current Situation Research Project Study Group, "Preparing for cultural property disaster prevention-preparation for disaster prevention" session 1 Technical findings and problems obtained after rescue, National administrative culture National culture National Institute of Technology Tokyo National Research Institute for Cultural Properties (2015). 室田城治;クラスA泡消火剤を使用した消火戦術の改革, 消研輯報, エ・一般による消防防災科学論文の部, pp.106-113(平成14年度).Muroda, J .; Reform of fire fighting tactics using Class A foam extinguishant, 輯, D. Department of Fire and Disaster Prevention Scientific Papers by the General Public, pp. 106-113 (FY 2002).

本発明では、火災等で既に燃焼している物質に対する消火剤、また延焼の可能性がある未燃の物質に対する延焼抑止剤として、固体膜又は固体泡を形成する感温性の無機組成物を提供することを目的とする。   In the present invention, a temperature-sensitive inorganic composition that forms a solid film or a solid foam is used as a fire extinguishing agent for a substance that has already burned due to a fire or the like, and a fire spread suppressing agent for an unburned substance that may spread fire. Intended to be provided.

本発明者らは、上記目的を達成すべく鋭意研究を重ねてきた結果、
ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合溶液、
ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合溶液にケイ酸アルミニウムを溶解した溶液、
ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合溶液にアルカリ炭酸塩の単独又は混合物を溶解した溶液、又は
ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合溶液にケイ酸アルミニウムとアルカリ炭酸塩の単独もしくは混合物を溶解した溶液等
として調製される感温性無機組成物が、
火災等の熱を感知し、燃焼物の表面に固体膜又は固体泡の単独又は混成体を形成して、消火作用を発現する消火剤として機能することと、
延焼の可能性がある未燃の物質に予め前記感温性無機組成物を供給することによって延焼抑止効果を発揮する延焼抑止剤として機能することと、
消火後に温度が下がると固体膜及び泡の単独又は混成体の液状化又は保持のいずれか又は双方の現象が発現することと等、を見出し、本発明を完成するに至った。
As a result of intensive research to achieve the above object, the present inventors
Single or mixed solution of sodium silicate and potassium silicate,
A solution in which aluminum silicate is dissolved in sodium silicate and potassium silicate singly or in combination,
A solution of an alkali carbonate alone or a mixture in a solution of sodium silicate and potassium silicate alone or in a mixture, or a solution of an aluminum silicate and an alkali carbonate alone or in a mixture of sodium silicate and potassium silicate alone or a mixture The thermosensitive inorganic composition prepared as a solution etc. in which
To function as a fire extinguishing agent that senses heat such as fire and forms a solid film or a solid foam or a mixture of solid bubbles on the surface of the combustion material to exhibit a extinguishing action;
Functioning as a fire spread suppressing agent which exerts a fire spread suppressing effect by supplying in advance the temperature sensitive inorganic composition to unburned substances which may spread fire;
It has been found that the phenomenon of liquefaction and / or retention of a solid film and a foam alone or a mixture of a solid film and a foam appear as the temperature decreases after the extinguishment, and the present invention has been completed.

即ち、本発明は、以下の発明を包含する。   That is, the present invention includes the following inventions.

第1発明の感温性無機組成消火剤
項1.
アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、水とを含有する感温性無機組成消火剤。
Thermosensitive inorganic composition fire extinguishant according to the first invention .
A temperature-sensitive inorganic composition fire extinguisher comprising an alkali metal silicate compound and 0 to 26 parts by weight of aluminum silicate and water with respect to 100 parts by weight of the solid content of silicon dioxide of the alkali metal silicate compound.

項2.
アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、飽和濃度以下の金属炭酸塩と、水とを含有する感温性無機組成消火剤。
Item 2.
An alkali metal silicate compound, and 0 to 26 parts by weight of aluminum silicate, a metal carbonate having a saturation concentration or less, and water with respect to 100 parts by weight of the silicon dioxide solid content of the alkali metal silicate compound Temperature-sensitive inorganic composition fire extinguisher.

項3.
アルカリ金属ケイ酸化合物が、ケイ酸ナトリウム、ケイ酸カリウム及びケイ酸リチウムからなる群より選択される少なくとも1種の化合物である、前記項1又は2に記載の感温性無機組成消火剤。
Item 3.
3. The thermosensitive inorganic composition fire extinguisher according to item 1 or 2, wherein the alkali metal silicate compound is at least one compound selected from the group consisting of sodium silicate, potassium silicate and lithium silicate.

項4.
金属炭酸塩が、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩であり、当該アルカリ金属がナトリウム、カリウム及びリチウムからなる群より選択される少なくとも1つの化合物である、請求項1〜3のいずれかに記載の感温性無機組成消火剤。
Item 4.
The metal carbonate is an alkali metal carbonate and an alkali metal hydrogen carbonate, and the alkali metal is at least one compound selected from the group consisting of sodium, potassium and lithium. Temperature-sensitive inorganic composition fire extinguisher described.

第2発明の感温性無機組成延焼抑止剤
項5.
アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、水とを含有する感温性無機組成延焼抑止剤。
Thermosensitive inorganic composition fire retardant according to the second invention [ 5].
A temperature-sensitive inorganic composition as claimed in any one of claims 1 to 3, which comprises an alkali metal silicate compound and 0 to 26 parts by weight of aluminum silicate and water with respect to 100 parts by weight of the silicon dioxide solid content of the alkali metal silicate compound.

項6.
アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、飽和濃度以下の金属炭酸塩と、水を含有する感温性無機組成延焼抑止剤。
Item 6.
A sense of containing an alkali metal silicate compound, 0 to 26 parts by weight of aluminum silicate, a metal carbonate having a saturation concentration or less, and water with respect to 100 parts by weight of the solid content of silicon dioxide of the alkali metal silicate compound Thermal inorganic composition Flame retardant.

項7.
アルカリ金属ケイ酸化合物が、ケイ酸ナトリウム、ケイ酸カリウム及びケイ酸リチウムからなる群より選択される少なくとも1種の化合物である、前記項5又は6に記載の感温性無機組成延焼抑止剤。
Item 7.
7. The heat-sensitive inorganic composition according to item 5 or 6, wherein the alkali metal silicate compound is at least one compound selected from the group consisting of sodium silicate, potassium silicate and lithium silicate.

項8.
金属炭酸塩が、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩であり、当該アルカリ金属がナトリウム、カリウム及びリチウムからなる群より選択される少なくとも1つの化合物である、前記項5〜7のいずれかに記載の感温性無機組成延焼抑止剤。
Item 8.
The metal carbonate is an alkali metal carbonate and an alkali metal hydrogen carbonate, and the alkali metal is at least one compound selected from the group consisting of sodium, potassium and lithium Temperature-sensitive inorganic composition fire retardant as described.

第3発明の塗料
項9.
前記項1〜8のいずれかに記載の感温性無機組成消火剤又は感温性無機組成延焼抑止剤を有する基材を含む塗料。
Item 9 of the Invention
9. A paint comprising a substrate having the temperature-sensitive inorganic composition fire extinguishing agent or the temperature-sensitive inorganic composition fire spread suppressing agent according to any one of items 1 to 8.

本発明により、火災時に燃焼する物質に特定の組成から成る感温性無機組成物を供給することで、消火剤中の水による気化熱の冷却効果を発揮する。   According to the present invention, by supplying a temperature-sensitive inorganic composition having a specific composition to a substance that burns in the event of a fire, the cooling effect of the heat of vaporization by water in the extinguishant is exhibited.

また、火災時に燃焼する物質に特定の組成から成る感温性無機組成物を供給することで、燃焼物表面に固体膜又は固体泡を単独又は混成体の形成(以後、被覆物と表記する)による窒息効果も発揮して、消火することができる。   In addition, by supplying a temperature-sensitive inorganic composition having a specific composition to a substance that burns in the event of a fire, formation of a solid film or a solid foam singly or in a mixture on the surface of the combustible substance (hereinafter referred to as a coating) You can also extinguish the fires by exerting asphyxiation effect.

本発明により、被液した消火物は、被覆物によって可燃物への酸素供給が遮断されることで再燃を防止することができる。   According to the present invention, the liquid extinguished substance can prevent reburning by blocking the supply of oxygen to the combustible substance by the coating.

本感温性無機組成物の供給された物質に対しては、被液した物質(消火した炭等)を、火災の熱によって形成した消火液由来のシリケート層が消火炭を物理的に固定することで、屋根や木立等にある高熱の炭や消火炭の剥落防止に寄与することができる。   For substances supplied with this temperature-sensitive inorganic composition, the fire extinguishing fluid-derived silicate layer formed by the heat of fire, physically fixes the substance that has been liquid-covered (such as extinguished charcoal) Therefore, it can contribute to the prevention of the flaking of high-temperature charcoal and fire-extinguishing charcoal in roofs and trees.

この作用により、強風時の延焼を抑制することもできる。また林野火災での残火処理にも使用することができる。   By this action, it is also possible to suppress the spread of fire in strong winds. It can also be used to treat fire after forest field fires.

一方、消火後に環境温度が下がると、潮解性を有する本感温性無機組成物では、被覆物を形成していた固体が液体へ変化又は一部液体化、更には任意に組成を設定する事で保持することもできる。   On the other hand, when the environmental temperature drops after extinguishing, in the case of the thermosensitive inorganic composition having deliquescent property, the solid forming the coating is changed to a liquid or partially liquefied, and further, the composition is optionally set. Can also be held by

これらの効果を合わせて考慮すれば、泥炭火災への使用や予防にも適用する事ができる。更に、予め燃焼する前に感温性無機組成物を可燃物に供与する事で、延焼予測物の表面に膜を形成し、延焼を抑止することが可能となる。   If these effects are considered together, it can be applied to the use for peat fire and prevention. Furthermore, by providing the temperature-sensitive inorganic composition to the combustibles before burning in advance, it is possible to form a film on the surface of the predicted fire spread and suppress the fire spread.

本発明により、以上の上記効果を併せ持つ、感温性無機組成消火剤及び感温性無機組成延焼抑止剤が提供される。   According to the present invention, a temperature-sensitive inorganic composition fire extinguisher and a temperature-sensitive inorganic composition fire spread suppressing agent, which have the above-described effects, are provided.

消火実験にて使用した消火対象物(クリブ)の立面図である。It is an elevation view of the fire extinguishing object (crib) used in the fire extinguishing experiment. 手動スプレーに各消火液を充填し、図1に示すクリブを消火した熱挙動の経時変化を示す図である。It is a figure which shows a time-dependent change of the thermal behavior which filled each fire extinguishing fluid to the manual spray and extinguished the crib shown in FIG. 噴霧器に同一組成物の含水率を変化させ、粘度を変更した各消火液を充填し、図1に示すクリブを消火した熱挙動の経時変化を示す図である。It is a figure which shows the time-dependent change of the thermal behavior which filled each fire extinguishing fluid which changed the moisture content of the same composition into a sprayer, changed the viscosity, and extinguished the crib shown in FIG. 噴霧器に混合ケイ酸カリウム系にケイ酸アルミの濃度を変更して調製し、粘度をほぼ揃えた各消火液を充填し、図1に示すクリブを消火した熱挙動の経時変化を示す図である。It is a figure which shows the time-dependent change of the thermal behavior which filled each fire extinguishing solution which prepared the density of aluminum silicate to mixed sprayer by changing the density | concentration of aluminum silicate, substantially equalized viscosity, and extinguished crib shown in FIG. . 写真1:700℃に加熱した電気炉に、同一組成物の含水率を変化させ、粘度を変更した消火液をスライドガラスに噴霧し、濡れた状態で投入し、加熱した後の様子を撮影した写真である。Photo 1: In an electric furnace heated to 700 ° C, the moisture content of the same composition was changed, the fire extinguishing liquid with changed viscosity was sprayed on a slide glass, and it was put in a wet state and photographed after heating It is a photograph. 写真2:同一組成の消火液をスライドガラス上に自然乾燥させ、異なる含水率に調製したサンプルを室温状態で電気炉に設置し、その後、炉内温度を20℃/min.で昇温したサンプルの各任意温度における固体泡の様子を撮影した写真である。Photo 2: A fire extinguishing solution of the same composition is naturally dried on a slide glass, and samples prepared to have different moisture contents are placed in an electric furnace at room temperature, and then the temperature in the furnace is raised at 20 ° C / min. It is the photograph which photographed the appearance of the solid bubble in each arbitrary temperature of. 写真3:同一組成の消火液の含水率を変化させ、スライドガラス上にほぼ同量担持して予備乾燥したものを、電気炉中に設置し空気雰囲気下、20℃/min.で室温から昇温し、600℃、4時間保持して絶乾状態とした各サンプルを作成した後、サンプルを電気炉から取り出した時点を開始時として、潮解する様子を経時的に撮影した写真である。Photo 3: Change the water content of the fire extinguishing solution of the same composition, load approximately the same amount on a slide glass and pre-dry it, place it in an electric furnace and raise it from room temperature at 20 ° C / min. It is the photograph which image | photographed the appearance of deliquesce sequentially over time by making the time of taking out the sample from the electric furnace as the start time, after creating each sample which kept it warm and kept at 600 ° C. for 4 hours and was in the non-drying state.

本発明の感温性無機組成消火剤及び感温性無機組成延焼抑止剤は、ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合、ケイ酸アルミニウム及び金属炭酸塩を含み、液体から固体状まで任意の形態に調節できる。   The thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent of the present invention include sodium silicate and potassium silicate singly or in combination, aluminum silicate and metal carbonate, and any from liquid to solid state It can be adjusted to the form.

該無機物は、燃焼物に対して供給すると、水の気化熱により燃焼物を冷却すると共に、消火途上の被該環境中の熱により、燃焼物の表面にシロキサン分子構造を持つ固体膜又は固体泡を生成する。   The inorganic substance cools the combustion material by the heat of vaporization of water when supplied to the combustion material, and the heat in the environment being extinguished causes a solid film or solid foam having a siloxane molecular structure on the surface of the combustion material. Generate

この本発明品の被覆物は被該環境中の熱が100℃以上約850℃未満の温度領域にて安定した状態を保つため、燃焼物の表面を安定して被覆し、水の蒸発する温度以上になっても窒息効果が保たれる。また燃焼部分の被覆は、付着部分からの火炎の発生を阻止する事で火炎の分散化に寄与するため、火勢を削ぐ効果も発現する。   The coating according to the present invention stably covers the surface of the combustion material and the temperature at which water evaporates, since the heat in the environment is kept stable in the temperature range of 100 ° C. to less than about 850 ° C. Even if it becomes above, the asphyxiation effect is maintained. In addition, the coating of the burning portion contributes to the dispersion of the flame by preventing the generation of the flame from the adhering portion, so that the effect of removing the fire is also exhibited.

また、本発明品は、熱分解時に有害となる有機化合物(界面活性剤やキレート剤、金属脂肪酸等)を全く含まないため、本発明品由来の有害な煙やガスの発生しない安全な材料である。仮に主成分であるケイ酸化合物が火災の熱によって溶融したと仮定すると、発生したヒュームは非晶質SiO2であり、このヒュームは人の皮膚に触れると皮膚表面の水分を吸着し、乾いた感覚となるが、単に水で洗い流すだけで良い。 In addition, since the product of the present invention does not contain any organic compound (surfactant, chelating agent, metal fatty acid, etc.) which is harmful at the time of thermal decomposition, it is a safe material which does not generate harmful smoke or gas derived from the product of the present invention. is there. Assuming that the main component, the silicate compound, is melted by the heat of fire, the generated fume is amorphous SiO 2 and this fume adsorbs the moisture on the skin surface when it touches human skin, it becomes dry It feels like it, but you just have to rinse it out with water.

この様にケイ酸化合物を消火剤の出発原料とすると火災時の熱分解による人的有害性のほぼ無い環境を作り出すことができる。加えて、潮解作用が発現するよう任意に調製した本発明品では、消火後に温度が下がると、被覆物を形成する骨格物質の潮解が始まり、骨格成分の飽和水蒸気圧と大気中の水蒸気圧が等しくなるまで吸水する。   As described above, when a silicate compound is used as a starting material of a fire extinguishing agent, an environment almost free from human harm due to thermal decomposition at the time of fire can be created. In addition, in the product of the present invention, which is optionally prepared to exhibit deliquescence, when the temperature drops after extinguishing, deliquescence of the skeletal material forming the coating starts, and the saturated water vapor pressure of the skeletal component and the water vapor pressure in the atmosphere are Absorb water until it is equal.

本発明品では潮解現象が発現した当初こそ骨格成分が露出した状態であるが、その後は骨格成分が液体に覆われてしまうため、骨格成分が潮解により溶解するまで進行する。この現象により、火事等の熱で形成した被覆物は、外気温に戻ることで液状化する。   In the product of the present invention, the skeletal component is exposed only at the beginning of the onset of the deliquescence phenomenon, but thereafter the skeletal component is covered with liquid, so the skeletal component proceeds until it is dissolved by deliquescence. Due to this phenomenon, the coating formed by heat such as fire liquefies by returning to the outside temperature.

更には可燃性の延焼予測物に対して、予め燃焼する前に本消火剤を連続的又は、断続的に供給する事で、延焼予測物の表面に被覆前駆体又は被覆物を形成し、火災からの熱を低減し、延焼を抑止することが可能となる。   Furthermore, by supplying the extinguishant continuously or intermittently to the flammable spread prediction before burning in advance, a coating precursor or coating is formed on the surface of the spread prediction, and a fire is generated. It is possible to reduce the heat from the fire and to prevent the spread of fire.

本発明品は、通常、ケイ酸化合物溶液にケイ酸アルミニウム及び金属炭酸塩等を混合して、目的に応じた任意含水率に調製して製造することができる。   The product of the present invention can usually be prepared by mixing a silicate compound solution with aluminum silicate, metal carbonate and the like, and adjusting it to an arbitrary water content according to the purpose.

感温性無機組成消火剤及び感温性無機組成延焼抑止剤の含水率は、本目的を損なわない範囲であれば良く、通常7〜95%である。   The moisture content of the temperature-sensitive inorganic composition extinguishant and the temperature-sensitive inorganic composition fire spread suppressing agent may be in the range that does not impair the object, and is usually 7 to 95%.

本発明書において、「ケイ酸化合物」とは、ケイ酸カリウム、ケイ酸ナトリウム及びケイ酸リチウムを示し、夫々K2O・nSiO2(n=1.8〜3.7)、Na2O・nSiO2(n=2.0〜3.8)、Li2O・nSiO2(n=3〜8)の組成式(mH2Oは省略)を有し、係数nは各組成式に付帯する括弧内に記載した値である化合物を表す。 In the present invention, “silicate” refers to potassium silicate, sodium silicate and lithium silicate, and each of K 2 O.nSiO 2 (n = 1.8 to 3.7) and Na 2 O.nSiO 2 (n And Li 2 O.nSiO 2 (n = 3-8) (formula mH 2 O omitted), coefficient n is a value described in the parenthesis attached to each composition formula Represents a compound.

「ケイ酸化合物」を水で希釈することでも、本発明品のpHを調節することができる。   The pH of the product of the present invention can also be adjusted by diluting the "silicic acid compound" with water.

また「ケイ酸化合物」を、後述する「金属炭酸塩」の飽和溶液で希釈することでpHを調節しても良く、さらに前記希釈物に水を加えてpH調製しても良い。   Further, the pH may be adjusted by diluting the "silicate compound" with a saturated solution of "metal carbonate" described later, and water may be further added to the diluted product to adjust the pH.

業務上において通常はpH12.5未満にて調製する方が好まれる。   In business, it is usually preferred to prepare at pH less than 12.5.

市場の要望等によっては、原料そのままのケイ酸化合物のpHを維持したまま、感温性無機組成消火剤や感温性無機組成延焼抑止剤を調製しても良い。   Depending on market needs, the temperature sensitive inorganic composition fire extinguisher or the temperature sensitive inorganic composition fire spread inhibitor may be prepared while maintaining the pH of the raw material as it is, the silicic acid compound.

「ケイ酸化合物」は、複数のケイ酸化合物を混合しても良い。ケイ酸ナトリウムの濃度が共存ケイ酸化合物の濃度よりも高ければ、燃焼物に対する付着性が強くなり、液の広がりは若干悪くなる。   The "silicic acid compound" may be a mixture of a plurality of silicic acid compounds. If the concentration of sodium silicate is higher than the concentration of coexisting silicic acid, the adhesion to the combustion product becomes strong, and the spreading of the liquid becomes slightly worse.

ケイ酸カリウムの濃度が共存ケイ酸化合物の濃度より高ければ、燃焼物に対する付着性はやや弱くなるが、液の広がりは良くなる。ケイ酸リチウムの濃度が共存ケイ酸化合物の濃度より高ければ、燃焼物に対する付着性は弱くなり、液の広がりが良くなる。   If the concentration of potassium silicate is higher than the concentration of the co-silicating compound, the adhesion to the combustion material is somewhat weak but the spreading of the liquid is better. If the concentration of lithium silicate is higher than the concentration of the coexisting silicate compound, the adhesion to the combustion material is weakened and the spreading of the liquid is improved.

これらの特性を考慮し、消火剤や延焼抑止剤の目的や用途によって基本特性を設計することができる。   In consideration of these characteristics, the basic characteristics can be designed according to the purpose and application of the extinguishant and the fire spread inhibitor.

水は、本発明の感温性無機組成消火液及び感温性無機組成延焼抑止液の目的を損なわない範囲で含まれる。   Water is included in the range which does not impair the object of the temperature-sensitive inorganic composition fire extinguishing liquid and the temperature-sensitive inorganic composition fire spread suppressing liquid of the present invention.

「ケイ酸アルミニウム」を加えることで、火災等の熱によって形成される固体膜や固体泡の高温骨格維持性、更に噴霧した際の消炎性が制御できる。   By adding "aluminum silicate", it is possible to control the high-temperature skeleton maintaining property of a solid film or a solid foam formed by heat such as a fire, and further control the extinction property when sprayed.

ケイ酸アルミニウムの添加量は、前記ケイ酸化合物の固形分100重量部に対し、26重量部以下の添加量、コスト的観点から好ましくは0.1重量部から5.5重量部であるが、限定する物では無い。   The addition amount of aluminum silicate is 26 parts by weight or less, preferably from 0.1 parts by weight to 5.5 parts by weight from the viewpoint of cost, with respect to 100 parts by weight of the solid content of the silicate compound. There is not.

ケイ酸アルミニウムは目的や用途に応じて省く事も可能であるが、ケイ酸アルミニウムの添加量が増加すると消火や延焼抑止効果も高くなる。   Aluminum silicate can be omitted depending on the purpose and application, but when the addition amount of aluminum silicate increases, the fire extinguishing and fire spread suppressing effects also become high.

「金属炭酸塩」は水溶性であれば良く、特に限定されないが、例えば、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムが挙げられる。   The "metal carbonate" is not particularly limited as long as it is water soluble, and examples thereof include potassium carbonate, potassium hydrogen carbonate, sodium carbonate and sodium hydrogen carbonate.

炭酸カリウム及び炭酸水素カリウムは、30℃の水に対する溶解度が、夫々約52g及び約28gであり、ケイ酸化合物溶液にも容易に溶解する。これらを加えることで、本発明品の粘度を調節すると共に、燃焼物への濡れのべたつき感を調節することができ、また本発明品のpHを調節することもできる。   Potassium carbonate and potassium hydrogen carbonate have a solubility of about 52 g and about 28 g in water at 30 ° C., respectively, and are easily dissolved in a silicate compound solution. By adding these, it is possible to adjust the viscosity of the product of the present invention as well as to control the stickiness of the product to the combustible substance, and also to adjust the pH of the product of the present invention.

炭酸ナトリウム及び炭酸水素ナトリウムは、30℃の水に対する溶解度が、夫々約31g及び約10gであり、ケイ酸化合物溶液にも容易に溶解する。これらを加えることで、本発明品の粘度を調節すると共に、燃焼物への濡れのさらさら感を調節することができ、本発明品のpHを調節することも出来る。   Sodium carbonate and sodium hydrogen carbonate have a solubility in water of 30 ° C. of about 31 g and about 10 g, respectively, and easily dissolve in a silicate compound solution. By adding these, it is possible to adjust the viscosity of the product of the present invention, and also to control the dry feeling of wetness to the combustion material, and also to adjust the pH of the product of the present invention.

「金属炭酸塩」の添加量は、上述する各金属炭酸塩の溶解量が上限である。通常は水に溶解した時のpHが12.5未満を上限とする濃度以下であれば作業の効率が良い。これらは、目的や用途に応じて単独又は混合物で用いることができる。   The upper limit of the amount of “metal carbonate” added is the amount of dissolution of each of the metal carbonates described above. In general, work efficiency is good if the pH when dissolved in water is less than or equal to the concentration with an upper limit of less than 12.5. These can be used alone or in combination depending on the purpose and application.

上記添加物を含む本発明品の含水率を制御することにより、消火時に生成する固体膜又は固体泡或いは混成体の形状を制御することができる。   By controlling the moisture content of the product of the present invention containing the above-mentioned additive, it is possible to control the shape of a solid film or a solid foam or a composite formed at the time of extinguishment.

更に上記添加物を含む本発明品のpHを制御することにより、消火後の潮解性の程度も制御する事ができる。   Furthermore, by controlling the pH of the product of the present invention containing the above-mentioned additive, the degree of deliquescent after extinguishing can be controlled.

本明細書において「0〜X重量部を含む」とは、組成物中に対象成分を最大でX重量部含んでもよいし、0重量部の場合、含まなくてもよいことを意味する。従って、例えば、本明細書中において、ケイ酸アルミニウムを「0〜26重量部」含むとは、本発明の組成物が、ケイ酸ソーダの二酸化ケイ素の固形分100重量部に対し、ケイ酸アルミニウムを最大で26重量部含んでもよいし、含まなくてもよいことを意味する。   In the present specification, "containing 0 to X parts by weight" means that the composition may contain up to X parts by weight of the target component, or in the case of 0 parts by weight, it may not be contained. Thus, for example, in the present specification, "containing 0 to 26 parts by weight" of aluminum silicate means that the composition of the present invention is aluminum silicate to 100 parts by weight of solid content of silicon dioxide of sodium silicate. Is meant to include or not include at most 26 parts by weight.

本発明の感温性無機組成消火剤及び感温性無機組成延焼抑止剤は、単独で使用する他に、基材となる該組成物を用いて塗料を調製することもできる。その際、公知の添加剤や、溶剤として水を本発明の目的を損なわない範囲で加えることができる。   The thermosensitive inorganic composition fire extinguishant and the thermosensitive inorganic composition fire spread suppressing agent of the present invention can be used alone or in combination to prepare a paint using the composition as a base material. At that time, known additives and water as a solvent can be added within the range not impairing the object of the present invention.

添加剤としては、例えば、顔料、乾燥剤、流動性調整剤、紫外線吸収剤、たれ防止剤、耐熱性向上剤等を用いることができる。   As the additive, for example, a pigment, a desiccant, a flowability regulator, an ultraviolet light absorber, an anti-sagging agent, a heat resistance improver and the like can be used.

前記感温性無機組成消火剤及び感温性無機組成延焼抑止剤にて塗膜を形成させる方法は、組成物水溶液をドクターブレード法、ゲルキャスティング法、鋳込み成形法、カレンダ法や、噴霧コート法、ローラーコート法、バーコート法、エアナイフコート法、刷毛塗り法、ディッピング法等の公知の方法により塗布し、自然乾燥又は強制乾燥させて行うことができる。   The method of forming a coating film with the above-mentioned temperature-sensitive inorganic composition fire extinguishing agent and temperature-sensitive inorganic composition fire spread suppressing agent comprises a doctor blade method, gel casting method, cast molding method, calender method, spray coating method for composition aqueous solution. It can be applied by a known method such as a roller coating method, a bar coating method, an air knife coating method, a brush coating method, a dipping method and the like, and can be naturally dried or forcedly dried.

建築部材等の表面に形成された乾燥済み感温性無機組成消火液及び感温性無機組成延焼抑止剤の層の厚さは、本発明の目的を損なわない範囲であれば限定されないが、通常50μm〜数十mmである。塗膜の耐久性を向上させる目的においては、120℃以上で熱処理し、シリケート層を形成させた方が好ましい。   The thickness of the dried temperature sensitive inorganic composition fire extinguishing liquid and the temperature sensitive inorganic composition layer of the fire retardant composition formed on the surface of the building member etc. is not limited as long as the object of the present invention is not impaired. 50 μm to several tens of mm. For the purpose of improving the durability of the coating, it is preferable to form a silicate layer by heat treatment at 120 ° C. or higher.

一方、塗膜の耐久性が必要無く、潮解性を優先する場合には、塗膜後の加熱は必要無い。また、この未加熱処理の乾燥塗膜は、本明細書に記載する全ての組成にて潮解性が発現する。   On the other hand, when the durability of the coating film is not necessary and the deliquescent property is prioritized, the heating after the coating film is not necessary. In addition, this unheated processed dry coating film develops deliquescent in all the compositions described in the present specification.

以下、実施例を挙げて本発明を詳細に説明する。なお、本発明においては、本発明の合目的であって、本発明の効果を特に害さない限りにおいては、改変或いは部分的な変更及び付加は任意であって、いずれも本発明の範囲である。   Hereinafter, the present invention will be described in detail by way of examples. In the present invention, for the purpose of the present invention, modifications or partial changes and additions are optional as long as the effects of the present invention are not particularly impaired, and all are within the scope of the present invention. .

試験方法
試験は、国際規格(ISO/CD12468 Test method for external fire exposure to roofs)に準拠した国土交通省指定性能評価 指定業者制定「防耐火性能試験・評価業務方法書」4.13屋根藁葺き材の飛び火性能試験・評価方法に記載の対象地域が「防火地域及び準防火地域内の建物(建築基準法第63条)」に指定のブナ材を用いたクリブ(図1)を使用した。
Test method Test is based on the Ministry of Land, Infrastructure, Transport and Tourism designated performance evaluation in accordance with the international standard (ISO / CD12468 Test method for external fire exposure to roofs) Designated contractor establishment “Fireproof performance test and evaluation business procedure manual” 4.13 The target area described in the performance test and evaluation method used a crib (Figure 1) using beech wood designated as "Buildings in Fire Zone and Quasi-Fire Zone (Article 63 of Building Standard Act)".

クリブ単木寸法は縦19mm×横19mm×幅180mmであり、図1のように各段3本使用して3段組にした時の組み立て寸法は、縦60mm×横80mm×幅80mmである。   The dimensions of the crib single wood are 19 mm in length × 19 mm in width × 180 mm in width. As shown in FIG. 1, the assembled dimensions when using 3 stages of each step and forming 3 steps are 60 mm in length × 80 mm in width × 80 mm in width.

このクリブの規定重量は155±10gである。   The specified weight of this crib is 155 ± 10 g.

含水率を10%以下に調節したクリブをガスコンロにて着火し、所定時間燃焼させた。燃焼中のクリブを消火実験箇所に移動させ、K型熱電対を燃焼中のクリブに設置した。燃焼熱を熱電対が捉えたことを確認した後、調製した消火液を燃焼クリブに供給し、消火した。   The crib whose water content was adjusted to 10% or less was ignited by a gas stove and burned for a predetermined time. The crib during burning was moved to the fire extinguishing test site, and a K-type thermocouple was installed in the crib during burning. After confirming that the thermocouple captured the heat of combustion, the prepared extinguishing fluid was supplied to the burning crib and extinguished.

消火実験は動画記録し、この時の消火状況、温度変化及び消火前後の消火液量データを記録した。   The fire extinguishing experiment recorded moving pictures and recorded the fire extinguishing condition, temperature change, and the amount of extinguishing fluid volume data before and after the fire extinguishing at this time.

消火効果の評価は、高橋の評価方法(非特許文献2〜5)を基に行った。   Evaluation of the fire extinguishing effect was performed based on the evaluation method (nonpatent literature 2-5) of Takahashi.

非特許文献3及び4によると、次式が成り立つ。   According to Non Patent Literatures 3 and 4, the following equation holds.

=Mφλμ (1)
式(1)で、Qは消火に必要な水の量、Mはクリブの初重量、φはクリブの重量減率、λはクリブ燃焼時の重量減1に対する木炭収率(0.29)及びμは頂部注水法における単位重量の木炭の消火に必要な水の量(3.4)である。
Q 0 = M 0 φλ 0 (1)
In equation (1), Q 0 is the amount of water necessary for extinguishing, M 0 is the initial weight of crib, φ is the crib weight loss rate, λ is the charcoal yield (0.29) with respect to the weight loss 1 at crib burning [mu] 0 is the amount of water (3.4) required to extinguish the unit weight charcoal in the top water injection method.

また、サブスクリプトの「0」は高橋の実験系によって与えられた係数及び計算値である。   Also, "0" of the subscript is a coefficient and a calculated value given by Takahashi's experimental system.

また、非特許文献5で次式の消火剤の能力について提示している。   In addition, Non-Patent Document 5 presents the ability of the extinguishant of the following formula.

η=μmeas/μ (2)
式(2)で、サブスクリプトの「meas」は実験結果である。
η = μ meas / μ 0 (2)
In equation (2), the subscript "meas" is the experimental result.

つまり、ηの値を求めることで、消火効果の比較を可能にしている。   In other words, it is possible to compare fire extinguishing effects by finding the value of 効果.

μは消火に必要なその方法特有の必要な水量と定義されているため、異なる消火方法及び異なる消火剤の影響を含めて比較することができる。本実験では、消火液を噴霧して消火実験しているため、高橋の実験方法と異なる。そこで、消火剤を同一にした水の場合の操作定数を求め、その操作定数を基に本実験系と同じ噴霧速度条件での消火液の評価を以下のように行った。   Since μ is defined as the required amount of water specific to the method required for extinguishing, it can be compared including the effects of different extinguishing methods and different extinguishing agents. In this experiment, it is different from Takahashi's experimental method because fire extinguishing experiment is performed by spraying fire extinguishing fluid. Then, the operation constant in the case of the water which made the fire extinguisher the same was calculated | required, and the evaluation of the fire extinguishing liquid on the same spray speed conditions as this experimental system was performed as follows based on the operation constant.

本実験にてクリブの重量減率が0.62の時に消火に使用した水量は54[g]であった。この実測値は、高橋の実験方法から算出したQの値の約半分であった。 In this experiment, when the weight loss rate of crib was 0.62, the amount of water used for extinguishing was 54 [g]. This measured value was about half of the value of Q 0 calculated from Takahashi's experimental method.

そこで、本実験系の操作定数を得るために、同じクリブ重量減率(ここで、サブスクリプトの「wo」として示す)の実験環境において、水を消火剤として本実験系と同じ噴霧速度にて噴霧して用いた場合の消火水の量Q’wを、高橋の頂部注水法での消火水の必要消火水量Qwで除し、η1とすると次式で表される。 Therefore, in order to obtain the operation constant of the present experimental system, water is used as a fire extinguishing agent at the same spray speed as the present experimental system in the same experimental environment of the same crib weight loss rate (here, shown as "wo" of subscript). the amount Q'w 0 extinguishing water when used in sprayed, divided by the required extinguishing water Qw 0 extinguishing water in the top water-filling Takahashi, expressed by the following equation when the .eta.1.

η1=Q’w/Qw
=Q’w/Mwφλμw (3)
η1は実験結果を基に解析した結果0.52と決定した。
η1 = Q'w 0 / Qw 0
= Q'w 0 / Mw 0 φλw 0 (3)
As a result of analysis based on the experimental results, η1 was determined to be 0.52.

η1を、頂部注水法の必要消火量Qに乗じることで、本実験系で必要な消火水の量Qccが得られる。 By multiplying η 1 by the required extinction amount Q 0 of the top water injection method, the amount Q cc of fire extinguishing water required in this experimental system can be obtained.

cc=η1Q (4)
消火効果Efは、本実験系で使用した液量をQccで除すことで、実験で使用した消火液の消火効果が水の消火効果の倍数として示される。
Q cc = 1 1 Q 0 (4)
The fire extinguishing effect Ef is obtained by dividing the liquid amount used in this experimental system by Q cc , and the fire extinguishing effect of the extinguishing liquid used in the experiment is shown as a multiple of the extinguishing effect of water.

Ef=Qmeas/Qcc (5)
式(5)で、Qmeasは実験に使用した消火液の量である。
Ef = Q meas / Q cc (5)
In equation (5), Q meas is the amount of extinguishing fluid used in the experiment.

よって、燃焼しているクリブへの消火剤の噴霧速度を一定にした場合、必要消火量の実験値と(1)、(3)、(4)及び(5)式を使用すれば、本実験系で水の消火能力を1とした場合の調製した消火剤の消火能力を評価することができる。   Therefore, if the spray rate of the extinguishant to the burning crib is made constant, if using the experimental value of the required extinguishing amount and the equations (1), (3), (4) and (5), this experiment It is possible to evaluate the extinguishing ability of the prepared extinguishant when the extinguishing ability of water is 1 in the system.

被覆物形成の含水率の影響については、調製した各種サンプルをスライドガラスに噴霧し、電気炉にて予め空気雰囲気下で700℃に保温した炉内へ投入した。加熱による消火液の変化を動画記録した後、電気炉から取り出し、目視にて固体の膜又は泡の形成状態を観察した。   About the influence of the moisture content of coating formation, the prepared various samples were sprayed on the slide glass, and it injected | threw-in to the furnace previously heat-retained at 700 degreeC under air atmosphere with the electric furnace. After moving picture recording of the change of the fire extinguishing liquid by heating, it was taken out from the electric furnace and visually observed the formation state of a solid film or a bubble.

含水率の異なる被覆物の熱安定性については、調製したサンプルをスライドガラスに塗布し、夫々含水率が異なるように予備乾燥させた。電気炉に各サンプルを設置した後、空気雰囲気下で20℃/min.の昇温速度により加熱し、任意温度ごとに写真撮影した。   For the thermal stability of coatings with different moisture content, the prepared samples were applied to glass slides and pre-dried to different moisture content. After placing each sample in an electric furnace, it was heated at a temperature rising rate of 20 ° C./min. In an air atmosphere, and photographed at every arbitrary temperature.

含水率の異なる被覆形成物の潮解の影響については、調製した各種サンプルをスライドガラスに塗布し、自然乾燥させたものを、電気炉を用いて絶乾状態にする。その後、電気炉から取り出した時間を潮解実験の開始時とし、潮解現象が平衡状態になるまで任意時間にて写真撮影を行った。   About the influence of the deliquescence of the coating formations from which a moisture content differs, the prepared various samples are apply | coated to a glass slide, what was naturally dried is made into an absolute-drying state using an electric furnace. Thereafter, the time taken out of the electric furnace was taken as the start of the deliquescence experiment, and photography was performed at an arbitrary time until the deliquescence was in equilibrium.

ここで、絶乾状態とは、電気炉にて、空気雰囲気下で室温から20℃/min.の速度で600℃まで温度を上げ、600℃で4時間保持する熱処理を行った状態をいう。   Here, the non-drying state refers to a state in which heat treatment is performed in an electric furnace by raising the temperature from room temperature to 600 ° C. at a rate of 20 ° C./min. In an air atmosphere for 4 hours at 600 ° C.

固形分率は、絶乾状態の固形分量(絶乾重量)をサンプル採取量(固形分と水分の双方を含む)で除し、100を乗じることによって求めた。固形分率は固形分濃度と記す場合もある。   The solid fraction was determined by dividing the solid content (absolute dry weight) in the as-dried state by the sampled amount (containing both solid and water) and multiplying by 100. The solid content may also be referred to as the solid content concentration.

含水率は、100から固形分率を差し引くことで求めた。   The water content was determined by subtracting the solid content from 100.

潮解現象に関しては、電気炉から取り出した時点で時間の計測を開始し、潮解現象が平衡状態になるまで写真撮影を行った。   With regard to deliquescence, measurement of time was started when it was taken out of the electric furnace, and photography was performed until the deliquescence was in equilibrium.

[実施例1]各消火液の特性:手動スプレーにて消火
比較例
消火液の水は水道水を使用した。
[Example 1] Characteristics of each extinguishing fluid: extinguishing by manual spray
The water of the comparative example fire extinguishing fluid used tap water.

実施例1-1の調製方法
炭酸カリウムの10gを46gの水に溶解し、pH12.11の強化液を模したサンプル1-1を調製した。
Preparation Method of Example 1-1 10 g of potassium carbonate was dissolved in 46 g of water to prepare a sample 1-1 simulating a fortification solution of pH 12.11.

実施例1-2の調製方法
JIS規格3号ケイ酸ナトリウム水溶液と同体積の水を混合し、粘度3.87[mPas]、固形分濃度18.6%のサンプル1-2を調製した。
Preparation Method of Example 1-2
The same volume of water as that of the aqueous solution of JIS Standard No. 3 sodium silicate was mixed to prepare a sample 1-2 having a viscosity of 3.87 [mPas] and a solid content concentration of 18.6%.

実施例1-3の調製法
炭酸カリウム30gを231gの水に溶解し、pH11.99の水溶液を得た。JIS規格2号ケイ酸カリウム水溶液と同体積の前記炭酸カリウム水溶液を混合し、粘度4.71[mPas]、固形分濃度20.2%のサンプル1-3を調製した。
Preparation Method of Example 1-3 30 g of potassium carbonate was dissolved in 231 g of water to obtain an aqueous solution having a pH of 11.99. The potassium carbonate aqueous solution of the same volume as JIS Standard No. 2 potassium silicate aqueous solution was mixed to prepare Sample 1-3 having a viscosity of 4.71 [mPas] and a solid content concentration of 20.2%.

実験方法
以上のように各サンプルを調製し、3分間燃焼したクリブに図1に示すクリブの△の位置に熱電対を設置し、手動スプレーを用いて消火した。消火実験は動画記録し、この時の消火状況、温度変化及び消火前後の消火液量データを記録した。
Experimental Method Each sample was prepared as described above, and a thermocouple was placed on the crib burned for 3 minutes at the position of the triangle of crib shown in FIG. 1, and extinguished using a manual spray. The fire extinguishing experiment recorded moving pictures and recorded the fire extinguishing condition, temperature change, and the amount of extinguishing fluid volume data before and after the fire extinguishing.

試験結果
試験結果を表1及び図2に示す。
Test Results Test results are shown in Table 1 and FIG.

表1は、実施例1において、消火実験で使用した消火液粘度、消火に使用した液量、消火効果及び50℃を下回った到達時間を示す。   Table 1 shows the viscosity of the extinguishing liquid used in the extinguishing experiment, the amount of liquid used for extinguishing, the extinguishing effect, and the arrival time below 50 ° C. in Example 1.

図2には、各消火液を手動スプレーにて消火した実験の熱挙動の経時変化を示す。   In FIG. 2, the time-dependent change of the thermal behavior of the experiment which extinguished each extinguishing fluid with the manual spray is shown.

図2-1に比較例を示す。比較例では、燃焼クリブの火炎が噴霧する度に逃げ、消炎するまで14分要した。噴霧してクリブに水が付着した箇所は一旦消炎するものの、燃焼している周りの熱の影響で、水が蒸発する事により再燃を相次いで繰り返した。12.5分後にはクリブの崩壊が始まり、14.5分後には完全に崩壊した。崩壊後に噴霧すると再燃する事無く、消火が完了した。   A comparative example is shown in FIG. In the comparative example, every time the flame of the burning crib sprayed, it took 14 minutes to escape and extinguish. Although the portion where water was attached to the crib by spraying was once extinguished, due to the influence of the heat around the burning, the reheating was repeated successively by evaporation of the water. After 12.5 minutes, crib began to collapse and after 14.5 minutes it completely collapsed. Firefighting was completed without recombustion when sprayed after the collapse.

図2-2に実施例1-1を示す。サンプル1-1を噴霧すると、最初の消炎が2分後であったが、水場合と同様に、燃焼している周りの熱の影響で、サンプル1-1の水分が蒸発すると再燃した。その後消炎と再燃を繰り返し、9分後にはクリブの崩壊が始まった。しかしながら、使用した消火液量は水の場合よりも少なく、消火効果も比較例より良かった。   Example 1-1 is shown in FIG. When the sample 1-1 was sprayed, the first extinction occurred after 2 minutes, but as in the case of water, due to the influence of the heat around the burning, the water of the sample 1-1 reburned when it evaporated. After that, the fires and flares were repeated, and nine minutes later, crib's collapse started. However, the amount of extinguishing fluid used was smaller than in the case of water, and the extinguishing effect was also better than in the comparative example.

実施例1-1において、比較例よりも消火剤使用量が少なかった事から、炭酸カリウムの熱分解による効果が現れた事が分かった。   In Example 1-1, it was found that the amount of the fire extinguishing agent used was smaller than that of the comparative example, so that the effect of the thermal decomposition of potassium carbonate appeared.

図2-3に実施例1-2を示す。サンプル1-2を噴霧すると、最初の消炎は消火開始から5分後であった。そのまま2分間放置すると、再燃した。再燃箇所は噴霧したサンプル1-2が熾火に届いていない箇所からの再燃であった。7.5分後に再噴霧し、消炎した。再び放置するとクリブ内の温度が上昇し始めた。見えない箇所の熾火を消火するため、温度が下がるまで噴霧を続けた。   Example 1-2 is shown in FIG. 2-3. When the sample 1-2 was sprayed, the first extinction was 5 minutes after the start of the extinguishment. When I left it for 2 minutes as it was, I burned again. The relapsed area was a relapse from the area where the sprayed sample 1-2 did not reach the flame. After 7.5 minutes, it was re-sprayed and extinguished. The temperature in the crib began to rise when left to stand again. Spraying was continued until the temperature dropped to extinguish fires that could not be seen.

実施例1-2では、クリブの崩壊は無かった。実施例1-2において、サンプルが消火時に燃焼物に対して被覆し、クリブの温度を保持する効果と同時に、窒息効果も現れた。   In Example 1-2, there was no collapse of crib. In Example 1-2, at the same time as the effect of the sample being coated on the burning material at the time of extinction and maintaining the temperature of crib, the asphyxiation effect also appeared.

図2-4に実施例1-3を示す。サンプル1-3を噴霧すると、消火開始から3.5分後に消炎した。実施例1-3では消火剤使用量が最も少なかった。3.5分後以降は再燃する事無く、比較的急激にクリブ内の温度が下がった。実施例1-3では、クリブの崩壊は無かった。   Example 1-3 is shown in FIG. When Samples 1-3 were sprayed, they were extinguished 3.5 minutes after the start of the extinguishment. In Example 1-3, the amount of the extinguishant used was the smallest. After 3.5 minutes, the temperature in the crib decreased relatively rapidly without relapse. In Examples 1-3, there was no crib collapse.

実施例1-3において、消火時に燃焼物に対して被覆し、クリブの温度を保持する効果と同時に、窒息効果も現れた。尚且つ、炭酸カリウムの熱分解による効果が現れることにより、最も良い結果となった。この様にケイ酸化合物と金属炭酸塩の成分を併用することで消火効果が高くなることが明らかとなった。   In Examples 1-3, at the same time as the effect of coating the burning material at the time of extinguishment and maintaining the temperature of crib, the asphyxiation effect also appeared. Moreover, the best results were obtained by the effect of thermal decomposition of potassium carbonate. Thus, it has become clear that the fire extinguishing effect is enhanced by using the combination of the silicate compound and the metal carbonate component.

ケイ酸化合物と金属炭酸塩を混合すると、消火効果が高くなることが分かった。金属炭酸塩の添加量の上限は、各炭酸塩の飽和溶解量が限度である。そのため消火能力の向上を果たす目的では、金属炭酸塩だけに頼ると消火効果の向上は望めない。   It was found that when the silicate compound and the metal carbonate were mixed, the extinguishing effect was enhanced. The upper limit of the amount of metal carbonate added is the saturated dissolution amount of each carbonate. Therefore, in order to improve the ability to extinguish fires, the use of metal carbonates alone can not improve the fire extinguishing effect.

さらなる消火効果の向上を図るためには、ケイ酸化合物の消火効果も高めた方がより効果的である。なぜなら、ケイ酸化合物で高めた消火効果に、金属炭酸塩の消火効果をさらに付加できるからである。そのため以後の実験では、ケイ酸化合物由来の消火効果の増強開発を行った。   In order to further improve the fire extinguishing effect, it is more effective to enhance the fire extinguishing effect of the silicate compound. This is because the fire extinguishing effect of metal carbonate can be further added to the fire extinguishing effect enhanced by the silicate compound. Therefore, in the subsequent experiments, enhancement development of the fire extinguishing effect derived from the silicic acid compound was conducted.

[実施例2]固体膜と固体泡の形成
実施例2-1から実施例2-7の調製方法
JIS規格2号ケイ酸カリウム水溶液の固形分の100重量部に対し、0.1重量部の重量部のケイ酸アルミニウムを混合して調製した消火母剤(以下、「母剤」と表記する。)を適宜水で希釈し、表2に示す粘度の異なる各サンプルを調製した。
[Example 2] Solid film and formation of solid foam
Preparation methods of Examples 2-1 to 2-7
A fire extinguishing base agent (hereinafter referred to as "base agent") prepared by mixing 0.1 parts by weight of aluminum silicate with 100 parts by weight of solid content of JIS Standard No. 2 potassium silicate aqueous solution It diluted suitably with water and prepared each sample from which the viscosity shown in Table 2 differs.

試験結果
試験結果を表2及び写真1(図5)に示す。表2は、実施例2において、各サンプルをスライドガラスに噴霧し、その直後スライドガラスが濡れた状態で電気炉に投入した様子と夫々の粘度及び固形分率を示す。
Test Results Test results are shown in Table 2 and Photo 1 (FIG. 5). Table 2 shows a state in which each sample was sprayed on a slide glass and the slide glass was put into an electric furnace immediately after that in a wet state in Example 2, and the respective viscosity and solid fraction.

また、加熱後に取り出したサンプルの様子を写真1に示す。   Photo 1 shows the appearance of the sample taken after heating.

実施例2は、濡れた状態で熱源に投入しているため、消火剤を燃焼物に噴霧した状態を模している。また、スライドガラスを使用しているため、高温物体に対して感温性無機組成消火剤がどのような状態で反応するか良く観察できる。   The second embodiment is similar to the state in which the fire extinguishing agent is sprayed on the combustion material because the wet state is introduced to the heat source. Moreover, since the slide glass is used, it can be observed well in what state the temperature-sensitive inorganic composition extinguishant reacts with the high-temperature object.

写真1に熱源に投入した噴霧液の発泡状態の様子を示す(写真1中の「数字-数字」はサンプル「数字-数字」と同じである)。ここで、実施例2-3(写真1の左から3番目)は、実験時にスライドガラスが割れた。消火液の粘度の増加と共に固体泡の発泡嵩高さが増し、固体膜エリアが狭くなっている。   The appearance of the foaming state of the spray liquid supplied to the heat source is shown in the photograph 1 ("number-number" in the photograph 1 is the same as the sample "number-number"). Here, in Example 2-3 (third from the left in Photo 1), the slide glass was broken at the time of the experiment. With the increase of the viscosity of the extinguishing solution, the foaming bulk of the solid foam is increased and the solid film area is narrowed.

一方、消火液の粘度の減少と共に固体泡の発泡嵩高さは低くなり、固体膜エリアが広くなっている。ここで、固体膜とは、スライドガラス上に形成した膜が積層すること無く、横に広がった状態を指す。   On the other hand, as the viscosity of the extinguishing fluid decreases, the foaming bulk of the solid foam decreases, and the solid film area widens. Here, the solid film means a state in which the film formed on the slide glass is spread horizontally without being laminated.

本発明品を消火液とした立場での働きを考慮すると、燃焼物の表面を効率よく覆えば良く、無駄に嵩高くなる必要は無い。そのため、消火液が同じ体積ならば、粘度が低ければ被覆面積が大きくなるため消火効率が良い。   Considering the function of the present invention as a fire extinguishing fluid, the surface of the combusted material may be covered efficiently, and it is not necessary to be unnecessarily bulky. Therefore, if the volume of the extinguishing fluid is the same, if the viscosity is low, the covering area will be large, so the extinguishing efficiency is good.

一方、粘度が高い消火液に関しては、噴霧器の取扱いが困難になる事を加味すると、噴霧タイプの消火液には向かない。しかしながら、用途を別にすれば、高粘度の消火液をパックに充填し延焼予測地点に設置することで、高粘度の特徴である嵩高さを利用した遮熱性を発揮し、延焼を抑止できる。   On the other hand, with regard to the fire extinguishing fluid having a high viscosity, it is not suitable for the spray type extinguishing fluid, considering that the handling of the sprayer becomes difficult. However, if the application is separated, by filling the pack with the high viscosity fire extinguishing liquid and installing it at the fire spread prediction point, it is possible to exert the heat shielding property utilizing the bulkiness which is the feature of high viscosity, and to suppress fire spread.

以上の結果のように、ケイ酸化合物の固形分濃度を調節することによって、火災の熱で変化する状態(固体膜あるいは固体泡あるいは混成体の形状)が制御できることを明らかにした。   As described above, it was revealed that controlling the solid content concentration of the silicate compound can control the state (the shape of a solid film or a solid foam or a composite) that changes due to the heat of fire.

[実施例3]固体泡の高温安定性
実施例3の調製方法
JIS規格3号ケイ酸ナトリウム水溶液の固形分の100重量部に対し、25.8重量部の重量部のケイ酸アルミニウムを混合して調製した母剤(この時の固形分濃度は36.3%)をスライドガラスに塗布後、水分調節し、各サンプルを調製した。
[Example 3] High temperature stability of solid foam
Preparation Method of Example 3
Slide glass with a base material (solid content concentration at this time is 36.3%) prepared by mixing 25.8 parts by weight of aluminum silicate with 100 parts by weight of solid content of JIS standard 3 sodium silicate aqueous solution After application, the samples were prepared by adjusting the water content.

試験結果
写真2(図6)に熱源に投入した消火液の噴霧液の発泡状態の様子(実施例3)を示す。実施例3では、電気炉にサンプルを投入する前に、予め消火液の含水量を調節し、スライドガラス上に成膜した。サンプル3-1(左側)は含水率40%、サンプル3-2(右側)は7%である。両サンプルに熱が加えられ、100℃を超えると水の蒸発と共に泡を形成し始め、固体泡となった。
Test Results A photograph 2 (FIG. 6) shows the state of foaming of the spray liquid of the extinguishing liquid introduced into the heat source (Example 3). In Example 3, the water content of the extinguishing solution was adjusted in advance and the film was formed on the slide glass before the sample was put into the electric furnace. Sample 3-1 (left side) has a moisture content of 40%, and sample 3-2 (right side) has a water content of 7%. Heat was applied to both samples and when it exceeded 100 ° C. foam began to form with evaporation of water, becoming a solid foam.

発泡開始後、固体泡の状態は750℃まで嵩をほぼ維持した。750℃を超えると次第に嵩が低くなるが、泡の形状は保持したままである。また、750℃を超えるとガラスの軟化点を超えることから、固体泡は次第に柔軟化する。しかしながら、少なくとも850℃までは溶融劣化すること無く、また固体泡の流れだしも無く、スライドガラスに強く接着していることを確認した。   After foaming was initiated, the solid foam maintained its bulk almost up to 750 ° C. When the temperature exceeds 750 ° C., the bulk gradually decreases, but the shape of the bubble is maintained. Moreover, since it exceeds the softening point of glass when it exceeds 750 degreeC, a solid bubble softens gradually. However, it was confirmed that the glass did not melt and deteriorate at least up to 850 ° C., and there was no flow of solid bubbles and strongly adhered to the slide glass.

この加熱変化の様子は、火災時に消火液を燃焼物に供給した直後から火災熱により固体泡がどのような熱経緯を辿るかを模式的に表している。このように本消火剤は液体泡と異なり、非常に耐熱性が高いことを表している。   The state of this heating change is schematically showing how the heat flow of the solid foam follows the heat of the fire immediately after the fire extinguishing liquid is supplied to the combustion material at the time of fire. Thus, unlike the liquid foam, the present fire extinguishing agent exhibits very high heat resistance.

また、溶融して流れ出すまで本消火剤は付着した物体に強く接着していることから、非常に高い温度まで窒息効果が持続・発揮することができ、尚且つ延焼抑制効果があることが明らかとなった。また、林野火災での残火処理において、再燃防止にも効果がある事が分かった。   In addition, since the fire extinguishing agent is strongly adhered to the adhered object until it melts and flows out, the asphyxiation effect can be sustained and exhibited up to a very high temperature, and it is clear that it has a fire spread suppressing effect. became. In addition, it was found that there is also an effect in preventing reburning in the afterglow treatment in forest and field fires.

[実施例4]固体膜と固体泡の潮解
実施例4の調製方法
JIS規格1号ケイ酸カリウム水溶液の固形分の100重量部に対し、3.5重量部の重量部のケイ酸アルミニウムを混合して母剤を調製した。
[Example 4] Solid film and deliquescence of solid foam
Preparation Method of Example 4
A base material was prepared by mixing 3.5 parts by weight of aluminum silicate with 100 parts by weight of the solid content of the JIS Standard No. 1 potassium silicate aqueous solution.

母剤を水で希釈することにより12.0、6.03及び2.27[mPas]の粘度に調節し、夫々スライドガラス上にほぼ同量塗布後、予備乾燥した。   The base material was adjusted to a viscosity of 12.0, 6.03 and 2.27 [mPas] by dilution with water, and after applying approximately the same amount on a slide glass, it was predried.

その後、600℃、4時間、空気雰囲気下で加熱し、絶乾状態とした各サンプルを調製した。   Thereafter, the samples were heated in an air atmosphere at 600 ° C. for 4 hours to prepare each sample in an absolute dry state.

試験結果
写真3(図7)に600℃の熱源から取り出した直後を実験開始時とした場合の実施例4-1から4-3の各サンプルの経時変化を示す。実験日は平均気温23.6℃、平均湿度82%の実験環境であった。
Test results The time course of each sample of Examples 4-1 to 4-3 is shown at the start of the experiment immediately after taking out from the heat source of 600 ° C. in the photograph 3 (FIG. 7). The experimental day was an experimental environment with an average temperature of 23.6 ° C and an average humidity of 82%.

実験開始時の状態として、写真3の左側(サンプル4-1)では固体泡のみ、中(サンプル4-2)では固体泡と固体膜の混成体、右側(サンプル4-3)では固体膜のみの状態であった。時間の経過と共に全てのサンプルで潮解し、固体から液体へと変化した。   As the condition at the start of the experiment, the solid foam only in the left side (Sample 4-1), the mixture of solid foam and solid film in the middle (Sample 4-2), and the solid film only in the right side (Sample 4-3). It was in the condition of It deliquesed in all samples over time and changed from solid to liquid.

実施例4-1の固体泡の状態が最も液状化するのが遅く、3.5時間程度かかっている。固体膜の液状化は色彩変化が無く判定しづらいが、積層化した固体泡よりは液状化に至る時間短い。これら潮解に要する時間は、発泡バルク層の嵩高さや発泡密度によって異なる事が写真3に現れている。   The state of the solid foam of Example 4-1 is the slowest to liquefy, and it takes about 3.5 hours. The liquefaction of the solid film is difficult to judge because there is no color change, but the time to liquefaction is shorter than that of the laminated solid foam. The time required for the deliquescence is shown in Photo 3 to be different depending on the bulkiness and the foam density of the foam bulk layer.

また、絶乾状態で実験を開始したことから、(各サンプル中には水を含まない状態の乾燥シリケート層から開始した意を有している)大気中の湿気から水分を吸収し、液体化する潮解現象が発現したことを示しているのであって、予め被覆物中に含まれた水分が潮解現象に影響を及ぼしているのではない事を示している。   In addition, since the experiment was started in the dry state, it absorbed moisture from atmospheric moisture (having the meaning of starting from the dry silicate layer without water in each sample) to make it liquid It indicates that the deliquescence phenomenon that has occurred is shown, and that the water contained in the coating in advance does not affect the deliquescence phenomenon.

後述する実施例5及び6では一部の潮解が見られ、ケイ酸ナトリウム系化合物との混合物においても一部の潮解現象が見られた。この事より、シリケート層を形成した後に発現する潮解現象を消火剤の組成を調節することで、制御できることが分かった。   In Examples 5 and 6 to be described later, part of deliquescence was observed, and part of deliquescence was also observed in the mixture with the sodium silicate compound. From this fact, it was found that the deliquescence phenomenon that occurs after forming the silicate layer can be controlled by adjusting the composition of the extinguishant.

[実施例5]消火液の性能:粘度の影響
実施例5の調製方法
JIS規格1号ケイ酸カリウム水溶液の固形分と、JIS規格2号ケイ酸カリウム水溶液の固形分を合計した100重量部(体積比1:3)に対し、3.5重量部の重量部のケイ酸アルミニウムを混合して母剤を調製した。母剤を水で希釈することで11.4、6.24及び2.08[mPas]の粘度に調節し、各サンプルを調製した。
[Example 5] Performance of fire extinguishing fluid: Influence of viscosity
Preparation Method of Example 5
Aluminum silicate of 3.5 parts by weight with respect to 100 parts by weight (volume ratio 1: 3) obtained by totaling solid contents of JIS Standard No. 1 potassium silicate aqueous solution and solid contents of JIS Standard No. 2 potassium silicate aqueous solution Was mixed to prepare a matrix. Each sample was prepared by diluting the matrix with water to adjust the viscosity to 11.4, 6.24 and 2.08 [mPas].

試験結果
表3に消火実験で使用した消火剤粘度、消火した液量、消火効果及びクリブの温度が50℃を下回った到達時間を示す。消火液同組成では、噴霧可能な粘度が下がるとともに使用した消火液量が減り、消火効果が高くなった。
Test Results Table 3 shows the viscosity of the extinguishant used in the extinguishing experiment, the amount of extinguished liquid, the extinguishing effect, and the time taken for the temperature of the crib to fall below 50 ° C. With the same composition as the extinguishing fluid, the sprayable viscosity decreased and the amount of the extinguishing fluid used decreased, and the extinguishing effect increased.

これは、消火に有効な固体膜で燃焼物を被覆した面積の効果と、水の気化熱を利用して急激に被消火物の温度を下げる効果が発現したためである。   This is because the effect of the area covered with the combustion product with a solid film effective for fire extinguishing and the effect of rapidly lowering the temperature of the substance to be extinguished by using the heat of vaporization of water were developed.

図3-1に実施例5-1(粘度11.4[mPas]の場合)の消火実験のクリブ内温度の経時変化を示す。   The time-dependent change of the temperature inside the crib of the extinction experiment of Example 5-1 (in the case of the viscosity of 11.4 [mPas]) in FIG. 3-1 is shown.

サンプル5-1は、計測開始から102秒で消火液を燃焼クリブに2秒間噴霧すると消炎し、直ちにクリブ内の温度が急激に下がった。消炎確認後、開始から127秒で1秒間熾火に対して消火液を噴霧し、噴霧停止した。   In Sample 5-1, the fire extinguishing liquid was sprayed for 2 seconds into the burning crib for 102 seconds after the start of measurement, and the temperature in the crib decreased rapidly. After confirmation of extinction, the fire extinguishing fluid was sprayed for 1 second in 127 seconds from the start, and the spraying was stopped.

噴霧停止後は、クリブ内の温度が一旦は木材の燃焼温度260℃に迫ったものの、その後温度が緩やかに低くなった。噴霧停止後にクリブ内の温度が上がる現象は、発泡層がクリブの放熱を阻害したためである。   After the spray was stopped, the temperature inside the crib once approached the burning temperature of the wood 260 ° C, but then the temperature gradually dropped. The phenomenon that the temperature in the crib rises after the spray is stopped is because the foam layer inhibits the heat dissipation of the crib.

この様に発泡によって被被覆物内の温度が保持されることから、外熱に対しても抗温度変化作用がある事が明らかとなった。噴霧可能なサンプル5-1(粘度11.4[mPas])では発泡層の厚みを適正に制御していることから、木材の燃焼温度に満たず、比較的緩やかに放熱できており、良好な結果を示した。   As described above, since the temperature in the object to be coated is maintained by the foaming, it has become clear that there is also an anti-temperature change effect on external heat. In Sample 5-1 (viscosity 11.4 [mPas]) which can be sprayed, since the thickness of the foam layer is properly controlled, it does not reach the combustion temperature of wood, it can dissipate heat relatively gently, and good results are shown Indicated.

図3-2に実施例5-2(粘度6.24[mPas]の場合)の消火実験のクリブ内温度の経時変化を示す。   The time-dependent change of the temperature inside the crib of the extinction experiment of Example 5-2 (in the case of a viscosity of 6.24 [mPas]) is shown in FIG.

サンプル5-2は、計測開始から84秒で消火液を燃焼クリブに1秒間噴霧すると消炎し、直ちにクリブ内の温度が急激に下がった。消炎確認後、開始から227秒まで任意時間で約1秒間熾火に対して消火液を4回噴霧し、噴霧停止した。   The sample 5-2 was extinguished by spraying a fire extinguishing fluid on the burning crib for 1 second 84 seconds after the start of measurement, and the temperature in the crib dropped immediately. After confirmation of the extinction, the fire extinguishing fluid was sprayed four times against the flame for about 1 second at any time from the start to 227 seconds, and the spraying was stopped.

噴霧停止後は、消火液の発泡はあまり見られず、クリブ内の温度が比較的速やかに低くなった。噴霧停止後にクリブ内の温度が比較的速やかに低くなるのは固体膜と固体泡の混成体であるため、実施例5-1よりも効率的にクリブ内の熱をクリブ外へ逃がしたためである。   After the cessation of spraying, foaming of the extinguishing solution was not observed so much, and the temperature in the crib decreased relatively quickly. The temperature in the crib decreases relatively quickly after the spray is stopped because the heat in the crib escapes out of the crib more efficiently than in Example 5-1 because it is a composite of a solid film and a solid foam. .

この様に固体泡及び固体膜の混成体が燃焼物に被覆することで、良好な消火の結果を示した。   The coating of the mixture of the solid foam and the solid film on the combustion product in this way showed a good result of extinguishing the fire.

図3-3に実施例5-3(粘度2.08[mPas]の場合)の消火実験のクリブ内温度の経時変化を示す。   The time-dependent change of the temperature inside the crib of the extinction experiment of Example 5-3 (in the case of the viscosity of 2.08 [mPas]) is shown in FIG. 3-3.

サンプル5-3は、計測開始から61秒で消火液を燃焼クリブに1秒間噴霧すると消炎し、直ちにクリブ内の温度が急激に下がった。消炎確認後、開始から153秒まで任意時間で約1秒間熾火に対して消火液を4回噴霧し、噴霧停止した。   In Sample 5-3, when the fire extinguishing solution was sprayed onto the burning crib for 1 second in 61 seconds from the start of measurement, the flame was extinguished, and the temperature in the crib rapidly decreased. After confirmation of the extinction, the fire extinguishing fluid was sprayed four times against the flame for about 1 second at any time from the start to 153 seconds, and the spraying was stopped.

噴霧停止後は、消火液の発泡は見られず、クリブ内の温度が速やかに低くなった。噴霧停止後にクリブ内の温度が速やかに低くなるのは固体膜を形成しているため、実施例5-1及び実施例5-2よりも効率的にクリブ内の熱をクリブ外へ逃がしたためである。   After the spray stopped, no foaming of the extinguishing fluid was observed, and the temperature in the crib decreased rapidly. The reason why the temperature in the crib decreases rapidly after the spray is stopped is that the heat in the crib is dissipated out of the crib more efficiently than in Example 5-1 and Example 5-2 because a solid film is formed. is there.

この様に固体膜が燃焼物に被覆することで、良好に消火し、尚且つ消火後のクリブの温度降下も最も早かった。   In this way, the solid film coated the combustion product, which extinguished well, and the temperature drop of crib after extinguishing was also the fastest.

[実施例6]消火液の性能:ケイ酸アルミの濃度
実施例6-1と実施例6-2及び実施例6-3の調製方法
JIS規格1号ケイ酸カリウム水溶液の固形分と、JIS規格2号ケイ酸カリウム水溶液の固形分を合計した100重量部(体積比1:3)に対し、0.1重量部の重量部のケイ酸アルミニウムを混合して実施例6-1の母剤を調製した。
[Example 6] Performance of fire extinguishing fluid: Concentration of aluminum silicate
Preparation methods of Example 6-1, Example 6-2 and Example 6-3
0.1 parts by weight of aluminum silicate per 100 parts by weight (volume ratio 1: 3) of the solid content of JIS standard 1 aqueous solution of potassium silicate and the solid content of potassium aqueous solution according to JIS standard 2 (1: 3) Were mixed to prepare a matrix of Example 6-1.

JIS規格1号ケイ酸カリウム水溶液の固形分と、JIS規格2号ケイ酸カリウム水溶液の固形分を合計した100重量部(体積比1:3)に対し、1.0重量部の重量部のケイ酸アルミニウムを混合して実施例6-2の母剤を調製した。   1.0 part by weight of aluminum silicate per 100 parts by weight (volume ratio 1: 3) of the solid content of JIS Standard 1 aqueous solution of potassium silicate and the solid content of JIS aqueous solution 2 of JIS standard 2 Were mixed to prepare a matrix of Example 6-2.

JIS規格1号ケイ酸カリウム水溶液の固形分と、JIS規格2号ケイ酸カリウム水溶液の固形分を合計した100重量部(体積比1:3)に対し、3.5重量部の重量部のケイ酸アルミニウムを混合して実施例6-3の母剤を調製した。   Aluminum silicate of 3.5 parts by weight with respect to 100 parts by weight (volume ratio 1: 3) obtained by totaling solid contents of JIS Standard No. 1 potassium silicate aqueous solution and solid contents of JIS Standard No. 2 potassium silicate aqueous solution Were mixed to prepare a matrix of Example 6-3.

夫々の母剤を水で希釈し、約2.10[mPas]の粘度に揃え、各サンプルを調製した。なお実施例6-3は、実施例5-3と同一物である。   Each sample was diluted with water and adjusted to a viscosity of about 2.10 [mPas] to prepare each sample. Example 6-3 is the same as Example 5-3.

試験結果
表4に消火実験で使用した消火剤の量と消火効果を示す。ここで、サンプル6-3は、表3中のサンプル5-3と同一物である。同粘度においては、ケイ酸アルミの濃度が高くなるとともに使用した消火液量が減り、消火効果が高くなった。
Test results Table 4 shows the amount of the extinguishant used in the extinguishing experiment and the extinguishing effect. Here, the sample 6-3 is the same as the sample 5-3 in Table 3. At the same viscosity, as the concentration of aluminum silicate increased, the amount of extinguishant used decreased and the extinguishing effect increased.

また、クリブ内の温度が50℃を下回る時間はケイ酸アルミの量が増加すると共に短くなった。これは、燃焼物に対する被覆効果と水の気化熱冷却と、ケイ酸アルミによる被膜の高温安定性が発現したためである。   Also, the time during which the temperature in the crib falls below 50 ° C. becomes shorter as the amount of aluminum silicate increases. This is because the coating effect on the combustion material, the vaporization heat cooling of the water, and the high temperature stability of the film made of aluminum silicate are developed.

図4-1にサンプル6-1の粘度2.18[mPas]の場合の消火実験のクリブ内温度の経時変化を示す。計測開始から76秒で消火液を燃焼クリブに3秒間噴霧すると消炎し、直ちにクリブ内の温度が下がった。消炎確認後、開始から129秒まで任意時間で約1秒間熾火に対して消火液を2回噴霧し、噴霧停止した。   Fig. 4-1 shows the time-dependent change of the temperature inside the crib of the fire extinguishing experiment in the case of the viscosity 2.18 [mPas] of the sample 6-1. When the fire extinguishing solution was sprayed for 3 seconds to the burning crib for 76 seconds after the measurement start, the flame was extinguished and the temperature in the crib decreased immediately. After confirmation of the extinction, the fire extinguishing fluid was sprayed twice against the flame for about 1 second at any time from the start to 129 seconds, and the spraying was stopped.

噴霧停止後は、消火液の発泡は見られず、クリブ内の温度が低くなった。ここで、底面の計測温度が緩やかな降下を辿っている。これはクリブ底面に存在する熾火の全面ではなく、クリブ底面の熾火周辺に消火液がかかっている状態である。つまり窒息効果のある固体膜が熾火周辺を取り囲んでいるため、熾火に酸素が供給されにくく自然鎮火している。しかしながら、図4-1を見ると50℃を下回るクリブ全体の温度低下にはほとんど影響が出ていない。   After the spray stopped, no foaming of the extinguishing fluid was observed, and the temperature in the crib decreased. Here, the measured temperature at the bottom is following a gentle drop. This is not the entire surface of the flame on the bottom of the crib, but the state where the extinguishing fluid is applied around the flame on the bottom of the crib. In other words, because a solid film with a suffocating effect surrounds the bonfire, oxygen is hardly supplied to the bonfire and it naturally quenches. However, looking at Fig. 4-1, the temperature drop of the entire crib below 50 ° C is hardly affected.

この様に熾火の周辺を固体膜で取り囲むと、自然鎮火しやすい状態を作る事が出来る事も分かった。また、固体膜が燃焼物に被覆することで、良好に消火し、尚且つ消火後の温度低下も早い結果も得られた。   It was also found that it is possible to create a state where it is easy to suppress the natural fire by surrounding the open flame with a solid film in this way. In addition, by covering the solid film with the burning matter, the fire extinguished well, and the temperature decrease after the fire extinguishment was also quick.

図4-2にサンプル6-2の粘度2.07[mPas]の場合の消火実験のクリブ内温度の経時変化を示す。計測開始から75秒で消火液を燃焼クリブに2秒間噴霧すると消炎し、直ちにクリブ内の温度が下がった。消炎確認後、開始から192秒まで任意時間で約1秒間熾火に対して消火液を3回噴霧し、噴霧停止した。   FIG. 4-2 shows a time-dependent change in temperature inside the crib of the fire extinguishing experiment in the case of the viscosity of 2.07 [mPas] of Sample 6-2. When the fire extinguishing solution was sprayed on the burning crib for 2 seconds 75 seconds after the start of the measurement, the flame was extinguished and the temperature in the crib decreased immediately. After confirmation of the extinction, the fire extinguishing fluid was sprayed three times against the flame for about 1 second at any time from the start to 192 seconds, and the spraying was stopped.

噴霧停止後は、消火液の発泡は見られず、クリブ内の温度が速やかに低くなった。噴霧停止後にクリブ内の温度が速やかに低くなるのは固体膜を形成しているためである。   After the spray stopped, no foaming of the extinguishing fluid was observed, and the temperature in the crib decreased rapidly. The reason why the temperature in the crib decreases rapidly after the spraying is stopped is that a solid film is formed.

この様に固体膜が燃焼物に被覆することで、良好に消火し、尚且つ消火後の温度低下も早い結果を得た。   By covering the solid matter with the combusted matter in this way, the fire extinguished well, and the temperature decrease after the fire extinguishment was also quick.

サンプル6-3はサンプル5-3と同一物であり、実験結果も図3-3と同じである。   Sample 6-3 is the same as sample 5-3, and the experimental results are also the same as FIG. 3-3.

サンプル6-1及び6-2と比較すると、各測定温度のばらつきが小さく、速やかにクリブの温度が下がっている事が分かる。   As compared with Samples 6-1 and 6-2, it can be seen that the variation of each measured temperature is small, and the temperature of the crib is rapidly lowered.

このようにケイ酸アルミの濃度が高くなるとともに消火効果が高くなる事が分かった。   Thus, it has been found that the fire extinguishing effect is enhanced as the concentration of aluminum silicate is increased.

Claims (8)

アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0.1〜26重量部のケイ酸アルミニウムと、水とを含有する感温性無機組成消火剤。 A temperature sensitive inorganic composition fire extinguisher comprising: an alkali metal silicate compound; and 0.1 to 26 parts by weight of aluminum silicate and water with respect to 100 parts by weight of the solid content of silicon dioxide of the alkali metal silicate compound. アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0.1〜26重量部のケイ酸アルミニウムと、30℃の水に対する飽和濃度以下の金属炭酸塩と、水とを含有する感温性無機組成消火剤。 Alkali metal silicate compound, 0.1 to 26 parts by weight of aluminum silicate per 100 parts by weight of solid content of silicon dioxide of the alkali metal silicate compound, and metal carbonate having a saturation concentration or less with respect to water at 30 ° C. Temperature-sensitive inorganic composition extinguishant containing water. アルカリ金属ケイ酸化合物が、ケイ酸ナトリウム、ケイ酸カリウム及びケイ酸リチウムからなる群より選択される少なくとも1種の化合物である、請求項1又は2に記載の感温性無機組成消火剤。   The thermosensitive inorganic composition fire extinguisher according to claim 1 or 2, wherein the alkali metal silicate is at least one compound selected from the group consisting of sodium silicate, potassium silicate and lithium silicate. 金属炭酸塩が、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩であり、当該アルカリ金属がナトリウム、カリウム及びリチウムからなる群より選択される少なくとも1つの化合物である、請求項2に記載の感温性無機組成消火剤。 The temperature-sensitive property according to claim 2 , wherein the metal carbonate is an alkali metal carbonate and an alkali metal hydrogen carbonate, and the alkali metal is at least one compound selected from the group consisting of sodium, potassium and lithium. Inorganic composition fire extinguisher. アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0.1〜26重量部のケイ酸アルミニウムと、水とを含有する感温性無機組成延焼抑止剤。 A temperature-sensitive inorganic composition as claimed in Claim 1 comprising an alkali metal silicate compound and 0.1 to 26 parts by weight of aluminum silicate per 100 parts by weight of the solid content of silicon dioxide of the alkali metal silicate compound, and water. アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0.1〜26重量部のケイ酸アルミニウムと、30℃の水に対する飽和濃度以下の金属炭酸塩と、水を含有する感温性無機組成延焼抑止剤。 Alkali metal silicate compound, 0.1 to 26 parts by weight of aluminum silicate per 100 parts by weight of solid content of silicon dioxide of the alkali metal silicate compound, and metal carbonate having a saturation concentration or less with respect to water at 30 ° C. Temperature-sensitive inorganic composition fire retardant containing water. アルカリ金属ケイ酸化合物が、ケイ酸ナトリウム、ケイ酸カリウム及びケイ酸リチウムからなる群より選択される少なくとも1種の化合物である、請求項5又は6に記載の感温性無機組成延焼抑止剤。   The temperature-sensitive inorganic composition as claimed in claim 5 or 6, wherein the alkali metal silicate compound is at least one compound selected from the group consisting of sodium silicate, potassium silicate and lithium silicate. 金属炭酸塩が、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩であり、当該アルカリ金属がナトリウム、カリウム及びリチウムからなる群より選択される少なくとも1つの化合物である、請求項6に記載の感温性無機組成延焼抑止剤。 7. The thermosensitive material according to claim 6 , wherein the metal carbonate is an alkali metal carbonate and an alkali metal hydrogen carbonate, and the alkali metal is at least one compound selected from the group consisting of sodium, potassium and lithium. Inorganic composition fire retardant.
JP2017091918A 2017-05-02 2017-05-02 Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent Active JP6516268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091918A JP6516268B2 (en) 2017-05-02 2017-05-02 Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091918A JP6516268B2 (en) 2017-05-02 2017-05-02 Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent

Publications (2)

Publication Number Publication Date
JP2018187071A JP2018187071A (en) 2018-11-29
JP6516268B2 true JP6516268B2 (en) 2019-05-22

Family

ID=64478004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091918A Active JP6516268B2 (en) 2017-05-02 2017-05-02 Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent

Country Status (1)

Country Link
JP (1) JP6516268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144828B2 (en) * 2018-05-23 2022-09-30 国立大学法人 宮崎大学 Temperature-sensitive inorganic composition extinguishing agent for metal fires and temperature-sensitive inorganic composition fire spread inhibitor for metal fires
KR102130607B1 (en) * 2019-01-18 2020-07-06 경상대학교산학협력단 Foaming composition for spraying to block smoke in case of fire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109072A (en) * 1981-12-21 1983-06-29 ホーチキ株式会社 Fire fighting agent for tempura oil fire
JP2001294778A (en) * 2000-04-10 2001-10-23 Inax Corp Method of forming stain-proofing coating film and antifouling coating material
JP5854422B2 (en) * 2011-12-06 2016-02-09 三生技研株式会社 Thermosensitive inorganic composition
CN104645539A (en) * 2013-11-19 2015-05-27 姚金华 Ammonia-free gel

Also Published As

Publication number Publication date
JP2018187071A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
US7163642B2 (en) Composition inhibiting the expansion of fire, suppressing existing fire, and methods of manufacture and use thereof
US9586070B2 (en) Flame retardant and fire extinguishing product for fires in solid materials
JP6313279B2 (en) Fire extinguisher and fire extinguisher medium
US20150021055A1 (en) Flame retardant and fire extinguishing product for fires in solid materials
WO2017015585A1 (en) Flame retardant and fire extinguishing product
WO2014115036A2 (en) Flame retardant and fire extinguishing product for fires in liquids
US20150224352A1 (en) Flame retardant and fire extinguishing product for fires in solid materials
JP6516268B2 (en) Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent
US20050269109A1 (en) Method of extinguishing fires
SE501874C2 (en) Fire-fighting materials consisting mainly of crushed glass particles with hydrophobic coating, and its use
WO2014025929A2 (en) Misting, flooding, and pre-coating system for fire suppression
US20160107015A1 (en) Fire extinguishing composition and gel-state fire extinguishing material containing the same
EP2004295B1 (en) Composition for fire fighting and formulations of said composition
US8257607B1 (en) Fluorocarbon-free, environmentally friendly, natural product-based, and safe fire extinguishing agent
JP2024501760A (en) Water-based fire extinguishing agent
RU2622303C1 (en) Combined composition for fire fighting, method for combined fire fighting and microcapsulated extinguishing agent
JP7144828B2 (en) Temperature-sensitive inorganic composition extinguishing agent for metal fires and temperature-sensitive inorganic composition fire spread inhibitor for metal fires
RU2275951C1 (en) Aqueous solution for fire quenching
RU2079318C1 (en) Nontoxic fire-extinguishing composition
US10905911B2 (en) Composition for fire extinguishant
VOELKERT Fire and fire extinguishment
JPH0728936B2 (en) Fire extinguisher
JPH029828B2 (en)
WO2001054773A3 (en) Method and extinguishing agent for extinguishing a fire caused by oil or fat
CN117398649A (en) Aerogel fire extinguishing material based on surfactant binary compound system and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6516268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250