JP2018187071A - Temperature-sensitive inorganic composition fire-extinguishing agent, and temperature-sensitive inorganic composition fire spreading inhibitor - Google Patents

Temperature-sensitive inorganic composition fire-extinguishing agent, and temperature-sensitive inorganic composition fire spreading inhibitor Download PDF

Info

Publication number
JP2018187071A
JP2018187071A JP2017091918A JP2017091918A JP2018187071A JP 2018187071 A JP2018187071 A JP 2018187071A JP 2017091918 A JP2017091918 A JP 2017091918A JP 2017091918 A JP2017091918 A JP 2017091918A JP 2018187071 A JP2018187071 A JP 2018187071A
Authority
JP
Japan
Prior art keywords
fire
temperature
silicate
inorganic composition
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017091918A
Other languages
Japanese (ja)
Other versions
JP6516268B2 (en
Inventor
隆志 真
Takashi Shin
隆志 真
鉄治 菅原
Tetsuji Sugawara
鉄治 菅原
弘一郎 塩盛
Koichiro Shiomori
弘一郎 塩盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSEI GIKEN KK
University of Miyazaki NUC
Original Assignee
SANSEI GIKEN KK
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSEI GIKEN KK, University of Miyazaki NUC filed Critical SANSEI GIKEN KK
Priority to JP2017091918A priority Critical patent/JP6516268B2/en
Publication of JP2018187071A publication Critical patent/JP2018187071A/en
Application granted granted Critical
Publication of JP6516268B2 publication Critical patent/JP6516268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Fireproofing Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature-sensitive inorganic composition forming a solid film or a solid foam as a fire-extinguishing agent to a material already burning by fire or the like, or a fire spread inhibitor to an unfired material having possibility of fire spreading.SOLUTION: The temperature-sensitive inorganic composition fire-extinguishing agent and a temperature-sensitive inorganic composition fire spreading inhibitor contain an alkali metal silicate compound, aluminum silicate of 0 to 26 pts.wt. based on 100 pts.wt. of a solid component of silicon dioxide of the alkali metal silicate compound, and water.SELECTED DRAWING: None

Description

本発明は、火災等の高温環境下にて固体の無機高分子膜或いは泡を形成するケイ酸化合物をベースとした感温性組成物を含有してなる無機組成の消火剤及び延焼抑止剤に関する。   The present invention relates to a fire extinguisher and a fire spread inhibitor having an inorganic composition containing a temperature-sensitive composition based on a silicate compound that forms a solid inorganic polymer film or foam in a high-temperature environment such as a fire. .

従来から知られる代表的な消火剤として、水、粉末消火剤(非特許文献1)、強化液(特許文献1)や泡消火剤(特許文献2)等がある。   Typical extinguishing agents known from the past include water, powder extinguishing agents (Non-patent Document 1), reinforcing liquids (Patent Document 1), foam extinguishing agents (Patent Document 2), and the like.

消火剤としての水は、消火メカニズムや消火能力の定量化研究(非特許文献2〜5)から、機械散布の開発(特許文献3)、及び文化財が水損した場合の修復に関する研究(非特許文献6)まで、非常に幅広く研究開発が行われている。   Water as a fire extinguishing agent is based on quantification research on fire extinguishing mechanisms and fire extinguishing capabilities (Non-Patent Documents 2 to 5), development of machine spraying (Patent Document 3), and research on restoration when cultural assets are damaged by water (Non-Patent Document 3) Research and development has been carried out very broadly up to Patent Document 6).

安価で尚且つ広域に消火栓が設置されていることから、使用環境が整った水は、最も頻繁に使用されているものの、一方では水で一旦消火したはずの物体が、水の蒸発後に再燃する欠点を有する。   Because it is cheap and has fire hydrants installed over a wide area, water with a good environment is used most frequently, but on the other hand, an object that should have been extinguished once with water reignites after evaporation of the water. Has drawbacks.

アンモニア成分を含有する粉末消火剤は、熱分解で生成したアンモニアラジカルによって燃焼の連鎖反応を抑制(非特許文献1)し、消火する能力を発揮するが、噴霧した空間領域の酸素濃度を気相のラジカル停止反応によって低下させるため、風向きによっては、消防隊員の活動を制限する可能性がある。   A powder extinguisher containing an ammonia component suppresses the chain reaction of combustion by ammonia radicals generated by thermal decomposition (Non-Patent Document 1) and exhibits the ability to extinguish, but the oxygen concentration in the sprayed space region is changed to the gas phase. Depending on the wind direction, there is a possibility of limiting the activities of firefighters.

また、粉末消火剤は貯蔵中に吸湿し、固化する欠点(非特許文献1)を有するため、素早い消火活動に対応しづらい指摘もある。   In addition, since powder fire extinguishing agents have the disadvantage of absorbing moisture during storage and solidifying (Non-patent Document 1), it is also pointed out that it is difficult to respond to quick fire extinguishing activities.

強化液は、A火災での消火効果とB火災で油を鹸化して消火する特性があり、優れた消火剤であるが、A火災において液の乾燥後に消火したはずの物の表面上で消火液に含有する成分が粉体になるため、再燃を防止できない欠点(特許文献4)を有する。   The strengthening liquid has a fire extinguishing effect in fire A and a fire extinguishing agent by saponifying oil in fire B, and is an excellent fire extinguisher, but fire extinguishing on the surface of objects that should have been extinguished after liquid drying in fire A Since the component contained in the liquid becomes powder, there is a defect (patent document 4) that relapse cannot be prevented.

泡消火剤(特許文献2)では、界面活性剤由来の表面張力の低減により、水を効率的に燃焼物に付着させ、水による気化熱の冷却効果と、尚且つ液体泡による燃焼物表面への被覆による窒息効果を発揮する優れた消火能力をもっている。しかしながら、原理的に親油性と親水性を併せ持つ界面活性剤は、環境や魚類に与える影響が問題視されている。   In the foam extinguisher (Patent Document 2), by reducing the surface tension derived from the surfactant, water is efficiently attached to the combustion product, the cooling effect of the heat of vaporization by the water, and also to the combustion product surface by the liquid foam Has excellent fire extinguishing ability to exert suffocation effect by coating. However, in principle, surfactants having both lipophilicity and hydrophilicity are considered to have a problem of influence on the environment and fish.

上述のように各消火剤は夫々有用であり、また夫々欠点も有する。現状では、火災に対して、消火能力の性能が良く、また環境に優しい消火剤の開発が望まれていると考えられる。   As mentioned above, each fire extinguisher is useful and has its own drawbacks. At present, it is considered to be desirable to develop a fire extinguishing agent that has good fire extinguishing performance and is environmentally friendly against fires.

ケイ酸化合物については、近年、環境に優しく消火能力の性能も考慮したケイ酸化合物を含有する消火剤は幾つか報告されている。特許文献5には、スメクタイト等の粘土鉱物と水、或いは消火液と混合して消火材料を調製し、A火災の能力単位を測定する際に用いる第一模型に対して、2台の消火器で消火を試みたところ、木材は炭化したまま、完全に鎮火したとある。この消火効果は、化学的に縮合反応し得ない粘土鉱物が、単純にゲル状になって燃焼面に接着した窒息効果と、水の蒸発による冷却効果によるものである。   Regarding silicic acid compounds, in recent years, some fire extinguishing agents containing silicic acid compounds that are environmentally friendly and also consider the performance of fire extinguishing ability have been reported. In Patent Document 5, a fire extinguishing material is prepared by mixing clay minerals such as smectite and water or a fire extinguishing liquid, and two fire extinguishers are used for the first model used when measuring the A fire capacity unit. When I tried to extinguish the fire, it was said that the wood was completely extinguished while carbonized. This fire-extinguishing effect is due to a suffocation effect in which a clay mineral that cannot chemically condense is simply gelled and adhered to the combustion surface, and a cooling effect due to water evaporation.

特許文献5のケイ酸化合物は、粘土鉱物そのものであるため、燃焼物表面上にて火災時の熱を利用した脱水縮合反応によるシリケート層の生成に由来する固体膜又は固体泡の形成ができないことが本発明品とは異なる。   Since the silicic acid compound of Patent Document 5 is a clay mineral itself, it is impossible to form a solid film or a solid foam derived from the formation of a silicate layer by dehydration condensation reaction using heat at the time of fire on the surface of the combustion product However, it is different from the product of the present invention.

特許文献6には、水、水ガラス及び粘土を混合して調製した懸濁液を、消火剤として使用している。このとき水ガラスは粘土の分散安定剤として作用させている。特許文献6の水ガラスの添加による作用は、砂を塊状にすることと、塊状砂中に水を保持する事である。そのため基本的な消火作用は、燃焼物に粘土が付着する砂消火である。   In Patent Document 6, a suspension prepared by mixing water, water glass and clay is used as a fire extinguishing agent. At this time, the water glass acts as a clay dispersion stabilizer. The action of adding water glass in Patent Document 6 is to make the sand a lump and to retain water in the lump sand. For this reason, the basic fire extinguishing action is sand extinguishing, in which clay adheres to the combustion products.

消火原理が砂消火のため、粘土と水ガラスの合計含量が大きくなると(砂を燃焼物に盛ることと同じであるため)、消火効果が高くなるとしている。特許文献6では、ケイ酸化合物は砂のバインダーとしての作用を発揮するのみで、燃焼物に対して直接的な消火の効果を発揮していない。   The fire extinguishing principle is sand fire extinguishing, and if the total content of clay and water glass is large (because it is the same as putting sand on the combustion product), the fire extinguishing effect is said to increase. In Patent Document 6, the silicic acid compound only exhibits an action as a binder of sand, and does not exhibit a direct fire-extinguishing effect on the combustion product.

これらの文献(非特許文献5、非特許文献6)に記されるケイ酸化合物を利用した消火剤は、水に溶解しない粘土鉱物の懸濁液であるため、消防法第二十一条の二第二項の規定に基づいた「消火器用消火剤の技術上の規格を定める省令」に照らし合わせると不適切であるという問題点も有している。   Fire extinguishing agents using silicate compounds described in these documents (Non-Patent Document 5, Non-Patent Document 6) are suspensions of clay minerals that do not dissolve in water. (2) There is also a problem that it is inappropriate in light of “Ministerial Ordinance for Establishing Technical Standards for Extinguishers for Fire Extinguishers” based on the provisions of paragraph 2.

特許文献7には、乾燥水ガラスを油タンク火災に限定して使用する記載がある。網目状の骨材に水ガラスをコーティングし、乾燥させたものを中空浮体とし、その中にカレットとした乾燥水ガラスを充填した構造体を油タンクに連結して浮遊させている。油火災で発生した熱により、浮体の殻が崩壊し、内部のカレットが漏出発泡することで油表面を覆うとしている。   Patent Document 7 describes that dry water glass is used only for oil tank fires. A mesh-like aggregate is coated with water glass and dried to form a hollow floating body, and a structure filled with dried water glass as cullet is connected to an oil tank and floated. Due to the heat generated by the oil fire, the shell of the floating body collapses, and the cullet inside leaks and foams and covers the oil surface.

特許文献7では、水ガラスが有機溶媒と接触すると、発泡しないケイ酸が固油接触界面に析出する化学的問題と、さらに市販水ガラスの比重は約1.5程度あることは既知であるが、その乾燥物は比重がさらに大きくなることは自明であり、比重が1.0よりも小さい油の気液界面に水ガラス乾燥カレットが存在したとしても沈降する速度が速い物理的問題がある。   In Patent Document 7, it is known that when water glass comes into contact with an organic solvent, silicic acid that does not foam precipitates at the solid oil contact interface, and that the specific gravity of commercial water glass is about 1.5, It is obvious that the specific gravity of the dried product is further increased, and there is a physical problem that the settling speed is high even if water glass dry cullet is present at the gas-liquid interface of oil having a specific gravity smaller than 1.0.

もし火災の熱により発泡を開始したとしても、比重の軽い油の上に設置した乾燥水ガラスのカレットは、常に固油接触界面で生成したケイ酸で発泡を阻まれ、発泡が不十分なままカレットの大部分は油に沈むという速度論的な問題も有している。   Even if foaming starts due to the heat of the fire, dry water glass cullet placed on light oil of specific gravity is always blocked by silicic acid generated at the solid oil contact interface, and foaming remains insufficient. The majority of cullet also has a kinetic problem of sinking in oil.

泡消火剤については、消火の窒息作用に最も効果的であると考えられる泡を利用した消火剤は、界面活性剤を基に開発され、既に市販されている。しかしながら、特許文献2のような欠点も有している。ところが現在、泡消火剤の欠点を解決しつつある消火剤が開発されている。   As for foam extinguishing agents, extinguishing agents using foams that are considered to be most effective for the suffocating action of extinguishing are developed based on surfactants and are already commercially available. However, it also has drawbacks such as Patent Document 2. However, fire extinguishing agents are currently being developed that are solving the drawbacks of foam extinguishing agents.

人体に対する高い安全性を有する泡消火剤(特許文献8)や、加えて生物や環境への負荷の少ない泡消火剤(特許文献9)が開発されている。これらの優位性は高く、これまで認識されてきた泡消火剤の欠点はほぼクリアーしたと考えられる。しかしながら、これら泡消火剤の泡は、界面活性剤由来の液体の泡である。火災時における液体泡の状態を考えると、火災の熱が液体泡に供給されれば、泡を形成する骨格成分の水が蒸発する事により、泡構造を維持できなくなる。   A foam extinguisher (Patent Document 8) having high safety to the human body and a foam fire extinguisher (Patent Document 9) with a low burden on organisms and the environment have been developed. These advantages are high, and it is considered that the disadvantages of the foam extinguishing agents recognized so far are almost cleared. However, these foam extinguishing foams are liquid foams derived from surfactants. Considering the state of the liquid bubbles at the time of fire, if the heat of the fire is supplied to the liquid bubbles, the water of the skeleton component that forms the bubbles evaporates, so that the bubble structure cannot be maintained.

このように液体泡の熱に対する泡骨格維持温度は水が蒸発するまでである。また泡の形成は、泡消火剤を専用のノズルや混合装置を介することで強制的に生成するものであり、火事の熱を感じて自発的に発泡する現象は起こりえない。一方、消火完了した後の液体泡を考えると、火災の熱に晒されること無く、液体泡の維持がある程度可能であるが、これも5時間程度で消泡する報告(非特許文献7)がある。   Thus, the bubble skeleton maintenance temperature with respect to the heat | fever of a liquid bubble is until water evaporates. In addition, foam formation is forcibly generated by a foam extinguishing agent via a dedicated nozzle or mixing device, and the phenomenon of spontaneous foaming due to the heat of fire cannot occur. On the other hand, considering the liquid foam after extinguishing the fire, it is possible to maintain the liquid foam to some extent without being exposed to the heat of the fire, but this also reports that it disappears in about 5 hours (Non-Patent Document 7) is there.

この様に液体泡の消泡は水の蒸発に起因し、泡消火剤の組成によって積極的に泡骨格の維持を制御する事ができない。   As described above, the defoaming of the liquid foam is caused by the evaporation of water, and the maintenance of the foam skeleton cannot be positively controlled by the composition of the foam extinguisher.

特開平3-500252号公報Japanese Unexamined Patent Publication No. 3-500252 特開2009-201695号公報JP 2009-201695 特開平11-146928号公報Japanese Patent Laid-Open No. 11-146928 特開2006-130210号公報JP 2006-130210 JP 特開平7-558号公報Japanese Unexamined Patent Publication No. 7-558 特表2000-512517号公報Special table 2000-512517 gazette 特開2008-206849号公報JP 2008-206849 A 特開2009-291636号公報JP 2009-291636 A 特開2012-254101号公報JP 2012-254101 A

若園吉一、安藤直次郎;消火に関する(第2報)粉末消火剤について, 京大防災研究所年報, 6, pp1-5(昭和38年7月).Wakazono Yoshikazu, Ando Naojiro; Fire extinguishing (2nd report) About powder fire extinguishing agents, Kyoto University Disaster Prevention Research Institute Annual Report, 6, pp1-5 (July 1963). 高橋哲;クリブモデル火災の消火諸現象の定量化, 日本火災学会論文集, 29, pp.33-40(1979).Satoshi Takahashi; Quantification of fire extinguishing phenomena of Crib model fire, Proceedings of the Fire Society of Japan, 29, pp.33-40 (1979). 高橋哲;燃焼木炭の消火, 消防研究所報告, 49, pp.7-13(1980).Satoshi Takahashi; Fire extinguishing of burning charcoal, Report of Fire Research Institute, 49, pp.7-13 (1980). 高橋哲;木材火災の消火-注水中の重量増加速度および消火時間-, 日本火災学会論文集, 30, pp.31-40(1980).Satoshi Takahashi; Fire extinguishing of wood fires-Weight increase rate and fire extinguishing time in water injection-, Proceedings of the Japan Fire Society, 30, pp.31-40 (1980). 高橋哲;“水系消火剤の作用機構と効率, 消防研究所報告, 56, pp.7-11(1983).Satoshi Takahashi; “Action mechanism and efficiency of water-based fire extinguishing agents, Report of Fire Research Institute, 56, pp.7-11 (1983). 高妻洋成; 水損資料の処置, 緊急保全活動・現況調査事業研究会, 「これからの文化財防災-防災の備え」セッション1 レスキュー後に得られた技術的知見と課題, 独立行政法人国立文化財機構東京文化財研究所(平成27年).Takanari Hironari; Disposal of Water Damage Data, Emergency Conservation Activities / Current Status Research Project, “Disaster Prevention of Cultural Properties—Preparation for Disaster Prevention” Session 1 Technical Knowledge and Issues Obtained after Rescue, National Culture Tokyo Metropolitan Institute for Cultural Properties (2015). 室田城治;クラスA泡消火剤を使用した消火戦術の改革, 消研輯報, エ・一般による消防防災科学論文の部, pp.106-113(平成14年度).Murota Joji; Reform of fire fighting tactics using Class A foam fire extinguishers, Fire extinguishing newsletter, D. General article on fire prevention and disaster prevention science, pp.106-113 (2002).

本発明では、火災等で既に燃焼している物質に対する消火剤、また延焼の可能性がある未燃の物質に対する延焼抑止剤として、固体膜又は固体泡を形成する感温性の無機組成物を提供することを目的とする。   In the present invention, a temperature-sensitive inorganic composition that forms a solid film or a solid foam is used as a fire extinguishing agent for a substance already burned in a fire or the like, or as a fire spread inhibitor for an unburned substance that may spread. The purpose is to provide.

本発明者らは、上記目的を達成すべく鋭意研究を重ねてきた結果、
ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合溶液、
ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合溶液にケイ酸アルミニウムを溶解した溶液、
ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合溶液にアルカリ炭酸塩の単独又は混合物を溶解した溶液、又は
ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合溶液にケイ酸アルミニウムとアルカリ炭酸塩の単独もしくは混合物を溶解した溶液等
として調製される感温性無機組成物が、
火災等の熱を感知し、燃焼物の表面に固体膜又は固体泡の単独又は混成体を形成して、消火作用を発現する消火剤として機能することと、
延焼の可能性がある未燃の物質に予め前記感温性無機組成物を供給することによって延焼抑止効果を発揮する延焼抑止剤として機能することと、
消火後に温度が下がると固体膜及び泡の単独又は混成体の液状化又は保持のいずれか又は双方の現象が発現することと等、を見出し、本発明を完成するに至った。
As a result of intensive studies to achieve the above object, the present inventors have
Single or mixed solution of sodium silicate and potassium silicate,
A solution of aluminum silicate dissolved in a single or mixed solution of sodium silicate and potassium silicate,
A solution in which an alkali carbonate alone or a mixture is dissolved in sodium silicate and potassium silicate alone or in a mixed solution, or an aluminum silicate and an alkali carbonate alone or in a mixture of sodium silicate and potassium silicate alone or in a mixed solution Temperature-sensitive inorganic composition prepared as a solution in which
Sensing heat such as fire, forming a solid film or solid foam alone or a hybrid on the surface of the combustion product, functioning as a fire extinguishing agent that exhibits a fire extinguishing action,
Functioning as a fire spread inhibitor that exhibits a fire spread inhibiting effect by supplying the temperature-sensitive inorganic composition to an unburned substance that has the possibility of spreading fire in advance;
The inventors have found that when the temperature is lowered after extinguishing the fire, the phenomenon of either or both of the solid film and the foam alone or the liquefaction or retention of the hybrid appears, and the present invention has been completed.

即ち、本発明は、以下の発明を包含する。   That is, the present invention includes the following inventions.

第1発明の感温性無機組成消火剤
項1.
アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、水とを含有する感温性無機組成消火剤。
Item 1. Thermosensitive inorganic composition fire extinguisher of the first invention
A temperature-sensitive inorganic composition fire extinguisher containing 0 to 26 parts by weight of aluminum silicate and water with respect to 100 parts by weight of the solid content of the alkali metal silicate compound and silicon dioxide of the alkali metal silicate compound.

項2.
アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、飽和濃度以下の金属炭酸塩と、水とを含有する感温性無機組成消火剤。
Item 2.
It contains 0 to 26 parts by weight of aluminum silicate, a metal carbonate having a saturated concentration or less, and water with respect to 100 parts by weight of the solid content of the alkali metal silicate compound and silicon dioxide of the alkali metal silicate compound. Thermosensitive inorganic composition fire extinguisher.

項3.
アルカリ金属ケイ酸化合物が、ケイ酸ナトリウム、ケイ酸カリウム及びケイ酸リチウムからなる群より選択される少なくとも1種の化合物である、前記項1又は2に記載の感温性無機組成消火剤。
Item 3.
Item 3. The temperature-sensitive inorganic composition fire extinguisher according to Item 1 or 2, wherein the alkali metal silicate compound is at least one compound selected from the group consisting of sodium silicate, potassium silicate, and lithium silicate.

項4.
金属炭酸塩が、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩であり、当該アルカリ金属がナトリウム、カリウム及びリチウムからなる群より選択される少なくとも1つの化合物である、請求項1〜3のいずれかに記載の感温性無機組成消火剤。
Item 4.
The metal carbonate is an alkali metal carbonate and an alkali metal hydrogen carbonate, and the alkali metal is at least one compound selected from the group consisting of sodium, potassium and lithium. The temperature-sensitive inorganic composition fire extinguisher described.

第2発明の感温性無機組成延焼抑止剤
項5.
アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、水とを含有する感温性無機組成延焼抑止剤。
Item 5. Temperature-sensitive inorganic composition fire spread inhibitor of the second invention
A temperature-sensitive inorganic composition fire spreader containing 0 to 26 parts by weight of aluminum silicate and water with respect to 100 parts by weight of solid content of the alkali metal silicate compound and silicon dioxide of the alkali metal silicate compound.

項6.
アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、飽和濃度以下の金属炭酸塩と、水を含有する感温性無機組成延焼抑止剤。
Item 6.
Sensitivity containing 0 to 26 parts by weight of aluminum silicate, a metal carbonate having a saturated concentration or less, and water with respect to 100 parts by weight of the solid content of the alkali metal silicate compound and silicon dioxide of the alkali metal silicate compound. Warm inorganic composition fire spread inhibitor.

項7.
アルカリ金属ケイ酸化合物が、ケイ酸ナトリウム、ケイ酸カリウム及びケイ酸リチウムからなる群より選択される少なくとも1種の化合物である、前記項5又は6に記載の感温性無機組成延焼抑止剤。
Item 7.
Item 7. The temperature-sensitive inorganic composition fire spread inhibitor according to Item 5 or 6, wherein the alkali metal silicate compound is at least one compound selected from the group consisting of sodium silicate, potassium silicate, and lithium silicate.

項8.
金属炭酸塩が、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩であり、当該アルカリ金属がナトリウム、カリウム及びリチウムからなる群より選択される少なくとも1つの化合物である、前記項5〜7のいずれかに記載の感温性無機組成延焼抑止剤。
Item 8.
Any one of Items 5 to 7, wherein the metal carbonate is an alkali metal carbonate and an alkali metal bicarbonate, and the alkali metal is at least one compound selected from the group consisting of sodium, potassium, and lithium. The described temperature-sensitive inorganic composition fire spread inhibitor.

第3発明の塗料
項9.
前記項1〜8のいずれかに記載の感温性無機組成消火剤又は感温性無機組成延焼抑止剤を有する基材を含む塗料。
Item 9. Paint of the third invention
9. A paint comprising a substrate having the temperature-sensitive inorganic composition fire extinguisher or the temperature-sensitive inorganic composition fire spread inhibitor according to any one of Items 1 to 8.

本発明により、火災時に燃焼する物質に特定の組成から成る感温性無機組成物を供給することで、消火剤中の水による気化熱の冷却効果を発揮する。   According to the present invention, the cooling effect of the heat of vaporization by water in the fire extinguishing agent is exhibited by supplying a temperature-sensitive inorganic composition having a specific composition to a substance that burns in a fire.

また、火災時に燃焼する物質に特定の組成から成る感温性無機組成物を供給することで、燃焼物表面に固体膜又は固体泡を単独又は混成体の形成(以後、被覆物と表記する)による窒息効果も発揮して、消火することができる。   In addition, by supplying a temperature-sensitive inorganic composition having a specific composition to a substance that burns in the event of a fire, a solid film or a solid foam is formed on the surface of the combusted material alone or as a hybrid (hereinafter referred to as a coating). Exhibits the suffocation effect of and can extinguish the fire.

本発明により、被液した消火物は、被覆物によって可燃物への酸素供給が遮断されることで再燃を防止することができる。   According to the present invention, the fire extinguisher covered with liquid can be prevented from reburning by blocking the supply of oxygen to the combustible by the covering.

本感温性無機組成物の供給された物質に対しては、被液した物質(消火した炭等)を、火災の熱によって形成した消火液由来のシリケート層が消火炭を物理的に固定することで、屋根や木立等にある高熱の炭や消火炭の剥落防止に寄与することができる。   For the substances supplied with this thermosensitive inorganic composition, the silicate layer derived from the fire extinguishing liquid formed by the heat of the fire is used to physically fix the fire extinguishing charcoal. Thus, it can contribute to prevention of exfoliation of high heat charcoal and fire charcoal on roofs and trees.

この作用により、強風時の延焼を抑制することもできる。また林野火災での残火処理にも使用することができる。   This action can also suppress the spread of fire during strong winds. It can also be used for afterfire treatment in forest fires.

一方、消火後に環境温度が下がると、潮解性を有する本感温性無機組成物では、被覆物を形成していた固体が液体へ変化又は一部液体化、更には任意に組成を設定する事で保持することもできる。   On the other hand, when the environmental temperature decreases after extinguishing the fire, the present thermosensitive inorganic composition having deliquescence changes the solid that has formed the coating into a liquid or is partially liquefied, and the composition is arbitrarily set. Can also be held.

これらの効果を合わせて考慮すれば、泥炭火災への使用や予防にも適用する事ができる。更に、予め燃焼する前に感温性無機組成物を可燃物に供与する事で、延焼予測物の表面に膜を形成し、延焼を抑止することが可能となる。   If these effects are considered together, it can be applied to peat fires and prevention. Furthermore, by providing the temperature-sensitive inorganic composition to the combustible material before burning in advance, it becomes possible to form a film on the surface of the predicted fire spread and suppress the fire spread.

本発明により、以上の上記効果を併せ持つ、感温性無機組成消火剤及び感温性無機組成延焼抑止剤が提供される。   The present invention provides a temperature-sensitive inorganic composition fire extinguisher and a temperature-sensitive inorganic composition fire spread inhibitor that have the above-described effects.

消火実験にて使用した消火対象物(クリブ)の立面図である。It is an elevation view of the fire extinguishing object (crib) used in the fire extinguishing experiment. 手動スプレーに各消火液を充填し、図1に示すクリブを消火した熱挙動の経時変化を示す図である。FIG. 2 is a diagram showing a change over time in the thermal behavior when each fire extinguishing liquid is filled in a manual spray and the crib shown in FIG. 1 is extinguished. 噴霧器に同一組成物の含水率を変化させ、粘度を変更した各消火液を充填し、図1に示すクリブを消火した熱挙動の経時変化を示す図である。FIG. 2 is a view showing a change over time in the thermal behavior when the water content of the same composition is changed in a sprayer and each extinguishing liquid with a changed viscosity is filled and the crib shown in FIG. 1 is extinguished. 噴霧器に混合ケイ酸カリウム系にケイ酸アルミの濃度を変更して調製し、粘度をほぼ揃えた各消火液を充填し、図1に示すクリブを消火した熱挙動の経時変化を示す図である。FIG. 2 is a diagram showing the change over time in the thermal behavior of a sprayer prepared by changing the concentration of aluminum silicate to a mixed potassium silicate system, filled with each fire extinguishing liquid having almost the same viscosity, and extinguishing the crib shown in FIG. . 写真1:700℃に加熱した電気炉に、同一組成物の含水率を変化させ、粘度を変更した消火液をスライドガラスに噴霧し、濡れた状態で投入し、加熱した後の様子を撮影した写真である。Photo 1: An electric furnace heated to 700 ° C was sprayed with a fire extinguisher with the same composition changed in water content and the viscosity changed. It is a photograph. 写真2:同一組成の消火液をスライドガラス上に自然乾燥させ、異なる含水率に調製したサンプルを室温状態で電気炉に設置し、その後、炉内温度を20℃/min.で昇温したサンプルの各任意温度における固体泡の様子を撮影した写真である。Photo 2: A fire extinguisher with the same composition was naturally dried on a slide glass, and samples prepared with different moisture contents were placed in an electric furnace at room temperature, and then the furnace temperature was raised at 20 ° C / min. It is the photograph which image | photographed the mode of the solid bubble in each arbitrary temperature of. 写真3:同一組成の消火液の含水率を変化させ、スライドガラス上にほぼ同量担持して予備乾燥したものを、電気炉中に設置し空気雰囲気下、20℃/min.で室温から昇温し、600℃、4時間保持して絶乾状態とした各サンプルを作成した後、サンプルを電気炉から取り出した時点を開始時として、潮解する様子を経時的に撮影した写真である。Photo 3: Varying the moisture content of the fire extinguisher with the same composition, carrying almost the same amount on a slide glass and pre-drying it, installed in an electric furnace and rising from room temperature in an air atmosphere at 20 ° C / min. This is a photograph taken over time of the deliquescence of each sample, starting from the time when the sample was heated and kept at 600 ° C. for 4 hours to be in an absolutely dry state and then taken out of the electric furnace.

本発明の感温性無機組成消火剤及び感温性無機組成延焼抑止剤は、ケイ酸ナトリウム及びケイ酸カリウムの単独又は混合、ケイ酸アルミニウム及び金属炭酸塩を含み、液体から固体状まで任意の形態に調節できる。   The temperature-sensitive inorganic composition fire extinguishing agent and the temperature-sensitive inorganic composition fire spread inhibitor of the present invention include sodium silicate and potassium silicate, alone or mixed, aluminum silicate and metal carbonate, and can be arbitrarily selected from liquid to solid. Adjustable to form.

該無機物は、燃焼物に対して供給すると、水の気化熱により燃焼物を冷却すると共に、消火途上の被該環境中の熱により、燃焼物の表面にシロキサン分子構造を持つ固体膜又は固体泡を生成する。   When the inorganic substance is supplied to the combustion substance, the combustion substance is cooled by the heat of vaporization of water, and a solid film or solid foam having a siloxane molecular structure is formed on the surface of the combustion substance by heat in the environment being extinguished. Is generated.

この本発明品の被覆物は被該環境中の熱が100℃以上約850℃未満の温度領域にて安定した状態を保つため、燃焼物の表面を安定して被覆し、水の蒸発する温度以上になっても窒息効果が保たれる。また燃焼部分の被覆は、付着部分からの火炎の発生を阻止する事で火炎の分散化に寄与するため、火勢を削ぐ効果も発現する。   This coating of the present invention maintains a stable state in the temperature range where the heat in the environment is 100 ° C. or more and less than about 850 ° C., so that the surface of the combustion product is stably coated and the temperature at which water evaporates The suffocation effect is maintained even if it becomes above. Moreover, since the covering of the combustion part contributes to the dispersion of the flame by preventing the generation of the flame from the adhering part, the effect of reducing the fire power is also exhibited.

また、本発明品は、熱分解時に有害となる有機化合物(界面活性剤やキレート剤、金属脂肪酸等)を全く含まないため、本発明品由来の有害な煙やガスの発生しない安全な材料である。仮に主成分であるケイ酸化合物が火災の熱によって溶融したと仮定すると、発生したヒュームは非晶質SiO2であり、このヒュームは人の皮膚に触れると皮膚表面の水分を吸着し、乾いた感覚となるが、単に水で洗い流すだけで良い。 In addition, since the product of the present invention does not contain any organic compounds (surfactant, chelating agent, metal fatty acid, etc.) that are harmful during thermal decomposition, it is a safe material that does not generate harmful smoke or gas from the product of the present invention. is there. Assuming that the silicate compound as the main component is melted by the heat of the fire, the generated fume is amorphous SiO 2 , and when this fume touches human skin, it adsorbs moisture on the skin surface and dries out. It is a sensation, but you can just wash it off with water.

この様にケイ酸化合物を消火剤の出発原料とすると火災時の熱分解による人的有害性のほぼ無い環境を作り出すことができる。加えて、潮解作用が発現するよう任意に調製した本発明品では、消火後に温度が下がると、被覆物を形成する骨格物質の潮解が始まり、骨格成分の飽和水蒸気圧と大気中の水蒸気圧が等しくなるまで吸水する。   Thus, when a silicic acid compound is used as a starting material for a fire extinguisher, it is possible to create an environment with almost no human harm due to thermal decomposition during a fire. In addition, in the product of the present invention arbitrarily prepared so that the deliquescent action is manifested, when the temperature decreases after extinguishing the fire, the decontamination of the skeletal material that forms the coating starts, and the saturated water vapor pressure of the skeletal component and the water vapor pressure in the atmosphere Absorb water until equal.

本発明品では潮解現象が発現した当初こそ骨格成分が露出した状態であるが、その後は骨格成分が液体に覆われてしまうため、骨格成分が潮解により溶解するまで進行する。この現象により、火事等の熱で形成した被覆物は、外気温に戻ることで液状化する。   In the product of the present invention, the skeletal component is in an exposed state at the beginning of the deliquescence phenomenon. However, since the skeletal component is covered with liquid after that, it proceeds until the skeletal component is dissolved by deliquescence. Due to this phenomenon, the coating formed by heat such as a fire liquefies by returning to the outside air temperature.

更には可燃性の延焼予測物に対して、予め燃焼する前に本消火剤を連続的又は、断続的に供給する事で、延焼予測物の表面に被覆前駆体又は被覆物を形成し、火災からの熱を低減し、延焼を抑止することが可能となる。   Furthermore, by applying the fire extinguisher continuously or intermittently to the flammable predicted fire spread material in advance, the coating precursor or coating is formed on the surface of the predicted fire spread material, and fire It is possible to reduce the heat from the fire and suppress the spread of fire.

本発明品は、通常、ケイ酸化合物溶液にケイ酸アルミニウム及び金属炭酸塩等を混合して、目的に応じた任意含水率に調製して製造することができる。   The product of the present invention can be usually produced by mixing an aluminum silicate and a metal carbonate into a silicate compound solution to prepare an arbitrary water content depending on the purpose.

感温性無機組成消火剤及び感温性無機組成延焼抑止剤の含水率は、本目的を損なわない範囲であれば良く、通常7〜95%である。   The moisture content of the temperature-sensitive inorganic composition fire extinguishing agent and the temperature-sensitive inorganic composition fire spread inhibitor may be in a range that does not impair this purpose, and is usually 7 to 95%.

本発明書において、「ケイ酸化合物」とは、ケイ酸カリウム、ケイ酸ナトリウム及びケイ酸リチウムを示し、夫々K2O・nSiO2(n=1.8〜3.7)、Na2O・nSiO2(n=2.0〜3.8)、Li2O・nSiO2(n=3〜8)の組成式(mH2Oは省略)を有し、係数nは各組成式に付帯する括弧内に記載した値である化合物を表す。 In the present specification, “silicate compound” means potassium silicate, sodium silicate and lithium silicate, and each of K 2 O · nSiO 2 (n = 1.8 to 3.7), Na 2 O · nSiO 2 (n = 2.0 to 3.8), Li 2 O.nSiO 2 (n = 3 to 8) composition formula (mH 2 O is omitted), and coefficient n is a value described in parentheses attached to each composition formula Represents a compound.

「ケイ酸化合物」を水で希釈することでも、本発明品のpHを調節することができる。   The pH of the product of the present invention can also be adjusted by diluting the “silicate compound” with water.

また「ケイ酸化合物」を、後述する「金属炭酸塩」の飽和溶液で希釈することでpHを調節しても良く、さらに前記希釈物に水を加えてpH調製しても良い。   Further, the pH may be adjusted by diluting the “silicic acid compound” with a saturated solution of “metal carbonate” described later, and the pH may be adjusted by adding water to the diluted product.

業務上において通常はpH12.5未満にて調製する方が好まれる。   In practice, it is usually preferred to prepare at a pH of less than 12.5.

市場の要望等によっては、原料そのままのケイ酸化合物のpHを維持したまま、感温性無機組成消火剤や感温性無機組成延焼抑止剤を調製しても良い。   Depending on market demands, a temperature-sensitive inorganic composition fire extinguishing agent or a temperature-sensitive inorganic composition fire spread inhibitor may be prepared while maintaining the pH of the raw silicate compound.

「ケイ酸化合物」は、複数のケイ酸化合物を混合しても良い。ケイ酸ナトリウムの濃度が共存ケイ酸化合物の濃度よりも高ければ、燃焼物に対する付着性が強くなり、液の広がりは若干悪くなる。   The “silicate compound” may be a mixture of a plurality of silicate compounds. If the concentration of sodium silicate is higher than the concentration of the coexisting silicate compound, the adhesion to the combustion product becomes strong, and the spread of the liquid becomes slightly worse.

ケイ酸カリウムの濃度が共存ケイ酸化合物の濃度より高ければ、燃焼物に対する付着性はやや弱くなるが、液の広がりは良くなる。ケイ酸リチウムの濃度が共存ケイ酸化合物の濃度より高ければ、燃焼物に対する付着性は弱くなり、液の広がりが良くなる。   If the concentration of potassium silicate is higher than the concentration of the coexisting silicate compound, the adhesion to the combustion product is slightly weakened, but the spread of the liquid is improved. If the concentration of lithium silicate is higher than the concentration of the coexisting silicate compound, the adhesion to the combustion product becomes weak and the spread of the liquid is improved.

これらの特性を考慮し、消火剤や延焼抑止剤の目的や用途によって基本特性を設計することができる。   Considering these characteristics, the basic characteristics can be designed according to the purpose and application of the fire extinguishing agent and the fire spreader.

水は、本発明の感温性無機組成消火液及び感温性無機組成延焼抑止液の目的を損なわない範囲で含まれる。   Water is contained in a range that does not impair the purpose of the temperature-sensitive inorganic composition fire extinguishing liquid and the temperature-sensitive inorganic composition fire spread inhibiting liquid of the present invention.

「ケイ酸アルミニウム」を加えることで、火災等の熱によって形成される固体膜や固体泡の高温骨格維持性、更に噴霧した際の消炎性が制御できる。   By adding “aluminum silicate”, it is possible to control the high-temperature skeleton maintenance property of the solid film and solid foam formed by heat such as fire and the flame extinguishing property when sprayed.

ケイ酸アルミニウムの添加量は、前記ケイ酸化合物の固形分100重量部に対し、26重量部以下の添加量、コスト的観点から好ましくは0.1重量部から5.5重量部であるが、限定する物では無い。   The amount of aluminum silicate added is preferably 26 parts by weight or less, preferably from 0.1 parts by weight to 5.5 parts by weight from the viewpoint of cost, with respect to 100 parts by weight of the solid content of the silicate compound. No.

ケイ酸アルミニウムは目的や用途に応じて省く事も可能であるが、ケイ酸アルミニウムの添加量が増加すると消火や延焼抑止効果も高くなる。   Aluminum silicate can be omitted depending on the purpose and application, but as the amount of aluminum silicate added increases, the fire-extinguishing and fire-spreading suppression effects also increase.

「金属炭酸塩」は水溶性であれば良く、特に限定されないが、例えば、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムが挙げられる。   The “metal carbonate” is not particularly limited as long as it is water-soluble, and examples thereof include potassium carbonate, potassium bicarbonate, sodium carbonate, and sodium bicarbonate.

炭酸カリウム及び炭酸水素カリウムは、30℃の水に対する溶解度が、夫々約52g及び約28gであり、ケイ酸化合物溶液にも容易に溶解する。これらを加えることで、本発明品の粘度を調節すると共に、燃焼物への濡れのべたつき感を調節することができ、また本発明品のpHを調節することもできる。   Potassium carbonate and potassium bicarbonate have a solubility in water of 30 ° C. of about 52 g and about 28 g, respectively, and are easily dissolved in a silicate compound solution. By adding these, the viscosity of the product of the present invention can be adjusted, the sticky feeling of wetting on the combustion product can be controlled, and the pH of the product of the present invention can also be adjusted.

炭酸ナトリウム及び炭酸水素ナトリウムは、30℃の水に対する溶解度が、夫々約31g及び約10gであり、ケイ酸化合物溶液にも容易に溶解する。これらを加えることで、本発明品の粘度を調節すると共に、燃焼物への濡れのさらさら感を調節することができ、本発明品のpHを調節することも出来る。   Sodium carbonate and sodium bicarbonate have a solubility in water of 30 ° C. of about 31 g and about 10 g, respectively, and are easily dissolved in a silicate compound solution. By adding these, it is possible to adjust the viscosity of the product of the present invention, to adjust the feeling of wetness to the combustion product, and to adjust the pH of the product of the present invention.

「金属炭酸塩」の添加量は、上述する各金属炭酸塩の溶解量が上限である。通常は水に溶解した時のpHが12.5未満を上限とする濃度以下であれば作業の効率が良い。これらは、目的や用途に応じて単独又は混合物で用いることができる。   The upper limit of the amount of “metal carbonate” added is the dissolution amount of each metal carbonate described above. Usually, if the pH when dissolved in water is below the concentration with an upper limit of less than 12.5, work efficiency is good. These can be used alone or in a mixture depending on the purpose and application.

上記添加物を含む本発明品の含水率を制御することにより、消火時に生成する固体膜又は固体泡或いは混成体の形状を制御することができる。   By controlling the water content of the product of the present invention containing the additive, the shape of the solid film, solid foam or hybrid produced during fire extinguishing can be controlled.

更に上記添加物を含む本発明品のpHを制御することにより、消火後の潮解性の程度も制御する事ができる。   Furthermore, the degree of deliquescence after extinguishing fire can be controlled by controlling the pH of the product of the present invention containing the above additives.

本明細書において「0〜X重量部を含む」とは、組成物中に対象成分を最大でX重量部含んでもよいし、0重量部の場合、含まなくてもよいことを意味する。従って、例えば、本明細書中において、ケイ酸アルミニウムを「0〜26重量部」含むとは、本発明の組成物が、ケイ酸ソーダの二酸化ケイ素の固形分100重量部に対し、ケイ酸アルミニウムを最大で26重量部含んでもよいし、含まなくてもよいことを意味する。   In the present specification, “including 0 to X parts by weight” means that the target component may be included in the composition at a maximum of X parts by weight, and in the case of 0 part by weight, it may not be included. Therefore, for example, in the present specification, "0 to 26 parts by weight" of aluminum silicate means that the composition of the present invention contains aluminum silicate with respect to 100 parts by weight of solid content of silicon dioxide of sodium silicate. Means that it may or may not contain up to 26 parts by weight.

本発明の感温性無機組成消火剤及び感温性無機組成延焼抑止剤は、単独で使用する他に、基材となる該組成物を用いて塗料を調製することもできる。その際、公知の添加剤や、溶剤として水を本発明の目的を損なわない範囲で加えることができる。   The temperature-sensitive inorganic composition fire extinguisher and the temperature-sensitive inorganic composition fire spread inhibitor of the present invention can be used alone, or a paint can be prepared using the composition as a substrate. In that case, water can be added as a known additive or solvent as long as the object of the present invention is not impaired.

添加剤としては、例えば、顔料、乾燥剤、流動性調整剤、紫外線吸収剤、たれ防止剤、耐熱性向上剤等を用いることができる。   As additives, for example, pigments, desiccants, fluidity modifiers, ultraviolet absorbers, sagging inhibitors, heat resistance improvers, and the like can be used.

前記感温性無機組成消火剤及び感温性無機組成延焼抑止剤にて塗膜を形成させる方法は、組成物水溶液をドクターブレード法、ゲルキャスティング法、鋳込み成形法、カレンダ法や、噴霧コート法、ローラーコート法、バーコート法、エアナイフコート法、刷毛塗り法、ディッピング法等の公知の方法により塗布し、自然乾燥又は強制乾燥させて行うことができる。   The method of forming a coating film with the temperature-sensitive inorganic composition fire extinguisher and the temperature-sensitive inorganic composition fire spread inhibitor is a doctor blade method, a gel casting method, a casting method, a calendar method, or a spray coating method. It can be applied by a known method such as a roller coating method, a bar coating method, an air knife coating method, a brush coating method, a dipping method and the like, followed by natural drying or forced drying.

建築部材等の表面に形成された乾燥済み感温性無機組成消火液及び感温性無機組成延焼抑止剤の層の厚さは、本発明の目的を損なわない範囲であれば限定されないが、通常50μm〜数十mmである。塗膜の耐久性を向上させる目的においては、120℃以上で熱処理し、シリケート層を形成させた方が好ましい。   The thickness of the dried temperature-sensitive inorganic composition fire extinguishing liquid and the temperature-sensitive inorganic composition fire spread inhibitor formed on the surface of a building member or the like is not limited as long as the object of the present invention is not impaired. 50 μm to several tens of mm. For the purpose of improving the durability of the coating film, it is preferable to heat-treat at 120 ° C. or higher to form a silicate layer.

一方、塗膜の耐久性が必要無く、潮解性を優先する場合には、塗膜後の加熱は必要無い。また、この未加熱処理の乾燥塗膜は、本明細書に記載する全ての組成にて潮解性が発現する。   On the other hand, when the durability of the coating film is not necessary and deliquescent priority is given, heating after the coating film is not necessary. Moreover, this unheated dry coating film exhibits deliquescence in all compositions described in this specification.

以下、実施例を挙げて本発明を詳細に説明する。なお、本発明においては、本発明の合目的であって、本発明の効果を特に害さない限りにおいては、改変或いは部分的な変更及び付加は任意であって、いずれも本発明の範囲である。   Hereinafter, the present invention will be described in detail with reference to examples. In the present invention, as long as it is the purpose of the present invention and does not particularly impair the effects of the present invention, modifications or partial changes and additions are optional and all fall within the scope of the present invention. .

試験方法
試験は、国際規格(ISO/CD12468 Test method for external fire exposure to roofs)に準拠した国土交通省指定性能評価 指定業者制定「防耐火性能試験・評価業務方法書」4.13屋根藁葺き材の飛び火性能試験・評価方法に記載の対象地域が「防火地域及び準防火地域内の建物(建築基準法第63条)」に指定のブナ材を用いたクリブ(図1)を使用した。
The test method test was conducted by the Ministry of Land, Infrastructure, Transport and Tourism designated performance evaluation in accordance with the international standard (ISO / CD12468 Test method for external fire exposure to roofs). The target area described in the performance test / evaluation method used cribs (Fig. 1) using beech wood specified for "buildings in fire prevention and semi-fire prevention areas (Article 63 of the Building Standards Act)".

クリブ単木寸法は縦19mm×横19mm×幅180mmであり、図1のように各段3本使用して3段組にした時の組み立て寸法は、縦60mm×横80mm×幅80mmである。   The size of the crib single tree is 19 mm long × 19 mm wide × 180 mm wide. As shown in Fig. 1, the assembly dimensions when using three steps each in three rows are 60 mm long × 80 mm wide × 80 mm wide.

このクリブの規定重量は155±10gである。   The specified weight of this crib is 155 ± 10 g.

含水率を10%以下に調節したクリブをガスコンロにて着火し、所定時間燃焼させた。燃焼中のクリブを消火実験箇所に移動させ、K型熱電対を燃焼中のクリブに設置した。燃焼熱を熱電対が捉えたことを確認した後、調製した消火液を燃焼クリブに供給し、消火した。   A crib whose water content was adjusted to 10% or less was ignited with a gas stove and burned for a predetermined time. The burning crib was moved to the fire extinguishing experiment site, and a K-type thermocouple was installed in the burning crib. After confirming that the thermocouple captured the heat of combustion, the prepared fire extinguishing liquid was supplied to the combustion crib and extinguished.

消火実験は動画記録し、この時の消火状況、温度変化及び消火前後の消火液量データを記録した。   A fire extinguishing experiment was recorded as a moving image, and the fire extinguishing situation, temperature change, and fire extinguishing liquid volume data before and after the extinguishing were recorded.

消火効果の評価は、高橋の評価方法(非特許文献2〜5)を基に行った。   The fire extinguishing effect was evaluated based on Takahashi's evaluation method (Non-Patent Documents 2 to 5).

非特許文献3及び4によると、次式が成り立つ。   According to Non-Patent Documents 3 and 4, the following equation holds.

=Mφλμ (1)
式(1)で、Qは消火に必要な水の量、Mはクリブの初重量、φはクリブの重量減率、λはクリブ燃焼時の重量減1に対する木炭収率(0.29)及びμは頂部注水法における単位重量の木炭の消火に必要な水の量(3.4)である。
Q 0 = M 0 φλμ 0 (1)
In Equation (1), Q 0 is the amount of water required for fire extinguishing, M 0 is the initial weight of the crib, φ is the weight reduction rate of the crib, λ is the charcoal yield (0.29) with respect to the weight loss 1 during crib combustion, and μ 0 is the amount of water (3.4) required for extinguishing the unit weight of charcoal in the top water injection method.

また、サブスクリプトの「0」は高橋の実験系によって与えられた係数及び計算値である。   Also, “0” in the subscript is a coefficient and a calculated value given by Takahashi's experimental system.

また、非特許文献5で次式の消火剤の能力について提示している。   Also, Non-Patent Document 5 presents the ability of the following formula fire extinguishing agent.

η=μmeas/μ (2)
式(2)で、サブスクリプトの「meas」は実験結果である。
η = μ meas / μ 0 (2)
In equation (2), the subscript “meas” is the experimental result.

つまり、ηの値を求めることで、消火効果の比較を可能にしている。   That is, the fire extinguishing effect can be compared by obtaining the value of η.

μは消火に必要なその方法特有の必要な水量と定義されているため、異なる消火方法及び異なる消火剤の影響を含めて比較することができる。本実験では、消火液を噴霧して消火実験しているため、高橋の実験方法と異なる。そこで、消火剤を同一にした水の場合の操作定数を求め、その操作定数を基に本実験系と同じ噴霧速度条件での消火液の評価を以下のように行った。   Since μ is defined as the amount of water required for the method required for extinguishing, it can be compared including the effects of different extinguishing methods and different extinguishing agents. In this experiment, fire extinguishing liquid is sprayed and fire extinguishing experiment is performed, which is different from Takahashi's experiment method. Then, the operation constant in the case of the water which used the same fire extinguishing agent was calculated | required, and the fire extinguishing liquid evaluation on the same spray rate conditions as this experiment system was performed as follows based on the operation constant.

本実験にてクリブの重量減率が0.62の時に消火に使用した水量は54[g]であった。この実測値は、高橋の実験方法から算出したQの値の約半分であった。 In this experiment, when the weight loss rate of crib was 0.62, the amount of water used for fire extinguishing was 54 [g]. The measured value was about half the value of Q 0 calculated from the experimental procedure Takahashi.

そこで、本実験系の操作定数を得るために、同じクリブ重量減率(ここで、サブスクリプトの「wo」として示す)の実験環境において、水を消火剤として本実験系と同じ噴霧速度にて噴霧して用いた場合の消火水の量Q’wを、高橋の頂部注水法での消火水の必要消火水量Qwで除し、η1とすると次式で表される。 Therefore, in order to obtain the operating constants of this experimental system, in the experimental environment of the same crib weight reduction rate (herein indicated as “wo” in the subscript), water was used as a fire extinguisher at the same spray rate as this experimental system. The amount of fire extinguishing water Q′w 0 when used by spraying is divided by the required amount of fire extinguishing water Qw 0 in the top water injection method of Takahashi, and is represented by the following equation as η1.

η1=Q’w/Qw
=Q’w/Mwφλμw (3)
η1は実験結果を基に解析した結果0.52と決定した。
η1 = Q'w 0 / Qw 0
= Q'w 0 / Mw 0 φλμw 0 (3)
η1 was determined to be 0.52 as a result of analysis based on experimental results.

η1を、頂部注水法の必要消火量Qに乗じることで、本実験系で必要な消火水の量Qccが得られる。 Multiplying the necessary fire extinguishing quantity Q 0 of the top water injection method by η 1 , the quantity Q cc of fire extinguishing water required in this experimental system can be obtained.

cc=η1Q (4)
消火効果Efは、本実験系で使用した液量をQccで除すことで、実験で使用した消火液の消火効果が水の消火効果の倍数として示される。
Q cc = η1Q 0 (4)
The fire-extinguishing effect Ef is obtained by dividing the amount of liquid used in this experimental system by Q cc so that the fire-extinguishing effect of the fire-extinguishing liquid used in the experiment is shown as a multiple of the water fire-extinguishing effect.

Ef=Qmeas/Qcc (5)
式(5)で、Qmeasは実験に使用した消火液の量である。
Ef = Q meas / Q cc (5)
In equation (5), Q meas is the amount of fire extinguishing liquid used in the experiment.

よって、燃焼しているクリブへの消火剤の噴霧速度を一定にした場合、必要消火量の実験値と(1)、(3)、(4)及び(5)式を使用すれば、本実験系で水の消火能力を1とした場合の調製した消火剤の消火能力を評価することができる。   Therefore, if the spray rate of the extinguishing agent to the burning crib is constant, using the experimental value of the required extinguishing amount and the equations (1), (3), (4) and (5), this experiment The fire extinguishing ability of the prepared fire extinguishing agent when the fire extinguishing ability of water is 1 in the system can be evaluated.

被覆物形成の含水率の影響については、調製した各種サンプルをスライドガラスに噴霧し、電気炉にて予め空気雰囲気下で700℃に保温した炉内へ投入した。加熱による消火液の変化を動画記録した後、電気炉から取り出し、目視にて固体の膜又は泡の形成状態を観察した。   Regarding the influence of the moisture content on the coating formation, various prepared samples were sprayed on a slide glass and put in a furnace previously kept at 700 ° C. in an air atmosphere in an electric furnace. After recording the change of the fire extinguishing liquid due to heating as a moving image, the film was taken out from the electric furnace and visually observed for the formation of a solid film or foam.

含水率の異なる被覆物の熱安定性については、調製したサンプルをスライドガラスに塗布し、夫々含水率が異なるように予備乾燥させた。電気炉に各サンプルを設置した後、空気雰囲気下で20℃/min.の昇温速度により加熱し、任意温度ごとに写真撮影した。   Regarding the thermal stability of the coatings having different moisture contents, the prepared samples were applied to a slide glass and preliminarily dried so that the moisture contents were different. After each sample was installed in an electric furnace, it was heated at a rate of temperature increase of 20 ° C./min. In an air atmosphere, and photographs were taken at each arbitrary temperature.

含水率の異なる被覆形成物の潮解の影響については、調製した各種サンプルをスライドガラスに塗布し、自然乾燥させたものを、電気炉を用いて絶乾状態にする。その後、電気炉から取り出した時間を潮解実験の開始時とし、潮解現象が平衡状態になるまで任意時間にて写真撮影を行った。   About the influence of the deliquescence of the coating formation from which moisture content differs, the prepared various samples are apply | coated to a slide glass, and what dried naturally is made into an absolutely dry state using an electric furnace. After that, the time taken out from the electric furnace was set as the start of the deliquescence experiment, and photographs were taken at an arbitrary time until the deliquescence phenomenon reached equilibrium.

ここで、絶乾状態とは、電気炉にて、空気雰囲気下で室温から20℃/min.の速度で600℃まで温度を上げ、600℃で4時間保持する熱処理を行った状態をいう。   Here, the absolutely dry state refers to a state in which heat treatment is performed in an electric furnace in an air atmosphere by raising the temperature from room temperature to 600 ° C. at a rate of 20 ° C./min and holding at 600 ° C. for 4 hours.

固形分率は、絶乾状態の固形分量(絶乾重量)をサンプル採取量(固形分と水分の双方を含む)で除し、100を乗じることによって求めた。固形分率は固形分濃度と記す場合もある。   The solid content ratio was obtained by dividing the solid content in the absolutely dry state (absolute dry weight) by the amount of sample collected (including both solid content and moisture) and multiplying by 100. The solid content rate may be referred to as a solid content concentration.

含水率は、100から固形分率を差し引くことで求めた。   The water content was determined by subtracting the solid content from 100.

潮解現象に関しては、電気炉から取り出した時点で時間の計測を開始し、潮解現象が平衡状態になるまで写真撮影を行った。   As for the deliquescence phenomenon, time measurement was started when it was taken out from the electric furnace, and photographs were taken until the deliquescence phenomenon reached an equilibrium state.

[実施例1]各消火液の特性:手動スプレーにて消火
比較例
消火液の水は水道水を使用した。
[Example 1] Characteristics of each fire extinguishing liquid: extinguishing with manual spray
The water of the comparative example fire extinguishing liquid used tap water.

実施例1-1の調製方法
炭酸カリウムの10gを46gの水に溶解し、pH12.11の強化液を模したサンプル1-1を調製した。
Example 1-1 Preparation Method Sample 1-1 was prepared by dissolving 10 g of potassium carbonate in 46 g of water to simulate a strengthening solution having a pH of 12.11.

実施例1-2の調製方法
JIS規格3号ケイ酸ナトリウム水溶液と同体積の水を混合し、粘度3.87[mPas]、固形分濃度18.6%のサンプル1-2を調製した。
Preparation method of Example 1-2
A sample 1-2 having a viscosity of 3.87 [mPas] and a solid content concentration of 18.6% was prepared by mixing JIS standard 3 sodium silicate aqueous solution with the same volume of water.

実施例1-3の調製法
炭酸カリウム30gを231gの水に溶解し、pH11.99の水溶液を得た。JIS規格2号ケイ酸カリウム水溶液と同体積の前記炭酸カリウム水溶液を混合し、粘度4.71[mPas]、固形分濃度20.2%のサンプル1-3を調製した。
Preparation Method of Example 1-3 30 g of potassium carbonate was dissolved in 231 g of water to obtain an aqueous solution having a pH of 11.99. A sample 1-3 having a viscosity of 4.71 [mPas] and a solid content concentration of 20.2% was prepared by mixing the potassium carbonate aqueous solution having the same volume with a JIS standard No. 2 potassium silicate aqueous solution.

実験方法
以上のように各サンプルを調製し、3分間燃焼したクリブに図1に示すクリブの△の位置に熱電対を設置し、手動スプレーを用いて消火した。消火実験は動画記録し、この時の消火状況、温度変化及び消火前後の消火液量データを記録した。
Experimental method Each sample was prepared as described above, a thermocouple was installed at the position of Δ of the crib shown in FIG. 1 on the crib burned for 3 minutes, and the fire was extinguished using a manual spray. A fire extinguishing experiment was recorded as a moving image, and the fire extinguishing situation, temperature change, and fire extinguishing liquid volume data before and after the extinguishing were recorded.

試験結果
試験結果を表1及び図2に示す。
Test results The test results are shown in Table 1 and FIG.

表1は、実施例1において、消火実験で使用した消火液粘度、消火に使用した液量、消火効果及び50℃を下回った到達時間を示す。   Table 1 shows the extinguishing liquid viscosity used in the fire extinguishing experiment, the amount of liquid used for extinguishing, the extinguishing effect, and the arrival time below 50 ° C. in Example 1.

図2には、各消火液を手動スプレーにて消火した実験の熱挙動の経時変化を示す。   FIG. 2 shows the change over time in the thermal behavior of an experiment in which each fire extinguisher was extinguished by manual spraying.

図2-1に比較例を示す。比較例では、燃焼クリブの火炎が噴霧する度に逃げ、消炎するまで14分要した。噴霧してクリブに水が付着した箇所は一旦消炎するものの、燃焼している周りの熱の影響で、水が蒸発する事により再燃を相次いで繰り返した。12.5分後にはクリブの崩壊が始まり、14.5分後には完全に崩壊した。崩壊後に噴霧すると再燃する事無く、消火が完了した。   Figure 2-1 shows a comparative example. In the comparative example, it took 14 minutes to escape and extinguish each time the flame of the combustion crib sprayed. Although the portion where water was attached to the crib after spraying was once extinguished, the reburning was repeated one after another due to the evaporation of water under the influence of the surrounding heat. The crib collapse began after 12.5 minutes, and completely collapsed after 14.5 minutes. Fire extinguishing was completed without spraying again when sprayed after collapse.

図2-2に実施例1-1を示す。サンプル1-1を噴霧すると、最初の消炎が2分後であったが、水場合と同様に、燃焼している周りの熱の影響で、サンプル1-1の水分が蒸発すると再燃した。その後消炎と再燃を繰り返し、9分後にはクリブの崩壊が始まった。しかしながら、使用した消火液量は水の場合よりも少なく、消火効果も比較例より良かった。   Fig. 2-2 shows Example 1-1. When sample 1-1 was sprayed, the first flame extinguishing was 2 minutes later, but as with water, it reignited when the moisture in sample 1-1 evaporated due to the influence of the surrounding heat. After that, repeated extinction and relapse, and after 9 minutes, the crib collapsed. However, the amount of fire extinguishing liquid used was less than that of water, and the fire extinguishing effect was better than that of the comparative example.

実施例1-1において、比較例よりも消火剤使用量が少なかった事から、炭酸カリウムの熱分解による効果が現れた事が分かった。   In Example 1-1, since the amount of extinguishing agent used was smaller than that in the comparative example, it was found that the effect of thermal decomposition of potassium carbonate appeared.

図2-3に実施例1-2を示す。サンプル1-2を噴霧すると、最初の消炎は消火開始から5分後であった。そのまま2分間放置すると、再燃した。再燃箇所は噴霧したサンプル1-2が熾火に届いていない箇所からの再燃であった。7.5分後に再噴霧し、消炎した。再び放置するとクリブ内の温度が上昇し始めた。見えない箇所の熾火を消火するため、温度が下がるまで噴霧を続けた。   Fig. 2-3 shows Example 1-2. When Sample 1-2 was sprayed, the first extinguishing was 5 minutes after the start of extinguishing. If left untreated for 2 minutes, it burned again. The re-burning point was re-burning from the point where the sprayed sample 1-2 did not reach the bonfire. After 7.5 minutes, it was sprayed again and extinguished. When left again, the temperature inside the crib began to rise. Spraying was continued until the temperature dropped to extinguish the bonfire in the invisible areas.

実施例1-2では、クリブの崩壊は無かった。実施例1-2において、サンプルが消火時に燃焼物に対して被覆し、クリブの温度を保持する効果と同時に、窒息効果も現れた。   In Example 1-2, there was no crib collapse. In Example 1-2, the sample covered the combustion material during fire extinguishing, and the effect of suffocation appeared at the same time as maintaining the temperature of the crib.

図2-4に実施例1-3を示す。サンプル1-3を噴霧すると、消火開始から3.5分後に消炎した。実施例1-3では消火剤使用量が最も少なかった。3.5分後以降は再燃する事無く、比較的急激にクリブ内の温度が下がった。実施例1-3では、クリブの崩壊は無かった。   Fig. 2-4 shows Example 1-3. When Sample 1-3 was sprayed, the flame was extinguished 3.5 minutes after the start of fire extinguishing. In Example 1-3, the amount of extinguishing agent used was the smallest. After 3.5 minutes, the temperature inside the crib decreased relatively rapidly without re-flammability. In Example 1-3, there was no crib collapse.

実施例1-3において、消火時に燃焼物に対して被覆し、クリブの温度を保持する効果と同時に、窒息効果も現れた。尚且つ、炭酸カリウムの熱分解による効果が現れることにより、最も良い結果となった。この様にケイ酸化合物と金属炭酸塩の成分を併用することで消火効果が高くなることが明らかとなった。   In Example 1-3, the suffocation effect also appeared at the same time as the effect of covering the burning material during fire extinguishing and maintaining the temperature of the crib. In addition, the best results were obtained by the effect of thermal decomposition of potassium carbonate. Thus, it became clear that the fire-extinguishing effect is enhanced by using the silicate compound and the metal carbonate component together.

ケイ酸化合物と金属炭酸塩を混合すると、消火効果が高くなることが分かった。金属炭酸塩の添加量の上限は、各炭酸塩の飽和溶解量が限度である。そのため消火能力の向上を果たす目的では、金属炭酸塩だけに頼ると消火効果の向上は望めない。   It has been found that when a silicate compound and a metal carbonate are mixed, the fire-extinguishing effect is enhanced. The upper limit of the addition amount of the metal carbonate is the limit of the saturated dissolution amount of each carbonate. Therefore, for the purpose of improving fire extinguishing ability, improvement of the fire extinguishing effect cannot be expected if only metal carbonate is used.

さらなる消火効果の向上を図るためには、ケイ酸化合物の消火効果も高めた方がより効果的である。なぜなら、ケイ酸化合物で高めた消火効果に、金属炭酸塩の消火効果をさらに付加できるからである。そのため以後の実験では、ケイ酸化合物由来の消火効果の増強開発を行った。   In order to further improve the fire extinguishing effect, it is more effective to increase the fire extinguishing effect of the silicate compound. This is because the fire extinguishing effect of the metal carbonate can be further added to the fire extinguishing effect enhanced by the silicic acid compound. Therefore, in the subsequent experiments, we developed an enhanced fire extinguishing effect derived from silicic acid compounds.

[実施例2]固体膜と固体泡の形成
実施例2-1から実施例2-7の調製方法
JIS規格2号ケイ酸カリウム水溶液の固形分の100重量部に対し、0.1重量部の重量部のケイ酸アルミニウムを混合して調製した消火母剤(以下、「母剤」と表記する。)を適宜水で希釈し、表2に示す粘度の異なる各サンプルを調製した。
[Example 2] Formation of solid film and solid foam
Preparation method of Example 2-1 to Example 2-7
A fire extinguishing base material (hereinafter referred to as “base material”) prepared by mixing 0.1 part by weight of aluminum silicate with 100 parts by weight of the solid content of JIS No. 2 potassium silicate aqueous solution. Each sample was appropriately diluted with water to prepare samples having different viscosities shown in Table 2.

試験結果
試験結果を表2及び写真1(図5)に示す。表2は、実施例2において、各サンプルをスライドガラスに噴霧し、その直後スライドガラスが濡れた状態で電気炉に投入した様子と夫々の粘度及び固形分率を示す。
Test results The test results are shown in Table 2 and Photo 1 (Fig. 5). Table 2 shows a state in which each sample was sprayed on a slide glass in Example 2, and immediately after that, the slide glass was put into an electric furnace in a wet state, and the viscosity and solid content ratio thereof were shown.

また、加熱後に取り出したサンプルの様子を写真1に示す。   Photo 1 shows the appearance of the sample taken out after heating.

実施例2は、濡れた状態で熱源に投入しているため、消火剤を燃焼物に噴霧した状態を模している。また、スライドガラスを使用しているため、高温物体に対して感温性無機組成消火剤がどのような状態で反応するか良く観察できる。   Since Example 2 is put into the heat source in a wet state, it simulates a state in which a fire extinguisher is sprayed on the combustion product. Moreover, since the slide glass is used, it can be well observed in what state the temperature-sensitive inorganic composition fire extinguishing agent reacts with a high-temperature object.

写真1に熱源に投入した噴霧液の発泡状態の様子を示す(写真1中の「数字-数字」はサンプル「数字-数字」と同じである)。ここで、実施例2-3(写真1の左から3番目)は、実験時にスライドガラスが割れた。消火液の粘度の増加と共に固体泡の発泡嵩高さが増し、固体膜エリアが狭くなっている。   Photo 1 shows the state of foaming of the spray liquid charged into the heat source (“Number-Number” in Photo 1 is the same as Sample “Number-Number”). Here, in Example 2-3 (third from the left in Photo 1), the slide glass broke during the experiment. As the viscosity of the fire extinguishing liquid increases, the foaming height of the solid bubbles increases, and the solid film area becomes narrower.

一方、消火液の粘度の減少と共に固体泡の発泡嵩高さは低くなり、固体膜エリアが広くなっている。ここで、固体膜とは、スライドガラス上に形成した膜が積層すること無く、横に広がった状態を指す。   On the other hand, with the decrease in the viscosity of the fire extinguishing liquid, the foaming height of the solid foam is lowered, and the solid film area is widened. Here, the solid film refers to a state in which films formed on the slide glass spread laterally without being stacked.

本発明品を消火液とした立場での働きを考慮すると、燃焼物の表面を効率よく覆えば良く、無駄に嵩高くなる必要は無い。そのため、消火液が同じ体積ならば、粘度が低ければ被覆面積が大きくなるため消火効率が良い。   Considering the function of the present invention as a fire extinguisher, it is sufficient to efficiently cover the surface of the burned material, and there is no need to unnecessarily be bulky. For this reason, if the extinguishing liquid has the same volume, if the viscosity is low, the covering area becomes large, so the fire extinguishing efficiency is good.

一方、粘度が高い消火液に関しては、噴霧器の取扱いが困難になる事を加味すると、噴霧タイプの消火液には向かない。しかしながら、用途を別にすれば、高粘度の消火液をパックに充填し延焼予測地点に設置することで、高粘度の特徴である嵩高さを利用した遮熱性を発揮し、延焼を抑止できる。   On the other hand, fire extinguishing liquids with high viscosity are not suitable for spray type fire extinguishing liquids, considering that handling of the sprayer becomes difficult. However, apart from applications, filling a pack with a high-viscosity fire extinguishing liquid and installing it at a predicted fire spread point can exhibit heat insulation utilizing the bulkiness that is a characteristic of high viscosity and suppress fire spread.

以上の結果のように、ケイ酸化合物の固形分濃度を調節することによって、火災の熱で変化する状態(固体膜あるいは固体泡あるいは混成体の形状)が制御できることを明らかにした。   As shown in the above results, it was clarified that the state (solid film, solid foam, or hybrid shape) that changes due to the heat of the fire can be controlled by adjusting the solid content concentration of the silicate compound.

[実施例3]固体泡の高温安定性
実施例3の調製方法
JIS規格3号ケイ酸ナトリウム水溶液の固形分の100重量部に対し、25.8重量部の重量部のケイ酸アルミニウムを混合して調製した母剤(この時の固形分濃度は36.3%)をスライドガラスに塗布後、水分調節し、各サンプルを調製した。
[Example 3] High temperature stability of solid foam
Preparation method of Example 3
A base material (solid content concentration of 36.3% at this time) prepared by mixing 25.8 parts by weight of aluminum silicate with 100 parts by weight of solid content of JIS No. 3 sodium silicate aqueous solution is slide glass After application, the moisture was adjusted to prepare each sample.

試験結果
写真2(図6)に熱源に投入した消火液の噴霧液の発泡状態の様子(実施例3)を示す。実施例3では、電気炉にサンプルを投入する前に、予め消火液の含水量を調節し、スライドガラス上に成膜した。サンプル3-1(左側)は含水率40%、サンプル3-2(右側)は7%である。両サンプルに熱が加えられ、100℃を超えると水の蒸発と共に泡を形成し始め、固体泡となった。
Test result Photo 2 (Fig. 6) shows the foaming state (Example 3) of the spray solution of the fire extinguishing solution charged into the heat source. In Example 3, before the sample was put into the electric furnace, the water content of the fire extinguishing liquid was adjusted in advance, and a film was formed on the slide glass. Sample 3-1 (left) has a moisture content of 40% and sample 3-2 (right) has 7%. Heat was applied to both samples, and when the temperature exceeded 100 ° C., bubbles started to form with the evaporation of water and became solid bubbles.

発泡開始後、固体泡の状態は750℃まで嵩をほぼ維持した。750℃を超えると次第に嵩が低くなるが、泡の形状は保持したままである。また、750℃を超えるとガラスの軟化点を超えることから、固体泡は次第に柔軟化する。しかしながら、少なくとも850℃までは溶融劣化すること無く、また固体泡の流れだしも無く、スライドガラスに強く接着していることを確認した。   After the start of foaming, the state of the solid foam almost maintained the bulk up to 750 ° C. When the temperature exceeds 750 ° C., the bulk gradually decreases, but the shape of the foam remains retained. Moreover, since it will exceed the softening point of glass when it exceeds 750 degreeC, a solid bubble will soften gradually. However, it was confirmed that the glass was strongly adhered to the slide glass without melting and deterioration at least up to 850 ° C. and without flowing of solid bubbles.

この加熱変化の様子は、火災時に消火液を燃焼物に供給した直後から火災熱により固体泡がどのような熱経緯を辿るかを模式的に表している。このように本消火剤は液体泡と異なり、非常に耐熱性が高いことを表している。   The state of this heating change schematically shows how the solid bubbles follow the fire heat immediately after the extinguishing liquid is supplied to the combustion product in the event of a fire. In this way, this fire extinguisher is different from liquid foam, indicating that it has very high heat resistance.

また、溶融して流れ出すまで本消火剤は付着した物体に強く接着していることから、非常に高い温度まで窒息効果が持続・発揮することができ、尚且つ延焼抑制効果があることが明らかとなった。また、林野火災での残火処理において、再燃防止にも効果がある事が分かった。   In addition, since the fire extinguisher is strongly adhered to the adhered object until it melts and flows out, it is clear that the suffocation effect can be sustained and exhibited up to a very high temperature, and that it also has a fire spread suppressing effect. became. It was also found that afterfire treatment in a forest fire is effective in preventing relapse.

[実施例4]固体膜と固体泡の潮解
実施例4の調製方法
JIS規格1号ケイ酸カリウム水溶液の固形分の100重量部に対し、3.5重量部の重量部のケイ酸アルミニウムを混合して母剤を調製した。
[Example 4] Deliquession of solid membrane and solid foam
Preparation method of Example 4
A base material was prepared by mixing 3.5 parts by weight of aluminum silicate with 100 parts by weight of the solid content of JIS No. 1 potassium silicate aqueous solution.

母剤を水で希釈することにより12.0、6.03及び2.27[mPas]の粘度に調節し、夫々スライドガラス上にほぼ同量塗布後、予備乾燥した。   By diluting the base material with water, the viscosity was adjusted to 12.0, 6.03 and 2.27 [mPas].

その後、600℃、4時間、空気雰囲気下で加熱し、絶乾状態とした各サンプルを調製した。   Thereafter, each sample was heated to 600 ° C. for 4 hours in an air atmosphere to be in an absolutely dry state.

試験結果
写真3(図7)に600℃の熱源から取り出した直後を実験開始時とした場合の実施例4-1から4-3の各サンプルの経時変化を示す。実験日は平均気温23.6℃、平均湿度82%の実験環境であった。
Test results Photo 3 (FIG. 7) shows the time course of each sample of Examples 4-1 to 4-3 when the experiment was started immediately after removal from a 600 ° C. heat source. The experimental day was an experimental environment with an average temperature of 23.6 ° C and an average humidity of 82%.

実験開始時の状態として、写真3の左側(サンプル4-1)では固体泡のみ、中(サンプル4-2)では固体泡と固体膜の混成体、右側(サンプル4-3)では固体膜のみの状態であった。時間の経過と共に全てのサンプルで潮解し、固体から液体へと変化した。   At the start of the experiment, the left side of photo 3 (sample 4-1) is solid foam only, the middle (sample 4-2) is a mixture of solid foam and solid film, and the right side (sample 4-3) is solid film only. It was the state of. Over time, all samples were deliquescent and changed from solid to liquid.

実施例4-1の固体泡の状態が最も液状化するのが遅く、3.5時間程度かかっている。固体膜の液状化は色彩変化が無く判定しづらいが、積層化した固体泡よりは液状化に至る時間短い。これら潮解に要する時間は、発泡バルク層の嵩高さや発泡密度によって異なる事が写真3に現れている。   The state of the solid foam in Example 4-1 is the slowest to liquefy and takes about 3.5 hours. The liquefaction of the solid film is difficult to judge because there is no color change, but it takes less time to liquefy than the laminated solid bubbles. Photo 3 shows that the time required for deliquescence varies depending on the bulk of the foamed bulk layer and the foam density.

また、絶乾状態で実験を開始したことから、(各サンプル中には水を含まない状態の乾燥シリケート層から開始した意を有している)大気中の湿気から水分を吸収し、液体化する潮解現象が発現したことを示しているのであって、予め被覆物中に含まれた水分が潮解現象に影響を及ぼしているのではない事を示している。   In addition, since the experiment was started in an absolutely dry state, water was absorbed from moisture in the atmosphere (having the intention to start from a dry silicate layer without water in each sample) and liquefied. This indicates that the deliquescent phenomenon has occurred, and that moisture previously contained in the coating does not affect the deliquescent phenomenon.

後述する実施例5及び6では一部の潮解が見られ、ケイ酸ナトリウム系化合物との混合物においても一部の潮解現象が見られた。この事より、シリケート層を形成した後に発現する潮解現象を消火剤の組成を調節することで、制御できることが分かった。   In Examples 5 and 6 described later, a part of deliquescence was observed, and part of the deliquescence phenomenon was also observed in a mixture with a sodium silicate compound. From this, it was found that the deliquescence phenomenon that occurs after the formation of the silicate layer can be controlled by adjusting the composition of the extinguishing agent.

[実施例5]消火液の性能:粘度の影響
実施例5の調製方法
JIS規格1号ケイ酸カリウム水溶液の固形分と、JIS規格2号ケイ酸カリウム水溶液の固形分を合計した100重量部(体積比1:3)に対し、3.5重量部の重量部のケイ酸アルミニウムを混合して母剤を調製した。母剤を水で希釈することで11.4、6.24及び2.08[mPas]の粘度に調節し、各サンプルを調製した。
[Example 5] Performance of fire extinguishing liquid: Influence of viscosity
Preparation method of Example 5
3.5 parts by weight of aluminum silicate with respect to 100 parts by weight (volume ratio 1: 3) of the solid content of JIS standard 1 potassium silicate aqueous solution and the solid content of JIS standard 2 potassium silicate aqueous solution Were mixed to prepare a base material. Each sample was prepared by adjusting the viscosities of 11.4, 6.24 and 2.08 [mPas] by diluting the base material with water.

試験結果
表3に消火実験で使用した消火剤粘度、消火した液量、消火効果及びクリブの温度が50℃を下回った到達時間を示す。消火液同組成では、噴霧可能な粘度が下がるとともに使用した消火液量が減り、消火効果が高くなった。
Test results Table 3 shows the viscosity of the extinguishing agent used in the fire extinguishing experiment, the amount of liquid extinguished, the fire extinguishing effect, and the arrival time when the temperature of the crib fell below 50 ° C. With the same composition of the fire extinguishing liquid, the sprayable viscosity decreased, the amount of the extinguishing liquid used was reduced, and the fire extinguishing effect increased.

これは、消火に有効な固体膜で燃焼物を被覆した面積の効果と、水の気化熱を利用して急激に被消火物の温度を下げる効果が発現したためである。   This is because the effect of the area in which the combustible material is covered with a solid film effective for fire extinguishing and the effect of drastically lowering the temperature of the fire extinguisher using the heat of vaporization of water are manifested.

図3-1に実施例5-1(粘度11.4[mPas]の場合)の消火実験のクリブ内温度の経時変化を示す。   Fig. 3-1 shows the change over time in the temperature inside the crib in the fire extinguishing experiment of Example 5-1 (in the case of viscosity 11.4 [mPas]).

サンプル5-1は、計測開始から102秒で消火液を燃焼クリブに2秒間噴霧すると消炎し、直ちにクリブ内の温度が急激に下がった。消炎確認後、開始から127秒で1秒間熾火に対して消火液を噴霧し、噴霧停止した。   In Sample 5-1, the fire extinguisher was sprayed onto the combustion crib for 2 seconds within 102 seconds from the start of measurement, and the flame disappeared immediately. After confirming the extinction, the fire extinguishing liquid was sprayed for 1 second in 127 seconds from the start, and the spraying was stopped.

噴霧停止後は、クリブ内の温度が一旦は木材の燃焼温度260℃に迫ったものの、その後温度が緩やかに低くなった。噴霧停止後にクリブ内の温度が上がる現象は、発泡層がクリブの放熱を阻害したためである。   After spraying stopped, the temperature in the crib once approached the wood combustion temperature of 260 ° C, but then the temperature gradually decreased. The phenomenon that the temperature inside the crib rises after the spraying is stopped is because the foam layer hinders the heat release of the crib.

この様に発泡によって被被覆物内の温度が保持されることから、外熱に対しても抗温度変化作用がある事が明らかとなった。噴霧可能なサンプル5-1(粘度11.4[mPas])では発泡層の厚みを適正に制御していることから、木材の燃焼温度に満たず、比較的緩やかに放熱できており、良好な結果を示した。   As described above, since the temperature inside the object to be coated is maintained by foaming, it has been clarified that there is an anti-temperature changing action against external heat. In sprayable sample 5-1 (viscosity 11.4 [mPas]), the thickness of the foamed layer is controlled appropriately, so it does not reach the combustion temperature of wood and heat can be dissipated relatively slowly. Indicated.

図3-2に実施例5-2(粘度6.24[mPas]の場合)の消火実験のクリブ内温度の経時変化を示す。   Fig. 3-2 shows the change over time in the temperature inside the crib in the fire extinguishing experiment of Example 5-2 (in the case of viscosity 6.24 [mPas]).

サンプル5-2は、計測開始から84秒で消火液を燃焼クリブに1秒間噴霧すると消炎し、直ちにクリブ内の温度が急激に下がった。消炎確認後、開始から227秒まで任意時間で約1秒間熾火に対して消火液を4回噴霧し、噴霧停止した。   In Sample 5-2, the fire extinguisher was sprayed onto the combustion crib for 1 second in 84 seconds from the start of measurement, and the flame disappeared immediately. After confirming the extinction, the fire extinguisher was sprayed 4 times against the bonfire for about 1 second at an arbitrary time from the start to 227 seconds, and the spraying was stopped.

噴霧停止後は、消火液の発泡はあまり見られず、クリブ内の温度が比較的速やかに低くなった。噴霧停止後にクリブ内の温度が比較的速やかに低くなるのは固体膜と固体泡の混成体であるため、実施例5-1よりも効率的にクリブ内の熱をクリブ外へ逃がしたためである。   After spraying was stopped, foaming of the fire extinguishing liquid was not observed so much and the temperature inside the crib decreased relatively quickly. The reason why the temperature inside the crib decreases relatively quickly after the spraying is stopped is because the heat in the crib is released to the outside of the crib more efficiently than in Example 5-1, because it is a hybrid of a solid film and a solid foam. .

この様に固体泡及び固体膜の混成体が燃焼物に被覆することで、良好な消火の結果を示した。   Thus, the result of the good fire extinguishing was shown by covering the combustion product with the mixture of solid foam and solid film.

図3-3に実施例5-3(粘度2.08[mPas]の場合)の消火実験のクリブ内温度の経時変化を示す。   Fig. 3-3 shows the change over time in the temperature inside the crib of the fire fighting experiment of Example 5-3 (in the case of viscosity 2.08 [mPas]).

サンプル5-3は、計測開始から61秒で消火液を燃焼クリブに1秒間噴霧すると消炎し、直ちにクリブ内の温度が急激に下がった。消炎確認後、開始から153秒まで任意時間で約1秒間熾火に対して消火液を4回噴霧し、噴霧停止した。   In Sample 5-3, the fire extinguisher was sprayed onto the combustion crib for 1 second in 61 seconds from the start of measurement, and the flame disappeared immediately. After confirming the extinction, the fire extinguisher was sprayed 4 times against the bonfire for about 1 second at an arbitrary time from the start to 153 seconds, and the spraying was stopped.

噴霧停止後は、消火液の発泡は見られず、クリブ内の温度が速やかに低くなった。噴霧停止後にクリブ内の温度が速やかに低くなるのは固体膜を形成しているため、実施例5-1及び実施例5-2よりも効率的にクリブ内の熱をクリブ外へ逃がしたためである。   After spraying was stopped, no foaming of the fire extinguishing liquid was observed, and the temperature inside the crib quickly decreased. The reason why the temperature in the crib quickly decreases after the spraying is stopped is because the heat in the crib is released to the outside of the crib more efficiently than in Example 5-1 and Example 5-2. is there.

この様に固体膜が燃焼物に被覆することで、良好に消火し、尚且つ消火後のクリブの温度降下も最も早かった。   In this way, the solid film covered the combustion material, so that the fire was extinguished well and the temperature drop of the crib after the fire extinguishing was the fastest.

[実施例6]消火液の性能:ケイ酸アルミの濃度
実施例6-1と実施例6-2及び実施例6-3の調製方法
JIS規格1号ケイ酸カリウム水溶液の固形分と、JIS規格2号ケイ酸カリウム水溶液の固形分を合計した100重量部(体積比1:3)に対し、0.1重量部の重量部のケイ酸アルミニウムを混合して実施例6-1の母剤を調製した。
[Example 6] Performance of fire extinguishing liquid: Concentration of aluminum silicate
Preparation method of Example 6-1 and Example 6-2 and Example 6-3
0.1 parts by weight of aluminum silicate with respect to 100 parts by weight (volume ratio 1: 3) of the solid content of JIS standard 1 potassium silicate aqueous solution and the solid content of JIS standard 2 potassium silicate aqueous solution Were mixed to prepare a base material of Example 6-1.

JIS規格1号ケイ酸カリウム水溶液の固形分と、JIS規格2号ケイ酸カリウム水溶液の固形分を合計した100重量部(体積比1:3)に対し、1.0重量部の重量部のケイ酸アルミニウムを混合して実施例6-2の母剤を調製した。   100 parts by weight (volume ratio 1: 3) of the solid content of JIS standard 1 potassium silicate aqueous solution and the solid content of JIS standard 2 potassium silicate aqueous solution, 1.0 part by weight of aluminum silicate Were mixed to prepare a base material of Example 6-2.

JIS規格1号ケイ酸カリウム水溶液の固形分と、JIS規格2号ケイ酸カリウム水溶液の固形分を合計した100重量部(体積比1:3)に対し、3.5重量部の重量部のケイ酸アルミニウムを混合して実施例6-3の母剤を調製した。   3.5 parts by weight of aluminum silicate with respect to 100 parts by weight (volume ratio 1: 3) of the solid content of JIS standard 1 potassium silicate aqueous solution and the solid content of JIS standard 2 potassium silicate aqueous solution Were mixed to prepare a base material of Example 6-3.

夫々の母剤を水で希釈し、約2.10[mPas]の粘度に揃え、各サンプルを調製した。なお実施例6-3は、実施例5-3と同一物である。   Each sample was diluted with water and adjusted to a viscosity of about 2.10 [mPas] to prepare each sample. Example 6-3 is the same as Example 5-3.

試験結果
表4に消火実験で使用した消火剤の量と消火効果を示す。ここで、サンプル6-3は、表3中のサンプル5-3と同一物である。同粘度においては、ケイ酸アルミの濃度が高くなるとともに使用した消火液量が減り、消火効果が高くなった。
Test results Table 4 shows the amount of fire extinguishing agent used in the fire extinguishing experiment and the fire extinguishing effect. Here, Sample 6-3 is the same as Sample 5-3 in Table 3. At the same viscosity, the concentration of aluminum silicate increased and the amount of fire extinguishing liquid used decreased, and the fire extinguishing effect increased.

また、クリブ内の温度が50℃を下回る時間はケイ酸アルミの量が増加すると共に短くなった。これは、燃焼物に対する被覆効果と水の気化熱冷却と、ケイ酸アルミによる被膜の高温安定性が発現したためである。   In addition, the time during which the temperature inside the crib fell below 50 ° C. became shorter as the amount of aluminum silicate increased. This is because the coating effect on the combusted material, water vaporization thermal cooling, and the high temperature stability of the coating film made of aluminum silicate were developed.

図4-1にサンプル6-1の粘度2.18[mPas]の場合の消火実験のクリブ内温度の経時変化を示す。計測開始から76秒で消火液を燃焼クリブに3秒間噴霧すると消炎し、直ちにクリブ内の温度が下がった。消炎確認後、開始から129秒まで任意時間で約1秒間熾火に対して消火液を2回噴霧し、噴霧停止した。   Figure 4-1 shows the time-dependent change in the temperature inside the crib in the fire extinguishing experiment when the viscosity of sample 6-1 is 2.18 [mPas]. In 76 seconds from the start of measurement, the fire extinguisher was sprayed onto the combustion crib for 3 seconds. The flame extinguished, and the temperature inside the crib immediately decreased. After confirming the extinction, the fire extinguisher was sprayed twice for about 1 second at an arbitrary time from the start to 129 seconds, and the spraying was stopped.

噴霧停止後は、消火液の発泡は見られず、クリブ内の温度が低くなった。ここで、底面の計測温度が緩やかな降下を辿っている。これはクリブ底面に存在する熾火の全面ではなく、クリブ底面の熾火周辺に消火液がかかっている状態である。つまり窒息効果のある固体膜が熾火周辺を取り囲んでいるため、熾火に酸素が供給されにくく自然鎮火している。しかしながら、図4-1を見ると50℃を下回るクリブ全体の温度低下にはほとんど影響が出ていない。   After spraying stopped, no foaming of the fire extinguishing liquid was seen, and the temperature inside the crib became low. Here, the measured temperature at the bottom follows a gentle drop. This is a state in which the fire extinguishing liquid is applied not to the entire surface of the bonfire on the bottom of the crib but to the periphery of the bonfire on the bottom of the crib. In other words, since the solid film with the effect of suffocation surrounds the vicinity of the bonfire, it is difficult for oxygen to be supplied to the bonfire and the fire is extinguished naturally. However, looking at Figure 4-1, there is almost no effect on the overall temperature drop below 50 ° C.

この様に熾火の周辺を固体膜で取り囲むと、自然鎮火しやすい状態を作る事が出来る事も分かった。また、固体膜が燃焼物に被覆することで、良好に消火し、尚且つ消火後の温度低下も早い結果も得られた。   It was also found that surrounding the bonfire with a solid film makes it easy to extinguish natural fires. In addition, the solid film covered the combustion product, so that the fire was extinguished well, and the temperature decreased rapidly after the fire was extinguished.

図4-2にサンプル6-2の粘度2.07[mPas]の場合の消火実験のクリブ内温度の経時変化を示す。計測開始から75秒で消火液を燃焼クリブに2秒間噴霧すると消炎し、直ちにクリブ内の温度が下がった。消炎確認後、開始から192秒まで任意時間で約1秒間熾火に対して消火液を3回噴霧し、噴霧停止した。   Fig. 4-2 shows the time-dependent change in the temperature inside the crib of the fire extinguishing experiment when the viscosity of sample 6-2 is 2.07 [mPas]. In 75 seconds from the start of measurement, the fire extinguisher was sprayed onto the combustion crib for 2 seconds. The flame went out and the temperature inside the crib immediately decreased. After confirming extinction, the fire extinguisher was sprayed 3 times against the bonfire for about 1 second at an arbitrary time from the start to 192 seconds, and the spraying was stopped.

噴霧停止後は、消火液の発泡は見られず、クリブ内の温度が速やかに低くなった。噴霧停止後にクリブ内の温度が速やかに低くなるのは固体膜を形成しているためである。   After spraying was stopped, no foaming of the fire extinguishing liquid was observed, and the temperature inside the crib quickly decreased. The reason why the temperature in the crib quickly decreases after the spraying is stopped is that a solid film is formed.

この様に固体膜が燃焼物に被覆することで、良好に消火し、尚且つ消火後の温度低下も早い結果を得た。   In this way, the solid film covered the combustion material, so that the fire was extinguished well, and the temperature drop after the fire extinguishment was quick.

サンプル6-3はサンプル5-3と同一物であり、実験結果も図3-3と同じである。   Sample 6-3 is the same as Sample 5-3, and the experimental results are also the same as in FIG. 3-3.

サンプル6-1及び6-2と比較すると、各測定温度のばらつきが小さく、速やかにクリブの温度が下がっている事が分かる。   Compared to Samples 6-1 and 6-2, the variation in each measured temperature is small, and it can be seen that the temperature of the crib quickly decreases.

このようにケイ酸アルミの濃度が高くなるとともに消火効果が高くなる事が分かった。   Thus, it turned out that the fire extinguishing effect becomes high as the concentration of aluminum silicate increases.

Claims (9)

アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、水とを含有する感温性無機組成消火剤。   A temperature-sensitive inorganic composition fire extinguisher containing 0 to 26 parts by weight of aluminum silicate and water with respect to 100 parts by weight of the solid content of the alkali metal silicate compound and silicon dioxide of the alkali metal silicate compound. アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、飽和濃度以下の金属炭酸塩と、水とを含有する感温性無機組成消火剤。   It contains 0 to 26 parts by weight of aluminum silicate, a metal carbonate having a saturated concentration or less, and water with respect to 100 parts by weight of the solid content of the alkali metal silicate compound and silicon dioxide of the alkali metal silicate compound. Thermosensitive inorganic composition fire extinguisher. アルカリ金属ケイ酸化合物が、ケイ酸ナトリウム、ケイ酸カリウム及びケイ酸リチウムからなる群より選択される少なくとも1種の化合物である、請求項1又は2に記載の感温性無機組成消火剤。   3. The temperature-sensitive inorganic composition fire extinguishing agent according to claim 1, wherein the alkali metal silicate compound is at least one compound selected from the group consisting of sodium silicate, potassium silicate and lithium silicate. 金属炭酸塩が、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩であり、当該アルカリ金属がナトリウム、カリウム及びリチウムからなる群より選択される少なくとも1つの化合物である、請求項1〜3のいずれかに記載の感温性無機組成消火剤。   The metal carbonate is an alkali metal carbonate and an alkali metal hydrogen carbonate, and the alkali metal is at least one compound selected from the group consisting of sodium, potassium and lithium. The temperature-sensitive inorganic composition fire extinguisher described. アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、水とを含有する感温性無機組成延焼抑止剤。   A temperature-sensitive inorganic composition fire spreader containing 0 to 26 parts by weight of aluminum silicate and water with respect to 100 parts by weight of solid content of the alkali metal silicate compound and silicon dioxide of the alkali metal silicate compound. アルカリ金属ケイ酸化合物と、前記アルカリ金属ケイ酸化合物の二酸化ケイ素の固形分100重量部に対し、0〜26重量部のケイ酸アルミニウムと、飽和濃度以下の金属炭酸塩と、水を含有する感温性無機組成延焼抑止剤。   Sensitivity containing 0 to 26 parts by weight of aluminum silicate, a metal carbonate having a saturated concentration or less, and water with respect to 100 parts by weight of the solid content of the alkali metal silicate compound and silicon dioxide of the alkali metal silicate compound. Warm inorganic composition fire spread inhibitor. アルカリ金属ケイ酸化合物が、ケイ酸ナトリウム、ケイ酸カリウム及びケイ酸リチウムからなる群より選択される少なくとも1種の化合物である、請求項5又は6に記載の感温性無機組成延焼抑止剤。   7. The temperature-sensitive inorganic composition fire spread inhibitor according to claim 5, wherein the alkali metal silicate compound is at least one compound selected from the group consisting of sodium silicate, potassium silicate and lithium silicate. 金属炭酸塩が、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩であり、当該アルカリ金属がナトリウム、カリウム及びリチウムからなる群より選択される少なくとも1つの化合物である、請求項5〜7のいずれかに記載の感温性無機組成延焼抑止剤。   The metal carbonate is an alkali metal carbonate or an alkali metal bicarbonate, and the alkali metal is at least one compound selected from the group consisting of sodium, potassium, and lithium. The described temperature-sensitive inorganic composition fire spread inhibitor. 請求項1〜8のいずれかに記載の感温性無機組成消火剤又は感温性無機組成延焼抑止剤を有する基材を含む塗料。   A paint comprising a substrate having the temperature-sensitive inorganic composition fire extinguisher or the temperature-sensitive inorganic composition fire spread inhibitor according to any one of claims 1 to 8.
JP2017091918A 2017-05-02 2017-05-02 Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent Active JP6516268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091918A JP6516268B2 (en) 2017-05-02 2017-05-02 Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091918A JP6516268B2 (en) 2017-05-02 2017-05-02 Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent

Publications (2)

Publication Number Publication Date
JP2018187071A true JP2018187071A (en) 2018-11-29
JP6516268B2 JP6516268B2 (en) 2019-05-22

Family

ID=64478004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091918A Active JP6516268B2 (en) 2017-05-02 2017-05-02 Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent

Country Status (1)

Country Link
JP (1) JP6516268B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201920A (en) * 2018-05-23 2019-11-28 三生技研株式会社 Temperature-sensitive inorganic composition fire extinguisher for metal fire, and temperature-sensitive inorganic composition fire spread inhibitor for metal fire
KR102130607B1 (en) * 2019-01-18 2020-07-06 경상대학교산학협력단 Foaming composition for spraying to block smoke in case of fire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109072A (en) * 1981-12-21 1983-06-29 ホーチキ株式会社 Fire fighting agent for tempura oil fire
JP2001294778A (en) * 2000-04-10 2001-10-23 Inax Corp Method of forming stain-proofing coating film and antifouling coating material
JP2013119563A (en) * 2011-12-06 2013-06-17 Sansei Giken Kk Temperature-sensitive inorganic composition
CN104645539A (en) * 2013-11-19 2015-05-27 姚金华 Ammonia-free gel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109072A (en) * 1981-12-21 1983-06-29 ホーチキ株式会社 Fire fighting agent for tempura oil fire
JP2001294778A (en) * 2000-04-10 2001-10-23 Inax Corp Method of forming stain-proofing coating film and antifouling coating material
JP2013119563A (en) * 2011-12-06 2013-06-17 Sansei Giken Kk Temperature-sensitive inorganic composition
CN104645539A (en) * 2013-11-19 2015-05-27 姚金华 Ammonia-free gel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201920A (en) * 2018-05-23 2019-11-28 三生技研株式会社 Temperature-sensitive inorganic composition fire extinguisher for metal fire, and temperature-sensitive inorganic composition fire spread inhibitor for metal fire
JP7144828B2 (en) 2018-05-23 2022-09-30 国立大学法人 宮崎大学 Temperature-sensitive inorganic composition extinguishing agent for metal fires and temperature-sensitive inorganic composition fire spread inhibitor for metal fires
KR102130607B1 (en) * 2019-01-18 2020-07-06 경상대학교산학협력단 Foaming composition for spraying to block smoke in case of fire

Also Published As

Publication number Publication date
JP6516268B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
US7163642B2 (en) Composition inhibiting the expansion of fire, suppressing existing fire, and methods of manufacture and use thereof
US9878190B2 (en) Flame retardant and fire extinguishing product for fires in solid materials
CA2023624C (en) Fire extinguishing compositions and methods
WO2017015585A1 (en) Flame retardant and fire extinguishing product
WO2014115038A2 (en) Flame retardant and fire extinguishing product for fires in solid materials
JP6313279B2 (en) Fire extinguisher and fire extinguisher medium
NO335533B1 (en) Fire retardant and method of manufacture thereof.
US20160107014A1 (en) Flame retardant and fire extinguishing product for fires in liquids
RU2013116540A (en) NEW FIRE EXTINGUISHING METHOD
JP6516268B2 (en) Thermosensitive inorganic composition fire extinguishing agent and thermosensitive inorganic composition fire spread suppressing agent
RU2438741C2 (en) Composition for fire-fighting and forms of said composition
JP2024501760A (en) Water-based fire extinguishing agent
Tianwei et al. Sustained effect of dry water in a thermal environment after fire extinguishing: Fuel surface coating methods
RU2622303C1 (en) Combined composition for fire fighting, method for combined fire fighting and microcapsulated extinguishing agent
JP7144828B2 (en) Temperature-sensitive inorganic composition extinguishing agent for metal fires and temperature-sensitive inorganic composition fire spread inhibitor for metal fires
TWI837567B (en) Water-based fire extinguishing agent
WO2010007195A1 (en) Composition protective against fire and use
TW201442761A (en) All-weather aqueous fire-extinguishing material composition and fire-extinguishing material made therefrom
AU2017285406B2 (en) Composition for fire extinguishant
RU2771530C1 (en) Method for preparation of fire-fighting mixture
RU2264242C2 (en) Fire-extinguishing method and device
JPH029828B2 (en)
Schmiermund Extinguishing
CN104784861A (en) All-weather aqueous fire extinguishing material component, and fire extinguishing material prepared from component
CN117398649A (en) Aerogel fire extinguishing material based on surfactant binary compound system and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6516268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250