<第1実施形態>
図1は、本発明の第1実施形態に係る有機エレクトロルミネッセンス装置100の平面図である。第1実施形態の有機エレクトロルミネッセンス装置100は、有機EL材料を利用した発光素子を基板10の面上に形成した有機EL装置である。基板10は、珪素(シリコン)等の半導体材料で形成された板状部材(半導体基板)であり、複数の発光素子が形成される基体(下地)として利用される。図1に例示される通り、基板10の表面は、第1領域12と第2領域14とに区分される。第1領域12は矩形状の領域であり、第2領域14は、第1領域12を包囲する矩形枠状の領域である。
第1領域12には、X方向に延在する複数の走査線22と、X方向に交差するY方向に延在する複数の信号線26とが形成される。複数の走査線22と複数の信号線26との各交差に対応して画素P(Pd,Pe)が形成される。したがって、複数の画素Pは、X方向およびY方向にわたり行列状に配列する。
第2領域14には駆動回路30と複数の実装端子36とガードリング38とが設置される。駆動回路30は、各画素Pを駆動する回路であり、第1領域12をX方向に挟む各位置に設置された2個の走査線駆動回路32と、第2領域14のうちX方向に延在する領域に設置された信号線駆動回路34とを含んで構成される。複数の実装端子36は、信号線駆動回路34を挟んで第1領域12とは反対側の領域内に形成され、基板10に接合される可撓性の配線基板(図示略)を介して制御回路や電源回路等の外部回路(例えば配線基板上に実装された電子回路)に電気的に接続される。
第1実施形態の有機エレクトロルミネッセンス装置100は、基板10の複数個分に相当するサイズの原基板の切断(スクライブ)で複数個が一括的に形成される。図1のガードリング38は、原基板の切断時の衝撃や静電気の影響が駆動回路30または各画素Pに波及することや各基板10の端面(原基板の切断面)からの水分の侵入を防止する。図1に例示される通り、ガードリング38は、駆動回路30と複数の実装端子36と第1領域12とを包囲する環状(矩形枠状)に形成される。
図1の第1領域12は、表示領域16と周辺領域18とに区分される。表示領域16は、各画素Pの駆動により実際に画像が表示される領域である。周辺領域18は、表示領域16を包囲する矩形枠状の領域であり、表示領域16内の各画素Pに構造は類似するが実際には画像の表示に寄与しない画素P(以下「ダミー画素Pd」という)が配置される。周辺領域18内のダミー画素Pdとの表記上の区別を明確化する観点から、以下の説明では、表示領域16内の画素Pを「表示画素Pe」と便宜的に表記する場合がある。表示画素Peは、発光の最小単位となる要素である。
図2は、表示領域16内に位置する各表示画素Peの回路図である。図2に例示される通り、表示画素Peは、発光素子45と駆動トランジスターTdrと選択トランジスターTslと容量素子Cとを含んで構成される。なお、第1実施形態では、表示画素Peの各トランジスターT(Tdr,Tsl)をPチャネル型としたが、Nチャネル型のトランジスターを利用することも可能である。
発光素子45は、有機EL材料の発光層を含む発光機能層46を第1電極(陽極)E1と第2電極(陰極)E2との間に介在させた電気光学素子である。第1電極E1は表示画素Pe毎に個別に形成され、第2電極E2は複数の画素Pにわたり連続する。図2から理解される通り、発光素子45は、第1電源導電体41と第2電源導電体42とを連結する経路上に配置される。第1電源導電体41は、高位側の電源電位Velが供給される電源配線であり、第2電源導電体42は、低位側の電源電位(例えば接地電位)Vctが供給される電源配線である。
駆動トランジスターTdrは、第1電源導電体41と第2電源導電体42とを連結する経路上で発光素子45に対して直列に配置される。具体的には、駆動トランジスターTdrの一対の電流端のうちの一方(ソースまたはドレイン)は第1電源導電体41に接続される。駆動トランジスターTdrは、自身のゲート-ソース間またはゲート-ドレイン間の電圧に応じた電流量の駆動電流を生成する。
図2の選択トランジスターTslは、信号線26と駆動トランジスターTdrのゲートとの導通状態(導通/非導通)を制御するスイッチとして機能する。選択トランジスターTslのゲートは走査線22に接続される。また、容量素子Cは、第1電極C1と第2電極C2との間に誘電体を介在させた静電容量である。第1電極C1は駆動トランジスターTdrのゲートに接続され、第2電極C2は第1電源導電体41(駆動トランジスターTdrのソース)に接続される。したがって、容量素子Cは、駆動トランジスターTdrのゲート-ソース間またはゲート-ドレイン間の電圧を保持する。
信号線駆動回路34は、外部回路から供給される画像信号が表示画素Pe毎に指定する階調に応じた階調電位(データ信号)を書込期間(水平走査期間)毎に複数の信号線26に対して並列に供給する。他方、各走査線駆動回路32は、各走査線22に走査信号を供給することで複数の走査線22の各々を書込期間毎に順次に選択する。走査線駆動回路32が選択した走査線22に対応する各表示画素Peの選択トランジスターTslはオン状態に遷移する。したがって、各表示画素Peの駆動トランジスターTdrのゲートには信号線26と選択トランジスターTslとを経由して階調電位が供給され、容量素子Cには階調電位に応じた電圧が保持される。したがって、階調電位に応じた駆動電流が駆動トランジスターTdrから発光素子45に供給される。以上のように各発光素子45が階調電位に応じた輝度で発光することで、画像信号が指定する任意の画像が表示領域16に表示される。また、書込期間が終了した後においても、容量素子Cに保持された電圧に応じた駆動電流が駆動トランジスターTdrから発光素子45に供給されるため、各発光素子45は階調電位に応じた輝度での発光を維持する。
第1実施形態の有機エレクトロルミネッセンス装置100の具体的な構造を以下に詳述する。なお、以下の説明で参照する各図面では、説明の便宜のために、各要素の寸法や縮尺を実際の有機エレクトロルミネッセンス装置100とは相違させている。図3は、有機エレクトロルミネッセンス装置100の断面図であり、図4から図11は、有機エレクトロルミネッセンス装置100の各要素を形成する各段階での基板10の表面の様子を表示画素Peの1個分に着目して図示した平面図である。図12から図14は、基板10の表面の様子を表示画素Peの4個分に着目して図示した平面図である。図4から図11のI−I’線を含む断面に対応した断面図が図3に相当する。なお、図4から図14は平面図であるが、各要素の視覚的な把握を容易化する観点から、図3と共通する各要素に図3と同態様のハッチングが便宜的に付加されている。
図3および図4から理解される通り、珪素等の半導体材料で形成された基板10の表面には、表示画素Peの各トランジスターT(Tdr,Tsl)の能動領域10A(ソース/ドレイン領域)が形成される。能動領域10Aにはイオンが注入される。表示画素Peの各トランジスターT(Tdr,Tsl)のアクティブ層はソース領域とドレイン領域との間に存在し、能動領域10Aとは別種類のイオンが注入されるが、便宜的に能動領域10Aと一体に記載している。また、本実施形態では、容量素子Cを構成する領域においても能動領域10Aが形成され、能動領域10Aには不純物が注入されて電源に接続される。そして、能動領域10Aを一方の電極とし、絶縁層を介して形成された容量電極を他方の電極とするいわゆるMOS容量を構成する。また、容量素子Cを構成する領域における能動領域10Aは電源電位部としても機能する。MOS容量および電源電位部の詳細については後述する。図3および図5から理解される通り、能動領域10Aが形成された基板10の表面は絶縁膜L0(ゲート絶縁膜)で被覆され、各トランジスターTのゲート層G(Gdr,Gsl)が絶縁膜L0の面上に形成される。各トランジスターTのゲート層Gは、絶縁膜L0を挟んでアクティブ層に対向する。また、図5に例示される通り、駆動トランジスターTdrのゲート層Gdrは、容量素子Cを構成する領域に形成された能動領域10Aまで延びて形成され、下部容量電極層CA1を構成している。
図3から理解される通り、各トランジスターTのゲート層Gおよび下部容量電極層CA1が形成された絶縁膜L0の面上には、複数の絶縁層L(LA〜LD)と複数の導電層(配線層)とを交互に積層した多層配線層が形成される。各絶縁層Lは、例えば珪素化合物(典型的には窒化珪素や酸化珪素)等の絶縁性の無機材料で形成される。なお、以下の説明では、導電層(単層または複数層)の選択的な除去により複数の要素が同一工程で一括的に形成される関係を「同層から形成される」と表記する。
絶縁層LAは、各トランジスターTのゲートGが形成された絶縁膜L0の面上に形成される。図3および図6から理解される通り、絶縁層LAの面上には、上部容量電極層CA2,CA3,CA4と、複数の中継電極QB(QB1,QB2,QB3)とが同層から形成される。図3および図6から理解される通り、上部容量電極層CA2は、絶縁層LAと絶縁膜L0とを貫通する導通孔HA5を介して駆動トランジスターTdrのソース領域またはドレイン領域を形成する能動領域10Aに導通する。上部容量電極層CA2には、平面視において、駆動トランジスターTdrのゲート層Gdrの一部と下部容量電極層CA1が形成された領域を取り囲むように開口部50が形成される。また、上部容量電極層CA2には、平面視において、画素導通部を構成する駆動トランジスターTdrのドレイン領域またはソース領域、および選択トランジスターTslのゲート層Gslの一部とドレイン領域またはソース領域の一部を取り囲むように開口部51が形成される。
開口部50には、上部容量電極層CA3と上部容量電極層CA4が上部容量電極層CA2と同層に形成される。上部容量電極層CA3には開口部52が形成され、上部容量電極層CA4は開口部52内に形成される。つまり、上部容量電極層CA2、上部容量電極層CA3、および上部容量電極層CA4は互いに離間して形成され電気的に絶縁されている。すなわち、上部容量電極層CA3は上部容量電極層CA2により取り囲まれている。そして、上部容量電極層CA4は上部容量電極層CA3により取り囲まれている。上部容量電極層CA3は、駆動トランジスターTdrのゲート層Gdrと選択トランジスターTslのドレイン領域またはソース領域を形成する能動領域10Aとを接続する配線層としても機能している。すなわち、図3、図5および図6から理解される通り、上部容量電極層CA3は、絶縁層LAと絶縁膜L0とを貫通する導通孔HA2を介して選択トランジスターTslの能動領域10Aに導通するとともに、絶縁層LAの導通孔HB2を介して駆動トランジスターTdrのゲートGdrに導通する。
開口部51には、中継電極QB1、中継電極QB2、および中継電極QB3が上部容量電極層CA2と同層に形成される。すなわち、中継電極QB1、中継電極QB2、および中継電極QB3は上部容量電極層CA2により取り囲まれている。図3、図5および図6から理解される通り、中継電極QB1は、絶縁層LAと絶縁膜L0とを貫通する導通孔HA6を介して駆動トランジスターTdrのドレイン領域を形成する能動領域10Aに導通する。中継電極QB2は、絶縁層LAを貫通する導通孔HB1を介して選択トランジスターTslのゲート層Gslに導通する。中継電極QB3は、絶縁層LAと絶縁膜L0とを貫通する導通孔HA1を介して駆動トランジスターTdrのソース領域を形成する能動領域10Aに導通する。図6から理解される通り、選択トランジスターTslと駆動トランジスターTdrの各々は、チャネル長がY方向に沿うように形成される。また、容量素子Cを構成する領域は、駆動トランジスターTdrに対してX方向(図6ではX方向の正側)にずれた位置に配置される。また、選択トランジスターTslのゲート層Gslと中継電極QB2との導通箇所は、選択トランジスターTslに対してX方向(図6ではX方向の負側)にずれた位置に配置される。
絶縁層LBは、上部容量電極層CA2、上部容量電極層CA3、上部容量電極層CA4と複数の中継電極QB(QB1,QB2,QB3)とが形成された絶縁層LAの面上に形成される。図3および図7から理解される通り、絶縁層LBの面上には、第1電源導電体としての電源線層41と、走査線22と、複数の中継電極QC(QC1,QC2)とが同層から形成される。電源線層41は、多層配線層内の配線(図示略)を介して、高位側の電源電位Velが供給される実装端子36に導通する。なお、電源線層41は、図1に示す第1領域12の表示領域16内に形成される。また、図示を省略するが、第1領域12の周辺領域18内にも別の電源線層が形成される。この電源線層は、多層配線層内の配線(図示略)を介して、低位側の電源電位Vctが供給される実装端子36に導通する。電源線層41および低位側の電源電位Vctが供給される電源線層は、例えば銀やアルミニウムを含有する導電材料で例えば100nm程度の膜厚に形成される。
電源線層41は、前述の通り高位側の電源電位Velが供給される電源配線であり、図13から理解される通り、上部容量電極層CA2の開口部50およびその周囲の上部容量電極層CA2を各画素において覆うと共に、X方向において隣り合う画素間において隙間なく一様に連続する帯状のパターンである。
図3および図7から理解される通り、表示領域16内に形成された電源線層41は、表示画素Pe毎に絶縁層LBに形成された導通孔HC3を介して上部容量電極層CA2に導通する。また、電源線層41は、表示画素Pe毎に絶縁層LBに形成された導通孔HC5、HC6、HC7を介して上部容量電極層CA2に導通する。したがって、図3、図5ないし図7から理解される通り、電源線層41は、絶縁層LBを貫通する導通孔HC5、HC6と、上部容量電極層CA2と、絶縁膜L0および絶縁層LAを貫通する導通孔HA3、HA4とを介して、容量素子Cを構成する領域に形成された能動領域10Aに導通する。さらに、図3および図7から理解される通り、電源線層41は、表示画素Pe毎に絶縁層LBに形成された導通孔HC7を介して上部容量電極層CA2に導通する。したがって、図3、図5ないし図7から理解される通り、電源線層41は、絶縁層LBを貫通する導通孔HC7と、上部容量電極層CA2と、絶縁膜L0および絶縁層LAを貫通する導通孔HA5を介して、駆動トランジスターTdrのソース領域またはドレイン領域を形成する能動領域10Aに導通する。すなわち、上部容量電極層CA2は、駆動トランジスターTdrのソース領域またはドレイン領域と、電源線層41とを接続する配線層としても機能している。図12から理解される通り、駆動トランジスターTdrのソース領域またはドレイン領域に対する配線層としても機能する上部容量電極層CA2は、一つの画素内において開口部50および開口部51の周囲を覆うと共に、X方向およびY方向で隣り合う画素間において隙間なく連続するパターンである。電源線層41は、絶縁層LBにより上部容量電極層CA3からは電気的に絶縁される。また、図3および図7から理解される通り、電源線層41は、表示画素Pe毎に絶縁層LBに形成された導通孔HC4、HC8を介して上部容量電極層CA4に導通する。
図7から理解される通り、走査線22は、表示画素Pe毎に絶縁層LBに形成された導通孔HC2を介して中継電極QB2に導通する。したがって、図5ないし図7から理解される通り、走査線22は、絶縁層LBを貫通する導通孔HC2と、中継電極QB2と、絶縁層LAを貫通する導通孔HB1を介して選択トランジスターTslのゲート層Gslに導通する。図13から理解される通り、走査線22は、複数の表示画素PeにわたりX方向に直線状に延在し、絶縁層LBにより上部容量電極層CA2および中継電極QB1からは電気的に絶縁される。
図7から理解される通り、中継電極QC1は、表示画素Pe毎に絶縁層LBに形成された導通孔HC1を介して中継電極QB3に導通する。したがって、図5ないし図7から理解される通り、中継電極QC1は、絶縁層LBを貫通する導通孔HC1と、中継電極QB3と、絶縁膜L0および絶縁層LAを貫通する導通孔HA1を介して選択トランジスターTslの能動領域10Aに導通する。
図7から理解される通り、中継電極QC2は、表示画素Pe毎に絶縁層LBに形成された導通孔HC9を介して中継電極QB1に導通する。したがって、図5ないし図7から理解される通り、中継電極QC2は、絶縁層LBを貫通する導通孔HC9と、中継電極QB1と、絶縁膜L0および絶縁層LAを貫通する導通孔HA6を介して駆動トランジスターTdrのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
絶縁層LCは、電源線層41、走査線22、中継電極QC1,QC2が形成された絶縁層LBの面上に形成される。図3および図8から理解される通り、絶縁層LCの面上には、信号線26と、中継電極QD1とが同層から形成される。信号線26は、複数の画素PにわたりY方向に直線状に延在し、絶縁層LCにより走査線22および電源線層41からは電気的に絶縁される。具体的には、信号線26は、図7および図8から理解される通り、表示画素Pe毎に絶縁層LCに形成された導通孔HD1を介して中継電極QC1に導通する。したがって、図5ないし図8から理解される通り、信号線26は、絶縁層LCを貫通する導通孔HD1と、中継電極QC1と、中継電極QB3と、絶縁膜L0および絶縁層LAを貫通する導通孔HA1を介して選択トランジスターTslの能動領域10Aと導通する。また、信号線26は、中継電極QC1と、走査線22と、電源線層41の上層の位置を通過するように形成され、選択トランジスターTslのチャネル長の方向(Y方向)に沿って延在する。信号線26は、平面視で走査線22と電源線層41とを介して選択トランジスターTslに重なる。また、図14から理解される通り、信号線26は、複数の表示画素PeにわたりY方向に直線状に延在し、絶縁層LCにより走査線22および電源線層41からは電気的に絶縁される。
図7から理解される通り、中継電極QC2は、表示画素Pe毎に絶縁層LBに形成された導通孔HC9を介して中継電極QB1に導通する。したがって、図5ないし図7から理解される通り、中継電極QC2は、絶縁層LBを貫通する導通孔HC9と、中継電極QB1と、絶縁膜L0および絶縁層LAを貫通する導通孔HA6を介して駆動トランジスターTdrのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
図3に例示される通り、絶縁層LDは、信号線26と中継電極QD1とが形成された絶縁層LCの面上に形成される。以上の説明では表示画素Peに着目したが、基板10の表面から絶縁層LDまでの各要素の構造は、周辺領域18内のダミー画素Pdについても共通する。
絶縁層LDの表面には平坦化処理が実行される。平坦化処理には、化学機械研磨(CMP:Chemical Mechanical Polishing)等の公知の表面処理技術が任意に採用される。平坦化処理で高度に平坦化された絶縁層LDの表面に、図3および図9に例示される通り、反射層55は、例えば銀やアルミニウムを含有する光反射性の導電材料で例えば100nm程度の膜厚に形成される。反射層55は、光反射性の導電材料で形成され、図9に示すように各トランジスターT、各配線、及び各中継電極を覆うように配置される。したがって、外光の侵入が反射層55により防止され、光照射に起因した各トランジスターTの電流リークを防止できるという利点がある。
図3および図9から理解される通り、反射層55は、表示画素Pe毎に絶縁層LDに形成された導通孔HE1を介して中継電極QD1に導通する。したがって、図5ないし図9から理解される通り、反射層55は、絶縁層LDを貫通する導通孔HE1と、中継電極QD1と、絶縁層LCを貫通する導通孔HD2と、中継電極QC2と、絶縁層LBを貫通する導通孔HC9と、中継電極QB1と、絶縁膜L0および絶縁層LAを貫通する導通孔HA6を介して駆動トランジスターTdrのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
図3に例示される通り、反射層55が形成された絶縁層LDの面上には光路調整層60が形成される。光路調整層60は、各表示画素Peの共振構造の共振波長(すなわち表示色)を規定する光透過性の膜体である。表示色が同じ画素では、共振構造の共振波長は略同じであり、表示色が異なる画素では、共振構造の共振波長は異なるように設定される。
図3および図10に例示される通り、光路調整層60の面上には、表示領域16内の表示画素Pe毎の第1電極E1が形成される。第1電極E1は、例えばITO(Indium Tin Oxide)等の光透過性の導電材料で形成される。第1電極E1は、図2を参照して前述した通り、発光素子45の陽極として機能する略矩形状の電極(画素電極)である。第1電極E1は、表示画素Pe毎に光路調整層60に形成された導通孔HF1を介して反射層55に導通する。したがって、図5ないし図10から理解される通り、第1電極E1は、光路調整層60を貫通する導通孔HF1と、反射層55と、絶縁層LDを貫通する導通孔HE1と、中継電極QD1と、絶縁層LCを貫通する導通孔HD2と、中継電極QC2と、絶縁層LBを貫通する導通孔HC9と、中継電極QB1と、絶縁膜L0および絶縁層LAを貫通する導通孔HA6を介して駆動トランジスターTdrのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
第1電極E1が形成された光路調整層60の面上には、図3および図11に例示される通り、基板10の全域にわたり画素定義層65が形成される。画素定義層65は、例えば珪素化合物(典型的には窒化珪素や酸化珪素)等の絶縁性の無機材料で形成される。図11から理解される通り、画素定義層65には、表示領域16内の各第1電極E1に対応する開口部65Aが形成される。画素定義層65のうち開口部65Aの内周縁の近傍の領域は第1電極E1の周縁に重なる。すなわち、開口部65Aの内周縁は平面視で第1電極E1の周縁の内側に位置する。各開口部65Aは、平面形状(矩形状)やサイズが共通し、かつ、X方向およびY方向の各々にわたり共通のピッチで行列状に配列する。以上の説明から理解される通り、画素定義層65は平面視で格子状に形成される。尚、開口部65Aの平面形状やサイズは、表示色が同じであれば同じであり、表示色が異なる場合は異なるようにしてもよい。また、開口部65Aのピッチは、表示色が同じ開口部同士では同じであり、表示色が異なる開口部間では異なるようにしてもよい。
その他にも、詳細な説明は省略するが、第1電極E1の上層には、発光機能層46、第2電極E2、および封止体47が積層され、以上の各要素が形成された基板10の表面には封止基板(図示略)が例えば接着剤で接合される。封止基板は、基板10上の各要素を保護するための光透過性の板状部材(例えばガラス基板)である。なお、封止基板の表面または封止体47の表面に表示画素Pe毎にカラーフィルターを形成することも可能である。
以上に説明した通り、第1実施形態では、容量素子と、駆動トランジスターTdrの少なくとも一部とが、第3の方向である各層の積層方向(図3に示すZ方向)において並ぶように配置されると共に、電源供給部位(電源電位部)と、容量素子の少なくとも一部と、選択トランジスターTslとが、第1の方向(図6に示すX方向)および第2の方向である各層の面方向(図6に示すY方向)において並ぶように配置される。図3、図6および図7から理解される通り、上部容量電極層CA2は、第1電源導電体としての電源線層41と導通しており、図2に示す容量素子Cの第2電極C2として機能する。前記積層方向において上部容量電極層CA2の下方には、絶縁層LAを介して、第1トランジスターとしての駆動トランジスターTdrの少なくとも一部であるゲート層Gdrが配置される。したがって、ゲート層Gdr自体を図2に示す駆動トランジスターTdrのゲートに接続される容量素子Cの第1電極C1と考えれば、上部容量電極層CA2と絶縁層LAとゲート層Gdrとは容量素子Cを構成しており、容量素子Cと、駆動トランジスターTdrの少なくとも一部であるゲート層Gdrとが、積層方向に並ぶように配置される。
上部容量電極層CA3は駆動トランジスターTdrの少なくとも一部であるゲート層Gdrと導通している。したがって、上部容量電極層CA3は容量素子Cの第1電極C1として機能する。積層方向において、上部容量電極層CA3の上方には、絶縁層LBを介して、第1電源導電体としての電源線層41が配置される。したがって、電源線層41を容量素子Cの第2電極C2として考えれば、上部容量電極層CA3と、絶縁層LBと、電源線層41とは容量素子Cを構成しており、容量素子Cと、駆動トランジスターTdrの少なくとも一部であるゲート層Gdrとが、積層方向に並ぶように配置される。
上部容量電極層CA4は、第1電源導電体としての電源線層41と導通している。したがって、上部容量電極層CA4は、容量素子Cの第2電極C2として機能する。積層方向において、上部容量電極層CA4の下方には、絶縁層LAを介して、下部容量電極層CA1が配置される。下部容量電極層CA1は、駆動トランジスターTdrの少なくとも一部であるゲート層Gdrと一体に形成された電極であり、下部容量電極層CA1は、駆動トランジスターTdrの少なくとも一部であるゲート層Gdrと導通する容量素子Cの第1電極C1として機能する。したがって、上部容量電極層CA4と、絶縁層LAと、下部容量電極層CA1とは容量素子Cを構成しており、容量素子Cと、駆動トランジスターTdrの少なくとも一部であるゲート層Gdrとが、積層方向に並ぶように配置される。また、下部容量電極層CA1の下方には、絶縁膜L0を介して、不純物が注入された能動領域10Aが配置されている。能動領域10Aは電源線層41と導通しているので、第2電極C2として機能し、能動領域10A、絶縁膜L0、および下部容量電極層CA1が、積層方向においていわゆるMOS容量を構成している。
以上のように、第1実施形態では、容量素子と、駆動トランジスターTdrの少なくとも一部とが、第1の方向である各層の積層方向(図3に示すZ方向)において並ぶように配置される
次に、選択トランジスターTslのチャネル長の方向であるY方向については、図3、図6および図7から理解される通り、上部容量電極層CA2が、絶縁膜L0および絶縁層LAを貫通する導通孔HA3,HA4と、絶縁層LBを貫通する導通孔HC5,HA6とを介して電源線層41と導通する。したがって、上部容量電極層CA2は、電源供給部位(電源電位部)として機能すると共に、容量素子Cの第2電極C2として機能する。そして、上部容量電極層CA2と同層に形成されてY方向において絶縁層LBを挟んで離れた位置には、上部容量電極層CA3が配置される。上部容量電極層CA3は、駆動トランジスターTdrのゲート層Gdrと導通し、容量素子Cの第1電極C1として機能する。したがって、上部容量電極層CA2と絶縁層LBと上部容量電極層CA3は、Y方向においても容量素子Cを構成する。同様に、第1電極C1として機能する上部容量電極層CA3に対し、絶縁層LBを介してY方向に離れて配置された上部容量電極層CA4は、電源線層41と導通し、第2電極C2として機能する。したがって、上部容量電極層CA3と絶縁層LBと上部容量電極層CA4は、Y方向においても容量素子Cを構成する。
このように、上部容量電極層CA2が電源線層41と導通する絶縁膜L0および絶縁層LAを貫通する導通孔HA3,HA4と、絶縁層LBを貫通する導通孔HC5,HA6との位置から、選択トランジスターTslが配置される位置までのY方向においては、上部容量電極層CA2と上部容量電極層CA3により構成される容量素子C、上部容量電極層CA3と上部容量電極層CA4により構成される容量素子C、上部容量電極層CA4と上部容量電極層CA3により構成される容量素子C、上部容量電極層CA3と上部容量電極層CA2により構成される容量素子C、そして選択トランジスターTslが配置されることになる。したがって、上部容量電極層CA2と上部容量電極層CA4が電源供給部位(電源電位部)としても機能することを考えると、本実施形態においては、電源供給部位(電源電位部)と、容量素子の少なくとも一部と、選択トランジスターTslとが、第2の方向である各層の面方向(図6に示すY方向)において並ぶように配置されている。
図3、図6および図7から理解される通り、上部容量電極層CA2、上部容量電極層CA3、上部容量電極層CA4は、Y方向だけでなくX方向においても、さらには、XY平面における斜めの方向においても、同様に絶縁層LBを介して容量素子Cを構成する。これは、駆動トランジスターTdrのゲート層Gdrと導通し第1電極C1として機能する上部容量電極層CA3と、電源線層41と導通し第2電極C2として機能する上部容量電極層CA2とが、同層に形成されて絶縁層LBを挟んで離れた位置に配置されており、上部容量電極層CA3が、上部容量電極層CA2により平面視において囲まれるように配置される構成のためである。さらに、電源線層41と導通する上部容量電極層CA4を第3電極と考えれば、第3電極である上部容量電極層CA4が第1電極である上部容量電極層CA3により囲まれるように配置されるので、上部容量電極層CA2、上部容量電極層CA3、上部容量電極層CA4は、Y方向だけでなくX方向においても、さらには、XY平面における斜めの方向においても、絶縁層LBを介して容量素子Cを構成する。
以上のように、本実施形態においては、駆動トランジスターTdrの少なくとも一部と、能動領域10Aと下部容量電極層CA1間で構成される容量素子Cとは第1の方向(X方向)に並ぶように配置され、導通孔HA5,HA4,HA3などが配置される電源供給部位と、能動領域10Aと下部容量電極層CA1間で構成される容量素子Cの少なくとも一部と、選択トランジスターTslが第2の方向(Y方向に)に並ぶように配置される。このような配置構成を採ることにより、駆動トランジスターTdrと容量素子Cは、電源供給部位の近くに配置することができ、走査線などを遠ざけることができる。したがって、走査線などからの影響を受けることがなく、駆動トランジスターTdrのゲート電位部の安定化を図ることができる。
本実施形態の容量素子Cをまとめると以下のようになる。本実施形態においては、容量素子Cは以下の5種類から構成される。
(積層方向)
i)能動領域10Aと下部容量電極層CA1間
基板10上に形成され電源電位Velが供給される能動領域10を一方の電極とし、絶縁膜L0を挟んで形成されゲート電位が供給される下部容量電極層CA1を他方の電極として容量素子Cが構成される。
ii)上部容量電極層CA2とゲート層Gdr間および上部容量電極層CA4と下部容量電極層CA1間
ゲート電位が供給されるゲート層Gdrを一方の電極とし、絶縁層LAを挟んで形成され電源電位Velが供給される上部容量電極層CA2を他方の電極として容量素子Cが構成される。また、ゲート層Gdrと一体に形成された下部容量電極層CA1を一方の電極とし、絶縁層LAを挟んで形成され電源電位Velが供給される上部容量電極層CA4を他方の電極として容量素子Cが構成される。
iii)上部容量電極層CA3と電源線層41間
ゲート電位が供給される上部容量電極層CA3を一方の電極とし、絶縁層LB
を挟んで形成され電源電位Velが供給される電源線層41を他方の電極として容量素子Cが構成される。
なお、i)の容量素子Cとii)の容量素子Cとは平面視で重なるように構成されている。また、i)の容量素子Cとiii)の容量素子C、およびii)の容量素子Cとiii)の容量素子Cも平面視で重なるように構成されている。
(平面方向)
iv)上部容量電極層CA2と上部容量電極層CA3間
電源電位Velが供給される上部容量電極層CA2を一方の電極とし、絶縁層LBを挟んで形成されゲート電位が供給される上部容量電極層CA3を他方の電極として容量素子Cが構成される。
v)上部容量電極層CA4と上部容量電極層CA3間
電源電位Velが供給される上部容量電極層CA4を一方の電極とし、絶縁層LBを挟んで形成されゲート電位が供給される上部容量電極層CA3を他方の電極として容量素子Cが構成される。
本発明は、以上のように、駆動トランジスターTdrのゲート層Gdrよりも上の層に容量素子Cが形成されると共に、その上の層と同層に、すなわち、その上の層における面方向に容量素子Cが形成されるので、ゲート層Gdrよりも上の層を有効に活用して容量素子の容量を確保することができる。また、ゲート層Gdrよりも上の層と同層に容量素子Cが形成されるので、製造工程の簡略化を図ることが可能になる。また、この同層に形成される容量素子Cの一部は、電源供給部位と選択トランジスターTslとの間に面方向において並ぶように配置されるので、駆動トランジスターTdrのゲート層Gdrのシールドがしやすいという利点がある。さらに、駆動トランジスターTdrと上部容量電極層CA2,CA3,CA4とのそれぞれによって形成される容量素子とが、平面視において重なるように配置されるので、容量素子の容量を確保しつつ、画素の高密度化を実現することができる。
また、本実施形態では、不純物が注入された能動領域10Aを一方の電極とし、絶縁膜L0を介して下部容量電極層CA1を他方の電極とするMOS容量についても容量素子Cとして用いるので、容量素子の容量を確保しつつ、画素の高密度化を実現することができる。
有機エレクトロルミネッセンス装置の場合には、15V等の高い電圧が使用されるため、駆動トランジスターのゲート電位にばらつきが発生すると、発光素子の発光輝度等について、そのばらつきによる影響が大きくなるため、駆動トランジスターのゲート電位の保持性を高めることが重要となる。本実施形態によれば、前述したように容量素子の容量が確保されるため、駆動トランジスターのゲート電位の保持性を高めることが可能となり、発光輝度のばらつきのない高品質な画像を提供することができる。
前述したように、上部容量電極層CA2は、駆動トランジスターTdrのソース配線またはドレイン配線としても機能する。したがって、駆動トランジスターTdrのソース配線またはドレイン配線と、容量電極を別々に形成する場合に比して、工程を簡略化することができる。また、上部容量電極層CA2は、反射層55との関係で遮光部としても機能する。図9に示すように、反射層55は、隣り合う画素間において隙間なく連続するパターンではなく、画素ごとに分離して形成される。したがって、隣り合う画素間においては、反射層55の隙間が生じる。しかしながら、図6および図12から理解される通り、反射層55よりも下層に形成される上部容量電極層CA2は、開口部50および開口部51を有して、駆動トランジスターTdrのゲート電位部、画素導通部、選択トランジスターTslの導通部、およびその他の導通部を囲むように配置され、かつ、隣り合う画素間においても隙間なく連続して形成されている。したがって、隣り合う画素間においては、反射層55の隙間が生じていても、駆動トランジスターTdrおよび選択トランジスターTslへと進む光は、上部容量電極層CA2によって遮られることになる。したがって、上部容量電極層CA2は遮光部としても機能する。なお、電源線層41も、隣り合う画素間においても隙間なく連続して形成されパターンなので、駆動トランジスターTdrのゲート電位部、およびその周辺の各導通部に対しては、遮光部として機能する。言い換えると、反射層55の端部は、上部容量電極層CA2又は電源線層41と重なるように配置されているため、隣り合う反射層55間を透過した光は、上部容量電極層CA2又は電源線層41により遮られるようになっている。よって、各トランジスターTへ光が到達しにくい構造となっている。
容量電極と電源線層との導通に関しては、第2電極C2として機能する上部容量電極層CA2は、図7から理解される通り、絶縁層LBを貫通する第1導通部としての導通孔HC3、HC5、HC6、HC7を介して電源線層41と導通する。また、第3電極の上部容量電極層CA4は、図7から理解される通り、絶縁層LBを貫通する第2導通部としての導通孔HC4および導通孔HC7を介して電源線層41と導通する。したがって、電源線層41を下層に延ばして導通を図る場合と比して、低抵抗で容量電極と電源線層41とを接続することができる。また、図12及び図13から理解される通り、走査線22を挟んで隣り合う電源線層41は、第1導通部としての導通孔HC3、HC5、HC6、HC7、上部容量電極層CA2を介して導通する。したがって、電源線層41のみの場合と比して、電源線層41及び上部容量電極層CA2が格子状に導通することができる。したがって、この構成により、高位側の電源電位Velを表示画素Peに安定して供給することができる。
駆動トランジスターTdrと電源線層41をつなぐ導通部は、図3ないし図7から理解される通り、絶縁膜L0および絶縁層LAを貫通する導通孔HA5、および絶縁層LBを貫通する導通孔HC7より構成されている。この導通部は、駆動トランジスターTdrのソース配線またはドレイン配線として機能する。このように構成することにより、電源線層41を下層に延ばして導通を図る場合と比して、低抵抗で駆動トランジスターTdrと電源線層41とを接続することができる。
駆動トランジスターTdrのゲート層Gdrと上部容量電極層CA3をつなぐ導通部は、図3、図5および図6から理解される通り、絶縁層LAを貫通する導通孔HB2より構成されている。この導通部は、選択トランジスターTslのソース配線またはドレイン配線であり、ゲート層Gdrが形成された層を貫いて設けられている。したがって、
容量電極層CA3を下層に延ばして導通を図る場合と比較して、低抵抗で駆動トランジスターTdrと容量電極層CA3とをつなぐことができる。
本発明においては、図3、図6ないし図8から理解される通り、容量素子Cを構成する上部容量電極層CA2,CA3,CA4と、信号線26との間に、電源線層41を配置する。電源線層41は、図13および図14に例示する通り、各画素において上部容量電極層CA2,CA3,CA4を覆うだけでなく、隣り合う画素間においても隙間なく一様に連続する帯状のパターンなので、上部容量電極層CA2,CA3,CA4に対して良好なシールド効果を奏する。したがって、電源線層41により、信号線26と上部容量電極層CA2,CA3,CA4との間のカップリングが抑制される。また、特に、駆動トランジスターTdrのゲート層Gdrに導通する上部容量電極層CA3は、高位側の電源電位Velが供給される電源線層41により覆われるとともに、高位側の電源電位Velが供給される上部容量電極層CA2,CA4に囲まれるように配置されている。このように、上部容量電極層CA3は、固定電位である電源電位VelによりXY平面内において囲まれ、固定電位である電源電位Velにより積層方向において覆われるように配置されることで、信号線26と上部容量電極層CA3との間のカップリングがより一層抑制される。また、図8および図14に例示する通り、Y方向において信号線26および選択トランジスターTslは延びるように配置されている。そして、信号線26は選択トランジスターTslと平面視上で重なるように配置されているので、画素の微細化を実現することができる。さらに、信号線26と選択トランジスターTslとが平面視上で重なることにより、信号線26と選択トランジスターTslとの接続は、各絶縁層を貫通する導通孔HA1、HC2、HD1を介して行われるので、信号線26と選択トランジスターTslとが低抵抗で接続さる。その結果、信号線26による選択トランジスターTslに対する書き込み能力が向上する。信号線26と選択トランジスターTslをつなぐ導通部は、絶縁膜L0および絶縁層LAを貫通する導通孔HA1、中継電極QB3、絶縁層LBを貫通する導通孔HC1、中継電極QC1、および絶縁層LCを貫通する導通孔HD1により構成される。この導通部は、選択トランジスターTslのソース配線またはドレイン配線であり、上部容量電極層CA2等が形成された容量電極層を貫いて設けられている。したがって、信号線26を下層に延ばして導通を図る場合と比較して、低抵抗で選択トランジスターTslと信号線26とをつなぐことができる。また、信号線26と選択トランジスターTslとの導通部は、画素導通部を避けて配置される。さらに、図6から理解される通り、画素導通部である中継電極QB1および導通孔HC9と、信号線26と選択トランジスターTslとの導通部である中継電極QB3および導通孔HC1との間には、上部容量電極層CA2に突状部CA2aが形成されており、画素導通部と信号線26と選択トランジスターTslとの導通部を隔てている。したがって、画素導通部に対する信号線26の影響を低減させることができる。
上部容量電極層CA2は、駆動トランジスターTdrのゲート電位部と走査線22との間に配置されるように構成されている。さらに、電源線層41は、駆動トランジスターTdrのゲート電位部と走査線22との間に配置されるように構成されている。したがって、駆動トランジスターTdrのゲート電位部と走査線22との間のカップリングが抑制される。
上部容量電極層CA2は、信号線26と選択トランジスターTslをつなぐ導通部と、駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。さらに、電源線層41は、信号線26と選択トランジスターTslをつなぐ導通部と、駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。したがって、信号線26と選択トランジスターTslをつなぐ導通部と駆動トランジスターTdrのゲート電位部との間のカップリングが抑制される。
前述した上部容量電極層CA1,CA2,CA3と電源線層41との導通部、駆動トランジスターTdrと電源線層41をつなぐ導通部、駆動トランジスターTdrのゲート層Gdrと上部容量電極層CA3をつなぐ導通部は、すべて画素導通部を避けて配置される。したがって、これらの導通部と画素導通部との間のカップリングが抑制される。
本発明においては、図3、図6、図7および図10から理解される通り、容量素子Cを構成する上部容量電極層CA2,CA3,CA4と、画素電極である第1電極E1との間に、電源線層41を配置する。電源線層41は、図13および図14に例示する通り、各画素において上部容量電極層CA2,CA3,CA4を覆うだけでなく、隣り合う画素間においても隙間なく一様に連続する帯状のパターンなので、上部容量電極層CA2,CA3,CA4に対して良好なシールド効果を奏する。したがって、電源線層41により、第1電極E1と上部容量電極層CA2,CA3,CA4との間のカップリングが抑制される。また、図3ないし図10から理解される通り、第1電極E1と駆動トランジスターTdrのソース領域またはドレイン領域との導通部は、絶縁膜L0および絶縁層LAを貫通する導通孔HA6、中継電極QB1、絶縁層LBを貫通する導通孔HC9、中継電極QC2、絶縁層LCを貫通する導通孔HD2、中継電極QD1、絶縁層LDを貫通するHE1、および光路調整層60を貫通する導通孔HF1により構成されている。これらは、駆動トランジスターTdrのソース配線またはドレイン配線として機能している。つまり、第1電極E1と駆動トランジスターTdrのソース領域またはドレイン領域との導通部は、上部容量電極層CA2等が形成された層と、電源線層41等が形成された層とを貫いて設けられた駆動トランジスターTdrのソース配線またはドレイン配線により構成されている。したがって、画素電極を駆動トランジスターTdrのソース領域またはドレイン領域の層まで延ばして導通を図る場合と比して、低抵抗で駆動トランジスターTdrのソース領域またはドレイン領域と画素電極である第1電極E1とを接続することができる。
本発明においては、図3および図7から理解される通り、選択トランジスターTslの制御線である走査線22は、電源線層41と同層に形成されている。したがって、工程の簡略化を図ることができる。また、図3、図6ないし図7から理解される通り、各容量電極は、信号線26および走査線22よりも下層であり、電源線層41は走査線22と同層に形成されている。したがって、層を増やすことなく、容量電極やトランジスターに対する信号線26および走査線22の影響を低減できる。走査線22と選択トランジスターTslのゲート層Gslとの導通部は、選択トランジスターTslのゲートから横方向(図6におけるX方向の負の方向)にずれて配置され、信号線26と交差しないように配置されている。選択トランジスターTslのゲート層Gslとの導通部に対する信号線26の影響を低減できる。なお、走査線22と選択トランジスターTslのゲート層Gslとの導通部を選択トランジスターTslの能動領域10Aの真上に配置し、選択トランジスターTslと信号線26との導通部の位置をずらしてもよい。
画素電極である第1電極E1には反射層55が接続されている。第1電極E1の電位、すなわち、駆動トランジスターTdrのドレインまたはソースの電位は、駆動トランジスターTdrや発光素子45の電位に応じて設定されるため、第1電極E1や反射層55の電位は、信号線26の電位の影響を受けにくい。
なお、容量素子を構成する電極は、電源線層41を用いて形成したが、電源線層41とは異なる層に設けてもよいし、電源線層41から吊り下げられた電極としてもよい。駆動トランジスターTdrのソース配線またはドレイン配線自体を容量電極として用いる場合と比して、容量の誘電体膜を薄くでき、容量を大きくできる。あるいは、容量素子の配置の自由度を増すことができる。また、図15に示すように、駆動トランジスターTdrのゲート層Gdrと接続される上部容量電極層CA3に開口部を設けず、開口部に配置されていた上部容量電極層CA4を省略してもよい。また、図16に示すように、上部容量電極層CA2の開口部50の角部50aを面取りしてもよい。さらに、図17に示すように、上部容量電極層CA3の開口部52の角部52aを面取りしてもよい。角部では、他の部位より上部容量電極間の間隔が広くなるため、容量部として有効に機能しなくなる恐れがある。これに対して、面を滑らかにすることで、容量部として機能させることができる。
<第2実施形態>
本発明の第2実施形態を説明する。なお、以下に例示する各形態において作用や機能が第1実施形態と同様である要素については、第1実施形態の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
図18は、本実施形態における各表示画素Peの回路図である。図18に例示される通り、本実施形態の表示画素Peは、発光素子45と駆動トランジスターTdrと選択トランジスターTslと容量素子Cの他に、発光制御トランジスターTelと補償トランジスターTcmpとを含んで構成される。なお、本実施形態においても、表示画素Peの各トランジスターT(Tdr,Tel,Tsl,Tcmp)をPチャネル型としたが、Nチャネル型のトランジスターを利用することも可能である。本実施形態の表示画素Peの回路は、いわゆるカップリング駆動方式と、いわゆる電流プログラミング方式とのいずれの方式によっても駆動することが可能である。まず、カップリング駆動方式による駆動について説明する。
発光制御トランジスターTelは、駆動トランジスターTdrの一対の電流端のうちの他方(ドレインまたはソース)と発光素子45の第1電極E1との導通状態(導通/非導通)を制御するスイッチとして機能する。駆動トランジスターTdrは、自身のゲート-ソース間の電圧に応じた電流量の駆動電流を生成する。発光制御トランジスターTelがオン状態に制御された状態では、駆動電流が駆動トランジスターTdrから発光制御トランジスターTelを経由して発光素子45に供給されることで発光素子45が駆動電流の電流量に応じた輝度で発光し、発光制御トランジスターTelがオフ状態に制御された状態では発光素子45に対する駆動電流の供給が遮断されることで発光素子45は消灯する。発光制御トランジスターTelのゲートは制御線28に接続される。
補償トランジスターTcmpは、駆動トランジスターTdrの閾値電圧の変動を補償する機能を有する。発光制御トランジスターTelがオフ状態で、選択トランジスターTslおよび駆動トランジスターTdrがオン状態に制御された状態において、補償トランジスターTcmpがオン状態に制御されると、駆動トランジスターTdrのゲート電位とドレインまたはソース電位が等しくなり、駆動トランジスターTdrはダイオード接続となる。このため、駆動トランジスターTdrを流れる電流がゲートノードおよび信号線26を充電する。詳細には、電流が、電源線層41→駆動トランジスターTdr→補償トランジスターTcmp→信号線26という経路で流れる。このため、駆動トランジスターTdrがオン状態に制御されることによって互いに接続状態にある信号線26およびゲートノードは、初期状態の電位から上昇する。ただし、上記経路に流れる電流は、駆動トランジスターTdrの閾値電圧を|Vth|とすると、ゲートノードが電位(Vel−|Vth|)に近づくにつれて流れにくくなるので、補償トランジスターTcmpがオフ状態とされる補償期間の終了に至るまでに、信号線26およびゲートノードは電位(Vel−|Vth|)で飽和する。したがって、容量素子Cは、補償トランジスターTcmpがオフ状態とされる補償期間の終了に至るまでに駆動トランジスターTdrの閾値電圧|Vth|を保持することになる。
本実施形態では、水平走査期間内に補償期間と書込期間を有しており、各走査線駆動回路32は、各走査線22に走査信号を供給することで複数の走査線22の各々を水平走査期間毎に順次に選択する。走査線駆動回路32が選択した走査線22に対応する各表示画素Peの選択トランジスターTslはオン状態に遷移する。したがって、各表示画素Peの駆動トランジスターTdrもオン状態に遷移する。また、各走査線駆動回路32は、各制御線27に制御信号を供給することで複数の制御線27の各々を補償期間毎に順次に選択する。走査線駆動回路32が選択した制御線27に対応する各表示画素Peの補償トランジスターTcmpはオン状態に遷移する。そして、容量素子Cは、補償トランジスターTcmpがオフ状態とされる補償期間の終了に至るまでに駆動トランジスターTdrの閾値電圧|Vth|を保持する。各走査線駆動回路32が各制御線27に制御信号を供給することで各表示画素Peの補償トランジスターTcmpをオフ状態に制御すると、信号線26から駆動トランジスターTdrのゲートノードに至るまでの経路はフローティング状態になるものの、容量素子Cによって(Vel−|Vth|)に維持される。次に、信号線駆動回路34は、外部回路から供給される画像信号が表示画素Pe毎に指定する階調に応じた階調電位(データ信号)を書込期間毎に容量素子Crefに対して並列に供給する。そして、階調電位は容量素子Crefを用いてレベルがシフトされ、その電位が信号線26と選択トランジスターTslとを経由して各表示画素Peの駆動トランジスターTdrのゲートに供給される。容量素子Cには駆動トランジスターTdrの閾値電圧|Vth|を補償しつつ階調電位に応じた電圧が保持される。他方、書込期間での走査線22の選択が終了すると、各走査線駆動回路32は、各制御線28に制御信号を供給することで当該制御線28に対応する各表示画素Peの発光制御トランジスターTelをオン状態に制御する。したがって、直前の書込期間で容量素子Cに保持された電圧に応じた駆動電流が駆動トランジスターTdrから発光制御トランジスターTelを経由して発光素子45に供給される。以上のように各発光素子45が階調電位に応じた輝度で発光することで、画像信号が指定する任意の画像が表示領域16に表示される。そして、駆動トランジスターTdrから発光素子45に供給される駆動電流は、閾値電圧の影響が相殺されているため、駆動トランジスターTdrの閾値電圧が表示画素Pe毎にばらついても、そのばらつきが補償されて、階調レベルに応じた電流が発光素子45に供給されるので、表示画面の一様性を損なうような表示ムラの発生を抑えられる結果、高品位の表示が可能になる。
次に、図19を参照して電流プログラミング方式による駆動について説明する。走査線22の走査信号がLレベルになると、選択トランジスターTslがオン状態となる。また、制御線27の制御信号がLレベルになると、補償トランジスターTcmpがオン状態となる。したがって、駆動トランジスターTdrは、ゲート電位と、発光制御トランジスターTelとの接続側のソース電位またはドレイン電位とが等しくなり、ダイオードとして機能する。そして、信号線26のデータ信号がLレベルになると、電流Idataが、電源線層41→駆動トランジスターTdr→補償トランジスターTcmp→信号線26という経路で流れる。また、そのときに、駆動トランジスターTdrのゲートノードの電位に応じた電荷が容量素子Cに蓄積される。
制御線27の制御信号がHレベルになると、補償トランジスターTcmpはオフ状態となる。このとき、容量素子Cの両端の電圧は、電流Idataが流れたときの電圧に保持される。制御線28の制御信号がLレベルとなると、発光制御トランジスターTelがオ
ン状態となり、駆動トランジスターTdrのソース・ドレイン間には、ゲート電圧に応じた電流Ioledが流れる。詳細には、この電流は、電源線層41→駆動トランジスターTdr→発光制御トランジスターTel→発光素子45という経路で流れる。
ここで、発光素子45に流れる電流Ioledは、駆動トランジスターTdrのゲートノードと、電源線層41との接続側のドレインノードまたはソースノードとの間の電圧で定まるが、その電圧は、Lレベルの走査信号によって電流Idataが信号線26に流れたときに、容量素子Cによって保持された電圧である。このため、制御線28の制御信号がLレベルになったときに、発光素子45に流れる電流Ioledは、直前に流れた電流Idataに略一致する。このように、電流プログラミング方式の駆動の場合には、電流Idataによって発光輝度が規定される。なお、走査線22は制御線27と異なる配線としたが、走査線22と制御線27とを一本の配線としてもよい。
第2実施形態の有機エレクトロルミネッセンス装置100の具体的な構造を以下に詳述する。なお、以下の説明で参照する各図面では、説明の便宜のために、各要素の寸法や縮尺を実際の有機エレクトロルミネッセンス装置100とは相違させている。図20は、有機エレクトロルミネッセンス装置100の断面図であり、図21から図28は、有機エレクトロルミネッセンス装置100の各要素を形成する各段階での基板10の表面の様子を表示画素Peの1個分に着目して図示した平面図である。図29から図31は、基板10の表面の様子を表示画素Peの4個分に着目して図示した平面図である。図21から図28のII−II’線を含む断面に対応した断面図が図20に相当する。なお、図21から図31は平面図であるが、各要素の視覚的な把握を容易化する観点から、図20と共通する各要素に図20と同態様のハッチングが便宜的に付加されている。
図20および図21から理解される通り、珪素等の半導体材料で形成された基板10の表面には、表示画素Peの各トランジスターT(Tdr,Tsl,Tel,Tcmp)の能動領域10A(ソース/ドレイン領域)が形成される。能動領域10Aにはイオンが注入される。表示画素Peの各トランジスターT(Tdr,Tsl,Tel,Tcmp)のアクティブ層はソース領域とドレイン領域との間に存在し、能動領域10Aとは別種類のイオンが注入されるが、便宜的に能動領域10Aと一体に記載している。また、本実施形態においても、容量素子Cを構成する領域においても能動領域10Aが形成され、能動領域10Aには不純物が注入されて電源に接続される。そして、能動領域10Aを一方の電極とし、絶縁層を介して形成された容量電極を他方の電極とするいわゆるMOS容量を構成する。また、容量素子Cを構成する領域における能動領域10Aは電源電位部としても機能する。図21から理解される通り、補償トランジスターTcmpの能動領域10Aは導通孔HA1が設けられた部分において、選択トランジスターTslの能動領域10Aとはつながっている。したがって、補償トランジスターTcmpの電流端は、選択トランジスターTslの電流端としても機能する。図20および図22から理解される通り、能動領域10Aが形成された基板10の表面は絶縁膜L0(ゲート絶縁膜)で被覆され、各トランジスターTのゲート層G(Gdr,Gsl,Gel,Gcmp)が絶縁膜L0の面上に形成される。各トランジスターTのゲート層Gは、絶縁膜L0を挟んでアクティブ層に対向する。また、図22に例示される通り、駆動トランジスターTdrのゲート層Gdrは、容量素子Cを構成する領域に形成された能動領域10Aまで延びて形成され、下部容量電極層CA1を構成している。
図20から理解される通り、各トランジスターTのゲート層Gおよび下部容量電極層CA1が形成された絶縁膜L0の面上には、複数の絶縁層L(LA〜LD)と複数の導電層(配線層)とを交互に積層した多層配線層が形成される。各絶縁層Lは、例えば珪素化合物(典型的には窒化珪素や酸化珪素)等の絶縁性の無機材料で形成される。なお、以下の説明では、導電層(単層または複数層)の選択的な除去により複数の要素が同一工程で一括的に形成される関係を「同層から形成される」と表記する。
絶縁層LAは、各トランジスターTのゲートGが形成された絶縁膜L0の面上に形成される。図20および図23から理解される通り、絶縁層LAの面上には、上部容量電極層CA2,CA3,CA4と、複数の中継電極QB(QB2,QB3,QB4,QB5,QB6)と、発光制御トランジスターTelの制御線28とが同層から形成される。図20および図23から理解される通り、上部容量電極層CA2は、絶縁層LAと絶縁膜L0とを貫通する導通孔HA5を介して駆動トランジスターTdrのソース領域またはドレイン領域を形成する能動領域10Aに導通する。上部容量電極層CA2には、平面視において、駆動トランジスターTdrのゲート層Gdrの一部と下部容量電極層CA1が形成された領域を取り囲むように開口部50が形成される。
開口部50には、上部容量電極層CA3と上部容量電極層CA4が上部容量電極層CA2と同層に形成される。上部容量電極層CA3には開口部52が形成され、上部容量電極層CA4は開口部52内に形成される。つまり、上部容量電極層CA2と上部容量電極層CA3は互いに離間して形成され電気的に絶縁されており、上部容量電極層CA3と上部容量電極層CA4は互いに離間して形成され電気的に絶縁されている。上部容量電極層CA3は、駆動トランジスターTdrのゲート層Gdrと選択トランジスターTslのドレイン領域ましたソース領域とを接続する配線層としても機能している。すなわち、図20、図22および図23から理解される通り、絶縁層LAと絶縁膜L0とを貫通する導通孔HA2を介して選択トランジスターTslの能動領域10Aに導通するとともに、絶縁層LAの導通孔HB2を介して駆動トランジスターTdrのゲートGdrに導通する。
駆動トランジスターTdrと補償トランジスターTcmpおよび発光制御トランジスターTelとの導通部、補償トランジスターTcmpと選択トランジスターTslとの導通部、補償トランジスターTcmpのゲート層Gcmpの導通部、選択トランジスターTslのゲート層Gslの導通部、および発光制御トランジスターTelと画素電極としての第1電極E1との導通部のそれぞれには、中継電極QB4、中継電極QB3、中継電極QB5、中継電極QB2、中継電極QB6が上部容量電極層CA2と同層に形成される。また、発光制御トランジスターTelのゲート層Gelの導通部には制御線28が上部容量電極層CA2と同層に形成される。図20、図22および図23から理解される通り、中継電極QB4は、絶縁膜L0と絶縁層LAとを貫通する導通孔HA6を介して駆動トランジスターTdrのドレイン領域またはソース領域を形成する能動領域10Aに導通する。また、中継電極QB4は、絶縁膜L0と絶縁層LAとを貫通する導通孔HA7を介して補償トランジスターTcmpのドレイン領域またはソース領域を形成する能動領域10Aに導通する。さらに、中継電極QB4は、絶縁膜L0と絶縁層LAとを貫通する導通孔HA8を介して発光制御トランジスターTelのドレイン領域またはソース領域を形成する能動領域10Aに導通する。中継電極QB2は、絶縁層LAを貫通する導通孔HB1を介して選択トランジスターTslのゲート層Gslに導通する。中継電極QB3は、絶縁層LAと絶縁膜L0とを貫通する導通孔HA1を介して選択トランジスターTslのソース領域またはドレイン領域を形成すると共に、補償トランジスターTcmpのソース領域またはドレイン領域を形成する能動領域10Aに導通する。中継電極QB5は、絶縁層LAを貫通する導通孔HB3を介して補償トランジスターTcmpのゲート層Gcmpに導通する。中継電極QB6は、絶縁膜L0と絶縁層LAとを貫通する導通孔HA9を介して発光制御トランジスターTelのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
発光制御トランジスターTelの制御線28は、絶縁層LAに形成された導通孔HB4を介して発光制御トランジスターTelのゲート層Gelに導通する。制御線28は、図29から理解される通り、複数の表示画素PeにわたりX方向に直線状に延在し、絶縁層LAにより補償トランジスターTcmpのゲート層Gcmpからは電気的に絶縁される。図23から理解される通り、選択トランジスターTslと駆動トランジスターTdrと発光制御トランジスターTelの各々は、チャネル長がY方向に沿うように形成される。また、容量素子Cを構成する領域は、駆動トランジスターTdrに対してX方向(図6ではX方向の正側)にずれた位置に配置される。また、選択トランジスターTslのゲート層Gslと中継電極QB2との導通箇所は、選択トランジスターTslに対してX方向(図6ではX方向の負側)にずれた位置に配置される。補償トランジスターTcmpのゲート層Gcmpと中継電極QB5との導通箇所は、補償トランジスターTcmpに対してY方向(図23ではY方向の正側)にずれた位置に配置される。
絶縁層LBは、上部容量電極層CA2、上部容量電極層CA3、上部容量電極層CA4と、複数の中継電極QB(QB2,QB3,QB4,QB5,QB6)と、制御線28とが形成された絶縁層LAの面上に形成される。図20および図24から理解される通り、絶縁層LBの面上には、第1電源導電体としての電源線層41と、走査線22と、補償トランジスターTcmpの制御線27と、複数の中継電極QC(QC1,QC3)とが同層から形成される。電源線層41は、多層配線層内の配線(図示略)を介して、高位側の電源電位Velが供給される実装端子36に導通する。なお、電源線層41は、図1に示す第1領域12の表示領域16内に形成される。また、図示を省略するが、第1領域12の周辺領域18内にも別の電源線層が形成される。この電源線層は、多層配線層内の配線(図示略)を介して、低位側の電源電位Vctが供給される実装端子36に導通する。電源線層41および低位側の電源電位Vctが供給される電源線層は、例えば銀やアルミニウムを含有する導電材料で例えば100nm程度の膜厚に形成される。
電源線層41は、前述の通り高位側の電源電位Velが供給される電源配線であり、図24および図30から理解される通り、上部容量電極層CA2の開口部50およびその周囲の上部容量電極層CA2を各画素において覆う。電源線層41は、さらに、Y方向において隣り合う表示画素Peの発光制御トランジスターTelの制御線28を覆う位置まで延びて形成されており、この隣り合う表示画素Peとの連続部には開口部53が形成されて、画素電極導通部(発光制御トランジスターTelと中継電極QC3の導通部)を取り囲むように配置される。また、電源線層41は、X方向において隣り合う表示画素Pe間において隙間なく連続して形成されたパターンである。
図20および図24から理解される通り、表示領域16内に形成された電源線層41は、表示画素Pe毎に絶縁層LBに形成された導通孔HC3を介して上部容量電極層CA2に導通する。また、電源線層41は、表示画素Pe毎に絶縁層LBに形成された導通孔HC5、HC6を介して上部容量電極層CA2に導通する。したがって、図20、図22ないし図24から理解される通り、電源線層41は、上部容量電極層CA2と、絶縁膜L0および絶縁層LAを貫通する導通孔HA3、HA4とを介して、容量素子Cを構成する領域に形成された能動領域10Aに導通する。さらに、図20および図24から理解される通り、電源線層41は、表示画素Pe毎に絶縁層LBに形成された導通孔HC7を介して上部容量電極層CA2に導通する。したがって、図20、図22ないし図24から理解される通り、電源線層41は、上部容量電極層CA2と、絶縁膜L0および絶縁層LAを貫通する導通孔HC7を介して、駆動トランジスターTdrのソース領域またはドレイン領域を形成する能動領域10Aに導通する。すなわち、上部容量電極層CA2は、駆動トランジスターTdrのソース領域またはドレイン領域と、電源線層41とを接続する配線層としても機能している。図20および図24から理解される通り、電源線層41は、表示画素Pe毎に絶縁層LBに形成された導通孔HC4、HC8を介して上部容量電極層CA4に導通する。
図24から理解される通り、走査線22は、表示画素Pe毎に絶縁層LBに形成された導通孔HC2を介して中継電極QB2に導通する。したがって、図22ないし図24から理解される通り、走査線22は、中継電極QB2と、絶縁層LAを貫通する導通孔HB1を介して選択トランジスターTslのゲート層Gslに導通する。走査線22は、図30から理解される通り、複数の表示画素PeにわたりX方向に直線状に延在し、絶縁層LBにより上部容量電極層CA2および中継電極QB4からは電気的に絶縁される。
図24から理解される通り、制御線27は、表示画素Pe毎に絶縁層LBに形成された導通孔HC10を介して中継電極QB5に導通する。したがって、図22ないし図24から理解される通り、制御線27は、中継電極QB5と、絶縁層LAを貫通する導通孔HB3を介して補償トランジスターTcmpのゲート層Gcmpに導通する。制御線27は、図30から理解される通り、複数の表示画素PeにわたりX方向に直線状に延在し、絶縁層LBにより上部容量電極層CA2および中継電極QB4からは電気的に絶縁される。
図23から理解される通り、中継電極QC3は、表示画素Pe毎に絶縁層LBに形成された導通孔HC11を介して中継電極QB6に導通する。したがって、図21ないし図23から理解される通り、中継電極QC3は、中継電極QB6と、絶縁膜L0および絶縁層LAを貫通する導通孔HA9を介して発光制御トランジスターTelの能動領域10Aに導通する。
図24から理解される通り、中継電極QC1は、表示画素Pe毎に絶縁層LBに形成された導通孔HC1を介して中継電極QB3に導通する。したがって、図22ないし図24から理解される通り、中継電極QC1は、中継電極QB3と、絶縁膜L0および絶縁層LAを貫通する導通孔HA1を介して選択トランジスターTslおよび補償トランジスターTcmpのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
絶縁層LCは、電源線層41、走査線22、制御線27、中継電極QC1,QC3が形成された絶縁層LBの面上に形成される。図20および図25から理解される通り、絶縁層LCの面上には、信号線26と、中継電極QD2とが同層から形成される。信号線26は、複数の画素PにわたりY方向に直線状に延在し、絶縁層LCにより走査線22、制御線27および電源線層41からは電気的に絶縁される。具体的には、信号線26は、図24および図25から理解される通り、表示画素Pe毎に絶縁層LCに形成された導通孔HD1を介して中継電極QC1に導通する。したがって、図22ないし図25から理解される通り、信号線26は、中継電極QC1と、絶縁膜LBを貫通する導通孔HC1と、中継電極QB3と、絶縁膜L0および絶縁層LAを貫通する導通孔HA1を介して選択トランジスターTslおよび補償トランジスターTcmpが連結された能動領域10Aと導通する。また、信号線26は、中継電極QC1と、走査線22と、制御線27と、電源線層41との上層の位置を通過するように形成され、選択トランジスターTslのチャネル長の方向(Y方向)に沿って延在するとともに平面視で走査線22と制御線27と電源線層41とを介して選択トランジスターTslに重なる。
図25から理解される通り、中継電極QD2は、表示画素Pe毎に絶縁層LCに形成された導通孔HD3を介して中継電極QC3に導通する。したがって、図22ないし図25から理解される通り、中継電極QD2は、絶縁層LCに形成された導通孔HD3と、中継電極QC3と、絶縁層LBに形成された導通孔HC11と、中継電極QB6と、絶縁膜L0および絶縁層LAを貫通する導通孔HA9を介して発光制御トランジスターTelのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
図20に例示される通り、絶縁層LDは、信号線26と中継電極QD2とが形成された絶縁層LCの面上に形成される。以上の説明では表示画素Peに着目したが、基板10の表面から絶縁層LDまでの各要素の構造は、周辺領域18内のダミー画素Pdについても共通する。
絶縁層LDの表面には平坦化処理が実行される。平坦化処理には、化学機械研磨(CMP:Chemical Mechanical Polishing)等の公知の表面処理技術が任意に採用される。平坦化処理で高度に平坦化された絶縁層LDの表面に、図20および図26に例示される通り、反射層55が形成される。反射層55は、例えば銀やアルミニウムを含有する光反射性の導電材料で例えば100nm程度の膜厚に形成される。反射層55は、光反射性の導電材料で形成され、図26に示すように各トランジスターT、各配線、及び各中継電極を覆うように配置される。したがって、外光の侵入が反射層55により防止され、光照射に起因した各トランジスターTの電流リークを防止できるという利点がある。
図20および図26から理解される通り、反射層55は、表示画素Pe毎に絶縁層LDに形成された導通孔HE2を介して中継電極QD2に導通する。したがって、図22ないし図26から理解される通り、反射層55は、絶縁層LDを貫通する導通孔HE2と、中継電極QD2と、絶縁層LCを貫通する導通孔HD3と、中継電極QC3と、絶縁層LBを貫通する導通孔HC11と、中継電極QB6と、絶縁膜L0および絶縁層LAを貫通する導通孔HA9を介して発光制御トランジスターTelのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
図20に例示される通り、反射層55が形成された絶縁層LDの面上には光路調整層60が形成される。光路調整層60は、各表示画素Peの共振構造の共振波長(すなわち表示色)を規定する光透過性の膜体である。表示色が同じ画素では、共振構造の共振波長は略同じであり、表示色が異なる画素では、共振構造の共振波長は異なるように設定される。
図20および図27に例示される通り、光路調整層60の面上には、表示領域16内の表示画素Pe毎の第1電極E1が形成される。第1電極E1は、例えばITO(Indium Tin Oxide)等の光透過性の導電材料で形成される。第1電極E1は、図2を参照して前述した通り、発光素子45の陽極として機能する略矩形状の電極(画素電極)である。第1電極E1は、表示画素Pe毎に光路調整層60に形成された導通孔HF2を介して反射層55に導通する。したがって、図22ないし図27から理解される通り、第1電極E1は、光路調整層60を貫通する導通孔HF2と、反射層55と、絶縁層LDを貫通する導通孔HE2と、中継電極QD2と、絶縁層LCを貫通する導通孔HD3と、中継電極QC3と、絶縁層LBを貫通する導通孔HC11と、中継電極QB6と、絶縁膜L0および絶縁層LAを貫通する導通孔HA9を介して発光制御トランジスターTelのドレイン領域またはソース領域を形成する能動領域10Aに導通する。
第1電極E1が形成された光路調整層60の面上には、図20および図28に例示される通り、基板10の全域にわたり画素定義層65が形成される。画素定義層65は、例えば珪素化合物(典型的には窒化珪素や酸化珪素)等の絶縁性の無機材料で形成される。図28から理解される通り、画素定義層65には、表示領域16内の各第1電極E1に対応する開口部65Aが形成される。画素定義層65のうち開口部65Aの内周縁の近傍の領域は第1電極E1の周縁に重なる。すなわち、開口部65Aの内周縁は平面視で第1電極E1の周縁の内側に位置する。各開口部65Aは、平面形状(矩形状)やサイズが共通し、かつ、X方向およびY方向の各々にわたり共通のピッチで行列状に配列する。以上の説明から理解される通り、画素定義層65は平面視で格子状に形成される。尚、開口部65Aの平面形状やサイズは、表示色が同じであれば同じであり、表示色が異なる場合は異なるようにしてもよい。また、開口部65Aのピッチは、表示色が同じ開口部同士では同じであり、表示色が異なる開口部間では異なるようにしてもよい。
その他にも、詳細な説明は省略するが、第1電極E1の上層には、発光機能層46、第2電極E2、および封止体47が積層され、以上の各要素が形成された基板10の表面には封止基板(図示略)が例えば接着剤で接合される。封止基板は、基板10上の各要素を保護するための光透過性の板状部材(例えばガラス基板)である。なお、封止基板の表面または封止体47の表面に表示画素Pe毎にカラーフィルターを形成することも可能である。
以上に説明した通り、第2実施形態では、第1トランジスターとしての駆動トランジスターTdrと発光素子45との間の接続状態を制御する第3トランジスターとしての発光制御トランジスターTelと、第2制御線としての発光制御トランジスターTelの制御線28を備える。制御線28を電源線層41とゲート層Gelの間に形成した。したがって、電源線層41のシールド効果により、電源線層41よりも上層に配置される信号線26等による制御線28およびゲート層Gelに対する影響を抑えることができる。また、電源線層41のシールド効果により、制御線28およびゲート層Gelによる信号線26に対する影響を抑えることができる。また、図29および図30から理解される通り、電源線層41は、制御線28とゲート層GelをX方向について隙間のない連続的なパターンで覆うので、発光制御トランジスターTelへの光を遮る遮光部としても機能する。また、図25から理解される通り、信号線26は、平面視において選択トランジスターTslと重なるように配置されるので、画素を微細化できるという利点がある。
さらに、第2実施形態では、図30から理解される通り、電源線層41は、Y方向において隣り合う表示画素Peの発光制御トランジスターTelおよび発光制御トランジスターTelの制御線28を覆う位置まで延びて形成され、開口部53により画素導通部を囲むように配置される。したがって、画素導通部に対する高いシールド効果が発揮されると共に、駆動トランジスターTdrおよび発光制御トランジスターTelに対する良好な遮光効果が発揮される。
また、第2実施形態では、駆動トランジスターTdrの第2電流端であるソース領域またはドレイン領域を形成する能動領域10Aとゲートとの間の接続状態を制御する第4トランジスターとしての補償トランジスターTcmpと、第3制御線としての補償トランジスターTcmpの制御線27を備え、制御線27を電源線層41と同層に形成した。したがって、工程の簡素化を図ることができる。
図20ないし図27から理解される通り、画素電極である第1電極E1と発光制御トランジスターTelのソース領域またはドレイン領域との導通部、すなわち、画素導通部は、絶縁膜L0および絶縁層LAを貫通する導通孔HA9、中継電極QB6、絶縁層LBを貫通する導通孔HC11、中継電極QC3、絶縁層LCを貫通する導通孔HD3、中継電極QD2、絶縁層LDを貫通するHE2、および光路調整層60を貫通する導通孔HF2により構成されている。これらは、発光制御トランジスターTelのソース配線またはドレイン配線として機能している。つまり、第1電極E1と発光制御トランジスターTelのソース領域またはドレイン領域との導通部は、上部容量電極層CA2等が形成された層と、電源線層41等が形成された層とを貫いて設けられた発光制御トランジスターTelのソース配線またはドレイン配線により構成されている。したがって、画素電極を発光制御トランジスターTelのソース領域またはドレイン領域の層まで延ばして導通を図る場合と比して、低抵抗で発光制御トランジスターTelのソース領域またはドレイン領域と画素電極である第1電極E1とを接続することができる。
図23および図24から理解される通り、補償トランジスターTcmpのゲートと制御線27との導通部は、補償トランジスターTcmpのゲートに対してY方向にずれて配置されている。したがって、余分な層を積層することなく、制御線27が形成された層のすぐ上の層に信号線26を配置することができる。なお、補償トランジスターTcmpのゲートと制御線27との導通部は、平面視において補償トランジスターTcmpと重なるように配置して、選択トランジスターTslおよび補償トランジスターTcmpと信号線26の導通部を平面視において補償トランジスターTcmpのチャネル長の方向とずらすようにしてもよい。
図25から理解される通り、信号線26は、平面視において補償トランジスターTcmpと重なるように配置されるので、画素を微細化できるという利点がある。また、信号線26と補償トランジスターTcmpとの導通部を、信号線26の真下に配置することができるので、絶縁層を貫通する導通孔や中継電極により、低抵抗で信号線26と補償トランジスターTcmpの導通を図ることができる。その結果、信号線26による補償トランジスターTcmpへの書き込み能力が向上する。
上部容量電極層CA2は、走査線22又は制御線27と駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。さらに、電源線層41は、走査線22又は制御線27と駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。したがって、走査線22又は制御線27と駆動トランジスターTdrのゲート電位部との間のカップリングが抑制される。
上部容量電極層CA2は、信号線26と選択トランジスターTslをつなぐ導通部と、駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。さらに、電源線層41は、信号線26と選択トランジスターTslをつなぐ導通部と、駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。したがって、信号線26と選択トランジスターTslをつなぐ導通部と駆動トランジスターTdrのゲート電位部との間のカップリングが抑制される。
その他、第1実施形態との共通の構成については、前述した第1実施形態における効果と同様な効果を奏することができる。また、第2実施形態においても、容量素子を構成する電極を電源線層41とは異なる層で形成された電極とする等、第1実施形態で説明した変形例と同様な変形例が適用可能である。
<第3実施形態>
本発明の第3実施形態を説明する。なお、以下に例示する各形態において作用や機能が第1実施形態および第2実施形態と同様である要素については、第1実施形態および第2実施形態の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
第3実施形態の各表示画素Peの回路は第2実施形態の回路と同様であり、補償トランジスターTcmpと発光制御トランジスターTelを備えている。第3実施形態の有機エレクトロルミネッセンス装置100の具体的な構造は、第2実施形態の有機エレクトロルミネッセンス装置100の具体的な構造とほぼ同様な構造である。以下、簡略化のため、相違する箇所についてのみ説明する。
図32は、有機エレクトロルミネッセンス装置100の断面図であり、図33から図40は、有機エレクトロルミネッセンス装置100の各要素を形成する各段階での基板10の表面の様子を表示画素Peの1個分に着目して図示した平面図である。図41から図43は、基板10の表面の様子を表示画素Peの4個分に着目して図示した平面図である。図33から図40のIII−III’線を含む断面に対応した断面図が図31に相当する。なお、図33から図43は平面図であるが、各要素の視覚的な把握を容易化する観点から、図32と共通する各要素に図32と同態様のハッチングが便宜的に付加されている。
第3実施形態は、図35および図41から理解される通り、上部容量電極層CA2は、開口部50によって駆動トランジスターTdrのゲート導通部の一部および容量素子Cの一部の形成部を取り囲むだけでなく、選択トランジスターTslと、補償トランジスターTcmpと、発光制御トランジスターTelと、駆動トランジスターTdrおよび補償トランジスターTcmpならびに発光制御トランジスターTelの導通部と、発光制御トランジスターTelのソース領域またはドレイン領域と導通する画素導通部とを、開口部54により取り囲むように配置されている。図41から理解される通り、上部容量電極層CA2は、X方向およびY方向において隣り合う表示画素Pe間で隙間なく連続するパターンとなっている。上部容量電極層CA2は、第2実施形態と異なり、絶縁層LBを貫通する導通孔HC3だけでなく、同じく絶縁層LBを貫通する導通孔HC13によっても電源線層41との導通が図られている。したがって、電源線層41のみの場合と比して、電源線層41及び上部容量電極層CA2が格子状に導通することができる。したがって、この構成により、高位側の電源電位Velを表示画素Peに安定して供給することができる。また、上部容量電極層CA2のシールド効果により、各トランジスターおよび画素導通部に対する、X方向およびY方向において隣り合う表示画素Pe間での影響を低減させることができる。上部容量電極層CA2は、平面視において、X方向およびY方向で隣り合う表示画素Peの反射層55間の隙間と重なる位置に配置されている。したがって、各トランジスターに対する遮光性が向上する。言い換えると、反射層55の端部は、上部容量電極層CA2又は電源線層41と重なるように配置されているため、隣り合う反射層55間を透過した光は、上部容量電極層CA2又は電源線層41により遮られるようになっている。よって、各トランジスターTへ光が到達しにくい構造となっている。
図36から理解される通り、第3実施形態では、発光制御トランジスターTelの制御線28は、補償トランジスターTcmpの制御線27と、走査線22と、電源線層41と同層に形成されている。したがって、第2実施形態よりも工程の簡素が可能となる。図33ないし図37から理解される通り、発光制御トランジスターTelの制御線28は、絶縁層LAに形成された導通孔HB4、導通部QB7、絶縁層LBに形成されたHC12を介して発光制御トランジスターTelのゲート層Gelに導通する。図41から理解される通り、電源線層41は、第2実施形態と同様にY方向で隣り合う表示画素Pe間で隙間なく連続し、Y方向で隣り合う表示画素Peにおける画素導通部を取り囲む位置まで延びて形成されている。ただし、第2実施形態とは異なり、画素導通部の四方を取り囲むのではなく、発光制御トランジスターTelの制御線28側が開放された状態となっている。第3実施形態においても、電源線層41による高いシールド効果が発揮される。
上部容量電極層CA2は、走査線22及び制御線27、28のいずれかと駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。さらに、電源線層41は、走査線22及び制御線27、28のいずれかと駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。したがって、走査線22及び制御線27、28のいずれかと駆動トランジスターTdrのゲート電位部との間のカップリングが抑制される。
上部容量電極層CA2は、信号線26と選択トランジスターTslをつなぐ導通部と、駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。さらに、電源線層41は、信号線26と選択トランジスターTslをつなぐ導通部と、駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。したがって、信号線26と選択トランジスターTslをつなぐ導通部と駆動トランジスターTdrのゲート電位部との間のカップリングが抑制される。
その他、第2実施形態との共通の構成については、前述した第2実施形態における効果と同様な効果を奏することができる。また、第3実施形態においても、容量素子を構成する電極を電源線層41とは異なる層で形成された電極とする等、第1実施形態で説明した変形例と同様な変形例が適用可能である。
<第4実施形態>
本発明の第4実施形態を説明する。なお、以下に例示する各形態において作用や機能が第1実施形態および第2実施形態と同様である要素については、第1実施形態および第2実施形態の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
第4実施形態の各表示画素Peの回路は第2実施形態の回路と同様であり、補償トランジスターTcmpと発光制御トランジスターTelを備えている。第4実施形態の有機エレクトロルミネッセンス装置100の具体的な構造は、第2実施形態の有機エレクトロルミネッセンス装置100の具体的な構造とほぼ同様な構造である。以下、簡略化のため、相違する箇所についてのみ説明する。
図44は、有機エレクトロルミネッセンス装置100の断面図であり、図45から図52は、有機エレクトロルミネッセンス装置100の各要素を形成する各段階での基板10の表面の様子を表示画素Peの1個分に着目して図示した平面図である。図45から図52のIV−IV’線を含む断面に対応した断面図が図44に相当する。なお、図45から図52は平面図であるが、各要素の視覚的な把握を容易化する観点から、図44と共通する各要素に図44と同態様のハッチングが便宜的に付加されている。
第4実施形態は、図45ないし図49から理解される通り、発光制御トランジスターTelのチャネル長方向は、X方向(制御線28の延在方向)であるところが第2実施形態と異なっている。また、図45ないしおよび図49から理解される通り、画素導通部を構成する中継電極QB6の形状は、発光制御トランジスターTelのソース領域またはドレイン領域から折り曲げられて、発光制御トランジスターTelのチャネル長方向と平行となるように配置されている。そして、発光制御トランジスターTelは、信号線26と平面視において重なるように配置されている。したがって、画素を微細化しやすいという利点がある。
また、第4実施形態は、図45ないし図49から理解される通り、発光制御トランジスターTelの制御線28が、電源線層41と同層に形成されている。したがって、第2実施形態よりも工程の簡素化を図ることができる。図45ないし図49から理解される通り、発光制御トランジスターTelの制御線28は、絶縁層LAに形成された導通孔HB4、導通部QB7、絶縁層LBに形成されたHC12を介して発光制御トランジスターTelのゲート層Gelに導通する。
上部容量電極層CA2は、走査線22及び制御線27、28のいずれかと駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。さらに、電源線層41は、走査線22及び制御線27、28のいずれかと駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。したがって、走査線22及び制御線27、28のいずれかと駆動トランジスターTdrのゲート電位部との間のカップリングが抑制される。
上部容量電極層CA2は、信号線26と選択トランジスターTslをつなぐ導通部と、駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。さらに、電源線層41は、信号線26と選択トランジスターTslをつなぐ導通部と、駆動トランジスターTdrのゲート電位部との間に配置されるように構成されている。したがって、信号線26と選択トランジスターTslをつなぐ導通部と駆動トランジスターTdrのゲート電位部との間のカップリングが抑制される。
その他、第2実施形態との共通の構成については、前述した第2実施形態における効果と同様な効果を奏することができる。また、第4実施形態においても、容量素子を構成する電極を電源線層41とは異なる層で形成された電極とする等、第1実施形態で説明した変形例と同様な変形例が適用可能である。
<第5実施形態>
本発明の第5実施形態を説明する。なお、以下に例示する各形態において作用や機能が第1実施形態と同様である要素については、第1実施形態の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
第5実施形態の各表示画素Peの回路は第1実施形態の回路と同様であり、駆動トランジスターTdrと選択トランジスターTslとを備えている。第5実施形態の有機エレクトロルミネッセンス装置100の具体的な構造は、第1実施形態の有機エレクトロルミネッセンス装置100の具体的な構造とほぼ同様な構造である。以下、簡略化のため、相違する箇所についてのみ説明する。
図53は、有機エレクトロルミネッセンス装置100の断面図であり、図54から図62は、有機エレクトロルミネッセンス装置100の各要素を形成する各段階での基板10の表面の様子を表示画素Peの1個分に着目して図示した平面図である。図54から図62のV−V’線を含む断面に対応した断面図が図53に相当する。なお、図54から図62は平面図であるが、各要素の視覚的な把握を容易化する観点から、図53と共通する各要素に図53と同態様のハッチングが便宜的に付加されている。
第1実施形態における電源線層41を示す図7と、第5実施形態の電源線層41を示す図57とを比較すると理解されるように、第5実施形態の電源線層41は、選択トランジスターTslと走査線22との導通部、選択トランジスターTslと信号線26との導通部、および画素導通部のそれぞれを取り囲むように配置されている。図57から理解されるように、第5実施形態では走査線22が電源線層41と同層に形成されていないので、選択トランジスターTslのゲート導通部には、中継電極QC4が形成されている。中継電極QC4は、絶縁層LBを貫通する導通孔HC2を介して中継電極QB2に導通する。したがって、中継電極QC4は、絶縁層LBを貫通する導通孔HC2と、中継電極QB2と、絶縁層LAを貫通する導通孔HB1とを介して、選択トランジスターTslのゲート層Gslと導通する。
第5実施形態では、絶縁層LCは、電源線層41と複数の中継電極QC(QC1,QC2,QC4)とが形成された絶縁層LBの面上に形成される。図53および図58から理解される通り、絶縁層LCの面上には、走査線22と複数の中継電極QD(QD1,QD3)とが形成される。走査線22は、表示画素Pe毎に絶縁層LCを貫通する導通孔HD4を介して中継電極QC4に導通する。したがって、図54ないし図58から理解される通り、走査線22は、絶縁層LCを貫通する導通孔HD4と、中継電極QC4と、絶縁層LBを貫通する導通孔HC2と、中継電極QB2と、絶縁層LAを貫通する導通孔HB1を介して選択トランジスターTslのゲート層Gslに導通する。走査線22は、複数の表示画素PeにわたりX方向に直線状に延在し、絶縁層LCにより電源線層41からは電気的に絶縁される。
図53および図58から理解される通り、中継電極QD3は、表示画素Pe毎に絶縁層LCに形成された導通孔HD1を介して中継電極QC1に導通する。したがって、図54ないし図58から理解される通り、中継電極QD3は、絶縁層LCを貫通する導通孔HD1と、中継電極QC1と、絶縁層LBを貫通する導通孔HC1と、中継電極QB3と、絶縁膜L0および絶縁層LAを貫通する導通孔HA1とを介して、選択トランジスターTslの能動領域10Aに導通する。
図53および図58から理解される通り、中継電極QD1は、表示画素Pe毎に絶縁層LCに形成された導通孔HD2を介して中継電極QC2に導通する。したがって、図54ないし図58から理解される通り、中継電極QD1は、絶縁層LCを貫通する導通孔HD2と、中継電極QC2と、絶縁層LBを貫通する導通孔HC9と、中継電極QB1と、絶縁膜L0および絶縁層LAを貫通する導通孔HA6とを介して、駆動トランジスターTdrの能動領域10Aに導通する。
第5実施形態では、絶縁層LDは、走査線22と複数の中継電極QD(QD1,QD3)とが形成された絶縁層LCの面上に形成される。図53および図59から理解される通り、絶縁層LDの面上には、信号線26と中継電極QE1とが形成される。信号線26は、表示画素Pe毎に絶縁層LDに形成された導通孔HE3を介して中継電極QD3に導通する。したがって、図54ないし図59から理解される通り、信号線26は、絶縁層LDを貫通する導通孔HE3と、中継電極QD3と、絶縁層LCを貫通する導通孔HD1と、中継電極QC1と、絶縁層LBを貫通する導通孔HC1と、中継電極QB3と、絶縁膜L0および絶縁層LAを貫通する導通孔HA1を介して選択トランジスターTslの能動領域10Aに導通する。信号線26は、複数の表示画素PeにわたりY方向に直線状に延在し、絶縁層LDにより走査線22からは電気的に絶縁される。
図59から理解されるように、中継電極QE1は、表示画素Pe毎に絶縁層LDに形成された導通孔HE1を介して中継電極QD1に導通する。したがって、図54ないし図59から理解される通り、中継電極QE1は、絶縁層LDを貫通する導通孔HE1と、中継電極QD1と、絶縁層LCを貫通する導通孔HD2と、中継電極QC2と、絶縁層LBを貫通する導通孔HC9と、中継電極QB1、絶縁膜L0および絶縁層LAを貫通する導通孔HA6とを介して、駆動トランジスターTdrの能動領域10Aに導通する。
第5実施形態では、第1実施形態よりも1層多く形成され、絶縁層LEが形成される。絶縁層LEは、信号線26と中継電極QE1とが形成された絶縁層LDの面上に形成される。図53および図60から理解される通り、絶縁層LEの面上には、反射層55が形成される。
絶縁層LEの表面には平坦化処理が実行される。平坦化処理には、化学機械研磨(CMP:Chemical Mechanical Polishing)等の公知の表面処理技術が任意に採用される。平坦化処理で高度に平坦化された絶縁層LEの表面には、図53および図60に例示される通り、反射層55が形成される。反射層55は、例えば銀やアルミニウムを含有する光反射性の導電材料で例えば100nm程度の膜厚に形成される。反射層55は、光反射性の導電材料で形成され、図60に示すように各トランジスターT、各配線、及び各中継電極を覆うように配置される。したがって、外光の侵入が反射層55により防止され、光照射に起因した各トランジスターTの電流リークを防止できるという利点がある。
図53および図60から理解される通り、反射層55は、表示画素Pe毎に絶縁層LEに形成された導通孔HF1を介して中継電極QE1に導通する。したがって、図54ないし図60から理解される通り、反射層55は、絶縁層LEを貫通する導通孔HF1と、中継電極QE1と、絶縁層LDを貫通する導通孔HE1と、中継電極QD1と、絶縁層LCを貫通する導通孔HD2と、中継電極QC2と、絶縁層LBを貫通する導通孔HC9と、中継電極QB1、絶縁膜L0および絶縁層LAを貫通する導通孔HA6とを介して、駆動トランジスターTdrの能動領域10Aに導通する。
図53に例示される通り、反射層55が形成された絶縁層LEの面上には光路調整層60が形成される。光路調整層60は、各表示画素Peの共振構造の共振波長(すなわち表示色)を規定する光透過性の膜体である。表示色が同じ画素では、共振構造の共振波長は略同じであり、表示色が異なる画素では、共振構造の共振波長は異なるように設定される。
図53および図61に例示される通り、光路調整層60の面上には、表示領域16内の表示画素Pe毎の第1電極E1が形成される。第1電極E1は、例えばITO(Indium Tin Oxide)等の光透過性の導電材料で形成される。第1電極E1は、図2を参照して前述した通り、発光素子45の陽極として機能する略矩形状の電極(画素電極)である。第1電極E1は、表示画素Pe毎に光路調整層60に形成された導通孔HG1を介して反射層55に導通する。したがって、図54ないし図61から理解される通り、第1電極E1は、光路調整層60に形成された導通孔HG1と、反射層55と、絶縁層LEを貫通する導通孔HF1と、中継電極QE1と、絶縁層LDを貫通する導通孔HE1と、中継電極QD1と、絶縁層LCを貫通する導通孔HD2と、中継電極QC2と、絶縁層LBを貫通する導通孔HC9と、中継電極QB1、絶縁膜L0および絶縁層LAを貫通する導通孔HA6とを介して、駆動トランジスターTdrの能動領域10Aに導通する。
第1電極E1が形成された光路調整層60の面上には、図53および図62に例示される通り、基板10の全域にわたり画素定義層65が形成される。画素定義層65は、例えば珪素化合物(典型的には窒化珪素や酸化珪素)等の絶縁性の無機材料で形成される。図62から理解される通り、画素定義層65には、表示領域16内の各第1電極E1に対応する開口部65Aが形成される。画素定義層65のうち開口部65Aの内周縁の近傍の領域は第1電極E1の周縁に重なる。すなわち、開口部65Aの内周縁は平面視で第1電極E1の周縁の内側に位置する。各開口部65Aは、平面形状(矩形状)やサイズが共通し、かつ、X方向およびY方向の各々にわたり共通のピッチで行列状に配列する。以上の説明から理解される通り、画素定義層65は平面視で格子状に形成される。尚、開口部65Aの平面形状やサイズは、表示色が同じであれば同じであり、表示色が異なる場合は異なるようにしてもよい。また、開口部65Aのピッチは、表示色が同じ開口部同士では同じであり、表示色が異なる開口部間では異なるようにしてもよい。
その他にも、詳細な説明は省略するが、第1電極E1の上層には、発光機能層46、第2電極E2、および封止体47が積層され、以上の各要素が形成された基板10の表面には封止基板(図示略)が例えば接着剤で接合される。封止基板は、基板10上の各要素を保護するための光透過性の板状部材(例えばガラス基板)である。なお、封止基板の表面または封止体47の表面に表示画素Pe毎にカラーフィルターを形成することも可能である。
第5実施形態においては、信号線26が形成された層および走査線22が形成された層と、上部容量電極層CA(CA2,CA3,CA4)が形成された層との間には、電源線層41が設けられている。電源線層41は、図56および図57から理解される通り、上部容量電極層CA(CA2,CA3,CA4)およびトランジスターT(Tdr,Tsl)を一様に覆う形状を有している。したがって、信号線26および走査線22と、上部容量電極層CA(CA2,CA3,CA4)、ならびにトランジスターT(Tdr,Tsl)とのカップリングを抑制することができる。
その他、第1実施形態との共通の構成については、前述した第1実施形態における効果と同様な効果を奏することができる。また、第5実施形態においても、容量素子を構成する電極を電源線層41とは異なる層で形成された電極とする等、第1実施形態で説明した変形例と同様な変形例が適用可能である。
第3実施形態及び第4実施形態において、走査線22及び制御線27、28が電源線層41と同層に形成されていたが、第5実施形態と同様、走査線22及び制御線27、28が電源線層41よりも上の層に設けられ、信号線26がさらにその上の層に形成してもよい。この場合、電源線層41により、中継電極QB2、QB5、QB7、QC1、QC3を囲むように構成してよい。
<変形例>
以上の形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は、相互に矛盾しない範囲内で適宜に併合され得る。
(1)前述の各形態では、電源線層41の電位は、駆動トランジスターTdrに接続されるVel電位としたが、他の電位としてもよい。この場合には、電源線層41と駆動トランジスターTdrとを接続するための導通孔を省略することができる。電源線層41は、他の電源電位Vaが供給される実装端子36に導通し、駆動トランジスターTdrや上部容量電極層CA2には、電源電位Velが供給される実装端子36に導通するようにしてもよい。
(2)前述の各形態では、半導体基板を基板10として利用した有機エレクトロルミネッセンス装置100を例示したが、基板10の材料は任意である。例えばガラスや石英等の板状部材を基板10として利用することも可能である。また、前述の各形態では、基板10のうち第1領域12の外側の第2領域14に駆動回路30を配置したが、駆動回路30を例えば周辺領域18内に配置することも可能である。例えば、第2電源導電体42と基板10との間に駆動回路30が配置される。
(3)発光素子45の構成は以上の例示に限定されない。例えば、前述の各形態では、白色光を発生する発光機能層46を複数の表示画素Peにわたり連続に形成した構成を例示したが、各表示画素Peの表示色に対応する波長の単色光を放射する発光機能層46を表示画素Pe毎に個別に形成することも可能である。また、前述の各形態では、反射層55と第2電極E2(半透過反射層)との間で共振構造を形成したが、例えば第1電源導電体としての電源線層41を反射性の導電材料で形成し、電源線層41(反射層)と第2電極E2(半透過反射層)との間で共振構造を形成することも可能である。また、第1電極E1を反射性の導電材料で形成し、第1電極E1(反射層)と第2電極E2(半透過反射層)との間で共振構造を形成することも可能である。第1電極E1を反射層として利用する構成では、第1電極E1と第2電極E2との間に光路調整層60が形成される。
前述の各形態では、光路調整層60により各表示画素Peの共振波長を調整したが、第1電極E1や発光機能層46の膜厚に応じて各表示画素Peの共振波長を調整することも可能である。
なお、発光機能層46は、青色波長領域、緑色波長領域、赤色波長領域のいずれで発光してもよいし、白色の光を発光するようにしてもよい。この場合には、発光機能層46は、表示領域にある複数の画素にまたがって設けられていてもよい。また、発光機能層46は、赤色、緑色、青色のそれぞれの画素において異なる発光を行うように構成してもよい。
(4)前述の各形態では有機EL材料を利用した発光素子45を例示したが、無機EL材料で発光層を形成した発光素子やLED等の発光素子を利用した構成にも本発明は同様に適用される。また、前述の各形態では、基板10とは反対側に光を出射するトップエミッション型の有機エレクトロルミネッセンス装置100を例示したが、基板10側に光を出射するボトムエミッション型の発光装置にも本発明は同様に適用される。
(5)前述の各形態では、表示画素Peに構造(配線やトランジスターや容量素子等の構造)が類似するダミー画素Pdを周辺領域18内に配置した構成を例示したが、周辺領域18内の構成は以上の例示に限定されない。例えば、周辺領域18内の第2電源導電体42の下層に、駆動回路30(走査線駆動回路32または信号線駆動回路34)や駆動回路30以外の回路および配線を配置することも可能である。
(6)前述の各形態では、共振波長の説明の簡略化のために光路調整層60の膜厚に着目したが、実際には、共振構造の反射層(例えば第1電源導電体41)と半透過反射層(例えば第2電極E2)との間に位置する各層の屈折率や、反射層および半透過反射層の表面での位相シフトに応じて共振構造の共振波長が設定される。
(7)前述の各形態では、i)〜v)の5種類の容量素子Cが構成される例について説明したが、i)〜v)のいずれかの容量素子Cを省略するようにしてもよい。また、各形態において説明したトランジスター以外のトランジスター、あるいは容量、もしくは配線等を適宜追加するようにしてもよい。さらに、各形態においては、走査線22、信号線26、制御線27,28、および電源線層41は直線状であり、幅が一様としたが、本発明はこの態様に限定されるものではなく、配線の幅が他の部分より太くなるようにしてもよいし、曲がって形成されていてもよい。
<電子機器>
前述の各形態に例示した有機エレクトロルミネッセンス装置100は各種の電子機器の表示装置として好適に利用される。図63には、前述の各形態に例示した有機エレクトロルミネッセンス装置100を利用した頭部装着型の表示装置90(HMD:Head Mounted Display)が電子機器として例示されている。
表示装置90は、利用者の頭部に装着可能な電子機器であり、利用者の左眼に重なる透過部(レンズ)92Lと、利用者の右眼に重なる透過部92Rと、左眼用の有機エレクトロルミネッセンス装置100Lおよびハーフミラー94Lと、右眼用の有機エレクトロルミネッセンス装置100Rおよびハーフミラー94Rとを具備する。有機エレクトロルミネッセンス装置100Lと有機エレクトロルミネッセンス装置100Rとは、出射光が相互に反対の方向に進行するように配置される。左眼用のハーフミラー94Lは、透過部92Lの透過光を利用者の左眼側に透過させるとともに、有機エレクトロルミネッセンス装置100Lからの出射光を利用者の左眼側に反射させる。同様に、右眼用のハーフミラー94Rは、透過部92Rの透過光を利用者の右眼側に透過させるとともに有機エレクトロルミネッセンス装置100Rからの出射光を利用者の右眼側に反射させる。したがって、利用者は、透過部92Lおよび透過部92Rを介して観察される像と各有機エレクトロルミネッセンス装置100による表示画像とを重畳した画像を知覚する。また、相互に視差が付与された立体視画像(左眼用画像および右眼用画像)を有機エレクトロルミネッセンス装置100Lと有機エレクトロルミネッセンス装置100Rとに表示させることで、利用者に表示画像の立体感を知覚させることが可能である。
なお、前述の各形態の有機エレクトロルミネッセンス装置100が適用される電子機器は図62の表示装置90に限定されない。例えば、ビデオカメラやスチルカメラ等の撮像装置に利用される電子式ビューファインダー(EVF:Electronic View Finder)にも本発明の有機エレクトロルミネッセンス装置100が好適に利用される。また、携帯電話機、携帯情報端末(スマートフォン)、テレビやパーソナルコンピューター等のモニター、カーナビゲーション装置等の各種の電子機器に本発明の発光装置を採用することが可能である。