JP6515361B2 - Reinforcement member and beam connection structure - Google Patents

Reinforcement member and beam connection structure Download PDF

Info

Publication number
JP6515361B2
JP6515361B2 JP2019500603A JP2019500603A JP6515361B2 JP 6515361 B2 JP6515361 B2 JP 6515361B2 JP 2019500603 A JP2019500603 A JP 2019500603A JP 2019500603 A JP2019500603 A JP 2019500603A JP 6515361 B2 JP6515361 B2 JP 6515361B2
Authority
JP
Japan
Prior art keywords
contact surface
support member
reinforcing member
gap
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019500603A
Other languages
Japanese (ja)
Other versions
JPWO2018168886A1 (en
Inventor
政樹 有田
政樹 有田
聡 北岡
聡 北岡
悠介 鈴木
悠介 鈴木
半谷 公司
公司 半谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6515361B2 publication Critical patent/JP6515361B2/en
Publication of JPWO2018168886A1 publication Critical patent/JPWO2018168886A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Description

本発明は、補強部材及び梁接合構造に関する。
本願は、2017年3月13日に、日本に出願された特願2017−047881号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a reinforcing member and a beam joint structure.
Priority is claimed on Japanese Patent Application No. 2017-047881, filed Mar. 13, 2017, the content of which is incorporated herein by reference.

従来、小梁(梁)の端部を大梁(支持部材)に接合した梁接合構造における小梁と大梁との接合部は、一般的に剛接合又はピン接合として設計される。なお、剛接合及びピン接合の定義は、欧州設計基準(Eurocode3-Part 1-8)に準拠するものとする。
剛接合の接合部では、例えば、小梁のフランジは大梁に溶接又はボルトを用いて接合(以下、ボルト接合と呼ぶ)されるとともに、小梁のウェブは大梁に設けたシアプレートにボルト接合される。一方で、ピン接合の接合部では、例えば、小梁のウェブは大梁に設けたシアプレートにボルト接合されるが、小梁のフランジは大梁に接合されない。
Conventionally, the joint between the beam and the girder in a beam joint structure in which the end of the girder (beam) is joined to the girder (support member) is generally designed as a rigid joint or a pin joint. In addition, the definition of rigid connection and pin connection shall conform to the European design standard (Eurocode 3-Part 1-8).
In a rigid joint, for example, the beamlet flange is welded or welded to the large beam (hereinafter referred to as bolt connection) and the beamlet web is bolted to a shear plate provided on the large beam. Ru. On the other hand, at a joint of a pin joint, for example, a web of a beam is bolted to a shear plate provided on a large beam, but a flange of the beam is not connected to the large beam.

例えば剛接合として、下記特許文献1には、コンクリート壁に設けた凹部に梁の端部を設置し、梁がコンクリート壁に基板を介してボルト接合され、凹部が充填部材で閉塞された梁接合構造が開示されている。この梁接合構造では、コンクリート壁に形成した凹部を充填部材で閉塞するため、梁接合にかかる工数が増加するという問題がある。
一方、このような工数を削減するために、下記非特許文献1には、支持部材及び梁に水平力が負荷しない荷重条件下での梁接合構造として、H形鋼である梁の下フランジと支持部材との間の隙間にコンタクトプレートを設置し、水平方向に沿う圧縮応力を、コンタクトプレートを介して梁から支持部材に伝達する梁接合構造が開示されている。
For example, as a rigid connection, in Patent Document 1 below, an end of a beam is installed in a recess provided in a concrete wall, a beam is bolted to the concrete wall via a substrate, and a recess is closed by a filling member The structure is disclosed. In this beam joint structure, since the recess formed in the concrete wall is closed by the filling member, there is a problem that the number of steps required for beam joint increases.
On the other hand, in order to reduce such man-hours, according to Non-Patent Document 1 below, the lower flange of the beam, which is an H-shaped steel, is used as a beam joining structure under load conditions where horizontal force is not applied to the support member and beam A beam connection structure is disclosed in which a contact plate is installed in a gap between the support member and the compressive stress along the horizontal direction is transmitted from the beam to the support member through the contact plate.

また、下記特許文献2には、鉄骨大梁を挟んで隣り合う鉄骨小梁どうしを簡略な構成で安価に連梁とすることのできる鉄骨小梁の連結構造が開示されている。この連結構造では、鉄骨大梁を挟んで隣り合う鉄骨小梁の下フランジ同士は、鉄骨大梁のウェブ、これに当接するフランジ取り合い部材及びこれらを挟んで対をなす圧縮材を介してメタルタッチで接合される。   Further, Patent Document 2 below discloses a connection structure of steel-framed beams, which can make steel-framed beams which are adjacent to each other across the steel-framed beams with a simple structure and inexpensively as a continuous beam. In this connection structure, the lower flanges of the steel beam girder adjacent to each other across the steel girder are joined by metal touch via the web of the girder girder, the flange connection member in contact with this and the pair of compression members sandwiching these. Be done.

日本国特開平8−42027号公報Japanese Patent Application Laid-Open No. 8-42027 日本国特開2005−282019号公報Japanese Patent Laid-Open Publication No. 2005-282019

「Eurocode 4:Design of composite steel and concrete structures -Part 1-1: General rules and rules for buildings」EUROPEAN COMMITTEE FOR STANDARDIZATION、2004年12月、p.90"Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings" EUROPEAN COMMITTEE FOR STANDARDIZATION, December 2004, p. 90

しかしながら、支持部材と梁との建付け精度が確保されていない場合には、支持部材と梁との間の隙間の大きさが場所によりばらつくことがある。そのため、前記非特許文献1に記載の梁接合構造では、隙間の大きさに合わせて適切な大きさのコンタクトプレートを適宜準備するのが困難であるといった問題があった。
また、特許文献2に開示されるような圧縮材を用いた場合、施工時や地震発生時の振動や温度変化の影響等により圧縮材が上方に移動することにより適切な接合状態が維持できなくなる虞もあった。
However, if the construction accuracy of the support member and the beam is not ensured, the size of the gap between the support member and the beam may vary depending on the location. Therefore, in the beam joint structure described in Non-Patent Document 1, there is a problem that it is difficult to appropriately prepare a contact plate of an appropriate size in accordance with the size of the gap.
In addition, when using a compression material as disclosed in Patent Document 2, an appropriate bonding state can not be maintained because the compression material moves upward due to the influence of vibration or temperature change at the time of construction or when an earthquake occurs. There was also a fear.

本発明は、このような問題点に鑑みてなされたものであって、支持部材と梁との間の隙間の大きさに関わらず、支持部材と梁とを確実に接合して接合状態を維持することができる補強部材及び梁接合構造を提供することを目的とする。   The present invention has been made in view of such problems, and regardless of the size of the gap between the support member and the beam, the support member and the beam are reliably joined to maintain the joined state. It is an object of the present invention to provide a reinforcement member and a beam joint structure that can be made.

本発明の概要は下記の通りである。
(1)本発明の第一の態様は、梁接合構造であって、支持部材と、材軸方向の一端側が前記支持部材に取り付けられて前記支持部材に支持される梁と、前記支持部材と前記梁との間に形成された隙間に先端が配置される補強部材と、を備え、前記補強部材が前記支持部材と前記梁との間に形成された隙間に配置され、前記補強部材が、前記支持部材に接触する第一接触面と、前記梁における前記支持部材と対向する端面に接触する第二接触面とを有し、前記先端に向けて、前記第一接触面と前記第二接触面との間の前記梁の材軸方向の離間距離が小さくなるように形成された本体部と、前記支持部材及び前記梁のうちの少なくとも一方に係止することで、前記本体部の移動を抑止する抜け止め機構と、を備え、前記抜け止め機構は、前記第一接触面及び前記第二接触面の少なくとも一方に突設された複数段の突起により構成され、前記複数段の突起は、前記補強部材の前記先端が前記隙間に配置された状態において、隣り合う前記突起の稜線同士を含む面と、前記梁の材軸方向に垂直な面とがなす傾斜角度φ(rad)が下記(1)式又は(2)式を満たすように形成されている。
φ≦wl /24EI・・・(1)
E:前記梁のヤング係数(N/mm
I:前記梁の断面二次モーメント(mm )、
w:前記梁によって支持される固定荷重による等分布荷重(kN/m)
l:前記梁の長さ(mm)
φ≧Δgb/(h−t )・・・(2)
Δgb:前記隙間の前記梁の材軸方向における誤差の想定値(mm)
h:前記補強部材の鉛直方向における高さ(mm)
:前記梁の下フランジの鉛直方向における板厚
(2)上記(1)に記載の梁接合構造では、前記支持部材は、柱に支持される大梁であり、前記梁は、前記支持部材に支持される小梁であり、前記支持部材及び前記梁は、ともにH形鋼であるとともに、断面高さが互いに同一であってもよい。
(3)上記(1)又は(2)に記載の梁接合構造では、前記支持部材と前記梁とを半剛接合又はピン接合する接合部材を備え、前記補強部材は、前記梁から前記支持部材に向けて生じる圧縮応力を、前記支持部材に伝達してもよい。
(4)上記(1)から(3)のいずれか一項に記載の梁接合構造では、前記第一接触面が、前記梁の材軸方向に垂直な方向に延び、前記第二接触面が、前記第一接触面と交差する方向に延び、前記複数段の突起が、前記第二接触面に突設されてもよい。
The outline of the present invention is as follows.
(1) A first aspect of the present invention is a beam joint structure, which includes a support member , a beam whose one end side in the material axial direction is attached to the support member and supported by the support member, and the support member A reinforcing member whose tip is disposed in a gap formed between the beam and the beam, the reinforcing member is disposed in the gap formed between the support member and the beam, and the reinforcing member is A first contact surface contacting the support member and a second contact surface contacting the end face of the beam facing the support member, and the first contact surface and the second contact are directed toward the tip. The movement of the main body portion is achieved by locking the main body portion formed such that the distance between the surface and the beam in the material axis direction is small, and at least one of the support member and the beam. A retaining mechanism for restraining, the retaining mechanism comprising: The plurality of projections formed on at least one of the touch surface and the second contact surface are provided, and the plurality of projections are adjacent to each other in a state in which the front end of the reinforcing member is disposed in the gap. An inclination angle φ (rad) formed by a plane including ridges of the projections and a plane perpendicular to the material axial direction of the beam is formed to satisfy the following equation (1) or (2).
φ ≦ wl 3 / 24EI ··· ( 1)
E: Young's modulus of the beam (N / mm 2 )
I: second moment of area of the beam (mm 4 ),
w: Equal distribution load (kN / m) by fixed load supported by the beam
l: Length of the beam (mm)
φ ≧ Δgb / (h−t f ) (2)
Δgb: assumed value of the error of the gap in the material axis direction of the beam (mm)
h: height of the reinforcing member in the vertical direction (mm)
t f : thickness in the vertical direction of the lower flange of the beam
(2) In the beam joint structure according to (1), the support member is a large beam supported by a column, and the beam is a beam supported by the support member, and the support member and the support member The beams may be H-shaped steels and may have the same cross-sectional height.
(3) In the beam joining structure according to (1) or (2) above, the beam joining structure includes a joining member for semi-rigid joining or pin joining the support member and the beam, and the reinforcing member The compressive stress that is generated towards is transmitted to the support member.
(4) In the beam joining structure according to any one of (1) to (3), the first contact surface extends in a direction perpendicular to the material axial direction of the beam, and the second contact surface is The plurality of protrusions may extend in a direction intersecting with the first contact surface, and may project from the second contact surface.

上記の補強部材及び梁接合構造によれば、支持部材と梁との間の隙間の大きさに関わらず支持部材と梁とを確実に接合し、更にはその接合状態を維持することができる。   According to the above reinforcing member and the beam joint structure, regardless of the size of the gap between the support member and the beam, the support member and the beam can be reliably joined and the joined state can be maintained.

本発明の第一実施形態に係る補強部材が適用される建築物の正面模式図である。It is a front schematic diagram of the building where the reinforcement member concerning a first embodiment of the present invention is applied. 図1に示す建築物の横断面模式図である。It is a cross-sectional schematic diagram of the building shown in FIG. 図2に示すB部の斜視図である。It is a perspective view of the B section shown in FIG. 本発明の第一実施形態に係る補強部材を含む梁接合構造の正面図である。It is a front view of beam joint structure containing a reinforcement member concerning a first embodiment of the present invention. 図4に示す梁接合構造の一部を示す斜視図である。It is a perspective view which shows a part of beam joint structure shown in FIG. 図5に示す梁接合構造の下方からの斜視図である。It is a perspective view from the downward direction of the beam joint structure shown in FIG. 本発明の第二実施形態に係る補強部材の斜視図である。It is a perspective view of the reinforcement member which concerns on 2nd embodiment of this invention. 図7Aに示す補強部材が隙間に配置された状態を示す正面図である。It is a front view which shows the state by which the reinforcement member shown to FIG. 7A was arrange | positioned at clearance gap. 第一変形例に係る補強部材の斜視図である。It is a perspective view of the reinforcement member which concerns on a 1st modification. 図8Aに示す補強部材が隙間に配置された状態を示す正面図である。It is a front view which shows the state by which the reinforcement member shown to FIG. 8A was arrange | positioned at clearance gap. 第二変形例に係る補強部材の斜視図である。It is a perspective view of the reinforcement member concerning a 2nd modification. 図9Aに示す補強部材が隙間に配置された状態を示す正面図である。It is a front view which shows the state by which the reinforcement member shown to FIG. 9A was arrange | positioned at clearance gap. 第二変形例に係る補強部材の傾斜角度φを説明するための概略図である。It is the schematic for demonstrating inclination-angle (phi) of the reinforcement member which concerns on a 2nd modification. 本発明の第三実施形態に係る梁接合構造を示す斜視図である。It is a perspective view which shows the beam bonded structure which concerns on 3rd embodiment of this invention. 補強部材の寸法を説明するための補足図である。It is a supplementary view for demonstrating the dimension of a reinforcement member. 大梁の断面の高さが小梁の断面の高さより大きい場合の構成を説明するための補足図である。It is a supplementary drawing for demonstrating the structure in case the height of the cross section of a girder is larger than the height of the cross section of a cross beam.

(第一実施形態)
本発明の第一実施形態に係る補強部材51は、図1、図2に示すような梁接合構造2を有する建築物1に適用される。なお、図1及び図2では、建築物1の架構式構造のみを示すとともに、後述するコア壁10にハッチングを付して示している。
First Embodiment
The reinforcement member 51 which concerns on 1st embodiment of this invention is applied to the building 1 which has the beam joint structure 2 as shown to FIG. 1, FIG. In addition, while showing only the frame type structure of the building 1 in FIG.1 and FIG.2, it hatches and attaches to the core wall 10 mentioned later.

建築物1は、コア壁10と、柱11と、大梁(支持部材)21と、小梁(梁)31と、床スラブ41と、を備えている。
コア壁10は、平面視において、例えば、建築物1の中央部に配置され、上下方向に沿って延びている。例えば、コア壁10内には、図示しないエレベータや階段等が配設されている。柱11は、コア壁10を囲むように配置され、上下方向に沿って延びている。大梁(支持部材)21は、柱11から水平面に沿って延びている。小梁(梁)31は、大梁21から水平面に沿って延びている。ここで、図3は、図2に二点鎖線で示すB部の斜視図である。この図3に示すように、床スラブ41は、大梁21及び小梁31の上方に接合される。なお、大梁21及び小梁31は、水平面に対して傾斜していてもよい。
建築物1は、例えば、複数の階層を有する高層建築物であり、コア壁10は、平面視で1辺の長さが数十mの矩形となる角筒状に形成されている。コア壁10は、コンクリート内に鉄筋を配置すること等により構成されたRC(Reinforced Concrete:鉄筋コンクリート)造である。
The building 1 includes a core wall 10, a pillar 11, a large beam (supporting member) 21, a beam 31 and a floor slab 41.
The core wall 10 is disposed, for example, at a central portion of the building 1 in a plan view, and extends along the vertical direction. For example, in the core wall 10, an elevator, stairs and the like (not shown) are disposed. The pillars 11 are arranged to surround the core wall 10 and extend in the vertical direction. The large beam (support member) 21 extends from the column 11 along the horizontal plane. A beam 31 extends from the girder 21 along a horizontal plane. Here, FIG. 3 is a perspective view of a portion B shown by a two-dot chain line in FIG. As shown in FIG. 3, the floor slab 41 is joined above the large beam 21 and the small beam 31. The large beam 21 and the small beam 31 may be inclined with respect to the horizontal plane.
The building 1 is, for example, a high-rise building having a plurality of levels, and the core wall 10 is formed in a rectangular tube shape whose one side is a rectangle of several tens of meters in a plan view. The core wall 10 is an RC (Reinforced Concrete: reinforced concrete) structure constructed by arranging reinforcing bars in concrete.

図3に示すように、コア壁10には、第一シアプレート14の一方の端部が固定されている。そして、第一シアプレート14の他方の端部に、大梁21の端部が、ボルトや溶接等により接合されている。これにより、第一シアプレート14は、大梁21をコア壁10に半剛接合する。   As shown in FIG. 3, one end of the first shear plate 14 is fixed to the core wall 10. Then, the end of the large beam 21 is joined to the other end of the first shear plate 14 by a bolt, welding or the like. Thereby, the first shear plate 14 semi-rigidly joins the girder 21 to the core wall 10.

ここで、半剛接合とは、コア壁10(支持部材)と大梁21(梁)との間で伝達される曲げモーメントが小さく、コア壁10に対する大梁21の回転移動がある程度拘束された接合形式をいう。また、ピン接合とは、コア壁10と大梁21との間で伝達される曲げモーメントが皆無又は極小で、コア壁10に対する大梁21の回転移動が拘束されない接合形式をいう。そして、半剛接合、ピン接合、及び剛接合の定義は、欧州設計基準(Eurocode3-Part 1-8)に準拠するものとする。また、剛接合は回転剛性が無限大、ピン接合は回転剛性が0、半剛接合は回転剛性が有限ともいえる。   Here, the semi-rigid connection is a connection type in which the bending moment transmitted between the core wall 10 (support member) and the large beam 21 (beam) is small, and the rotational movement of the large beam 21 with respect to the core wall 10 is restricted to some extent. Say Further, the pin connection means a connection type in which no rotational moment of the large beam 21 with respect to the core wall 10 is restricted with no or minimal bending moment transmitted between the core wall 10 and the large beam 21. And, the definition of semi-rigid connection, pin connection, and rigid connection shall conform to the European design standard (Eurocode 3-Part 1-8). In addition, it can be said that rigid joints have infinite rotational stiffness, pin joints have zero rotational stiffness, and semi-rigid joints have limited rotational stiffness.

以下では、建築物1の構成のうち、大梁21と、材軸方向の一端側が大梁21に取り付けられる小梁31と、この小梁31に接合された床スラブ41に着目して説明する。
梁接合構造2は、大梁21、小梁31、及び床スラブ41を有して構成される。なお、図4に示すように、床スラブ41は、大梁21及び小梁31上に配置されたデッキプレート42上にコンクリートを打設することで製造される。
In the following, among the configurations of the building 1, attention will be focused on the large beam 21, the small beam 31 attached to the large beam 21 at one end side in the material axial direction, and the floor slab 41 joined to the small beam 31.
The beam joint structure 2 is configured to include a large beam 21, a small beam 31, and a floor slab 41. As shown in FIG. 4, the floor slab 41 is manufactured by placing concrete on a deck plate 42 disposed on the large beam 21 and the small beam 31.

大梁21には、例えばH形鋼が用いられる。大梁21におけるウェブ22の上方には、上フランジ23が形成されている。ウェブ22の下方には、下フランジ24が形成されている。
複数の大梁21は、水平面に沿って互いに直交する方向に延びている。以下では、大梁21の材軸方向及びそれに沿う方向を第一方向X、大梁21の材軸方向に直交する略水平方向及びそれに沿う方向を第二方向Yという。また、第一方向Xと第二方向Yとに直行する方向及びそれに沿う方向(鉛直方向)を第三方向Zという。なお、以下では、コア壁10から延びる大梁21について主に説明する。
For example, an H-shaped steel is used for the large beam 21. An upper flange 23 is formed above the web 22 in the large beam 21. Below the web 22, a lower flange 24 is formed.
The plurality of large beams 21 extend in directions orthogonal to one another along the horizontal surface. Hereinafter, the material axial direction of the large beam 21 and the direction along it will be referred to as a first direction X, and the substantially horizontal direction orthogonal to the material axial direction of the large beam 21 and the direction along it will be referred to as a second direction Y. Further, a direction perpendicular to the first direction X and the second direction Y and a direction (vertical direction) along the direction are referred to as a third direction Z. In addition, below, the girder 21 extended from the core wall 10 is mainly demonstrated.

図4に示すように、大梁21には、第二シアプレート25(接合部材)が溶接等により固定されている。図示の例では、第二シアプレート25は、大梁21から、第二方向Yに向かって突出している。第二シアプレート25には、複数の貫通孔25aが上下方向に沿って一列に並べて形成されている。各貫通孔25aは、第二シアプレート25を第一方向Xに貫通している。   As shown in FIG. 4, the second shear plate 25 (joining member) is fixed to the large beam 21 by welding or the like. In the illustrated example, the second shear plate 25 protrudes from the large beam 21 in the second direction Y. In the second shear plate 25, a plurality of through holes 25a are formed in a line along the vertical direction. Each through hole 25 a penetrates the second shear plate 25 in the first direction X.

小梁31には、例えばH形鋼が用いられる。小梁31におけるウェブ32の上方には上フランジ33が形成されている。ウェブ32の下方には、下フランジ34が形成されている。
小梁31は、小梁31に外力や重力による曲げモーメントが作用していない自然状態のときには、第二方向Yに沿って延びるように配置されている。小梁31に外力や重力による曲げモーメントが作用すると、小梁31は第二方向Yと第三方向Zを含む基準面Sに沿って、下方に向かって凸となるように湾曲する。
For the beam 31, for example, an H-shaped steel is used. An upper flange 33 is formed above the web 32 in the beam 31. Below the web 32, a lower flange 34 is formed.
The beam 31 is disposed so as to extend along the second direction Y in a natural state in which a bending moment due to external force or gravity does not act on the beam 31. When a bending moment due to an external force or gravity acts on the beam 31, the beam 31 is curved downward along the reference plane S including the second direction Y and the third direction Z.

図4に示すように、小梁31のウェブ32の各端部には、複数のボルト孔36が上下方向に沿って並べて配設されている。これらのボルト孔36は、第二シアプレート25の貫通孔25aに対応する位置に形成されている。そして、このボルト孔36と貫通孔25aとにボルト等(図示せず)が配設されることで、第二シアプレート25は、小梁31から大梁21に向けて生じるせん断力及び曲げモーメントを、大梁21に伝達可能とする。これにより、第二シアプレート25は、小梁31を大梁21に半剛接合する。   As shown in FIG. 4, at each end of the web 32 of the beam 31, a plurality of bolt holes 36 are arranged in the vertical direction. The bolt holes 36 are formed at positions corresponding to the through holes 25 a of the second shear plate 25. Then, by arranging bolts or the like (not shown) in the bolt holes 36 and the through holes 25 a, the second shear plate 25 can generate shear force and bending moment generated from the small beam 31 toward the large beam 21. , Can be transmitted to the girder 21. Thus, the second shear plate 25 semi-rigidly joins the beam 31 to the beam 21.

梁接合構造2では、大梁21及び小梁31の断面高さ(梁せい)が互いに同一となっている。ここで、断面高さとは、H形鋼の上フランジにおける上方を向く外側面と、下フランジにおける下方を向く外側面との間の上下方向の寸法を表している。また、大梁21及び小梁31は、上方にデッキプレート42が敷設されるため、大梁21の上フランジ23、及び小梁31の上フランジ33それぞれにおける上方を向く外側面同士の上下方向の位置が一致している。   In the beam joint structure 2, the cross-sectional heights (beams) of the large beam 21 and the small beam 31 are equal to each other. Here, the cross-sectional height indicates the dimension in the vertical direction between the upper side surface of the upper flange of the H-shaped steel and the lower side surface of the lower flange. Further, since the deck plate 42 is laid on the upper side of the large beam 21 and the small beam 31, the vertical positions of the upper flanges 23 of the large beam 21 and the upper flanges 33 of the upper beam 33 of the small beam 31 are the same. Match.

本実施形態に係る補強部材51(コンタクトプレートとも称する)は、図3〜図6に示すように、梁接合構造2において、大梁21と、大梁21に支持される小梁31との間の隙間Kに先端が挟まれた状態で設けられる。
補強部材51は、隙間Kのうち、小梁31の断面の中立軸C1よりも下方に位置し、大梁21の下フランジ24と、小梁31の下フランジ34との間に位置する部分に配置されている。図示の例では、補強部材51は、大梁21の下フランジ24と、小梁31の下フランジ34との間において、第二シアプレート25に対して第一方向Xの片側に位置する部分に挟まれている。
なお、中立軸C1は、小梁31に作用する荷重によって小梁31の端部に発生する曲げモーメントが大梁21に伝達される際に、小梁31と大梁21の間で第二方向Y方向に作用する圧縮荷重及び引張荷重に対する中立軸であり、図示の例では、第一方向Xから見た正面視で小梁31の上下方向の中心線である。
The reinforcing member 51 (also referred to as a contact plate) according to the present embodiment is a gap between the large beam 21 and the small beam 31 supported by the large beam 21 in the beam joining structure 2 as shown in FIGS. It is provided in a state in which the tip is pinched to K.
The reinforcing member 51 is disposed at a portion of the gap K below the neutral axis C1 of the cross section of the beam 31 and located between the lower flange 24 of the large beam 21 and the lower flange 34 of the beam 31. It is done. In the illustrated example, the reinforcing member 51 is sandwiched between the lower flange 24 of the girder 21 and the lower flange 34 of the girder 31 in a portion located on one side of the second shear plate 25 in the first direction X. It is done.
When the bending moment generated at the end of the small beam 31 is transmitted to the large beam 21 by the load acting on the small beam 31, the neutral axis C1 is between the small beam 31 and the large beam 21 in the second direction Y And the center line in the vertical direction of the beam 31 in a front view seen from the first direction X in the illustrated example.

補強部材51は、図4に示すように、本体部511と、抜け止め機構(規制部材54A及び規制部材挿通孔54B)とを有する。補強部材51の素材は特に限定されるものではなく、鋼などの金属が例示される。   As shown in FIG. 4, the reinforcing member 51 has a main body 511 and a retaining mechanism (restriction member 54A and restriction member insertion hole 54B). The material of the reinforcing member 51 is not particularly limited, and a metal such as steel is exemplified.

本体部511は、大梁21(支持部材)に接触する第一接触面511aと、小梁31(梁)における大梁21と対向する端面に接触する第二接触面511bとを有する。
また、本体部511は、第一接触面511a及び第二接触面511bの、第三方向Zの端縁同士を繋ぐ基端面511c及び先端面511dとを有する。補強部材51が隙間Kに設置された状態において、基端面511cの第二方向Yの寸法は、先端面511dの第二方向Yの寸法よりも大きい。
以下の説明においては、補強部材51が設置される隙間Kを基準として、基端面511cが位置する側を基端側と呼称し、その反対側を先端側と呼称する。
The main body portion 511 has a first contact surface 511a in contact with the large beam 21 (support member) and a second contact surface 511b in contact with the end face of the small beam 31 (beam) opposite to the large beam 21.
Further, the main body portion 511 has a base end surface 511c and a tip end surface 511d that connect the ends in the third direction Z of the first contact surface 511a and the second contact surface 511b. In the state in which the reinforcing member 51 is installed in the gap K, the dimension in the second direction Y of the base end surface 511c is larger than the dimension in the second direction Y of the distal end surface 511d.
In the following description, with reference to the gap K in which the reinforcing member 51 is installed, the side on which the proximal end surface 511c is located is referred to as the proximal side, and the opposite side is referred to as the distal side.

本体部511は、基端側における第一接触面511aと第二接触面511bとの間の第二方向Yの離間距離が、先端側における第一接触面511aと第二接触面511bとの間の第二方向Yの離間距離よりも大きくなるように形成されている。
より具体的には、本体部511は、基端側から先端側に向かうに従って、次第に第一接触面511aと第二接触面511bとの間の第二方向Yの離間距離が小さくなるテーパ形状を有する。即ち、本体部511は、基端面511cから先端側に向かうに従い、漸次、第二方向Y(幅方向)の離間距離が小さくなるように形成されている。
In the main body portion 511, the separation distance in the second direction Y between the first contact surface 511a and the second contact surface 511b on the base end side is between the first contact surface 511a and the second contact surface 511b on the distal end side. Is formed to be larger than the separation distance in the second direction Y.
More specifically, the main body portion 511 has a tapered shape in which the separation distance in the second direction Y between the first contact surface 511a and the second contact surface 511b gradually decreases from the proximal end toward the distal end. Have. That is, the main body portion 511 is formed such that the separation distance in the second direction Y (width direction) gradually decreases as going from the base end surface 511c to the tip end side.

したがって、補強部材51の本体部511は、第二接触面511bが、第一接触面511aの延設方向に対して傾斜するくさび面とされている。なお、本体部511において、第一接触面511aは、本体部511の隙間Kに配置された状態において、鉛直方向に沿って延びている。   Therefore, the main body portion 511 of the reinforcing member 51 is a wedge surface in which the second contact surface 511b is inclined with respect to the extending direction of the first contact surface 511a. In the main body portion 511, the first contact surface 511a extends in the vertical direction in the state of being disposed in the gap K of the main body portion 511.

ここで、補強部材51が隙間Kに配置された状態において、第二接触面511bと、第二方向Yに垂直な面とがなす傾斜角度φは、0(rad)超であることが好ましく、Δg/(h−t)以上であることが更に好ましい。
ここで、Δgは施工誤差によって生じる隙間Kの第二方向Yに沿う方向の長さ(隙間寸法)の誤差の想定値(mm)である。また、図11に示すように、hは補強部材51の第三方向Zに沿う方向の高さ(mm)であり、tは小梁31の下フランジ34のZ方向における寸法(板厚)である。尚、図11においては、梁の下フランジを二点鎖線で示している。
Δgは、例えば、小梁31と第二シアプレート25の接合部で生じうる施工誤差であり、ボルト孔36とボルトの軸部(図示しない)との径の差、または貫通孔25aとボルトの軸部(図示しない)との径の差に等しい。大梁21の位置を基準とし、第二方向Yに沿う方向のボルト孔36の中央とボルトの軸部(図示しない)の中央とが一致するときの隙間寸法を標準隙間寸法とすると、隙間寸法は、施工誤差によって標準隙間寸法±Δg/2の範囲で変動する可能性がある。
第二方向Yに沿った方向における補強部材51の基端側の面511cの長さと先端側の面511dの長さの差が少なくともΔg+φ×tであり、かつ第二方向Yに沿った方向における先端側の面511dの長さが想定される隙間寸法の最小値(標準隙間寸法−Δg/2)と同じであれば、施工誤差によって隙間寸法が標準隙間寸法±Δg/2の範囲で変動した場合でも、接触による圧縮力の伝達が可能である。隙間Kにおける第三方向Zへの補強部材51の貫入量を調整することにより、補強部材51の第一接触面511aと大梁21の下フランジ24、補強部材51の第二接触面511bと小梁31の下フランジ34の双方を確実に接触させることができるためである。
すなわち、φが少なくともΔg/(h−t)あれば、隙間寸法が変動した場合にも補強部材51を配置し圧縮力を伝達させることが可能である。以下、Δg/(h−t)を補強部材のくさび面の傾斜角の推奨下限値φl,req(rad)と称す。
Here, in a state where the reinforcing member 51 is disposed in the gap K, the inclination angle φ formed by the second contact surface 511b and a surface perpendicular to the second direction Y is preferably more than 0 (rad), More preferably, it is Δg b / (h-t f ) or more.
Here, Δg b is an assumed value (mm) of an error of the length (gap dimension) of the gap K in the direction along the second direction Y caused by the construction error. Further, as shown in FIG. 11, h is the height (mm) in the direction along the third direction Z of the reinforcing member 51, and t f is the dimension (plate thickness) in the Z direction of the lower flange 34 of the beam 31 It is. In FIG. 11, the lower flange of the beam is indicated by a two-dot chain line.
Δg b is, for example, a construction error that may occur at the joint of the small beam 31 and the second shear plate 25, and the difference in diameter between the bolt hole 36 and the shaft portion (not shown) of the bolt or the through hole 25 a and the bolt Equal to the difference in diameter between the shaft and the shaft (not shown). Assuming that the gap dimension when the center of the bolt hole 36 in the second direction Y coincides with the center of the shaft portion (not shown) of the bolt on the basis of the position of the large beam 21 is the standard gap dimension, the gap dimension is There is a possibility of fluctuation in the range of standard clearance dimension ± Δg b / 2 due to construction error.
The difference between the length of the surface 511 c on the proximal end side of the reinforcing member 51 and the length of the surface 511 d on the distal end side in the second direction Y is at least Δg b + φ × t f and along the second direction Y if minimum value of the gap dimension the length of the tip-side surface 511d is assumed in the direction (the standard gap dimension -Δg b / 2) and the same, the gap dimension by construction error ± standard gap size Delta] g b / 2 Even if it fluctuates in the range, the transmission of the compressive force by the contact is possible. By adjusting the penetration amount of the reinforcing member 51 in the third direction Z in the gap K, the first contact surface 511 a of the reinforcing member 51 and the lower flange 24 of the large beam 21, the second contact surface 511 b of the reinforcing member 51 and the small beam This is because both of the lower flanges 34 can be reliably brought into contact with each other.
That is, when φ is at least Δg b / (h−t f ), it is possible to arrange the reinforcing member 51 and transmit the compressive force even when the gap dimension changes. Hereinafter, Δg b / (h−t f ) is referred to as a recommended lower limit φ 1, req (rad) of the inclination angle of the wedge surface of the reinforcing member.

抜け止め機構は、本体部511が先端側から基端側に向かう方向に移動することを抑止するための機構である。図4及び図6に示すように、本実施形態に係る梁接合構造2の抜け止め機構は、規制部材54Aと、規制部材54Aを挿通自在に本体部511に形成された規制部材挿通孔54Bとにより構成される。   The detachment prevention mechanism is a mechanism for suppressing movement of the main body portion 511 in the direction from the distal end side to the proximal end side. As shown in FIGS. 4 and 6, the retaining mechanism of the beam joining structure 2 according to the present embodiment includes a regulating member 54A and a regulating member insertion hole 54B formed in the main body 511 so as to allow the regulating member 54A to be inserted therethrough. It consists of

規制部材54Aは、表裏面が上下方向を向くとともに、下面が大梁21及び小梁31の下フランジ24、34の下面に対して傾斜したくさび状の板材である。規制部材54Aは、本体部511が隙間Kに配置された状態において規制部材挿通孔54Bに挿通され、その規制部材挿通孔54Bの開口から突出した両端部が、大梁21の下フランジ24の下面と小梁31の下フランジ34の下面とに上方から係止されている。すなわち、規制部材54Aにおける第二方向Yの両端部が規制部材挿通孔54Bから第二方向Yの両側に突出していて、これらの両端部が、大梁21及び小梁31それぞれに係止されている。これにより、本体部511が隙間Kから離脱することを抑止する。   The restriction member 54A is a wedge-shaped plate member whose front and back surfaces are directed in the vertical direction, and whose lower surface is inclined with respect to the lower surfaces of the large beams 21 and the lower flanges 24 and 34 of the small beams 31. The restriction member 54A is inserted into the restriction member insertion hole 54B in a state in which the main body portion 511 is disposed in the gap K, and both ends projecting from the opening of the restriction member insertion hole 54B are the lower surface of the lower flange 24 of the large beam 21 and It is locked from above with the lower surface of the lower flange 34 of the beam 31. That is, both end portions in the second direction Y in the restriction member 54A protrude from the restriction member insertion hole 54B to both sides in the second direction Y, and these both end portions are engaged with the large beam 21 and the small beam 31 respectively. . Thereby, the main body 511 is prevented from being separated from the gap K.

規制部材挿通孔54Bは、本体部511の第一接触面511aと第二接触面511bとを貫通するように形成され、上面54B1と下面54B2とを有する。
規制部材挿通孔54Bの上面54B1は、本体部511が隙間Kに配置された状態において、小梁31の下フランジ34の下面よりも上方(基端側)に配置されるように形成されている。
規制部材挿通孔54Bの下面54B2は、本体部511が隙間Kに配置された状態において、小梁31の下フランジ34の下面よりも下方(先端側)に配置されるように形成されている。
このように形成された規制部材挿通孔54Bによれば、くさび状の規制部材54Aの下面の傾斜角度や貫入量を調整することにより、隙間Kの距離に関わらず、大梁21と小梁31とを確実に接合するとともに、その接合状態を維持することが可能となる。
The restriction member insertion hole 54B is formed to penetrate the first contact surface 511a and the second contact surface 511b of the main body 511, and has an upper surface 54B1 and a lower surface 54B2.
The upper surface 54B1 of the restriction member insertion hole 54B is formed to be disposed above (the base end side) the lower surface of the lower flange 34 of the beam 31 in the state where the main body 511 is disposed in the gap K .
The lower surface 54B2 of the restriction member insertion hole 54B is formed so as to be disposed below (lower end side) than the lower surface of the lower flange 34 of the beam 31 when the main body 511 is disposed in the gap K.
According to the restriction member insertion hole 54B formed in this manner, the large beam 21 and the small beam 31 can be adjusted regardless of the distance of the gap K by adjusting the inclination angle and the penetration amount of the lower surface of the wedge-like restriction member 54A. While securely bonding, it is possible to maintain the bonding state.

なお、本実施形態に係る補強部材51においては、規制部材挿通孔54Bの開口から突出した規制部材54Aの両端が大梁21及び小梁31に係止されているが、規制部材54Aの一端のみが開口から突出して大梁21及び小梁31のいずれか一方に係止されてもよい。
また、本実施形態に係る補強部材51においては、規制部材挿通孔54Bは第一接触面511aと第二接触面511bとを貫通して形成されている。しかしながら、この規制部材挿通孔54Bは、規制部材54Aが支持部材(大梁21)か梁(小梁31)のいずれかに係止されれば、必ずしも本体部511を貫通していなくてもよい。
すなわち、第一接触面511a及び第二接触面511bのいずれか一方のみに、規制部材54Aが挿通自在に形成された規制部材挿通孔が形成されていてもよい。
また、規制部材54Aについては、必ずしもくさび状である必要はなく、規制部材挿通孔54Bへの挿入状態において支持部材(大梁21)か梁(小梁31)に係止されるものであれば、平板状や直棒状等の各種形状のもの、あるいはボルト等を用いることができる。
In the reinforcing member 51 according to the present embodiment, both ends of the regulating member 54A protruding from the opening of the regulating member insertion hole 54B are engaged with the large beam 21 and the small beam 31, but only one end of the regulating member 54A It may be protruded from the opening and locked to any one of the large beam 21 and the small beam 31.
Further, in the reinforcing member 51 according to the present embodiment, the restriction member insertion hole 54B is formed to penetrate the first contact surface 511a and the second contact surface 511b. However, as long as the restricting member 54A is locked to either the support member (large beam 21) or the beam (small beam 31), the restricting member insertion hole 54B may not necessarily penetrate the main body portion 511.
That is, the restriction member insertion hole in which the restriction member 54A is formed so as to be insertable may be formed in only one of the first contact surface 511a and the second contact surface 511b.
Further, the restricting member 54A does not have to be wedge-shaped, and it can be engaged with the support member (large beam 21) or the beam (small beam 31) in the inserted state into the restricting member insertion hole 54B. It is possible to use various shapes such as a flat plate shape and a straight rod shape, or a bolt or the like.

本実施形態に係る補強部材51を用いた梁接合構造2は、以下の工程を行うことにより構築される。
まず、作業者は、小梁31を大梁21から水平面に沿って延びるように配置する(小梁配置工程)。
次に、大梁21に形成された貫通孔25a及び小梁31に形成されたボルト孔36にボルト等を挿入することで、大梁21と小梁31の端部とを接合する(接合工程)。
次に、大梁21と小梁31との間の隙間Kに、上方から下方に向けて、補強部材51の本体部511を挿入する(本体部挿入工程)。
次に、本体部511に形成された規制部材挿通孔54Bに、規制部材54Aを挿入する(規制部材挿入工程)。
そして、大梁21及び小梁31上にデッキプレート42を配置するとともにデッキプレート42上にコンクリートを打設し、小梁31の上方に床スラブ41を形成する(床スラブ打設工程)。
以上の工程を行うことで、梁接合構造2が構築される。
The beam joint structure 2 using the reinforcing member 51 according to the present embodiment is constructed by performing the following steps.
First, the worker arranges the small beam 31 so as to extend from the large beam 21 along the horizontal plane (small beam arrangement step).
Next, a bolt or the like is inserted into the through hole 25a formed in the large beam 21 and the bolt hole 36 formed in the small beam 31, thereby joining the large beam 21 and the end of the small beam 31 (joining process).
Next, the main body portion 511 of the reinforcing member 51 is inserted downward from above into the gap K between the large beam 21 and the small beam 31 (main body portion insertion step).
Next, the restriction member 54A is inserted into the restriction member insertion hole 54B formed in the main body portion 511 (regulation member insertion step).
Then, the deck plate 42 is disposed on the large beam 21 and the small beam 31, concrete is cast on the deck plate 42, and the floor slab 41 is formed above the small beam 31 (floor slab placing process).
The beam joint structure 2 is constructed by performing the above steps.

このように構成された梁接合構造2の床スラブ41の荷重が小梁31に負荷されることで、小梁31に曲げモーメントが作用すると、小梁31は基準面S上で下方に向かって凸となるように湾曲する。この曲げモーメントは、第一方向Xに沿う軸線周りの曲げモーメントである。
この際、小梁31と大梁21との接合部分のうち、中立軸C1よりも上側に位置する部分には、大梁21を第二方向Y(材軸方向、長手方向)の両端から中心側に向けて引っ張る引張応力が発生する。小梁31と大梁21との接合部分のうち、中立軸C1よりも下側に位置する部分には、大梁21を第二方向Yの中心から両端側に向けて圧縮する圧縮応力が発生する。さらに、床スラブ41により、小梁31から大梁21に引張応力が伝達される。また、大梁21と小梁31との間に配置された補強部材51により、小梁31から大梁21に圧縮応力が伝達される。
When a bending moment acts on the small beam 31 by the load of the floor slab 41 of the beam joint structure 2 configured in this way being applied to the small beam 31, the small beam 31 moves downward on the reference plane S. It curves to be convex. The bending moment is a bending moment around an axis along the first direction X.
Under the present circumstances, in the part located in the upper side rather than the neutral axis C1 among the junction parts of the small beam 31 and the large beam 21, the large beam 21 is made center side from the both ends of 2nd direction Y (material axial direction, longitudinal direction). A tensile stress is generated to pull it. In a joint portion between the small beam 31 and the large beam 21, a compressive stress that compresses the large beam 21 from the center in the second direction Y toward both ends is generated in a portion located below the neutral axis C1. Further, tensile stress is transmitted from the small beam 31 to the large beam 21 by the floor slab 41. Further, a compressive stress is transmitted from the small beam 31 to the large beam 21 by the reinforcing member 51 disposed between the large beam 21 and the small beam 31.

以上説明したように、本実施形態に係る梁接合構造2によれば、補強部材51の先端が大梁21と小梁31との間の隙間Kに配置されることにより、大梁21と小梁31との接合を補強して回転剛性を高めることができる。また、補強部材51は、基端側における第一接触面と第二接触面との間の離間距離が、先端側における第一接触面と第二接触面との間の離間距離よりも大きくなるように形成されているため、仮に大梁21の建付け精度が低く、場所によって大梁21と小梁31との間の隙間Kの大きさにばらつきがあるような場合であっても、補強部材51の隙間Kへの貫入量を調整することで、隙間Kの大きさに合わせて、補強部材51の本体部511における第二方向Yの大きさを変更することができる。補強部材51が、基端側から先端側に向かうに従い漸次、第二方向Yの大きさが小さくなるテーパ形状を有する場合には、この効果をより確実に得ることができる。
以上より、大梁21と小梁31との間の隙間Kの大きさに関わらず、大梁21と小梁31とを確実に接合することができる。
そして、隙間Kに配置された補強部材51は、仮に大梁21及び小梁31に外力が加わったとしても、小梁31からの圧縮応力を、補強部材51を介して大梁21に確実に伝達することができる。
As described above, according to the beam joining structure 2 according to the present embodiment, the leading end of the reinforcing member 51 is disposed in the gap K between the large beam 21 and the small beam 31, whereby the large beam 21 and the small beam 31 The joint with this can be reinforced to increase the rotational rigidity. Further, in the reinforcing member 51, the separation distance between the first contact surface and the second contact surface on the base end side is larger than the separation distance between the first contact surface and the second contact surface on the front end side As a result, even if the size of the gap K between the large beam 21 and the small beam 31 varies depending on the location, the reinforcing member 51 is temporarily formed. By adjusting the amount of penetration into the gap K, the size of the second direction Y in the main body portion 511 of the reinforcing member 51 can be changed in accordance with the size of the gap K. If the reinforcing member 51 has a tapered shape in which the size in the second direction Y gradually decreases from the proximal end toward the distal end, this effect can be obtained more reliably.
As described above, regardless of the size of the gap K between the large beam 21 and the small beam 31, the large beam 21 and the small beam 31 can be reliably joined.
Then, even if an external force is applied to the large beam 21 and the small beam 31, the reinforcing member 51 disposed in the gap K reliably transmits the compressive stress from the small beam 31 to the large beam 21 via the reinforcing member 51. be able to.

更に、補強部材51が隙間Kに対して上方から挿入された場合には、仮に大梁21及び小梁31に外力が加わり、大梁21と小梁31との間の隙間Kが大きく変化したとしても、補強部材51の本体部511が下方に向けて自重により移動する。これにより、大梁21と小梁31との間の隙間Kを適切に埋めることができるため、小梁31からの圧縮応力を、補強部材51を介して大梁21に確実に伝達することができる。   Furthermore, even if the reinforcing member 51 is inserted from above into the gap K, an external force is temporarily applied to the large beam 21 and the small beam 31, and the gap K between the large beam 21 and the small beam 31 changes significantly. The main body portion 511 of the reinforcing member 51 moves downward by its own weight. Thereby, since the gap K between the large beam 21 and the small beam 31 can be appropriately filled, the compressive stress from the small beam 31 can be reliably transmitted to the large beam 21 via the reinforcing member 51.

また、本体部511が隙間Kから離脱することを抑える抜け止め機構が、規制部材54Aが本体部511に形成された規制部材挿通孔54Bに挿通されることにより実現されている。このため、仮に大梁21及び小梁31に加わった外力により、補強部材51に隙間Kから離脱する方向の外力が加えられたとしても、抜け止め機構により補強部材51の本体部511が隙間Kから離脱することを抑えることができる。従って、大梁21及び小梁31の接合を維持することができる。
特に、規制部材54Aが、大梁21及び小梁31の両方に係止される場合、補強部材51が隙間Kから離脱する方向に向けて移動することをより確実に規制することが可能となる。従って、補強部材51が隙間Kから離脱することを確実に抑えることができる。
さらに、規制部材54Aは、表裏面が上下方向を向くとともに、上面を大梁21及び小梁31の下フランジ24、34の下面に対して平行となるよう配置したときに、下面が大梁21及び小梁31の下フランジ24、34の下面に対して傾斜したくさび状の板材である。このため、第二方向Y(材軸方向、長手方向)への貫入量によって補強部材51の貫入量を調整でき、大梁21及び小梁31の下フランジ24、34の隙間Kに対して補強部材51が確実に充填される。従って、小梁31からの圧縮応力を、補強部材51を介して大梁21に確実に伝達することができる。
Further, a retaining mechanism for suppressing the detachment of the main body portion 511 from the gap K is realized by inserting the regulating member 54A into a regulating member insertion hole 54B formed in the main body portion 511. Therefore, even if an external force in the direction of separating from the gap K is applied to the reinforcing member 51 by an external force applied to the large beam 21 and the small beam 31, the main body portion 511 of the reinforcing member 51 is It can suppress leaving. Therefore, the connection between the large beam 21 and the small beam 31 can be maintained.
In particular, when the regulating member 54A is locked to both the large beam 21 and the small beam 31, it is possible to more reliably regulate the movement of the reinforcing member 51 in the direction of separating from the gap K. Therefore, separation of the reinforcing member 51 from the gap K can be reliably suppressed.
Furthermore, when the restriction member 54A is arranged such that the front and back faces are in the vertical direction and the upper surface is parallel to the lower surfaces of the lower flanges 24 and 34 of the large beam 21 and the small beam 31, the lower surface is large beam 21 and small It is a wedge-shaped plate material inclined with respect to the lower surface of the lower flanges 24 and 34 of the beam 31. Therefore, the penetration amount of the reinforcing member 51 can be adjusted by the penetration amount in the second direction Y (the material axial direction, the longitudinal direction), and the reinforcing member against the gap K of the lower flanges 24 and 34 of the large beam 21 and the small beam 31 51 is filled securely. Therefore, the compressive stress from the small beam 31 can be reliably transmitted to the large beam 21 through the reinforcing member 51.

また、大梁21及び小梁31が、ともにH形鋼であるとともに、断面高さが互いに同一であるので、例えば上フランジ23、33の上面同士の高さ位置が同等となるように大梁21と小梁31とを接合した場合において、大梁21及び小梁31それぞれにおける下フランジ24、34同士の間に隙間Kが設けられたときに、下フランジ24、34同士を、隙間Kをあけて互いに対向させることができる。このため、このように対向した下フランジ24、34同士の間の隙間Kに補強部材51を配置することで、確実に大梁21と小梁31とを接合することができる。   Further, since both the large beam 21 and the small beam 31 are H-shaped steels and the cross-sectional heights are identical to each other, for example, the large beam 21 and the upper beams 23 and 33 have the same height position. When a gap K is provided between the lower flanges 24 and 34 of each of the large beam 21 and the small beam 31 when the beam 31 is joined, the lower flanges 24 and 34 are opened with the gap K to each other. It can be made to face each other. Therefore, by arranging the reinforcing member 51 in the gap K between the lower flanges 24 and 34 facing each other, the large beam 21 and the small beam 31 can be reliably joined.

また、補強部材51により、小梁31から大梁21に向けて生じる圧縮応力を、大梁21に伝達することができるので、小梁31が受ける荷重により発生するモーメントに対する回転剛性を高め、大梁21と小梁31との接合を剛接合の状態に近づけることができる。   Further, since the compressive stress generated from the small beam 31 toward the large beam 21 can be transmitted to the large beam 21 by the reinforcing member 51, the rotational rigidity with respect to the moment generated by the load received by the small beam 31 is enhanced. The connection with the beam 31 can be brought close to the state of rigid connection.

(第二実施形態)
次に、本発明の第二実施形態に係る補強部材52について図7A〜図9Cを参照しながら説明する。
Second Embodiment
Next, a reinforcing member 52 according to a second embodiment of the present invention will be described with reference to FIGS. 7A to 9C.

本実施形態に係る補強部材52は、第一実施形態に係る補強部材51と同様に、図1、図2に示すような梁接合構造2を有する建築物1に適用される。また、補強部材52の本体部521は、第二方向Yに垂直な面に沿って延びる第一接触面521aと、第二方向Yに垂直な面と交差する方向に延びる第二接触面521bとを有している。すなわち、本体部521は、基端側における第一接触面521aと第二接触面521bとの間の距離が、先端側における第一接触面521aと第二接触面521bとの間の距離よりも大きくなるように形成されている。
また、本体部521は、第一接触面521a及び第二接触面521bの、第三方向Zの端縁同士を繋ぐ基端面521c及び先端面521dとを有する。
本実施形態に係る補強部材52では、抜け止め機構の構成が前述の補強部材51とそれぞれ異なっている。以下の説明においては、同じ構成の部材や部位には同じ参照符号を付与し、重複する記載を省略する。
The reinforcement member 52 which concerns on this embodiment is applied to the building 1 which has the beam joint structure 2 as shown to FIG. 1, FIG. 2 similarly to the reinforcement member 51 which concerns on 1st embodiment. In addition, the main body portion 521 of the reinforcing member 52 includes a first contact surface 521 a extending along a plane perpendicular to the second direction Y, and a second contact surface 521 b extending in a direction intersecting the plane perpendicular to the second direction Y have. That is, in the main body portion 521, the distance between the first contact surface 521a and the second contact surface 521b on the base end side is greater than the distance between the first contact surface 521a and the second contact surface 521b on the tip end side. It is formed to be large.
Further, the main body portion 521 has a base end surface 521c and a tip end surface 521d that connect the ends in the third direction Z of the first contact surface 521a and the second contact surface 521b.
In the reinforcing member 52 according to the present embodiment, the configuration of the retaining mechanism is different from that of the above-described reinforcing member 51. In the following description, the same reference numerals are given to members or portions having the same configuration, and overlapping descriptions will be omitted.

本実施形態に係る補強部材52の抜け止め機構は、図7A、図7Bに示すように、本体部521の第二接触面521bにおいて複数段に亘り突設された突起55により構成される。それぞれの突起55は、第一方向Xに沿って線状に連続的に形成される。また、複数段の突起55は、基端側から先端側に向かって複数の段差を形成するように突設される。
隣り合う段の突起55は、補強部材52における第二方向Yの内側(本体部521側)に向けて窪む凹溝を形成する。従って、突起55がn段に亘り形成されている場合、(n−1)本の凹溝が、第一方向Xに沿って形成されることになる。
突起55は、第一方向Xに所定角度で交差する方向に沿って形成されてもよく、また、断続的に形成されてもよい。
As shown in FIGS. 7A and 7B, the retaining mechanism of the reinforcing member 52 according to the present embodiment is configured by the protrusions 55 that are provided in a plurality of stages on the second contact surface 521b of the main body 521. Each protrusion 55 is continuously formed linearly along the first direction X. In addition, the plurality of protrusions 55 are provided so as to form a plurality of steps from the proximal end toward the distal end.
The protrusions 55 adjacent to each other form a recessed groove that is recessed toward the inner side (the main body portion 521 side) in the second direction Y in the reinforcing member 52. Therefore, when the projections 55 are formed in n steps, (n-1) concave grooves are formed along the first direction X.
The protrusions 55 may be formed along a direction intersecting the first direction X at a predetermined angle, or may be formed intermittently.

複数段の突起55は、本体部521の第二接触面521bに突設され、図7Bに示すように、小梁31に係止されて本体部521の基端側への移動を抑止する。   The plurality of projections 55 are provided on the second contact surface 521b of the main body 521, and as shown in FIG. 7B, are engaged with the small beams 31 to inhibit movement of the main body 521 toward the proximal end.

そして、この第二接触面521bに突設された複数段の突起55は、図7Bに示すように、本体部521が隙間Kに配置された状態において小梁31に係止される。これにより、本体部521の、大梁21と小梁31との間の隙間Kからの離脱を抑止する。   Then, as shown in FIG. 7B, the plurality of stages of protrusions 55 provided to project from the second contact surface 521b are engaged with the small beam 31 in the state where the main body portion 521 is disposed in the gap K. Thereby, the separation of the main body 521 from the gap K between the large beam 21 and the small beam 31 is suppressed.

それぞれの突起55は、補強部材52の基端側に傾斜して対向する基端側接触面55aと、補強部材52の先端側に対向する先端側接触面55bとを有する。
この補強部材52では、第一方向Xからみたときに、基端側接触面55aは第三方向Zに対して傾斜して形成され、先端側接触面55bは第二方向Yに沿って形成されている。
基端側接触面55aは、小梁31の下フランジ34の下面と側面との稜線が接触する面であって、先端側から基端側に向かうに従い漸次、第二方向Yの内側(本体部521の内部側)に向けて延びている。
先端側接触面55bは、小梁31の下フランジ34の上面が接触する面であって、稜線を介して基端側接触面55aに連接している。なお、先端側接触面55bは、下フランジ34の上面と隙間をあけて対向していてもよい。
Each protrusion 55 has a proximal end contact surface 55 a that is inclined and opposed to the proximal end side of the reinforcing member 52 and a distal end side contact surface 55 b that is opposed to the distal end side of the reinforcing member 52.
In the reinforcing member 52, when viewed in the first direction X, the proximal end contact surface 55a is formed to be inclined with respect to the third direction Z, and the distal end contact surface 55b is formed along the second direction Y. ing.
The base end side contact surface 55a is a surface with which the ridge line of the lower surface of the lower flange 34 of the beam 31 contacts the side surface, and gradually in the second direction Y from the tip side toward the base end It extends toward the inner side of 521).
The distal side contact surface 55b is a surface with which the upper surface of the lower flange 34 of the beam 31 contacts, and is connected to the proximal side contact surface 55a via a ridge line. The tip side contact surface 55b may be opposed to the upper surface of the lower flange 34 with a gap.

上述のように、基端側接触面55aは、小梁31の下フランジ34の下面と側面との境界線が接触する面であり、先端側接触面55bは、小梁31の下フランジ34の上面が接触する面である。従って、隣り合う段の突起55の稜線同士の、第三方向Zの離間距離は、下フランジ34の板厚よりも大きく設定される。   As described above, the proximal contact surface 55 a is a surface with which the boundary between the lower surface and the side surface of the lower flange 34 of the beam 31 contacts, and the distal contact surface 55 b is the surface of the lower flange 34 of the beam 31. The upper surface is the contact surface. Therefore, the separation distance in the third direction Z between ridge lines of the protrusions 55 in adjacent steps is set larger than the thickness of the lower flange 34.

このように構成された補強部材52によれば、本体部521に、本体部521を上方に移動させて隙間Kから離脱させるような外力が加えられた際には、基端側接触面55aが、下フランジ34の端縁に引っ掛かって係止されることとなる。このため、第二接触面521b側の突起55により、本体部521の、大梁21と小梁31との間の隙間Kからの離脱を抑止することができる。   According to the reinforcing member 52 configured as described above, when an external force is applied to the main body portion 521 to move the main body portion 521 upward and separate it from the gap K, the base end side contact surface 55 a , The end of the lower flange 34 is caught and locked. For this reason, the protrusion 55 on the second contact surface 521b side can suppress the detachment of the main body 521 from the gap K between the large beam 21 and the small beam 31.

また、補強部材52が隙間Kに対して上方から挿入された場合には、仮に大梁21及び小梁31に外力が加わり、大梁21と小梁31との間の隙間Kが大きく変化したとしても、補強部材52の本体部521が下方に向けて自重により移動する。これにより、補強部材52の基端側の段の突起55において、大梁21と小梁31との間の隙間Kを適切に埋めることができるため、小梁31からの圧縮応力を、補強部材52を介して大梁21に確実に伝達することができる。   Also, if the reinforcing member 52 is inserted from above into the gap K, even if an external force is applied to the large beam 21 and the small beam 31 and the gap K between the large beam 21 and the small beam 31 changes significantly. The main body portion 521 of the reinforcing member 52 moves downward by its own weight. As a result, since the gap K between the large beam 21 and the small beam 31 can be appropriately filled in the protrusion 55 of the step on the base end side of the reinforcing member 52, the compressive stress from the small beam 31 can be reduced. Can be transmitted to the girder 21 reliably.

以上説明したように、本実施形態に係る補強部材52は、抜け止め機構としての第二接触面521b側の突起55を有しているので、例えば本体部以外の部材を抜け止めとして用いる構成と比較して、部品点数の増加を抑え、簡易な構成とすることができる。
なお、この実施形態においては、抜け止め機構として、本体部521の第二接触面521bに突設され、小梁31に係止されて本体部521の基端側への移動を抑止する第二接触面521b側の突起55のみが設けられているが、第二接触面521b側の突起に代えて、この本体部521の第一接触面521aに突設され、大梁21に係止されて本体部521の基端側への移動を抑止する第一接触面521a側の突起のみを設けてもよい。あるいは第一接触面521a側の突起と第二接触面521b側の突起との両方を設けてもよい。
As described above, since the reinforcing member 52 according to the present embodiment has the protrusion 55 on the second contact surface 521b side as the retaining mechanism, for example, a configuration using a member other than the main body as the retaining member In comparison, the increase in the number of parts can be suppressed, and the configuration can be simplified.
In this embodiment, as a retaining mechanism, a second protrusion is provided on the second contact surface 521b of the main body 521, and is engaged with the small beam 31 to inhibit movement of the main body 521 toward the proximal end. Although only the protrusion 55 on the side of the contact surface 521b is provided, the protrusion on the first contact surface 521a of the main body portion 521 is provided instead of the protrusion on the side of the second contact surface 521b. Only a protrusion on the first contact surface 521 a side may be provided to suppress movement of the portion 521 to the proximal end side. Alternatively, both the protrusion on the first contact surface 521 a side and the protrusion on the second contact surface 521 b side may be provided.

(第一変形例)
図8A、図8Bは、第二実施形態に係る補強部材52の第一変形例を示す。この第一変形例では、抜け止め機構が、本体部521の第二接触面521bに突設された複数段の突起56により構成されている。
それぞれの突起56は、補強部材52の基端側に傾斜して対向する基端側接触面56aと、補強部材52の先端側に対向する先端側接触面56bとを有する。
(First modification)
8A and 8B show a first modification of the reinforcing member 52 according to the second embodiment. In the first modified example, the retaining mechanism is constituted by a plurality of stages of protrusions 56 protruding from the second contact surface 521 b of the main body 521.
Each protrusion 56 has a proximal end contact surface 56 a that is inclined and opposed to the proximal end side of the reinforcing member 52 and a distal end side contact surface 56 b that is opposed to the distal end side of the reinforcing member 52.

この第一変形例に係る補強部材52では、第一方向Xからみたときに、基端側接触面56aは第二方向Yに沿って形成され、先端側接触面55bは第三方向Zに対して傾斜して形成されている。
基端側接触面56aは、小梁31の下フランジ34の下面が接触する面であって、稜線を介して先端側接触面56bに連接している。
先端側接触面56bは、小梁31の下フランジ34の上面と側面との境界線が接触する面であって、基端側から先端側に向かうに従い漸次、第二方向Yの内側(本体部521の内部側)に向けて延びている。なお、先端側接触面56bは、下フランジ34の上面と隙間をあけて対向していてもよい。
In the reinforcing member 52 according to the first modified example, when viewed in the first direction X, the proximal end contact surface 56a is formed along the second direction Y, and the distal end contact surface 55b is in the third direction Z. It is formed to be inclined.
The proximal contact surface 56a is a surface with which the lower surface of the lower flange 34 of the beam 31 contacts, and is connected to the distal contact surface 56b via a ridge line.
The distal side contact surface 56b is a surface with which the boundary between the upper surface and the side surface of the lower flange 34 of the small beam 31 contacts, and gradually in the second direction Y from the proximal side toward the distal side It extends toward the inner side of 521). The tip side contact surface 56 b may be opposed to the upper surface of the lower flange 34 with a gap.

この第一変形例に係る補強部材52によれば、本体部521に、本体部521を上方に移動させて隙間Kから離脱させるような外力が加えられた際には、基端側接触面56aが、下フランジ34の下面に引っ掛かって係止されることとなる。このため、第二接触面521b側の突起56により、本体部521の、大梁21と小梁31との間の隙間Kからの離脱を抑止することができる。   According to the reinforcing member 52 according to the first modification, when an external force is applied to the main body portion 521 to move the main body portion 521 upward and separate it from the gap K, the base end side contact surface 56 a Is caught on the lower surface of the lower flange 34 and locked. Therefore, the protrusion 56 on the second contact surface 521b side can prevent the main body 521 from coming out of the gap K between the large beam 21 and the small beam 31.

(第二変形例)
図9A〜図9Cは、第二変形例に係る補強部材52の第二変形例を示す。この第二変形例では、抜け止め機構が、本体部521の第二接触面521bに突設された複数段の突起57により構成される。
それぞれの突起57は、第二実施形態に係る補強部材52の突起55と同様に、補強部材52の基端側に傾斜して対向する基端側接触面57aと、補強部材52の先端側に対向する先端側接触面57bとを有する。
この第二変形例に係る補強部材52では、隣り合う段の突起57の先端同士の、第三方向Zの離間距離が、下フランジ34の板厚よりも小さく設定されている。
この第二変形例に係る補強部材52では、第一方向Xからみたときに、基端側接触面57aは第三方向Zに対して傾斜して形成され、先端側接触面57bは第二方向Yに沿って形成されている。
基端側接触面57aは、図9Cに示すように、小梁31に対し自重や垂直方向への外力により撓みが生じた際に、小梁31の下フランジ34の下面と側面との境界線が接触する部位である。基端側接触面57aは、先端側から基端側に向かうに従い漸次、第二方向Yの内側(本体部521の内部側)に向けて延びている。
先端側接触面57bは、小梁31の下フランジ34の上面が接触する面であって、稜線を介して基端側接触面55aに連接している。なお、先端側接触面57bは、下フランジ34の上面と隙間をあけて対向していてもよい。先端側接触面57bは、図9Cに示すように、小梁31に対し自重や垂直方向への外力により撓みが生じた際に、小梁31の上面と側面との境界線が接触する面でもある。
(Second modification)
9A to 9C show a second modification of the reinforcing member 52 according to the second modification. In the second modified example, the retaining mechanism is constituted by a plurality of stages of projections 57 protruding from the second contact surface 521 b of the main body 521.
The respective projections 57 are, similar to the projections 55 of the reinforcing member 52 according to the second embodiment, a proximal end contact surface 57 a inclined toward the proximal end side of the reinforcing member 52 and a distal end side of the reinforcing member 52. And an opposing distal contact surface 57b.
In the reinforcing member 52 according to the second modification, the separation distance in the third direction Z between the tips of the protrusions 57 of adjacent steps is set to be smaller than the thickness of the lower flange 34.
In the reinforcing member 52 according to the second modification, when viewed in the first direction X, the base end contact surface 57a is formed to be inclined with respect to the third direction Z, and the tip end contact surface 57b is in the second direction. It is formed along Y.
As shown in FIG. 9C, the base end side contact surface 57a is a boundary between the lower surface and the side surface of the lower flange 34 of the beam 31 when the beam 31 is deformed due to its own weight or an external force in the vertical direction. Is the site of contact. The proximal end contact surface 57 a extends gradually inward in the second direction Y (inward of the main body portion 521) as it goes from the distal end side to the proximal end side.
The distal side contact surface 57b is a surface with which the upper surface of the lower flange 34 of the beam 31 contacts, and is connected to the proximal side contact surface 55a via a ridge line. The tip side contact surface 57b may be opposed to the upper surface of the lower flange 34 with a gap. As shown in FIG. 9C, when the distal end side contact surface 57b is bent due to its own weight or external force in the vertical direction with respect to the small beam 31, even the surface with which the boundary between the upper surface and the side surface of the small beam 31 contacts. is there.

また、基端側接触面57aと先端側接触面57bとの稜線は、小梁31に対し自重や垂直方向への外力により撓みが生じた際に、図9Cに示すように、本体部521の内部方向に潰れるように変形する。   Further, as shown in FIG. 9C, when the ridge line between the proximal end contact surface 57a and the distal end contact surface 57b is bent with respect to the small beam 31 due to its own weight or an external force in the vertical direction, as shown in FIG. It deforms so as to collapse inward.

この第二変形例に係る補強部材52によれば、小梁31に対し自重や垂直方向への外力により撓みが生じた際には、基端側接触面57aが、下フランジ34の端縁に引っ掛かって係止されることとなる。このため、第二接触面521b側の突起57により、本体部521の、大梁21と小梁31との間の隙間Kからの離脱を抑止することができる。   According to the reinforcing member 52 according to the second modification, the base end side contact surface 57 a is formed on the end edge of the lower flange 34 when the small beam 31 is bent due to its own weight or an external force in the vertical direction. It will be caught and locked. Therefore, the protrusion 57 on the second contact surface 521b side can prevent the main body 521 from being separated from the gap K between the large beam 21 and the small beam 31.

なお、複数段の突起57は、補強部材52が隙間Kに配置された状態において、複数段の突起の稜線同士を含む面と、小梁31の材軸方向に垂直な面とがなす傾斜角度φ(rad)が下記(1)式を満たすように形成されていることが好ましい。
φ≦wl/24EI・・・(1)
ここで、Eは、小梁31のヤング係数(N/mm)であり、Iは、小梁31の断面二次モーメント(mm)であり、wは、小梁31によって支持される固定荷重による等分布荷重(kN/m)であり、lは、前記小梁31の長さ(mm)である。wは小梁31が分担する固定荷重による等分布荷重であり、例えば図2の小梁31Aを対象とする場合、図2に一点鎖線で示す領域Aを小梁31Aの分担する支配面積とし、領域Aにおける小梁31A、デッキプレート42、床スラブ41、図示はしないが床スラブ内の鉄筋、図示はしないが仕上げ材の質量を計算し、これらの総和と重力加速度の積を支配面積で除した値を用いる。領域Aは、小梁31Aに隣接する小梁31との中間部を境界とし、境界及び床スラブの縁によって囲まれる領域である。質量は、領域Aにおける小梁31A、デッキプレート42、床スラブ41、図示はしないが床スラブ内の鉄筋、図示はしないが仕上げ材のそれぞれの体積(m)を求め、それぞれの物質の密度(kg/m)をかけることで求まる。
In the state where the reinforcing member 52 is disposed in the gap K, the inclination angle between the surface including the ridge lines of the projections in the plurality of steps and the surface perpendicular to the material axial direction of the beam 31 is the inclination angle It is preferable that φ (rad) be formed to satisfy the following equation (1).
φ ≦ wl 3 / 24EI ··· ( 1)
Here, E is the Young's modulus (N / mm 2 ) of the beam 31, I is the cross-sectional secondary moment (mm 4 ) of the beam 31, and w is a fixed supported by the beam 31 The load is an evenly distributed load (kN / m), and l is the length (mm) of the beam 31. w is an equally distributed load due to the fixed load shared by the small beam 31. For example, when the small beam 31A in FIG. 2 is targeted, an area A indicated by a dashed dotted line in FIG. The mass of beam 31A in area A, deck plate 42, floor slab 41, reinforcement in the floor slab not shown but not in the figure, finish material is calculated and the product of the sum of these and gravity acceleration is divided by the control area Use the same value. The region A is a region bounded by the middle portion of the beam 31 adjacent to the beam 31 A and surrounded by the boundary and the edge of the floor slab. The mass is obtained by determining the volume (m 3 ) of each of the small beams 31A in the region A, the deck plate 42, the floor slab 41, the reinforcing bars in the floor slab (not shown), and the finish (not shown) It is obtained by multiplying (kg / m 3 ).

床スラブ41のコンクリートが硬化する前において、接合部はピン接合している。このため、ピン接合された小梁の接合部の回転角は、wl/24EIで求められる。従って、傾斜角度φが、wl/24EI(rad)以下である場合、図9Cに示すように小梁31に対し自重や垂直方向への外力により撓みが生じた際に、基端側接触面57aを、下フランジ34の端縁に確実に引っ掛けて係止させることが可能となる。このため、(1)式を満たすように複数段の突起57が形成されることにより、本体部521の、大梁21と小梁31との間の隙間Kからの離脱を抑止することができる。以下、wl/24EIを補強部材のくさび面の傾斜角の推奨上限値φu,req(rad)と称す。
推奨上限値φu,req(rad)は、突起を下フランジに係止させるために望ましい傾斜角の上限を示すものであり、上述した推奨下限値φl,req(rad)とは独立した指標である。従って、推奨上限値φu,req(rad)が推奨下限値φl,req(rad)よりも大きいとは限らない。
The joint is pinned before the concrete of the floor slab 41 is hardened. Therefore, the rotation angle of the joint of the beams that are pin joints is obtained by wl 3 / 24EI. Therefore, the inclination angle φ is, wl 3 / 24EI (rad) is less than or equal, when the deflection by an external force to its own weight and the vertical direction with respect to the beams 31 as shown in FIG. 9C occurs, the proximal contact surface 57a can be securely hooked to the end edge of the lower flange 34 and locked. For this reason, by forming the projections 57 in a plurality of stages so as to satisfy the equation (1), it is possible to prevent the main body 521 from being separated from the gap K between the large beam 21 and the small beam 31. Hereinafter, wl 3 / recommended maximum value of the inclination angle of the wedge surfaces of the reinforcing member 24EI φ u, referred to as req (rad).
The recommended upper limit value φ u, req (rad) indicates the upper limit of a desirable inclination angle for locking the protrusion to the lower flange, and an index independent of the above-described recommended lower limit value φ l, req (rad) It is. Therefore, the recommended upper limit φ u, req (rad) is not necessarily larger than the recommended lower limit φ l, req (rad).

尚、本実施形態に係る補強部材52の傾斜角度φは、第二接触面511bと、第二方向Yに垂直な面とがなす傾斜角度は、0(rad)超であることが好ましく、下式(2)を満たすことが更に好ましい。
φ≧Δg/(h−t)・・・(2)
ここで、Δgは施工誤差による隙間の想定誤差(mm)である。また、hは補強部材のZ方向の高さ(基端側の面511cと先端側の面511dの距離)である。Δgは例えば、小梁31と第二シアプレート25の接合部で生じうる施工誤差であり、ボルト孔36とボルトの軸部(図示しない)との径の差、または貫通孔25aとボルトの軸部(図示しない)との径の差に等しい。
なお、施工誤差によって隙間寸法が標準隙間寸法±Δg/2の範囲で変動した場合でも、隙間Kにおける第三方向Zへの補強部材51の貫入量を調整することにより、補強部材51の第一接触面511aと大梁21の下フランジ24、補強部材51の第二接触面511bと小梁31の下フランジ34の双方を確実に接触させることができ、接触による圧縮力の伝達が可能である。このため、Δg/(h−t)を、補強部材のくさび面の傾斜角の推奨下限値φl,req(rad)とすることができる。
In addition, it is preferable that the inclination angle which the inclination angle (phi) of the reinforcement member 52 which concerns on this embodiment makes with the 2nd contact surface 511b and the surface perpendicular | vertical to 2nd direction Y is more than 0 (rad), and lower It is further preferable to satisfy the formula (2).
φ ≧ Δg b / (h−t f ) (2)
Here, Δg b is an assumed error (mm) of the gap due to a construction error. Further, h is the height in the Z direction of the reinforcing member (the distance between the surface 511c on the base end side and the surface 511d on the tip end side). Δg b is, for example, a construction error that may occur at the joint of the small beam 31 and the second shear plate 25 and the difference in diameter between the bolt hole 36 and the shaft (not shown) of the bolt or the through hole 25a and the bolt It is equal to the difference in diameter with the shaft (not shown).
Even when the gap dimension fluctuates in the range of the standard gap dimension ± Δg b / 2 due to a construction error, the penetration amount of the reinforcing member 51 in the third direction Z in the gap K is adjusted to adjust the number of reinforcement members 51 Both the one contact surface 511a and the lower flange 24 of the large beam 21, the second contact surface 511b of the reinforcing member 51, and the lower flange 34 of the small beam 31 can be reliably brought into contact with each other. . Therefore, Δg b / (h−t f ) can be set as the recommended lower limit φ 1, req (rad) of the inclination angle of the wedge surface of the reinforcing member.

(第三実施形態)
次に、本発明の第三実施形態に係る梁接合構造2’について図10を参照しながら説明する。本実施形態においては、上述の第一実施形態及び第二実施形態で説明した部材や部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
Third Embodiment
Next, a beam joint structure 2 'according to a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the members and portions described in the first embodiment and the second embodiment described above are denoted by the same reference numerals and descriptions thereof will be omitted, and only different points will be described.

図10に示すように、本実施形態に係る梁接合構造2’では、支持部材としての柱11に、梁としての大梁21が接合されている。柱11は、RC(Reinforced Concrete:鉄筋コンクリート)造である。柱11及び大梁21は、前述したように第一シアプレート14(図4参照、図10においては図示を省略)を介して半剛接合されている。そして補強部材53は、コア壁10と大梁21との間の隙間Kに配置されている。補強部材53は、隙間Kのうち、大梁21の中立軸C2よりも下方に位置し、大梁21の下フランジ24と、柱11と、の間に位置する部分に配置されている。
また、柱11における大梁が取り付けられる面は、全体として上下方向(略鉛直方向)に延び、その表面はほぼ平坦状に形成されている。
As shown in FIG. 10, in the beam joint structure 2 'according to the present embodiment, a large beam 21 as a beam is joined to a column 11 as a support member. The pillar 11 is made of RC (Reinforced Concrete). The pillars 11 and the girder 21 are semi-rigidly joined via the first shear plate 14 (see FIG. 4 and not shown in FIG. 10) as described above. The reinforcing member 53 is disposed in the gap K between the core wall 10 and the large beam 21. The reinforcing member 53 is located below the neutral axis C 2 of the large beam 21 in the gap K, and is disposed in a portion located between the lower flange 24 of the large beam 21 and the column 11.
Further, the surface of the column 11 to which the large beam is attached extends in the vertical direction (substantially vertical direction) as a whole, and the surface thereof is formed substantially flat.

この第三実施形態においては、補強部材53の本体部531は、支持部材である柱11と接触する第一接触面531aが上下方向に沿って延びていると共に、梁である大梁21の材軸方向の端面に接触する第二接触面531bが、上下方向と交差する方向であって、前記上下方向の先端側(この場合は下方向)に行くに従って第一接触面531aに近づく方向に延びている形状を有している。また、第一接触面531aはほぼ平坦状に形成されている一方で、第二接触面531bは、第一接触面531aに対して傾斜した態様となっている。
また、第二接触面531bには、抜け止め部として複数段の突起58が形成されている。突起58については第二実施形態で説明したような突起であればよく、ここでの説明は省略する。
ここで、補強部材53における本体部531の外表面のうち、柱11と接触する第一接触面531aの接触面積は、大梁21と接触する第二接触面531bの接触面積よりも大きく取れるようになっている。即ち、第一接触面531aは、第一接触面531aのほぼ全域にわたって柱11と接触する(特に、この第三実施形態の場合は、第一接触面531aと柱11の表面とは、第一接触面531aの全面にわたって面接触している。)。一方、第二接触面531bは、第一接触面531aに対して傾斜した面となっているため、大梁21の下フランジ24の端面の全部又は一部と接触することとなる。
In the third embodiment, in the main body portion 531 of the reinforcing member 53, the first contact surface 531a in contact with the column 11 as the support member extends in the vertical direction, and the material axis of the large beam 21 as the beam The second contact surface 531b in contact with the end face of the direction extends in the direction closer to the first contact surface 531a as it goes in the direction perpendicular to the vertical direction and in the direction of the leading end in the vertical direction (in this case, downward). Have a shape. Moreover, while the 1st contact surface 531a is formed in substantially flat shape, the 2nd contact surface 531b becomes an aspect inclined with respect to the 1st contact surface 531a.
In addition, a plurality of projections 58 are formed on the second contact surface 531 b as a retaining portion. The protrusion 58 may be a protrusion as described in the second embodiment, and the description thereof is omitted here.
Here, in the outer surface of the main body portion 531 of the reinforcing member 53, the contact area of the first contact surface 531a in contact with the column 11 can be larger than the contact area of the second contact surface 531b in contact with the large beam 21. It has become. That is, the first contact surface 531a contacts the column 11 over substantially the entire area of the first contact surface 531a (in particular, in the case of the third embodiment, the first contact surface 531a and the surface of the column 11 are the first Surface contact is made over the entire surface of the contact surface 531a.). On the other hand, since the second contact surface 531b is a surface inclined with respect to the first contact surface 531a, the second contact surface 531b contacts all or part of the end surface of the lower flange 24 of the large beam 21.

以上説明したように、本実施形態に係る補強部材53によれば、補強部材53の本体部531における柱11及び大梁21との接触面のうち、鋼材よりも圧縮応力に対する耐力が小さい柱11のコンクリート材と接触する第一接触面531aを、その柱11のコンクリート材との接触面積が可及的に大きく取れるようにして、鋼材である大梁21と接触する第二接触面531bにおける接触面積よりも大きく確保することで、補強部材53に圧縮応力が負荷された際に、コンクリート材に発生する面圧を小さくすることが可能になり、コンクリート材の表面の損傷を抑えることができる。   As described above, according to the reinforcing member 53 according to the present embodiment, among the contact surfaces of the main portion 531 of the reinforcing member 53 with the column 11 and the large beam 21, the column 11 has a smaller resistance to compressive stress than steel. The first contact surface 531a in contact with the concrete material is larger than the contact area in the second contact surface 531b in contact with the large beam 21 which is a steel material so that the contact area of the column 11 with the concrete material can be made as large as possible. By securing a large size, it is possible to reduce the surface pressure generated in the concrete when compressive stress is applied to the reinforcing member 53, and damage to the surface of the concrete can be suppressed.

以上、本発明を第一実施形態から第三実施形態に基づき詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。さらに、各実施形態で示した構成のそれぞれを適宜組み合わせてもよい。   As mentioned above, although the present invention was explained in full detail based on the first embodiment to the third embodiment, the concrete composition is not restricted to this embodiment, and the change of composition in the range which does not deviate from the gist of the present invention, combination , Deletion etc. are also included. Furthermore, each of the configurations shown in the embodiments may be combined as appropriate.

例えば、前記第一実施形態及び前記第二実施形態では、支持部材が大梁21であり、梁が小梁31である構成を説明したが、このような態様に限られない。支持部材がコア壁10や柱11であり、梁が大梁21である構成としてもよい。
また、前記第三実施形態では、支持部材が柱11であり、梁が大梁21である構成を示したが、このような態様に限られない。支持部材がコア壁10、又は大梁21であり、梁が小梁31であってもよい。
For example, in the first embodiment and the second embodiment, the support member is the large beam 21 and the beam is the small beam 31. However, the present invention is not limited to such an aspect. The support member may be the core wall 10 or the column 11, and the beam may be the large beam 21.
In the third embodiment, the support member is the column 11 and the beam is the large beam 21. However, the configuration is not limited to this. The support member may be the core wall 10 or the girder 21, and the beam may be the girder 31.

また、前記第一実施形態及び前記第二実施形態では、小梁31が第二シアプレート25により大梁21に半剛接合されている構成を示したが、このような態様に限られない。小梁31は、大梁21にピン接合されていてもよい。
また、前記第三実施形態では、大梁21が第一シアプレート14により柱11に半剛接合されている構成を示したが、このような態様に限られない。大梁21は、柱11にピン接合されていてもよい。
Moreover, although the said 1st embodiment and the said 2nd embodiment showed the structure by which the small beam 31 is semi-rigidly joined to the large beam 21 by the 2nd shear plate 25, it is not restricted to such an aspect. The beam 31 may be pin-joined to the beam 21.
In the third embodiment, the large beam 21 is semi-rigidly joined to the column 11 by the first shear plate 14. However, the present invention is not limited to such an embodiment. The girder 21 may be pinned to the column 11.

また、大梁21の第二シアプレート25に貫通孔25aが形成され、小梁31のウェブ32にボルト孔36が形成され、貫通孔25a内及びボルト孔36内にボルトが配設されている構成を説明したが、このような態様に限られない。大梁21のウェブ22にボルト孔が形成され、小梁31に貫通孔を備えたシアプレートが固定され、貫通孔内及びボルト孔内にボルトが配設された構成としてもよい。   Further, a through hole 25 a is formed in the second shear plate 25 of the large beam 21, a bolt hole 36 is formed in the web 32 of the small beam 31, and a bolt is disposed in the through hole 25 a and the bolt hole 36. However, the present invention is not limited to such an aspect. A bolt hole may be formed in the web 22 of the large beam 21, a shear plate having a through hole may be fixed to the small beam 31, and a bolt may be disposed in the through hole and the bolt hole.

また、大梁21の第二シアプレート25に貫通孔25aが形成される構成を説明したが、このような態様に限られない。大梁21のウェブ22に貫通孔が形成され、小梁31のウェブ32にシアプレートが配設され、このシアプレートが大梁21のウェブ22に接合されてもよい。
また、大梁21の下フランジ24と小梁31の下フランジ34とによって形成される隙間Kに補強部材51を配置する構成を説明したが、このような態様に限られない。例えば、大梁21の断面の高さ(梁せい)が小梁31の断面の高さ(梁せい)より大きい場合、第三方向Zにおける大梁21の上フランジ23と小梁31の上フランジ33の高さが同じ位置となるように配置し、大梁21のウェブ22の第三方向Zにおいて小梁31の下フランジと同じ高さとなる位置にリブを設け、リブと小梁31の下フランジ34とによって形成される隙間Kに補強部材51を配置してもよい。
同様に、大梁21の断面の高さ(梁せい)が小梁31の断面の高さ(梁せい)より大きい場合、図12に示す構成としてもよい。図12に示す構成では、第三方向Zにおける大梁21の上フランジ23と小梁31の上フランジ33の高さが同じ位置となるように配置されている。そして小梁31の上フランジ33が下フランジ34に比べて第二方向Yに沿って短くなるよう、小梁31の上フランジ33及びウェブ32の一部に切り欠きを形成し、小梁31の下フランジ34を大梁21のウェブ22に直接対向させ、小梁31の下フランジ34と大梁21のウェブ22とによって形成される隙間Kに補強部材51を配置している。
Moreover, although the structure by which the through-hole 25a is formed in the 2nd shear plate 25 of the girder 21 was demonstrated, it is not restricted to such an aspect. A through hole may be formed in the web 22 of the girder 21, a shear plate may be disposed on the web 32 of the girder 31, and the shear plate may be joined to the web 22 of the girder 21.
Further, although the configuration in which the reinforcing member 51 is disposed in the gap K formed by the lower flange 24 of the large beam 21 and the lower flange 34 of the small beam 31 has been described, the present invention is not limited thereto. For example, when the height of the cross section of the large beam 21 (the beam height) is larger than the height of the cross section of the small beam 31 (the beam size), the upper flange 23 of the large beam 21 and the upper flange 33 of the small beam 31 in the third direction Z A rib is provided at the same height as the lower flange of the small beam 31 in the third direction Z of the web 22 of the large beam 21, and the rib and the lower flange 34 of the small beam 31 The reinforcing member 51 may be disposed in the gap K formed by
Similarly, when the height of the cross section of the large beam 21 (the beam) is larger than the height of the cross section of the beam 31 (the beam), the configuration shown in FIG. 12 may be used. In the configuration shown in FIG. 12, the upper flanges 23 of the large beam 21 and the upper flange 33 of the small beam 31 in the third direction Z are arranged at the same position. Then, a notch is formed in a part of the upper flange 33 and the web 32 of the small beam 31 so that the upper flange 33 of the small beam 31 becomes shorter along the second direction Y compared to the lower flange 34. The lower flange 34 is directly opposed to the web 22 of the girder 21, and the reinforcing member 51 is disposed in a gap K formed by the lower flange 34 of the girder 31 and the web 22 of the girder 21.

(実施例)
以下、本発明の実施例について説明する。
実験例1〜7として、第三実施形態で説明した図10に示されるような柱と梁との接合構造をベースとし、表1に示す梁の仕様、及び、表2に示す施工時条件と補強部材の仕様を用いて梁接合構造をモデル化した。柱と梁との隙間は、10mmに設定した。
実験例1〜5は発明例であり、図10に示すような補強部材(コンタクトプレート)、すなわち、小梁の端部が接触する接触面に、抜け止め部として複数段の突起が形成された補強部材を用いた。突起の第二方向Yへの突出高さは1mmとした。
実験例6、7は比較例であり、図10に示すような補強部材から、突起を取り除いた形態の補強部材を用いた。
(Example)
Hereinafter, examples of the present invention will be described.
Based on the joint structure of a column and a beam as shown in FIG. 10 described in the third embodiment as Experimental Examples 1 to 7, the specifications of the beam shown in Table 1 and the construction conditions shown in Table 2 Beam joint structure was modeled using the specifications of reinforcement members. The gap between the column and the beam was set to 10 mm.
Experimental Examples 1 to 5 are invention examples, and a reinforcing member (contact plate) as shown in FIG. 10, that is, a contact surface with which an end of a small beam contacts, is formed with a plurality of stages of projections as a retaining portion. A reinforcing member was used. The protrusion height in the second direction Y of the protrusions was 1 mm.
Experimental Examples 6 and 7 are comparative examples, and a reinforcing member in a form in which a protrusion is removed from a reinforcing member as shown in FIG. 10 was used.

表3に、実験例1〜7について、機能性の評価として、
(a)補強部材を施工可能な隙間寸法の変動の上限値Δg(mm)、
(b)補強部材のくさび面の傾斜角の推奨上限値φu,req(rad)、
(c)補強部材のくさび面傾斜角の推奨下限値φl,req(rad)、
(d)隙間寸法の変動に対する施工性、
(e)突起による抜け止め機能、及び
(f)総合評価
を示す。
それぞれの評価について以下に説明する。
As evaluation of functionality about Table 1 and Experimental example 1-7,
(A) The upper limit value Δg (mm) of the variation in the gap dimension in which the reinforcing member can be constructed,
(B) Recommended upper limit φ u, req (rad) of the inclination angle of the wedge surface of the reinforcing member
(C) Recommended lower limit value φ l, req (rad) of the wedge surface inclination angle of the reinforcing member,
(D) Workability against variation in gap size,
(E) shows the retention function by protrusion, and (f) comprehensive evaluation.
Each evaluation is described below.

(a)補強部材を施工可能な隙間寸法の変動の上限値Δg(mm)
それぞれの実験例で用いた補強部材について、補強部材を施工可能な隙間寸法の変動の上限値Δg(mm)を示す。Δgは下式で計算できる。
Δg=(h−t)×φ・・・(3)
(A) Upper limit value Δg (mm) of fluctuation of gap dimension which can be reinforced member
The upper limit value Δg (mm) of the variation of the gap dimension in which the reinforcing member can be installed is shown for the reinforcing member used in each of the experimental examples. Δg can be calculated by the following equation.
Δg = (h−t f ) × φ (3)

(b)補強部材のくさび面の傾斜角の推奨上限値φu,req(rad)
突起の引っ掛かり(係止)による抜け止めを機能させるための補強部材のくさび面の傾斜角の推奨上限値φu,req(rad)を示す。
(B) Recommended upper limit φ u, req (rad) of the inclination angle of the wedge surface of the reinforcing member
The recommended upper limit value φ u, req (rad) of the inclination angle of the wedge surface of the reinforcing member for functioning the retention prevention by the hooking (locking) of the projection is shown.

(c)補強部材のくさび面傾斜角の推奨下限値φl,req(rad)
ボルトの隙間による2mmの施工誤差(Δg)を想定した時の補強部材のくさび面の傾斜角の推奨下限値φl,req(rad)を示す。
(C) Recommended lower limit value φ l, req (rad) of the wedge surface inclination angle of the reinforcement member
The recommended lower limit φ 1, req (rad) of the inclination angle of the wedge surface of the reinforcing member when assuming a construction error (Δg b ) of 2 mm due to the clearance of the bolt is shown.

(d)隙間寸法の変動に対する施工性
φ≧φl,reqである場合を◎と評価し、φ<φl,reqである場合を△と評価した。
(D) Workability with respect to variation in gap size The case where φ ≧ φ 1, req was evaluated as ◎, and the case where φ <φ 1, req was evaluated as Δ.

(e)突起による抜け止め機能
隙間において補強部材と接触する小梁の端部と補強部材における突起との摩擦による抜け止め機能と、突起の係止による抜け止め機能が共に発揮される場合を◎と評価した。小梁の端部と補強部材における突起との摩擦のみによる抜け止め機能が発揮される場合を○と評価した。いずれの抜け止め機能も発揮されない場合を×と評価した。なお、突起の突出高さが0より大きく、かつφ≦φu,reqのとき、突起の係止による抜け止め機能が発揮される。
(E) Retaining function by protrusion The case where both the retaining function by friction between the end of the beam that contacts the reinforcing member in the gap and the protrusion of the reinforcing member and the retaining function by locking the protrusion are exhibited together. It was evaluated. The case where the retaining function by only the friction between the end of the beam and the projection of the reinforcing member was exhibited was evaluated as ○. The case where neither retention function was exhibited was evaluated as x. When the protrusion height of the protrusion is larger than 0 and φ ≦ φ u, req , the retaining function by the locking of the protrusion is exhibited.

(f)総合評価
総合評価として、「隙間寸法の変動に対する施工性」と「抜け止め機能」とが共に◎である場合を◎(発明例)とし、いずれか一方が○または△である場合を○(発明例)とし、抜け止め機能がない場合を×(比較例)とした。
(F) Comprehensive evaluation As a comprehensive evaluation, a case where both “applicability to variation in clearance dimension” and “preventing function” are ◎ is ◎ (invention example), and one of ○ or を is を. ○ (invention example), and the case where there is no retaining function is × (comparative example).

Figure 0006515361
Figure 0006515361

Figure 0006515361
Figure 0006515361

Figure 0006515361
Figure 0006515361

以上の実施例から、抜け止め機構を有する本発明によれば、支持部材と梁との間の隙間の大きさに関わらず支持部材と梁とを確実に接合し、更にはその接合状態を維持することができることが確認できた。
更に、発明例1、2、3においては傾斜角φが、0.0119(rad)以上、0.0126(rad)未満でかつ補強部材の高さが180mmである場合には、補強部材の抜け止め効果と、隙間寸法の変動に対する施工性を確保する効果とを安定して得ることが可能であることが確認できた。また、発明例4、5においては傾斜角φが、0.0145(rad)以上、0.0177(rad)未満である場合には、補強部材の抜け止め効果と、隙間寸法の変動に対する施工性を確保する効果とを安定して得ることが可能であることが確認できた。
比較例6、7は、突起を有しないため、傾斜角によらず抜け止めとしての機能を持たない。したがって、傾斜しているくさび面の法線方向に作用する圧縮力が鉛直方向上向きの力の成分をもち、この力によって補強部材が抜ける方向に移動する。よって、補強部材としての機能を安定して得ることができない。
From the above embodiments, according to the present invention having the retaining mechanism, the support member and the beam are reliably joined regardless of the size of the gap between the support member and the beam, and the joined state is maintained. I could confirm that I could do it.
Furthermore, in Inventive Examples 1, 2 and 3, when the inclination angle φ is not less than 0.0119 (rad) and less than 0.0126 (rad) and the height of the reinforcing member is 180 mm, removal of the reinforcing member It has been confirmed that it is possible to stably obtain the stopping effect and the effect of securing the workability with respect to the fluctuation of the gap dimension. Further, in the invention examples 4 and 5, when the inclination angle φ is not less than 0.0145 (rad) and less than 0.0177 (rad), the retaining effect of the reinforcing member and the workability with respect to the fluctuation of the gap dimension It has been confirmed that it is possible to stably obtain the effect of securing.
Since Comparative Examples 6 and 7 do not have a protrusion, they do not have a function as a retaining member regardless of the inclination angle. Therefore, the compressive force acting in the normal direction of the inclined wedge surface has a component of the force that is vertically upward, and this force causes the reinforcing member to move in the removal direction. Therefore, the function as a reinforcement member can not be obtained stably.

本発明によれば、支持部材と梁との間の隙間の大きさに関わらず支持部材と梁とを確実に接合し、更にはその接合状態を維持することができる。   According to the present invention, regardless of the size of the gap between the support member and the beam, the support member and the beam can be reliably joined and the joined state can be maintained.

1 建築物
2 梁接合構造
21 大梁(支持部材)
31 小梁(梁)
51、52、53 補強部材
511、521、531 本体部
511a、521a、531a 第一接触面
511b、521b、531b 第二接触面
54A 規制部材
54B 規制部材挿通孔
55、56、57、58 突起
C1、C2 中立軸
K 隙間
1 Building 2 Beam Joint Structure 21 Large Beam (Support Member)
31 Beams
51, 52, 53 Reinforcing member 511, 521, 531 Main body portion 511a, 521a, 531a First contact surface 511b, 521b, 531b Second contact surface 54A Regulating member 54B Regulating member insertion hole 55, 56, 57, 58 Protrusion C1, C2 neutral axis K gap

Claims (4)

支持部材と、
材軸方向の一端側が前記支持部材に取り付けられて前記支持部材に支持される梁と、
前記支持部材と前記梁との間に形成された隙間に先端が配置される補強部材と、
を備え、
前記補強部材が前記支持部材と前記梁との間に形成された隙間に配置され、
前記補強部材が、
前記支持部材に接触する第一接触面と、前記梁における前記支持部材と対向する端面に接触する第二接触面とを有し、前記先端に向けて、前記第一接触面と前記第二接触面との間の前記梁の材軸方向の離間距離が小さくなるように形成された本体部と、
前記支持部材及び前記梁のうちの少なくとも一方に係止することで、前記本体部の移動を抑止する抜け止め機構と、
を備え、
前記抜け止め機構は、前記第一接触面及び前記第二接触面の少なくとも一方に突設された複数段の突起により構成され、
前記複数段の突起は、前記補強部材の前記先端が前記隙間に配置された状態において、隣り合う前記突起の稜線同士を含む面と、前記梁の材軸方向に垂直な面とがなす傾斜角度φ(rad)が下記(1)式又は(2)式を満たすように形成されている
ことを特徴とする梁接合構造。
φ≦wl /24EI・・・(1)
E:前記梁のヤング係数(N/mm
I:前記梁の断面二次モーメント(mm )、
w:前記梁によって支持される固定荷重による等分布荷重(kN/m)
l:前記梁の長さ(mm)
φ≧Δgb/(h−t )・・・(2)
Δgb:前記隙間の前記梁の材軸方向における誤差の想定値(mm)
h:前記補強部材の鉛直方向における高さ(mm)
:前記梁の下フランジの鉛直方向における板厚
A support member,
A beam whose one end side in the material axial direction is attached to the support member and supported by the support member;
A reinforcing member whose tip is disposed in a gap formed between the support member and the beam ;
Equipped with
The reinforcing member is disposed in a gap formed between the support member and the beam;
The reinforcing member is
A first contact surface contacting the support member and a second contact surface contacting the end face of the beam facing the support member, and the first contact surface and the second contact are directed toward the tip. A body portion formed so as to reduce a distance between the surface and the beam in the material axis direction of the beam;
A retaining mechanism for restraining movement of the main body by locking at least one of the support member and the beam;
Equipped with
The retaining mechanism is constituted by a plurality of stages of protrusions protruding from at least one of the first contact surface and the second contact surface,
In the state where the tip of the reinforcing member is disposed in the gap, an inclination angle formed by a surface including ridge lines of adjacent protrusions and a surface perpendicular to the material axial direction of the beam Beam joint structure characterized in that φ (rad) satisfies the following equation (1) or (2) .
φ ≦ wl 3 / 24EI ··· ( 1)
E: Young's modulus of the beam (N / mm 2 )
I: second moment of area of the beam (mm 4 ),
w: Equal distribution load (kN / m) by fixed load supported by the beam
l: Length of the beam (mm)
φ ≧ Δgb / (h−t f ) (2)
Δgb: assumed value of the error of the gap in the material axis direction of the beam (mm)
h: height of the reinforcing member in the vertical direction (mm)
t f : thickness in the vertical direction of the lower flange of the beam
前記支持部材は、柱に支持される大梁であり、
前記梁は、前記支持部材に支持される小梁であり、
前記支持部材及び前記梁は、ともにH形鋼であるとともに、断面高さが互いに同一である
ことを特徴とする請求項1に記載の梁接合構造。
The support member is a girder supported by a column,
The beam is a beam supported by the support member,
The beam joint structure according to claim 1 , wherein the support member and the beam are both H-shaped steels, and their sectional heights are the same.
前記支持部材と前記梁とを半剛接合又はピン接合する接合部材を備え、
前記補強部材は、前記梁から前記支持部材に向けて生じる圧縮応力を、前記支持部材に伝達する
ことを特徴とする請求項1又は2に記載の梁接合構造。
A joining member for semi-rigid joining or pin joining the support member and the beam;
The beam joint structure according to claim 1 , wherein the reinforcing member transmits a compressive stress generated from the beam toward the support member to the support member.
前記第一接触面が、前記梁の材軸方向に垂直な方向に延び、The first contact surface extends in a direction perpendicular to the material axial direction of the beam;
前記第二接触面が、前記第一接触面と交差する方向に延び、The second contact surface extends in a direction intersecting the first contact surface;
前記複数段の突起が、前記第二接触面に突設されるThe plurality of stages of protrusions are provided in a projecting manner on the second contact surface.
ことを特徴とする請求項1〜3のいずれか一項に記載の梁接合構造。The beam joint structure according to any one of claims 1 to 3, characterized in that:
JP2019500603A 2017-03-13 2018-03-13 Reinforcement member and beam connection structure Active JP6515361B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017047881 2017-03-13
JP2017047881 2017-03-13
PCT/JP2018/009829 WO2018168886A1 (en) 2017-03-13 2018-03-13 Reinforcement member and beam joint structure

Publications (2)

Publication Number Publication Date
JP6515361B2 true JP6515361B2 (en) 2019-05-22
JPWO2018168886A1 JPWO2018168886A1 (en) 2019-06-27

Family

ID=63522229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019500603A Active JP6515361B2 (en) 2017-03-13 2018-03-13 Reinforcement member and beam connection structure

Country Status (3)

Country Link
JP (1) JP6515361B2 (en)
SG (1) SG11201908084YA (en)
WO (1) WO2018168886A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631679B1 (en) * 2018-11-12 2020-01-15 日本製鉄株式会社 Joint structure
JP7355626B2 (en) * 2019-12-04 2023-10-03 清水建設株式会社 Building
JP7425950B2 (en) 2020-03-30 2024-02-01 日本製鉄株式会社 beam joint structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112112U (en) * 1974-07-12 1976-01-29
JP3054828U (en) * 1998-06-10 1998-12-18 株式会社鹿児島建工 Large pulling material connector
JP2003171980A (en) * 2001-12-03 2003-06-20 Hironobu Kuroda Join structure of steel frame column
JP2005282019A (en) * 2004-03-29 2005-10-13 Shimizu Corp Joint structure of steel framed small beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112112U (en) * 1974-07-12 1976-01-29
JP3054828U (en) * 1998-06-10 1998-12-18 株式会社鹿児島建工 Large pulling material connector
JP2003171980A (en) * 2001-12-03 2003-06-20 Hironobu Kuroda Join structure of steel frame column
JP2005282019A (en) * 2004-03-29 2005-10-13 Shimizu Corp Joint structure of steel framed small beam

Also Published As

Publication number Publication date
SG11201908084YA (en) 2019-10-30
WO2018168886A1 (en) 2018-09-20
JPWO2018168886A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6515361B2 (en) Reinforcement member and beam connection structure
JP6631679B1 (en) Joint structure
JP4917168B1 (en) Seismic reinforcement structure and method using compression braces
JP2018131882A (en) Foundation structure
JP2018131883A (en) Floor structure
JP6724618B2 (en) Beam-column joint structure
JP5383166B2 (en) Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building
JP2019116794A (en) Steel beam joint structure
KR101557226B1 (en) Prestressed steel concrete composite beam
JP6515302B2 (en) Beam joint structure design method, beam joint structure manufacturing method and beam joint structure
JP6265676B2 (en) Steel shear wall
JP7207054B2 (en) Rolled H-section steel and composite beams
KR101482979B1 (en) Steel concrete composite beam with cap plate and structure system thereof
JP6445862B2 (en) Buckling restraint brace
JP4182881B2 (en) Reinforcement structure of beams and slabs in existing buildings
JP6872891B2 (en) Reinforcement structure of beam-column joint
JP7234084B2 (en) Steel beam with floor slab and its reinforcement method
JP6635175B1 (en) Joint member and joint structure
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP2022052974A (en) Beam joint structure and design method for beam joint structure
JP7314030B2 (en) Steel frame beam with floor slab having opening and its reinforcement method
KR101835827B1 (en) Reinforced concrete-steel composite girder
JP7425951B2 (en) beam joint structure
JP6885370B2 (en) Steel beam and column-beam joint structure using the steel beam
JP7328610B1 (en) junction structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6515361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151