JP6511362B2 - Welding equipment - Google Patents

Welding equipment Download PDF

Info

Publication number
JP6511362B2
JP6511362B2 JP2015155775A JP2015155775A JP6511362B2 JP 6511362 B2 JP6511362 B2 JP 6511362B2 JP 2015155775 A JP2015155775 A JP 2015155775A JP 2015155775 A JP2015155775 A JP 2015155775A JP 6511362 B2 JP6511362 B2 JP 6511362B2
Authority
JP
Japan
Prior art keywords
welding
electrodes
electrode
wound body
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015155775A
Other languages
Japanese (ja)
Other versions
JP2017030042A (en
Inventor
厚 伊藤
厚 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2015155775A priority Critical patent/JP6511362B2/en
Publication of JP2017030042A publication Critical patent/JP2017030042A/en
Application granted granted Critical
Publication of JP6511362B2 publication Critical patent/JP6511362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、溶接装置に係り、特に巻回式リチウムイオン電池などの巻回体の複数点の溶接に適した溶接装置に関するものである。   The present invention relates to a welding apparatus, and more particularly to a welding apparatus suitable for welding a plurality of points of a wound body such as a wound lithium ion battery.

近年、複数の平板状の正極電極および負極電極をセパレータを介して積層して、図8(A)に示すように巻き取った形状の巻回式リチウムイオン電池が使用されるようになってきている。図8(A)における100は正極電極、101は負極電極、102はセパレータである。正極電極100は、アルミニウム(Al)箔にリチウム系の材料を塗布したものであり、負極電極101は、銅(Cu)箔に炭素系の材料を塗布したものである。   In recent years, a wound-type lithium ion battery having a shape in which a plurality of flat plate-shaped positive and negative electrodes are stacked via a separator and wound as shown in FIG. 8A has come to be used. There is. In FIG. 8A, 100 is a positive electrode, 101 is a negative electrode, and 102 is a separator. The positive electrode 100 is obtained by applying a lithium-based material to an aluminum (Al) foil, and the negative electrode 101 is obtained by applying a carbon-based material to a copper (Cu) foil.

図8(A)に示した円筒状の巻回式リチウムイオン電池を、円筒の中心軸を含むXZ平面で切断した断面構造を図8(B)に示す。巻回式リチウムイオン電池の一方の端部には、正極電極100のAl箔のみが積層された領域があり、この積層されたAl箔に外部接続用の集電体103が溶接される。同様に、巻回式リチウムイオン電池の他方の端部には、負極電極101のCu箔のみが積層された領域があり、この積層されたCu箔に外部接続用の集電体104が溶接される。   The cross-sectional structure which cut | disconnected the cylindrical winding type | mold lithium ion battery shown to FIG. 8 (A) by XZ plane including the central axis of a cylinder is shown to FIG. 8 (B). There is a region where only the Al foil of the positive electrode 100 is laminated at one end of the wound lithium ion battery, and the current collector 103 for external connection is welded to the laminated Al foil. Similarly, at the other end of the wound lithium ion battery, there is a region in which only the Cu foil of the negative electrode 101 is laminated, and a collector 104 for external connection is welded to the laminated Cu foil. Ru.

通常、正極電極100のAl箔と集電体103との溶接および負極電極101のCu箔と集電体104との溶接には、超音波溶接、レーザ溶接、抵抗溶接が用いられている(特許文献1、特許文献2参照)。超音波溶接は、被接合物に垂直方向の圧力を加えながら、接合面に平行な超音波振動を印加して接合する方法である。レーザ溶接は、被接合物にレーザ光を照射して溶融させ接合する方法である。抵抗溶接は、被接合物を上下から一対の電極で挟み込み押圧しながら、電極間に電流を流して、発生するジュール熱で被接合物を溶融させて接合を行う方法である。   Generally, ultrasonic welding, laser welding, and resistance welding are used for welding of the Al foil of the positive electrode 100 to the current collector 103 and welding of the Cu foil of the negative electrode 101 to the current collector 104 (patented) See Literature 1 and Patent Literature 2). Ultrasonic welding is a method of joining by applying ultrasonic vibration parallel to a joining surface while applying pressure in the vertical direction to a workpiece. Laser welding is a method in which a workpiece is irradiated with a laser beam to be melted and joined. Resistance welding is a method of welding by welding a material to be bonded by Joule heat generated by flowing current between the electrodes while sandwiching and pressing a material to be bonded from above and below with a pair of electrodes.

特開2008−66170号公報JP, 2008-66170, A 特開2009−32670号公報JP, 2009-32670, A

超音波溶接には、溶接時の超音波振動によって電池から微小な金属粉が脱落するという問題点があった。また、Al箔やCu箔の枚数が増加すると、必要な溶接エネルギーが増加するので、超音波の出力を上げる必要があり、Al箔やCu箔が破れたり切れたりする可能性があった。
レーザ溶接では、AlやCuの反射率が高いため、高エネルギーのレーザ光が必要になるという問題点があった。また、スパッタと呼ばれる金属粉が発生するという問題点があった。
Ultrasonic welding has a problem in that fine metal powder is dropped from the battery due to ultrasonic vibration at the time of welding. Further, when the number of Al foils and Cu foils increases, the necessary welding energy increases, so it is necessary to increase the ultrasonic wave output, and there is a possibility that the Al foils and the Cu foils may be broken or broken.
Laser welding has a problem in that high energy laser light is required because the reflectance of Al and Cu is high. In addition, there is a problem that metal powder called sputtering is generated.

一方、抵抗溶接では、超音波溶接およびレーザ溶接で問題となる金属粉の発生や箔の破損を抑制することができる。ただし、正極電極100のAl箔と集電体103との溶接および負極電極101のCu箔と集電体104との溶接においては、溶接強度の確保などの理由により複数点で溶接を行なう必要がある。   On the other hand, in resistance welding, it is possible to suppress the generation of metal powder and the breakage of the foil which become problems in ultrasonic welding and laser welding. However, when welding the Al foil of the positive electrode 100 to the current collector 103 and welding the Cu foil of the negative electrode 101 to the current collector 104, it is necessary to perform welding at multiple points for reasons such as securing welding strength is there.

しかし、抵抗溶接では、1点ずつ溶接を行なう場合、2点目以降の溶接の際に、既に溶接済みの点に電流が分流してしまうので、この分流の分だけ溶接電極に流す電流を増やす必要があり、良質なナゲット(接合部分)を得るために必要なエネルギーが増加するという問題点があった。また、良質なナゲットを得るための条件設定が複雑になるという問題点があった。
なお、以上の問題点は、リチウムイオン電池に限らず、複数枚のAl箔やCu箔の積層体に対して複数点の溶接を行なう場合には、同様に発生する。
However, in resistance welding, when welding is performed one by one, the current is diverted to the already welded point in the second and subsequent weldings, so the current flowing to the welding electrode is increased by the amount of this shunting The problem is that the energy required to obtain a good quality nugget (joint) is increased. In addition, there is a problem that setting of conditions for obtaining high quality nuggets becomes complicated.
The above problems occur not only in the case of lithium ion batteries but also in the case of welding a plurality of points to a laminate of a plurality of Al foils or Cu foils.

本発明は、上記課題を解決するためになされたもので、巻回式リチウムイオン電池などの巻回体に対して複数点の溶接を行なう場合でも、適切な溶接を実現することができる溶接装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and a welding apparatus capable of realizing appropriate welding even when welding at multiple points to a wound body such as a wound lithium ion battery Intended to provide.

本発明の溶接装置は、複数枚の金属箔が積層され渦巻き状に巻回された構造からなる巻回体と、この巻回体の外周面と接するように配置される金属からなる板状部材で、前記巻回体に対して凸状のプロジェクションが形成された集電体と、前記巻回体の複数枚の金属箔を間に挟んで前記集電体と対向するように前記巻回体の内側に配置される金属からなる板状のバックプレートとから構成される被接合物に対して、この被接合物を間に挟んで互いに対向するように前記金属箔の積層方向に沿って配置される複数組の第1、第2の電極と、前記巻回体の内部に前記第1、第2の電極の組毎に設けられ、前記巻回体の内周面と対向する2面のうち少なくとも一方の面が前記バックプレートを挟み込むようにして前記第1、第2の電極と一直線上に並ぶように配置される複数の第3の電極と、前記第1、第2の電極のうち少なくとも一方を加圧し、前記被接合物を前記第1、第2の電極によって挟持させる加圧機構と、前記第1、第2の電極の組毎に設けられ、対応する第1、第2の電極間に電流を供給する複数の溶接電源と、溶接中の前記被接合物に係る1乃至複数の物理量を検出する物理量検出手段と、各組が同期して溶接を開始するように前記複数の溶接電源から前記複数組の第1、第2の電極へ電流を供給させ、溶接中に検出される1つの前記物理量が所定の終了条件値に達した時点で前記第1、第2の電極への通電を停止させる制御手段とを備え、前記複数の溶接電源は、前記被接合物に対する通電方向が同一となるように前記複数組の第1、第2の電極に電流を供給することを特徴とするものである。   The welding apparatus according to the present invention comprises a wound body having a structure in which a plurality of metal foils are stacked and wound in a spiral shape, and a plate-like member made of metal disposed in contact with the outer peripheral surface of the wound body. And the current collector having a convex projection formed on the wound body, and the plurality of metal foils of the wound body sandwiching the plurality of metal foils so as to face the current collector. Are arranged along the laminating direction of the metal foil so as to face each other with the object to be joined interposed therebetween with respect to the object to be joined, which comprises the plate-like back plate made of metal disposed inside A plurality of sets of first and second electrodes, and two sets of the first and second electrodes provided in the interior of the wound body and facing each other on the inner circumferential surface of the wound body At least one of the faces is in line with the first and second electrodes so as to sandwich the back plate And a pressing mechanism for pressing at least one of the first and second electrodes and sandwiching the bonding object by the first and second electrodes. A plurality of welding power sources provided for each pair of the first and second electrodes and supplying a current between the corresponding first and second electrodes, and one or more welding power sources pertaining to the article to be welded A physical quantity detection means for detecting a physical quantity and a plurality of sets of first and second electrodes are supplied with current from the plurality of welding power sources so that each set starts welding in synchronization, and is detected during welding Control means for stopping energization of the first and second electrodes when one of the physical quantities reaches a predetermined termination condition value, and the plurality of welding power sources have a direction of energization of the object to be welded Supplying current to the plurality of first and second electrodes so as to be identical It is an feature.

また、本発明の溶接装置の1構成例において、前記制御手段は、溶接中に検出される物理量である、前記第1、第2の電極間の抵抗が、終了条件値として予め設定されている電極間抵抗値に達した時点で前記第1、第2の電極への通電を停止させる第1の制御方式の溶接をn回行った後に(nは1以上の整数)、さらに前記第1の制御方式と異なる第2の制御方式の溶接をm回行う(mは1以上の整数)ことを特徴とするものである。
また、本発明の溶接装置の1構成例において、前記第2の制御方式の溶接は、溶接中に検出される電極間抵抗以外の物理量が所定の終了条件値に達した時点で前記第1、第2の電極への通電を停止させる溶接であり、前記電極間抵抗以外の物理量は、前記第1、第2の電極を流れる溶接電流、前記第1、第2の電極間に印加される溶接電圧、前記第1、第2の電極に供給される溶接電力、前記被接合物に印加される荷重、前記被接合物の厚さ方向の変位量のいずれかである。
また、本発明の溶接装置の1構成例において、前記第2の制御方式の溶接は、前記第1、第2の電極に所定の溶接電流を一定時間供給する定電流制御方式の溶接、前記第1、第2の電極間に所定の溶接電圧を一定時間供給する定電圧制御方式の溶接、前記第1、第2の電極に所定の溶接電力を一定時間供給する定電力制御方式の溶接のいずれかである。
また、本発明の溶接装置の1構成例において、前記制御手段は、溶接を複数回行う場合に、前記複数組の第1、第2の電極のうち最も遅い組の溶接が終了するのを待ってから、各組が同期して溶接を開始するように前記複数の溶接電源から前記複数組の第1、第2の電極へ電流を供給させて次の溶接を行なうことを特徴とするものである。
Further, in one configuration example of the welding device of the present invention, the control means sets in advance, as a termination condition value, a resistance between the first and second electrodes, which is a physical quantity detected during welding. After performing welding of the first control method n times to stop energization of the first and second electrodes when the inter-electrode resistance value is reached (n is an integer of 1 or more), the first It is characterized in that welding of a second control method different from the control method is performed m times (m is an integer of 1 or more).
In one configuration example of the welding device of the present invention, the welding of the second control method is performed when the physical quantity other than the inter-electrode resistance detected during welding reaches a predetermined termination condition value. It is welding which stops energization to the 2nd electrode, and physical quantities other than resistance between the electrodes are welding current which flows through the 1st and 2nd electrodes, welding applied between the 1st and 2nd electrodes The voltage, the welding power supplied to the first and second electrodes, the load applied to the article, and the displacement of the article in the thickness direction.
Further, in one configuration example of the welding device of the present invention, the welding of the second control method is a welding of a constant current control method of supplying a predetermined welding current to the first and second electrodes for a fixed time, 1, welding of constant voltage control method of supplying a predetermined welding voltage for a fixed time between the second electrode and welding of constant power control method of supplying a predetermined welding power to the first and second electrodes for a predetermined time It is.
Further, in a configuration example of the welding device according to the present invention, the control means waits for completion of welding of the slowest one of the plurality of first and second electrodes when welding is performed a plurality of times. After that, a current is supplied from the plurality of welding power sources to the plurality of sets of first and second electrodes so that each set synchronously starts welding, and the next welding is performed. is there.

また、本発明の溶接装置の1構成例は、さらに、前記バックプレートを真空吸着して、前記巻回体の内周面と対向する前記第3の電極の面に固定する吸着機構を備えることを特徴とするものである。
また、本発明の溶接装置の1構成例は、さらに、溶接終了後に、前記巻回体の軸方向に沿って前記被接合物から前記第3の電極を引き抜くか、または前記巻回体の軸方向に沿って前記第1、第2、第3の電極から前記被接合物を引き抜く挿抜機構と、前記挿抜機構が前記被接合物から前記第3の電極を引き抜くのに必要な力または前記第1、第2、第3の電極から前記被接合物を引き抜くのに必要な力が所定の閾値以下の場合に、警報を発する警報通知手段を備えることを特徴とするものである。
また、本発明の溶接装置の1構成例は、さらに、溶接終了後に、前記巻回体の軸方向に沿って前記被接合物から前記第3の電極を引き抜くか、または前記巻回体の軸方向に沿って前記第1、第2、第3の電極から前記被接合物を引き抜く挿抜機構と、前記吸着機構の真空圧力を検出する真空圧力検出手段と、前記挿抜機構が前記被接合物から前記第3の電極を引き抜いたとき、または前記第1、第2、第3の電極から前記被接合物を引き抜いたときに、前記真空圧力検出手段が検出した真空圧力が所定の閾値以下の場合に、警報を発する警報通知手段を備えることを特徴とするものである。
Further, one configuration example of the welding device according to the present invention further includes an adsorption mechanism which vacuum-sucks the back plate and fixes it on the surface of the third electrode facing the inner peripheral surface of the wound body. It is characterized by
Further, according to one configuration example of the welding device of the present invention, further, after completion of welding, the third electrode is pulled out from the article along the axial direction of the wound body, or the shaft of the wound body An insertion / extraction mechanism for pulling out the object from the first, second, and third electrodes along a direction, and a force required for the insertion / extraction mechanism to withdraw the third electrode from the object, or It comprises the alarm notification means which emits an alarm, when the force required to withdraw the said to-be-joined object from 1st, 2nd, 3rd electrode is below a predetermined threshold.
Further, according to one configuration example of the welding device of the present invention, further, after completion of welding, the third electrode is pulled out from the article along the axial direction of the wound body, or the shaft of the wound body A vacuum pressure detection means for detecting the vacuum pressure of the suction mechanism, a mechanism for pulling out the object to be bonded from the first, second and third electrodes along the direction, and When the vacuum pressure detected by the vacuum pressure detection means is less than or equal to a predetermined threshold value when the third electrode is pulled out or when the object to be bonded is pulled out from the first, second and third electrodes , And alarm notification means for emitting an alarm.

本発明によれば、第1の電極と第2の電極と第3の電極の組を複数組設け、各組が同期して溶接を開始するように通電を行ない、被接合物に対して複数点の溶接を同時に行なうようにしたので、従来の抵抗溶接において複数点の溶接を行なう際に問題となった電流の分流をなくすことができる。その結果、本発明では、適切な溶接を実現することができ、また溶接条件の設定を簡略化することができる。また、本発明では、複数点の溶接を同時に行なうことから、溶接回数を減らすことができ、溶接工程のタクトタイムの改善を図ることができる。また、本発明では、分流に伴う溶接電流の増加をなくすことができるので、溶接電源1台あたりの容量を小さくすることができる。また、本発明では、従来の抵抗溶接と同様に、金属粉の発生や被接合物の破損を回避することができる。   According to the present invention, a plurality of sets of the first electrode, the second electrode, and the third electrode are provided, and energization is performed so that each set starts welding in synchronization, and a plurality of objects to be welded are provided. Since the welding of the points is performed simultaneously, it is possible to eliminate the diversion of the current which has been a problem when performing welding of multiple points in the conventional resistance welding. As a result, according to the present invention, appropriate welding can be realized, and setting of welding conditions can be simplified. Further, in the present invention, since welding of a plurality of points is simultaneously performed, the number of times of welding can be reduced, and the tact time of the welding process can be improved. Further, according to the present invention, an increase in welding current associated with diversion can be eliminated, so the capacity per welding power source can be reduced. Further, in the present invention, as in the conventional resistance welding, it is possible to avoid the generation of metal powder and the breakage of an object to be joined.

また、本発明では、溶接中に検出される物理量である、第1、第2の電極間の抵抗が、終了条件値として予め設定されている電極間抵抗値に達した時点で第1、第2の電極への通電を停止させる第1の制御方式の溶接をn回行うことで、電極の汚れや被接合物表面の酸化膜の影響を軽減することができ、適切な溶接を実現することができる。   Further, in the present invention, when the resistance between the first and second electrodes, which is a physical quantity detected during welding, reaches the inter-electrode resistance value preset as the termination condition value, By performing welding of the first control method n times to stop the energization of the electrode of 2, the influence of the dirt on the electrode and the oxide film on the surface of the object to be welded can be reduced, and appropriate welding can be realized. Can.

また、本発明では、吸着機構を設けることにより、巻回体の内周面と対向する第3の電極の面にバックプレートを容易に固定することができる。   Further, in the present invention, by providing the suction mechanism, the back plate can be easily fixed to the surface of the third electrode opposed to the inner circumferential surface of the wound body.

また、本発明では、挿抜機構が被接合物から第3の電極を引き抜くのに必要な力または第1、第2、第3の電極から被接合物を引き抜くのに必要な力が所定の閾値以下の場合に、警報を発することにより、溶接が不適切であることをユーザに通知することができる。   Further, in the present invention, the force required for the insertion / extraction mechanism to withdraw the third electrode from the article or the force required for withdraw the article from the first, second and third electrodes is a predetermined threshold value. By issuing an alarm in the following cases, the user can be notified that welding is inappropriate.

また、本発明では、挿抜機構が被接合物から第3の電極を引き抜いたとき、または第1、第2、第3の電極から被接合物を引き抜いたときに、真空圧力検出手段が検出した真空圧力が所定の閾値以下の場合に、警報を発することにより、溶接が不適切であることをユーザに通知することができる。   Further, in the present invention, the vacuum pressure detection means detects when the inserting and removing mechanism extracts the third electrode from the object to be bonded or when the object to be bonded is extracted from the first, second, and third electrodes. By issuing an alarm when the vacuum pressure is below a predetermined threshold, the user can be notified that the welding is inappropriate.

本発明の実施の形態に係る溶接装置の構成を示すブロック図である。It is a block diagram showing composition of a welding device concerning an embodiment of the invention. 本発明の実施の形態に係る溶接ヘッドの拡大断面図である。It is an expanded sectional view of a welding head concerning an embodiment of the invention. 本発明の実施の形態に係る物理量検出部の構成を示すブロック図である。It is a block diagram which shows the structure of the physical quantity detection part which concerns on embodiment of this invention. 本発明の実施の形態に係る溶接装置の動作を説明するフローチャートである。It is a flow chart explaining operation of a welding device concerning an embodiment of the invention. 溶接中の溶接電流、溶接電圧、溶接電力の変化の1例を示す図である。It is a figure which shows one example of the change of the welding current during welding, welding voltage, and welding power. 溶接中の電極間抵抗の変化の1例を示す図である。It is a figure which shows one example of a change of the resistance between electrodes during welding. 溶接中の荷重、変位量の変化の1例を示す図である。It is a figure which shows one example of the change of the load in welding, and a displacement amount. 巻回式リチウムイオン電池の斜視図および断面図である。It is a perspective view and sectional drawing of a winding type lithium ion battery.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態に係る溶接装置の構成を示すブロック図である。本実施の形態の溶接装置は、溶接電源1−1,1−2と、溶接ヘッド2と、溶接中の被接合物に係る1乃至複数の物理量を検出する物理量検出部3−1,3−2と、後述する吸着機構の真空圧力を検出する真空圧力検出部4−1,4−2と、溶接装置全体を制御する制御部5と、ユーザが溶接装置に対して指示を与えるための操作部6と、制御部5のためのプログラムや溶接条件を予め記憶する記憶部7と、ユーザに対する情報提示のための表示部8とを有する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a welding apparatus according to an embodiment of the present invention. The welding apparatus according to the present embodiment includes a welding power source 1-1, 1-2, a welding head 2, and a physical quantity detection unit 3-1 for detecting one or more physical quantities related to an object to be welded. 2 and vacuum pressure detection units 4-1 and 4-2 for detecting the vacuum pressure of the suction mechanism described later, a control unit 5 for controlling the entire welding apparatus, and an operation for the user to give an instruction to the welding apparatus A storage unit 7 stores a program for the control unit 5 and welding conditions in advance, and a display unit 8 for presenting information to the user.

溶接電源1−1,1−2は、溶接ヘッド2の後述する電極間に電流を供給する。このような溶接電源については、例えば特開2013−111588号公報に開示されているので、詳細な説明は省略する。
制御部5と表示部8とは、警報通知手段を構成している。
The welding power supplies 1-1 and 1-2 supply a current between electrodes of the welding head 2 described later. About such a welding power supply, since it is indicated by JP, 2013-111588, A, for example, detailed explanation is omitted.
The control unit 5 and the display unit 8 constitute alarm notification means.

図2は溶接ヘッド2の拡大断面図である。溶接ヘッド2は、上部電極20−1a(第1の電極)と、下部電極20−1b(第2の電極)と、中間電極20−1c(第3の電極)と、上部電極20−1aと下部電極20−1bとを上下させて被接合物24を挟み込み加圧する加圧機構21−1a,21−1bと、後述するバックプレートを真空吸着する吸着機構22−1a,22−1bとを備えている。   FIG. 2 is an enlarged sectional view of the welding head 2. The welding head 2 includes an upper electrode 20-1a (first electrode), a lower electrode 20-1b (second electrode), an intermediate electrode 20-1c (third electrode), and an upper electrode 20-1a. It is equipped with pressing mechanisms 21-1a and 21-1b that sandwich and press the object 24 by raising and lowering the lower electrode 20-1b, and suction mechanisms 22-1a and 22-1b that vacuum-suck a back plate described later. ing.

また、溶接ヘッド2は、上部電極20−2a(第1の電極)と、下部電極20−2b(第2の電極)と、中間電極20−2c(第3の電極)と、加圧機構21−2a,21−2bと、吸着機構22−2a,22−2bとを備えている。このように、本実施の形態では、上部電極と下部電極と中間電極の組を2組設けている。なお、図2では、吸着機構22−1a,22−1b,22−2a,22−2bを構成するシステムのうち真空ポンプ等の記載を省略し、真空吸着パッドのみを図示している。   The welding head 2 also includes an upper electrode 20-2a (first electrode), a lower electrode 20-2b (second electrode), an intermediate electrode 20-2c (third electrode), and a pressing mechanism 21. 2a and 21-2b, and suction mechanisms 22-2a and 22-2b. Thus, in the present embodiment, two sets of the upper electrode, the lower electrode, and the intermediate electrode are provided. In addition, in FIG. 2, description of a vacuum pump etc. is abbreviate | omitted among the systems which comprise adsorption mechanism 22-1a, 22-1b, 22-2a, 22-2b, and only the vacuum adsorption pad is shown in figure.

加圧機構21−1a,21−1b,21−2a,21−2bには、図示しないロードセルが設けられており、被接合物24に加わる荷重の大きさを電気信号に変換できるようになっている。また、加圧機構21−1a,21−1b,21−2a,21−2bには、図示しない変位センサが設けられており、被接合物24の厚さ方向の変位量を電気信号に変換できるようになっている。吸着機構22−1a,22−1bは中間電極20−1cに取り付けられ、吸着機構22−2a,22−2bは中間電極20−2cに取り付けられている。   The pressure mechanisms 21-1a, 21-1b, 21-2a, 21-2b are provided with load cells (not shown) so that the magnitude of the load applied to the workpiece 24 can be converted into an electrical signal. There is. Further, displacement sensors (not shown) are provided in the pressing mechanisms 21-1a, 21-1b, 21-2a, and 21-2b, and can convert the displacement amount of the object 24 in the thickness direction into an electrical signal. It is supposed to be. The adsorption mechanisms 22-1a and 22-1b are attached to the intermediate electrode 20-1c, and the adsorption mechanisms 22-2a and 22-2b are attached to the intermediate electrode 20-2c.

さらに、溶接ヘッド2は、溶接開始時に筒状の巻回体25の内部29に挿入され、巻回体25が上下方向(金属箔の積層方向)に拡がるように拡管する拡管機構(図1の40)と、溶接開始時に後述するバックプレートを真空吸着した状態の中間電極20−1c,20−2cを、拡管機構によって拡管された巻回体25の内部29に挿入し、溶接終了後に中間電極20−1c,20−2cを巻回体25の内部29から引き抜く挿抜機構(図1の41)とを備えている。   Furthermore, the welding head 2 is inserted into the inside 29 of the cylindrical winding body 25 at the start of welding, and the pipe expanding mechanism (FIG. 1 of FIG. 1) expands the tube 25 so that the winding body 25 expands in the vertical direction (the metal foil laminating direction). 40) and intermediate electrodes 20-1c and 20-2c in a state in which a back plate to be described later is vacuum-adsorbed at the start of welding are inserted into the inside 29 of the wound body 25 expanded by the pipe expansion mechanism 20-1c and 20-2c are provided from the inside 29 of the wound body 25 with an insertion and removal mechanism (41 in FIG. 1).

次に、本実施の形態の被接合物24について説明する。被接合物24は、複数枚の金属箔が積層され渦巻き状に巻回された構造からなる巻回体25と、巻回体25の外周面と接するように配置される金属からなる板状部材で、巻回体25に対して凸状の突起であるプロジェクション27−1a,27−1b,27−2a,27−2bが形成された集電体26と、巻回体25の複数枚の金属箔を間に挟んで集電体26と対向するように巻回体25の内側に配置される金属からなる板状部材であるバックプレート(以下、BP)28−1a,28−1b,28−2a,28−2bとから構成される。   Next, the article 24 according to the present embodiment will be described. The object to be bonded 24 includes a wound body 25 having a structure in which a plurality of metal foils are stacked and wound in a spiral shape, and a plate-like member made of metal disposed in contact with the outer peripheral surface of the wound body 25 The plurality of metals of the current collector 26 on which the projections 27-1a, 27-1b, 27-2a, and 27-2b, which are projections with respect to the wound body 25, are formed, and a plurality of metal sheets of the wound body 25. Back plates (hereinafter, BP) 28-1a, 28-1b, 28- which are plate-like members made of metal disposed on the inside of the wound body 25 so as to face the current collector 26 with a foil interposed therebetween. 2a and 28-2b.

巻回体25は、図8(B)の巻回式リチウムイオン電池を左側または右側から見た構成に相当する。図8(B)の巻回式リチウムイオン電池を左側から見た構成を巻回体25とすれば、巻回体25を構成する金属箔はAl若しくはAl合金からなる。この場合、集電体26およびBP28−1a,28−1b,28−2a,28−2bもAl若しくはAl合金からなり、電極20−1a〜20−1c,20−2a〜20−2cの材料はCu合金となる。   The wound body 25 corresponds to the configuration of the wound lithium ion battery in FIG. 8B as viewed from the left side or the right side. When the configuration of the wound lithium ion battery shown in FIG. 8B is viewed from the left side is a wound body 25, the metal foil constituting the wound body 25 is made of Al or an Al alloy. In this case, the current collector 26 and the BPs 28-1a, 28-1b, 28-2a, 28-2b are also made of Al or an Al alloy, and the material of the electrodes 20-1a to 20-1c, 20-2a to 20-2c is It becomes Cu alloy.

一方、図8(B)の巻回式リチウムイオン電池を右側から見た構成を巻回体25とすれば、巻回体25を構成する金属箔はCu若しくはCu合金からなる。この場合、集電体26およびBP28−1a,28−1b,28−2a,28−2bもCu若しくはCu合金からなり、電極20−1a〜20−1c,20−2a〜20−2cの材料はモリブデン(Mo)、タングステン(W)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)のうち少なくとも1つの元素を含む金属または合金となる。   On the other hand, when the configuration of the wound lithium ion battery shown in FIG. 8B is viewed from the right side is a wound body 25, the metal foil constituting the wound body 25 is made of Cu or a Cu alloy. In this case, the current collector 26 and the BPs 28-1a, 28-1b, 28-2a, 28-2b are also made of Cu or a Cu alloy, and the material of the electrodes 20-1a to 20-1c, 20-2a to 20-2c is The metal or alloy includes at least one element of molybdenum (Mo), tungsten (W), iron (Fe), nickel (Ni), and titanium (Ti).

Al箔の場合と電極20−1a〜20−1c,20−2a〜20−2cの材料が異なる理由は、巻回体25がCu箔からなる場合、電流を流しても巻回体25が発熱し難いため、電極20−1a〜20−1c,20−2a〜20−2cを発熱させる必要があるからである。   The reason why the materials of the electrodes 20-1a to 20-1c and 20-2a to 20-2c are different from the case of the Al foil is that, when the wound body 25 is made of a Cu foil, the wound body 25 generates heat even when current flows. It is because it is difficult to cause the electrodes 20-1a to 20-1c and 20-2a to 20-2c to generate heat.

図2から明らかなとおり、集電体26は上下方向(金属箔の積層方向)から巻回体25を挟み込むように配置される。集電体26に予め形成される突起であるプロジェクション27−1a,27−1b,27−2a,27−2bは、電極20−1a,20−1b,20−2a,20−2bと巻回体25との間に位置するように配置される。このプロジェクション27−1a,27−1b,27−2a,27−2bは、上部電極20−1a,20−2aと下部電極20−1b,20−2bの数だけ形成される。本実施の形態では、上部電極20−1a,20−2aと下部電極20−1b,20−2bが2個ずつあるので、上側の集電体26と下側の集電体26に2個ずつプロジェクション27−1a,27−1b,27−2a,27−2bが形成される。集電体26が1mm厚の場合でプロジェクション87の高さは1mm程度である。   As apparent from FIG. 2, the current collector 26 is disposed so as to sandwich the wound body 25 in the vertical direction (the stacking direction of the metal foils). Projections 27-1a, 27-1b, 27-2a and 27-2b, which are projections formed in advance on the current collector 26, are wound with the electrodes 20-1a, 20-1b, 20-2a and 20-2b. 25 so as to be located between The projections 27-1a, 27-1b, 27-2a, 27-2b are formed by the number of the upper electrodes 20-1a, 20-2a and the lower electrodes 20-1b, 20-2b. In the present embodiment, since there are two upper electrodes 20-1a and 20-2a and two lower electrodes 20-1b and 20-2b, two each for the upper current collector 26 and the lower current collector 26. Projections 27-1a, 27-1b, 27-2a, 27-2b are formed. When the current collector 26 is 1 mm thick, the height of the projection 87 is about 1 mm.

プロジェクション27−1a,27−1b,27−2a,27−2bはコイニング加工により形成される。コイニング加工を採用することにより、プロジェクション27−1a,27−1b,27−2a,27−2bと反対側の集電体26の表面に凹みがない形状にすることができ、巻回体25を電極20−1a,20−1b,20−2a,20−2bによって上下から挟み込んで所定の荷重を加えたときにプロジェクション27−1a,27−1b,27−2a,27−2bが変形して低くなった場合でも、プロジェクション27−1a,27−1b,27−2a,27−2b以外の部分で集電体26と巻回体25とが接触することを回避することができ、荷重がプロジェクション27−1a,27−1b,27−2a,27−2bと巻回体25との接触部に集中的にかかるようにすることができる。   The projections 27-1a, 27-1b, 27-2a, 27-2b are formed by coining. By adopting the coining process, the surface of the current collector 26 on the opposite side to the projections 27-1a, 27-1b, 27-2a, 27-2b can be shaped without any dents, and the wound body 25 can be formed. The projections 27-1a, 27-1b, 27-2a, and 27-2b are deformed and become low when a predetermined load is applied by sandwiching the electrodes 20-1a, 20-1b, 20-2a, and 20-2b from above and below Even in this case, contact between the current collector 26 and the wound body 25 can be avoided in portions other than the projections 27-1a, 27-1b, 27-2a, and 27-2b, and the load is not limited to the projections 27. It can be made to concentrate on the contact part of -1a, 27-1b, 27-2a, 27-2b and the winding body 25 intensively.

図3は物理量検出部3−1の構成を示すブロック図である。物理量検出部3−1は、電流検出部30と、電圧検出部31と、電力検出部32と、抵抗検出部33と、荷重検出部34と、変位検出部35とから構成される。   FIG. 3 is a block diagram showing the configuration of the physical quantity detection unit 3-1. The physical quantity detection unit 3-1 includes a current detection unit 30, a voltage detection unit 31, a power detection unit 32, a resistance detection unit 33, a load detection unit 34, and a displacement detection unit 35.

電流検出部30は、図示しないホール素子の出力から、電極20−1a,20−1b間を流れる溶接電流I1を検出する。電圧検出部31は、電極20−1a,20−1b間に印加される溶接電圧V1を検出する。電力検出部32は、電流検出部30が検出した溶接電流I1の値と電圧検出部31が検出した溶接電圧V1の値とを積算することにより、電極20−1a,20−1bに供給される溶接電力W1を検出する。   The current detection unit 30 detects a welding current I1 flowing between the electrodes 20-1a and 20-1b from the output of a Hall element (not shown). The voltage detection unit 31 detects a welding voltage V1 applied between the electrodes 20-1a and 20-1b. Power detection unit 32 is supplied to electrodes 20-1a and 20-1b by integrating the value of welding current I1 detected by current detection unit 30 and the value of welding voltage V1 detected by voltage detection unit 31. The welding power W1 is detected.

抵抗検出部33は、電圧検出部31が検出した溶接電圧V1の値と電流検出部30が検出した溶接電流I1の値とから電極20−1a,20−1b間の抵抗R1を算出する。荷重検出部34は、加圧機構21−1a,21−1bに設けられたロードセルの出力に基づいて、被接合物24に印加される荷重G1を検出する。変位検出部35は、加圧機構21−1a,21−1bに設けられた変位センサの出力に基づいて、被接合物24の厚さ方向の変位量D1を検出する。   The resistance detection unit 33 calculates the resistance R1 between the electrodes 20-1a and 20-1b from the value of the welding voltage V1 detected by the voltage detection unit 31 and the value of the welding current I1 detected by the current detection unit 30. The load detection unit 34 detects the load G1 applied to the workpiece 24 based on the outputs of the load cells provided in the pressing mechanisms 21-1a and 21-1b. The displacement detection unit 35 detects the displacement amount D1 in the thickness direction of the workpiece 24 based on the outputs of the displacement sensors provided in the pressing mechanisms 21-1a and 21-1b.

物理量検出部3−2の構成は物理量検出部3−1と同様である。物理量検出部3−2の電流検出部30は、電極20−2a,20−2b間を流れる溶接電流I2を検出し、物理量検出部3−2の電圧検出部31は、電極20−2a,20−2b間に印加される溶接電圧V2を検出する。また、物理量検出部3−2の電力検出部32は、電極20−2a,20−2bに供給される溶接電力W2を検出し、物理量検出部3−2の抵抗検出部33は、電極20−2a,20−2b間の抵抗R2を算出する。また、物理量検出部3−2の荷重検出部34は、加圧機構21−2a,21−2bに設けられたロードセルの出力に基づいて、被接合物24に印加される荷重G2を検出し、物理量検出部3−2の変位検出部35は、加圧機構21−2a,21−2bに設けられた変位センサの出力に基づいて、被接合物24の厚さ方向の変位量D2を検出する。   The configuration of the physical quantity detection unit 3-2 is the same as that of the physical quantity detection unit 3-1. The current detection unit 30 of the physical quantity detection unit 3-2 detects the welding current I2 flowing between the electrodes 20-2a and 20-2b, and the voltage detection unit 31 of the physical quantity detection unit 3-2 includes the electrodes 20-2a and 20. The welding voltage V2 applied between -2b is detected. The power detection unit 32 of the physical quantity detection unit 3-2 detects the welding power W2 supplied to the electrodes 20-2a and 20-2b, and the resistance detection unit 33 of the physical quantity detection unit 3-2 detects the welding power W2. The resistance R2 between 2a and 20-2b is calculated. Further, the load detection unit 34 of the physical quantity detection unit 3-2 detects the load G2 applied to the article 24 based on the output of the load cell provided in the pressing mechanisms 21-2a and 21-2b, The displacement detection unit 35 of the physical quantity detection unit 3-2 detects the displacement amount D2 of the object 24 in the thickness direction based on the outputs of the displacement sensors provided in the pressing mechanisms 21-2a and 21-2b. .

以下、本実施の形態の溶接装置の動作を説明する。図4は溶接装置の動作を説明するフローチャートである。
例えばユーザが操作部6を操作して溶接開始を指示すると、制御部5は、溶接ヘッド2の拡管機構40を制御して、巻回体25の軸方向(図2の紙面と垂直な方向)に沿って拡管機構40を筒状の巻回体25の内部29に挿入させ、巻回体25が上下方向に拡がるように拡管させる(図4ステップS1)。上記のとおり、巻回体25は複数枚の金属箔を積層して渦巻き状に巻いたものであるから、巻回体25を上下方向に拡がるように変形させることは容易である。
Hereinafter, the operation of the welding device of the present embodiment will be described. FIG. 4 is a flow chart for explaining the operation of the welding apparatus.
For example, when the user operates the operation unit 6 to instruct the start of welding, the control unit 5 controls the tube expanding mechanism 40 of the welding head 2 so that the axial direction of the wound body 25 (direction perpendicular to the sheet of FIG. 2) The tube expanding mechanism 40 is inserted into the inside 29 of the cylindrical winding body 25 along the direction of FIG. 4 so that the winding body 25 is expanded so as to expand in the vertical direction (step S1 in FIG. 4). As described above, since the wound body 25 is formed by laminating a plurality of metal foils and winding in a spiral shape, it is easy to deform the wound body 25 so as to expand in the vertical direction.

そして、BP28−1aの下面を吸着機構22−1aによって真空吸着すると共にBP28−1bの上面を吸着機構22−1bによって真空吸着してBP28−1a,28−1bを中間電極20−1cの上下に固定し、同時にBP28−2aの下面を吸着機構22−2aによって真空吸着すると共にBP28−2bの上面を吸着機構22−2bによって真空吸着してBP28−2a,28−2bを中間電極20−2cの上下に固定した状態で、制御部5は、挿抜機構41を制御する。挿抜機構41は、拡管機構40によって拡管された巻回体25の内部29に、中間電極20−1c,20−2cを巻回体25の軸方向に沿って挿入する(図4ステップS2)。   Then, the lower surface of the BP 28-1a is vacuum-adsorbed by the adsorption mechanism 22-1a, and the upper surface of the BP 28-1b is vacuum-adsorbed by the adsorption mechanism 22-1b so that the BPs 28-1a and 28-1b can be vertically At the same time, the lower surface of BP 28-2a is vacuum-adsorbed by adsorption mechanism 22-2a, and the upper surface of BP 28-2b is vacuum-adsorbed by adsorption mechanism 22-2b, and BP28-2a and 28-2b are made of intermediate electrode 20-2c. The control unit 5 controls the insertion and removal mechanism 41 in a state of being fixed to the upper and lower sides. The insertion and removal mechanism 41 inserts the intermediate electrodes 20-1c and 20-2c along the axial direction of the wound body 25 into the inside 29 of the wound body 25 expanded by the pipe expanding mechanism 40 (step S2 in FIG. 4).

中間電極20−1cは、電極20−1a,20−1bによって被接合物24が上下方向から挟み込まれたときに、電極20−1a,20−1bと一直線上に並ぶように巻回体25の内部29に挿入される。同様に、中間電極20−2cは、電極20−2a,20−2bによって被接合物24が上下方向から挟み込まれたときに、電極20−2a,20−2bと一直線上に並ぶように巻回体25の内部29に挿入される。   The intermediate electrode 20-1c is aligned with the electrodes 20-1a and 20-1b in a straight line when the workpiece 24 is vertically sandwiched by the electrodes 20-1a and 20-1b. It is inserted into the inside 29. Similarly, when the workpiece 24 is sandwiched by the electrodes 20-2a and 20-2b in the vertical direction, the intermediate electrode 20-2c is wound so as to align with the electrodes 20-2a and 20-2b. It is inserted into the interior 29 of the body 25.

続いて、制御部5は、拡管機構40を巻回体25の内部29から抜いて、拡管機構40による拡管を解除させた上で、溶接ヘッド2の加圧機構21−1a,21−1b,21−2a,21−2bを制御し、電極20−1a,20−1bによって被接合物24を上下方向から挟み込み加圧すると同時に、電極20−2a,20−2bによって被接合物24を上下方向から挟み込み加圧する(図4ステップS3)。このとき、集電体26は、集電体26のプロジェクション27−1a,27−1b,27−2a,27−2bが、電極20−1a,20−1b,20−2a,20−2bと巻回体25との間に位置するように配置される。   Subsequently, the control unit 5 pulls the pipe expanding mechanism 40 out of the inside 29 of the wound body 25 to release the pipe expanding by the pipe expanding mechanism 40, and then pressurizing mechanisms 21-1 a, 21-1 b, and the like of the welding head 2. 21-2a and 21-2b are controlled, and the object 24 is vertically sandwiched by the electrodes 20-1a and 20-1b and pressurized, and at the same time, the object 24 is vertically oriented by the electrodes 20-2a and 20-2b. Then, sandwich and pressurize (step S3 in FIG. 4). At this time, in the current collector 26, the projections 27-1a, 27-1b, 27-2a, 27-2b of the current collector 26 are wound with the electrodes 20-1a, 20-1b, 20-2a, 20-2b. It is arranged so as to be located between the circular body 25.

なお、図2の例では、加圧機構21−1a,21−1b,21−2a,21−2bがそれぞれ電極20−1a,20−1b,20−2a,20−2bに圧力を加えるようになっているが、上部電極20−1a,20−2aと下部電極20−1b,20−2bのうちどちらか一方の側のみに圧力を加えるようにしてもよいことは言うまでもない。   In the example shown in FIG. 2, the pressing mechanisms 21-1a, 21-1b, 21-2a, 21-2b apply pressure to the electrodes 20-1a, 20-1b, 20-2a, 20-2b, respectively. However, it goes without saying that pressure may be applied to only one of the upper electrodes 20-1a and 20-2a and the lower electrodes 20-1b and 20-2b.

加圧機構21−1a,21−1b,21−2a,21−2bによる加圧の完了後、制御部5は、溶接電源1−1,1−2を制御して、溶接電源1−1から電極20−1a,20−1b間に溶接電流を供給させると同時に、溶接電源1−2から電極20−2a,20−2b間に溶接電流を供給させる。   After completion of pressurization by pressurization mechanisms 21-1a, 21-1b, 21-2a, 21-2b, control unit 5 controls welding power sources 1-1, 1-2 to control welding power source 1-1 from welding power source 1-1. At the same time as supplying welding current between the electrodes 20-1a and 20-1b, welding current is supplied between the welding power source 1-2 and the electrodes 20-2a and 20-2b.

溶接電源1−1から供給される電流は、上部電極20−1a、集電体26、巻回体25、BP28−1a、中間電極20−1c、BP28−1b、巻回体25、集電体26、下部電極20−1bという経路で流れる。また、溶接電源1−2から供給される電流は、上部電極20−2a、集電体26、巻回体25、BP28−2a、中間電極20−2c、BP28−2b、巻回体25、集電体26、下部電極20−2bという経路で流れる。   The current supplied from welding power source 1-1 is upper electrode 20-1a, current collector 26, wound body 25, BP 28-1a, intermediate electrode 20-1c, BP 28-1b, wound body 25, current collector 26, and the lower electrode 20-1b. In addition, the current supplied from welding power source 1-2 is upper electrode 20-2a, current collector 26, wound body 25, BP28-2a, intermediate electrode 20-2c, BP28-2b, wound body 25, and collected current. The current flows in the path of the current collector 26 and the lower electrode 20-2b.

このような溶接電流の供給により、発生するジュール熱で被接合物24の接合面(金属同士の接合面)を溶融させて接合する。本実施の形態では、加圧機構21−1a,21−1bによる加圧によって集電体26のプロジェクション27−1a,27−1bが変形して低くなり、このプロジェクション27−1aの先端部と、プロジェクション27−1aの真下の位置の巻回体25と、プロジェクション27−1aの真下の位置のBP28−1aとが溶融して、集電体26と巻回体25とBP28−1aとが接合されると共に、プロジェクション27−1bの先端部と、プロジェクション27−1bの真上の位置の巻回体25と、プロジェクション27−1bの真上の位置のBP28−1bとが溶融して、集電体26と巻回体25とBP28−1bとが接合される。   By supplying such a welding current, the bonding surface (the bonding surface between metals) of the object 24 is melted and bonded by the generated Joule heat. In the present embodiment, the projections 27-1a and 27-1b of the current collector 26 are deformed and lowered by the pressure applied by the pressure mechanisms 21-1a and 21-1b, and the tip of the projection 27-1a, Winding body 25 at a position immediately below projection 27-1a and BP 28-1a at a position immediately below projection 27-1a are melted to join current collector 26, winding body 25 and BP 28-1a. , The tip of the projection 27-1b, the wound body 25 at a position just above the projection 27-1b, and the BP 28-1b at a position just above the projection 27-1b, 26, the wound body 25 and the BP 28-1b are joined.

同様に、加圧機構21−2a,21−2bによる加圧によってプロジェクション27−2a,27−2bが変形して低くなり、プロジェクション27−2aの先端部と、プロジェクション27−2aの真下の位置の巻回体25と、プロジェクション27−2aの真下の位置のBP28−2aとが溶融して、集電体26と巻回体25とBP28−2aとが接合されると共に、プロジェクション27−2bの先端部と、プロジェクション27−2bの真上の位置の巻回体25と、プロジェクション27−2bの真上の位置のBP28−2bとが溶融して、集電体26と巻回体25とBP28−2bとが接合される。   Similarly, the projections 27-2a and 27-2b are deformed and lowered by the pressure applied by the pressure mechanisms 21-2a and 21-2b, and the tip of the projection 27-2a and the position directly below the projection 27-2a The wound body 25 and the BP 28-2a at a position immediately below the projection 27-2a are melted to join the current collector 26, the wound body 25 and the BP 28-2a, and the tip of the projection 27-2b. Portion, the wound body 25 at a position directly above the projection 27-2b, and the BP 28-2b at a position directly above the projection 27-2b are melted to form the current collector 26, the wound body 25 and the BP 28- 2b is joined.

なお、BP28−1a,28−1b,28−2a,28−2bの厚さは、溶接の際に巻回体25と接する部分が溶けて中間電極20−1c,20−2cと接する部分が溶けない厚さに設定すればよく、例えば集電体26の厚さの1/2以上が適当である。   The thickness of BP28-1a, 28-1b, 28-2a, 28-2b is such that the part in contact with wound body 25 melts in welding and the part in contact with intermediate electrodes 20-1c, 20-2c melts The thickness may be set to no thickness, for example, 1/2 or more of the thickness of the current collector 26 is appropriate.

図5は溶接中の溶接電流I1、溶接電圧V1、溶接電力W1の変化の1例を示す図、図6は溶接中の電極間抵抗R1の変化の1例を示す図、図7は溶接中の荷重G1、変位量D1の変化の1例を示す図である。図5〜図7の横軸は時間である。なお、図5の例では、溶接電流I1および溶接電圧V1が正のパルスについてのみ記載しているが、溶接電源1−1のトランス(不図示)の1次側に交流電圧を印加しているので、溶接電流I1および溶接電圧V1が負のパルスの場合もある。なお、溶接電流I2、溶接電圧V2、溶接電力W2、電極間抵抗R2、荷重G2、変位量D2の変化も、溶接電流I1、溶接電圧V1、溶接電力W1、電極間抵抗R1、荷重G1、変位量D1と同様である。   FIG. 5 shows an example of changes in welding current I1, welding voltage V1 and welding power W1 during welding, FIG. 6 shows an example of changes in inter-electrode resistance R1 during welding, and FIG. 7 shows during welding It is a figure which shows one example of the change of the load G1 of this, and the displacement amount D1. The horizontal axis in FIGS. 5 to 7 is time. Although only welding current I1 and welding voltage V1 indicate positive pulses in the example of FIG. 5, an AC voltage is applied to the primary side of a transformer (not shown) of welding power source 1-1. Therefore, the welding current I1 and the welding voltage V1 may be negative pulses. In addition, changes in welding current I2, welding voltage V2, welding power W2, inter-electrode resistance R2, load G2 and displacement D2 are also welding current I1, welding voltage V1, welding power W1, inter-electrode resistance R1, load G1, displacement Similar to quantity D1.

制御部5は、溶接電源1−1,1−2を制御して、電極20−1a,20−1b間および電極20−2a,20−2b間に図5に示したようなパルス電流を印加させ、溶接中に検出される物理量をリアルタイムで監視し、物理量が所定の終了条件値に達した時点で溶接電源1−1,1−2の動作を停止させて、電極20−1a,20−1b間および電極20−2a,20−2b間への通電を終了させ、この通電終了時から所定の冷却時間(例えば数msec)が経過した後に、次のパルス電流の印加を行う。このように、制御部5は、電極20−1a〜20−1cと溶接電源1−1の組と、電極20−2a〜20−2cと溶接電源1−2の組とが同期して溶接を開始するように通電制御を行なう。   Control unit 5 controls welding power sources 1-1, 1-2 to apply a pulse current as shown in FIG. 5 between electrodes 20-1a, 20-1b and between electrodes 20-2a, 20-2b. Monitoring the physical quantity detected during welding in real time, and stopping the operation of the welding power sources 1-1, 1-2 when the physical quantity reaches a predetermined termination condition value, and the electrodes 20-1a, 20- Energization between 1b and between the electrodes 20-2a and 20-2b is ended, and after a predetermined cooling time (for example, several msec) has elapsed from the end of the energization, the next pulse current is applied. As described above, the control unit 5 performs welding in synchronization with the combination of the electrodes 20-1a to 20-1c and the welding power supply 1-1, and the combination of the electrodes 20-2a to 20-2c and the welding power supply 1-2. Conduct energization control to start.

記憶部7には、溶接の通電パルス毎の終了条件値として、溶接中に検出される物理量の望ましい値が予め設定されている。これらの物理量としては、溶接電流値I0、溶接電圧値V0、電極間抵抗値R0、荷重値G0、変位量D0がある。溶接装置のユーザは、予め対象となる被接合物24を用いて終了条件値設定のための溶接試験を行い、適切な溶接が得られたときの物理量の値を記憶部7に設定しておけばよい。 In the storage unit 7, desired values of physical quantities to be detected during welding are set in advance as termination condition values for each of the welding conduction pulses. As these physical quantities, there are welding current value I 0 , welding voltage value V 0 , inter-electrode resistance value R 0 , load value G 0 and displacement amount D 0 . The user of the welding apparatus can perform a welding test for setting the termination condition value beforehand using the target object 24 and set the value of the physical quantity when the appropriate welding is obtained in the storage unit 7. Just do it.

本実施の形態では、記憶部7に予め設定された電極間抵抗値R0を終了条件値とする抵抗制御方式で最初に溶接を行う(図4ステップS4)。具体的には、制御部5は、電極間抵抗値のフィードバックに基づく抵抗制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの抵抗検出部33で検出される電極間抵抗値R1,R2を監視して、電極間抵抗値R1が記憶部7に予め設定された電極間抵抗値R0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また電極間抵抗値R2が電極間抵抗値R0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 In the present embodiment, welding is first performed by the resistance control method in which the inter-electrode resistance value R0 preset in the storage unit 7 is used as the end condition value (step S4 in FIG. 4). Specifically, when the control unit 5 performs resistance control based on feedback of the inter-electrode resistance value, the electrodes detected by the respective resistance detection units 33 of the physical quantity detection units 3-1 and 3-2 for each energization pulse The inter-electrode resistance values R1 and R2 are monitored, and when the inter-electrode resistance value R1 reaches the inter-electrode resistance value R0 preset in the storage unit 7, the welding power source 1-1 to the electrodes 20-1a and 20-1b to terminate the energization of the, also the inter-electrode resistance value R2 electrodes 20-2a from the welding power source 1-2 at which point the inter-electrode resistance value R 0, and terminates the energization of the 20-2b.

制御部5は、抵抗制御方式の溶接をn回行う(nは1以上の整数)。ここでは、電極20−1a,20−1b,20−2a,20−2bに図5に示したような1個のパルス電流を印加することを1回と数える。抵抗制御方式の溶接を複数回行う場合、1回毎に終了条件値が変わるように予め設定しておく。例えば抵抗制御方式の溶接を2回行う場合、1回目の終了条件値である電極間抵抗値R0と2回目の終了条件値である電極間抵抗値R02とは、R0>R02の関係にある。1回毎に終了条件値が低くなる理由は、溶接を重ねる度に電極間抵抗値Rが低くなるからである。このように、抵抗制御方式の溶接を複数回行う場合、1回毎に終了条件値を設定しておく必要がある。また、抵抗制御方式の溶接を複数回行う場合、1回の溶接終了時(通電終了時)から所定の冷却時間が経過した後に、次の溶接を行うようにする。 The control unit 5 performs resistance control type welding n times (n is an integer of 1 or more). Here, applying one pulse current as shown in FIG. 5 to the electrodes 20-1a, 20-1b, 20-2a and 20-2b is counted as one time. When the resistance control method of welding is performed a plurality of times, the end condition value is set in advance so as to change every time. For example, when the resistance control method of welding is performed twice, the inter-electrode resistance value R 0 which is the first end condition value and the inter-electrode resistance value R 02 which is the second end condition value are such that R 0 > R 02 It is related. The reason why the end condition value decreases every time is that the inter-electrode resistance value R decreases as welding is repeated. As described above, in the case where the resistance control method of welding is performed a plurality of times, it is necessary to set an end condition value for each time. When the resistance control method of welding is performed a plurality of times, the next welding is performed after a predetermined cooling time has elapsed from the end of one welding (the end of energization).

なお、本実施の形態では、上部電極と下部電極と中間電極の組を2組設けているので、上部電極20−1aと下部電極20−1bと中間電極20−1cの組と、上部電極20−2aと下部電極20−2bと中間電極20−2cの組のうち、どちらかの組の電極間抵抗値Rが先に終了条件値に達する可能性がある。   In the present embodiment, since two pairs of the upper electrode, the lower electrode and the intermediate electrode are provided, the pair of the upper electrode 20-1a, the lower electrode 20-1b and the intermediate electrode 20-1c, and the upper electrode 20 are provided. Among the sets of -2a, the lower electrode 20-2b, and the intermediate electrode 20-2c, there is a possibility that the inter-electrode resistance value R in any one set may reach the termination condition value first.

制御部5は、例えば電極間抵抗値R1が先に終了条件値に達した場合、電極間抵抗値R2が終了条件値に達するのを待ち、電極間抵抗値R2が終了条件値に達してから所定の冷却時間が経過した後に、各組が同期して溶接を開始するように次の溶接を行う。また、電極間抵抗値R2が先に終了条件値に達した場合、電極間抵抗値R1が終了条件値に達するのを待ち、電極間抵抗値R1が終了条件値に達してから所定の冷却時間が経過した後に、次の溶接を行うようにする。   For example, when the inter-electrode resistance value R1 reaches the end condition value first, the control unit 5 waits for the inter-electrode resistance value R2 to reach the end condition value, and after the inter-electrode resistance value R2 reaches the end condition value. After the predetermined cooling time has elapsed, the next welding is performed so that each pair synchronously starts welding. In addition, when the inter-electrode resistance value R2 reaches the end condition value first, it waits for the inter-electrode resistance value R1 to reach the end condition value, and a predetermined cooling time after the inter-electrode resistance value R1 reaches the end condition value. After the lapse of time, perform the next welding.

次に、制御部5は、抵抗制御方式のn回の溶接が終了し(図4ステップS5においてYES)、この溶接終了時(通電終了時)から所定の冷却時間が経過した後に、他の制御方式で溶接を行う(図4ステップS6)。このステップS6の溶接においても、各組が同期して溶接を開始するように通電制御を行なう。   Next, the control unit 5 completes the n control weldings (YES in step S5 in FIG. 4), and performs another control after a predetermined cooling time has elapsed from the end of the welding (when the energization is completed). Welding is performed according to the method (step S6 in FIG. 4). Also in the welding of this step S6, energization control is performed so that each group starts welding in synchronization.

抵抗制御方式以外の制御方式としては、溶接電流値I0を終了条件値とする電流制御方式、溶接電圧値V0を終了条件値とする電圧制御方式、溶接電力値W0を終了条件値とする電力制御方式、荷重値G0を終了条件値とする荷重制御方式、変位量D0を終了条件値とする変位制御方式がある。 As control methods other than the resistance control method, a current control method using welding current value I 0 as an end condition value, a voltage control method using welding voltage value V 0 as an end condition value, welding power value W 0 as an end condition value There are a power control method to be used, a load control method using a load value G 0 as an end condition value, and a displacement control method using a displacement amount D 0 as an end condition value.

制御部5は、溶接電流のフィードバックに基づく電流制御を行う場合、図5に示したような通電パルス毎に物理量検出部3−1,3−2のそれぞれの電流検出部30で検出される溶接電流I1,I2をリアルタイムで監視して、溶接電流I1の絶対値が記憶部7に予め設定された溶接電流値I0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また溶接電流I2の絶対値が溶接電流値I0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When the control unit 5 performs current control based on feedback of welding current, welding is detected by each of the current detection units 30 of the physical quantity detection units 3-1 and 3-2 for each energization pulse as shown in FIG. The currents I1 and I2 are monitored in real time, and when the absolute value of the welding current I1 reaches the welding current value I 0 preset in the storage unit 7, the welding power source 1-1 to the electrodes 20-1a and 20-1b to terminate the energization of the, also the absolute value of the welding current electrode 20-2a from the welding power source 1-2 at which point I 0 of the welding current I2, to terminate the energization of the 20-2b.

制御部5は、溶接電圧のフィードバックに基づく電圧制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの電圧検出部31で検出される溶接電圧V1,V2を監視して、溶接電圧V1の絶対値が記憶部7に予め設定された溶接電圧値V0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また溶接電圧V2の絶対値が溶接電圧値V0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When performing voltage control based on feedback of welding voltage, control unit 5 monitors welding voltages V1 and V2 detected by voltage detection unit 31 of physical quantity detection units 3-1 and 3-2 for each energization pulse. Te, the absolute value of the electrodes 20-1a from the welding power source 1-1 at which point the welding voltage value V 0 which is previously set in the storage unit 7 of the welding voltage V1, to terminate the energization of the 20-1b, also welding electrode 20-2a from the voltage V2 of the absolute value of the welding power source 1-2 at which point the welding voltage value V 0, to terminate the energization of the 20-2b.

制御部5は、溶接電力のフィードバックに基づく電力制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの電力検出部32で検出される溶接電力W1,W2を監視して、溶接電力W1が記憶部7に予め設定された溶接電力値W0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また溶接電力W2が溶接電力値W0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When performing power control based on feedback of welding power, control unit 5 monitors welding power W1, W2 detected by power detection unit 32 of each of physical quantity detection units 3-1, 3-2 for each energization pulse. Te, welding power W1 electrodes 20-1a from the welding power source 1-1 at which point the welding power value W 0 which is previously set in the storage unit 7 terminates the energization of the 20-1b, also welding power W2 electrodes 20-2a from the welding power source 1-2 at which point the welding power value W 0, to terminate the energization of the 20-2b.

制御部5は、荷重のフィードバックに基づく荷重制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの荷重検出部34で検出される荷重G1,G2を監視して、荷重G1が記憶部7に予め設定された荷重値G0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また荷重G2が荷重値G0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When performing load control based on load feedback, the control unit 5 monitors the loads G1 and G2 detected by the load detection units 34 of the physical quantity detection units 3-1 and 3-2 for each energization pulse, and load G1 electrodes from the welding power source 1-1 when it reaches the load value G 0 which is previously set in the storage unit 7 20-1a, to terminate the energization of the 20-1b, also load G2 is the load value G 0 When it reaches, the energization from the welding power source 1-2 to the electrodes 20-2a and 20-2b is ended.

制御部5は、変位量のフィードバックに基づく変位制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの変位検出部35で検出される変位量D1,D2を監視して、変位量D1が記憶部7に予め設定された変位量D0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また変位量D2が変位量D0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When the displacement control based on the feedback of the displacement amount is performed, the control unit 5 monitors the displacement amounts D1 and D2 detected by the displacement detection units 35 of the physical quantity detection units 3-1 and 3-2 for each energization pulse. Te, displacement D1 is preset displacement D 0 electrode from the welding power source 1-1 at which point 20-1a in the storage unit 7 terminates the energization of the 20-1b, also the displacement amount D2 is displaced When the amount D 0 is reached, the current supply from the welding power source 1-2 to the electrodes 20-2 a and 20-2 b is terminated.

制御部5は、電流制御方式、電圧制御方式、電力制御方式、荷重制御方式、変位制御方式のいずれかの制御方式の溶接をm回行う(mは1以上の整数)。これらの制御方式の溶接を複数回行う場合、1回毎に終了条件値が変わるようにしてもよいし、複数回の溶接の終了条件値として共通の値を用いてもよい。また、1回毎あるいは複数回毎に制御方式を変えてもよい。   The control unit 5 performs m-time welding (m is an integer of 1 or more) of any control method of a current control method, a voltage control method, a power control method, a load control method, and a displacement control method. When welding of these control methods is performed a plurality of times, the end condition value may be changed every time, or a common value may be used as the end condition value of the plurality of times of welding. Also, the control method may be changed once or plural times.

また、抵抗制御方式の場合と同様に、溶接を複数回行う場合、電極20−1a〜20−1cと溶接電源1−1の組と、電極20−2a〜20−2cと溶接電源1−2の組のうち、どちらかの組の物理量(電流、電圧、電力、荷重、変位)が先に終了条件値に達する可能性がある。この場合、抵抗制御方式と同様に、一方の組の物理量が先に終了条件値に達した後、他方の組の物理量が終了条件値に達するのを待ち、この他方の組の物理量が終了条件値に達してから所定の冷却時間が経過した後に、各組が同期して溶接を開始するように次の溶接を行なえばよい。   Further, as in the case of the resistance control method, when welding is performed a plurality of times, a combination of the electrodes 20-1a to 20-1c and the welding power supply 1-1, the electrodes 20-2a to 20-2c and the welding power supply 1-2 It is possible that one of the sets of physical quantities (current, voltage, power, load, displacement) reaches the end condition value first. In this case, as in the resistance control method, after the physical quantity of one set reaches the end condition value first, it waits for the physical quantity of the other set to reach the end condition value, and the physical quantity of the other set is the end condition After a predetermined cooling time has elapsed since the value has been reached, the next welding may be performed so that each set starts welding in synchronization.

m回の溶接が終了した時点で(図4ステップS7においてYES)、中間電極20−1c,20−2cを巻回体25の内部から抜く必要がある。すなわち、制御部5は、加圧機構21−1a,21−1b,21−2a,21−2bを制御して、電極20−1a,20−1b,20−2a,20−2bによる被接合物24への加圧を解除させた後(図4ステップS8)、挿抜機構41を制御する。挿抜機構41は、巻回体25の軸方向に沿って中間電極20−1c,20−2cを巻回体25の内部29から引き抜く(図4ステップS9)。   When m times of welding are completed (YES in FIG. 4 step S7), it is necessary to remove the intermediate electrodes 20-1c and 20-2c from the inside of the wound body 25. That is, the control unit 5 controls the pressing mechanisms 21-1a, 21-1b, 21-2a, 21-2b to be bonded by the electrodes 20-1a, 20-1b, 20-2a, 20-2b. After releasing the pressure applied to the H.24 (step S8 in FIG. 4), the insertion and removal mechanism 41 is controlled. The insertion and removal mechanism 41 extracts the intermediate electrodes 20-1c and 20-2c from the inside 29 of the wound body 25 along the axial direction of the wound body 25 (step S9 in FIG. 4).

溶接装置の処理が全て終了するまで吸着機構22−1a,22−1b,22−2a,22−2bがBP28−1a,28−1b,28−2a,28−2bを真空吸着しているので、この真空吸着が中間電極20−1c,20−2cの引き抜きに抗する力として作用する。したがって、挿抜機構41が巻回体25から中間電極20−1c,20−2cを引き抜くのに必要な力が小さい場合、BP28−1a,28−1b,28−2a,28−2bが巻回体25と溶接されておらず、中間電極20−1c,20−2cと共に巻回体25から外れてしまった可能性がある。   The suction mechanisms 22-1a, 22-1b, 22-2a, 22-2b vacuum-adsorb the BPs 28-1a, 28-1b, 28-2a, 28-2b until all the processing of the welding apparatus is completed. The vacuum adsorption acts as a force against the withdrawal of the intermediate electrodes 20-1c and 20-2c. Therefore, when the force required for the insertion and removal mechanism 41 to withdraw the intermediate electrodes 20-1c and 20-2c from the wound body 25 is small, the BPs 28-1a, 28-1b, 28-2a, and 28-2b are wound. There is a possibility that the coil 25 is not welded and has been detached from the wound body 25 with the intermediate electrodes 20-1c and 20-2c.

挿抜機構41には、図示しないロードセルが設けられており、巻回体25から中間電極20−1c,20−2cを引き抜くのに必要な力の大きさをロードセルで電気信号に変換して、このロードセルの出力を制御部5に通知できるようになっている。制御部5は、挿抜機構41が巻回体25から中間電極20−1c,20−2cを引き抜くのに必要な力が所定の閾値以下の場合(図4ステップS10)、溶接が不適切であると判断して、例えば表示部8に警報メッセージを表示させることにより、警報を発する(図4ステップS11)。   The loading and unloading mechanism 41 is provided with a load cell (not shown), and the load cell converts the magnitude of the force necessary to withdraw the intermediate electrodes 20-1c and 20-2c from the wound body 25 into electrical signals, The output of the load cell can be notified to the control unit 5. If the force required for the insertion and removal mechanism 41 to pull out the intermediate electrodes 20-1c and 20-2c from the winding body 25 is less than a predetermined threshold (FIG. 4, step S10), the controller 5 is improper in welding. For example, the alarm message is displayed on the display unit 8 to issue an alarm (step S11 in FIG. 4).

また、真空圧力検出部4−1は吸着機構22−1a,22−1bの真空圧力を検出し、真空圧力検出部4−2は吸着機構22−2a,22−2bの真空圧力を検出する。挿抜機構41が巻回体25から中間電極20−1c,20−2cを正しく引き抜くことができれば、真空圧力検出部4−1,4−2が検出する真空圧力が高まる(すなわち、真空度が低下する)。一方、BP28−1a,28−1b,28−2a,28−2bが中間電極20−1c,20−2cと共に巻回体25から外れてしまった場合には、真空圧力が低いままとなる。   The vacuum pressure detection unit 4-1 detects the vacuum pressure of the adsorption mechanisms 22-1a and 22-1b, and the vacuum pressure detection unit 4-2 detects the vacuum pressure of the adsorption mechanisms 22-2a and 22-2b. If the insertion and removal mechanism 41 can properly pull out the intermediate electrodes 20-1c and 20-2c from the wound body 25, the vacuum pressure detected by the vacuum pressure detection unit 4-1, 4-2 increases (that is, the degree of vacuum decreases) To do). On the other hand, when the BPs 28-1a, 28-1b, 28-2a, 28-2b are separated from the wound body 25 together with the intermediate electrodes 20-1c, 20-2c, the vacuum pressure remains low.

そこで、制御部5は、挿抜機構41が巻回体25から中間電極20−1c,20−2cを引き抜いたときに、真空圧力検出部4−1,4−2が検出した真空圧力のうち少なくとも1つの真空圧力が所定の真空圧力閾値以下の場合(図4ステップS12)、溶接が不適切であると判断して、例えば表示部8に警報メッセージを表示させることにより、警報を発する(ステップS11)。
以上で、溶接装置の処理が終了する。なお、制御部5は、溶接中に検出した物理量の波形を表示部8に表示させるようにしてもよい。
Therefore, when the inserting and removing mechanism 41 withdraws the intermediate electrodes 20-1c and 20-2c from the winding body 25, the control unit 5 performs at least the vacuum pressure detected by the vacuum pressure detecting unit 4-1, 4-2. If one vacuum pressure is lower than a predetermined vacuum pressure threshold (step S12 in FIG. 4), it is determined that welding is inappropriate, and an alarm message is issued, for example, by displaying an alarm message on the display unit 8 (step S11). ).
Above, processing of a welding device is completed. The control unit 5 may cause the display unit 8 to display the waveform of the physical quantity detected during welding.

以上のように、本実施の形態では、上部電極と下部電極と中間電極の組を2組設け、各組が同期して溶接を開始するように通電を行ない、被接合物24の上下2点ずつ、計4点の溶接を同時に行なうようにしたので、従来の抵抗溶接において複数点の溶接を行なう際に問題となった電流の分流をなくすことができる。   As described above, in the present embodiment, two pairs of the upper electrode, the lower electrode, and the intermediate electrode are provided, and each pair is energized in synchronization to start welding, and two points above and below the object 24 Since the welding of a total of four points is simultaneously performed, it is possible to eliminate the diversion of the current which has become a problem when performing welding of a plurality of points in the conventional resistance welding.

その結果、本実施の形態では、適切な溶接を実現することができ、また溶接条件の設定を簡略化することができる。また、本実施の形態では、複数点の溶接を同時に行なうことから、溶接回数を減らすことができ、溶接工程のタクトタイムの改善を図ることができる。また、本実施の形態では、分流に伴う溶接電流の増加をなくすことができるので、溶接電源1台あたりの容量を小さくすることができる。   As a result, in the present embodiment, appropriate welding can be realized, and setting of welding conditions can be simplified. Further, in the present embodiment, since welding of a plurality of points is performed simultaneously, the number of times of welding can be reduced, and tact time of the welding process can be improved. Further, in the present embodiment, an increase in welding current due to the diversion can be eliminated, so the capacity per welding power source can be reduced.

ただし、分流をなくすためには、上部電極20−1aと下部電極20−1bと中間電極20−1cの組と、上部電極20−2aと下部電極20−2bと中間電極20−2cの組で被接合物24に対する通電方向を同一にする必要がある。本実施の形態では、上部電極20−1aから下部電極20−1bの方向へ電流が流れ、同時に上部電極20−2aから下部電極20−2bの方向へ電流が流れるので、被接合物24に対する通電方向は同一である。   However, in order to eliminate the diversion, a set of the upper electrode 20-1a, the lower electrode 20-1b, and the intermediate electrode 20-1c, and a set of the upper electrode 20-2a, the lower electrode 20-2b, and the intermediate electrode 20-2c It is necessary to make the direction of current supply to the workpiece 24 the same. In the present embodiment, a current flows from the upper electrode 20-1a to the lower electrode 20-1b, and a current flows from the upper electrode 20-2a to the lower electrode 20-2b at the same time. The directions are the same.

また、本実施の形態では、抵抗制御方式の溶接をn回行った後に、他の制御方式の溶接をm回行う。初回の溶接では、電極20−1a〜20−1c,20−2a〜20−2cの汚れや被接合物表面の酸化膜のために電極20−1a,20−1b間および電極20−2a,20−2b間の通電路が不安定である。そこで、塵の発生を抑えるために、抵抗制御方式の溶接をn回行って、電極20−1a〜20−1c,20−2a〜20−2cの汚れや被接合物表面の酸化膜を除去し、電極間抵抗値R1,R2が低下して通電路が安定したところで、他の制御方式の溶接をm回行う。これにより、本実施の形態では、電極20−1a〜20−1c,20−2a〜20−2cの汚れや被接合物表面の酸化膜の影響を軽減することができ、適切な溶接を実現することができる。   Further, in the present embodiment, after welding of the resistance control method is performed n times, welding of another control method is performed m times. In the first welding, between the electrodes 20-1a and 20-1b and the electrodes 20-2a and 20 because of contamination of the electrodes 20-1a to 20-1c and 20-2a to 20-2c and an oxide film on the surface of the object to be bonded. The current path between -2b is unstable. Therefore, in order to suppress the generation of dust, resistance control welding is performed n times to remove the dirt on the electrodes 20-1a to 20-1c and 20-2a to 20-2c and the oxide film on the surface of the object to be bonded. When the inter-electrode resistance values R1 and R2 decrease and the current passage is stabilized, welding of another control method is performed m times. Thereby, in the present embodiment, the influence of the dirt on the electrodes 20-1a to 20-1c and 20-2a to 20-2c and the oxide film on the surface of the object to be bonded can be reduced, and appropriate welding can be realized. be able to.

また、図4のステップS6で行う溶接の制御方式として、従来の制御方式を採用してもよい。ここでの制御方式としては、所定の溶接電流Iを一定時間供給する定電流制御方式、所定の溶接電圧Vを一定時間供給する定電圧制御方式、所定の溶接電力Wを一定時間供給する定電力制御方式などがある。   Moreover, you may employ | adopt the conventional control system as a control system of welding performed by FIG.4 S6. The control method here is a constant current control method of supplying a predetermined welding current I for a fixed time, a constant voltage control method of supplying a predetermined welding voltage V for a predetermined time, constant power of supplying a predetermined welding power W for a predetermined time There is a control method etc.

なお、本実施の形態では、上部電極と下部電極と中間電極の組を2組設けているが、これに限るものではなく、3組以上設けるようにしてもよい。例えば上部電極と下部電極と中間電極の組を3組設けるとすれば、被接合物24の上下3点ずつ、計6点の溶接を同時に行なうことが可能である。この場合、溶接電源と物理量検出部と真空圧力検出部とを組毎に設ける必要がある。   In the present embodiment, two sets of the upper electrode, the lower electrode, and the intermediate electrode are provided. However, the present invention is not limited to this, and three or more sets may be provided. For example, if three sets of the upper electrode, the lower electrode, and the intermediate electrode are provided, it is possible to simultaneously perform welding at a total of six points at the upper and lower three points of the article 24. In this case, the welding power source, the physical quantity detection unit, and the vacuum pressure detection unit need to be provided for each set.

また、本実施の形態では、集電体26を巻回体25の上下に配置しているが、集電体26を巻回体25の上側または下側のどちらか一方のみに配置するようにしてもよい。BPは巻回体25の複数枚の金属箔を間に挟んで集電体26と対向するように配置されるので、巻回体25の上側または下側のうち、集電体26が設けられる側にのみBPを配置することになる。また、集電体26を巻回体25の上側または下側のどちらか一方のみに配置する場合、集電体26が配置されない側については、上部電極または下部電極と巻回体25の外周面とが直に接触し、中間電極と巻回体25の内周面とが直に接触することになる。   Further, in the present embodiment, the current collectors 26 are disposed above and below the wound body 25, but the current collectors 26 are disposed only on either the upper side or the lower side of the wound body 25. May be The BP is disposed to face the current collector 26 with the plurality of metal foils of the wound body 25 interposed therebetween, so that the current collector 26 is provided on the upper or lower side of the wound body 25. The BP will be placed only on the side. Further, when the current collector 26 is disposed only on either the upper side or the lower side of the wound body 25, the upper electrode or the lower electrode and the outer peripheral surface of the wound body 25 are not provided on the side where the current collector 26 is not disposed. Are in direct contact with each other, and the intermediate electrode and the inner circumferential surface of the winding body 25 are in direct contact with each other.

集電体26を巻回体25の上下に配置する場合と比較して、集電体26を巻回体25の上側または下側のどちらか一方のみに配置する場合、一度に溶接できる点数が減るものの、上部電極と下部電極と中間電極の組を2組設ける場合で計2点、上部電極と下部電極と中間電極の組を3組設ける場合で計3点の溶接を同時に行なうことが可能である。   When the current collectors 26 are disposed on only one of the upper side and the lower side of the wound body 25 as compared with the case where the current collectors 26 are disposed on the upper and lower sides of the wound body 25, Although it is reduced, in the case where two sets of the upper electrode, the lower electrode and the middle electrode are provided, the welding can be performed simultaneously in the case where the two sets of the upper electrode, the lower electrode and the middle electrode are provided simultaneously It is.

また、本実施の形態では、ステップS2で中間電極20−1c,20−2cを巻回体25の内部29に挿入し、ステップS9で中間電極20−1c,20−2cを巻回体25の内部29から引き抜いているが、これに限るものではなく、挿抜機構41は、電極に対して被接合物24の挿抜を行なってもよい。   Further, in the present embodiment, the intermediate electrodes 20-1c and 20-2c are inserted into the inside 29 of the wound body 25 in step S2, and the intermediate electrodes 20-1c and 20-2c are inserted in the wound body 25 in step S9. Although it pulls out from internal part 29, it does not restrict to this, and insertion and removal mechanism 41 may carry out insertion and removal of article 24 to and from an electrode.

この場合、挿抜機構41は、中間電極20−1cの吸着機構22−1aによって吸着されたBP28−1aと上部電極20−1aとの間、中間電極20−1cの吸着機構22−1bによって吸着されたBP28−1bと下部電極20−1bとの間、中間電極20−2cのの吸着機構22−2aによって吸着されたBP28−2aと上部電極20−2aとの間、および中間電極20−2cの吸着機構22−2bによって吸着されたBP28−2bと下部電極20−2bとの間に、巻回体25の軸方向に沿って巻回体25と集電体26とを挿入すればよい(ステップS2)。   In this case, the insertion and removal mechanism 41 is adsorbed by the adsorption mechanism 22-1b of the intermediate electrode 20-1c between the BP 28-1a adsorbed by the adsorption mechanism 22-1a of the intermediate electrode 20-1c and the upper electrode 20-1a. Between the BP 28-1b and the lower electrode 20-1b, the BP 28-2a adsorbed by the adsorption mechanism 22-2a of the intermediate electrode 20-2c, and the upper electrode 20-2a, and the intermediate electrode 20-2c. The winding body 25 and the current collector 26 may be inserted along the axial direction of the winding body 25 between the BP 28-2 b adsorbed by the adsorption mechanism 22-2 b and the lower electrode 20-2 b (step S2).

また、挿抜機構41は、巻回体25と集電体26とBP28−1a,28−1b,28−2a,28−2bとが溶接された被接合物24を、巻回体25の軸方向に沿って電極20−1a〜20−1c,20−2a〜20−2cから引き抜くようにすればよい(ステップS9)。   In addition, the insertion and removal mechanism 41 includes the workpiece 24 in which the wound body 25, the current collector 26, and the BPs 28-1a, 28-1b, 28-2a, and 28-2b are welded in the axial direction of the wound body 25. The electrodes 20-1a to 20-1c and 20-2a to 20-2c may be drawn along (step S9).

本実施の形態では、中間電極20−1c,20−2cの周りに吸着機構22−1a,22−1b,22−2a,22−2bの真空吸着パッドを設けているが、中間電極20−1c,20−2c自体に吸着ノズルを設けるようにしてもよい。
また、本実施の形態では、巻回体25の例として、巻回式リチウムイオン電池を例に挙げて説明しているが、他の巻回体に本発明を適用することも可能である。
In the present embodiment, the vacuum suction pads of the suction mechanisms 22-1a, 22-1b, 22-2a, 22-2b are provided around the intermediate electrodes 20-1c, 20-2c, but the intermediate electrodes 20-1c are provided. 20-2c itself may be provided with a suction nozzle.
Further, in the present embodiment, a wound lithium ion battery is described as an example of the wound body 25. However, the present invention can be applied to other wound bodies.

本実施の形態の制御部5、操作部6、記憶部7および表示部8の機能は、CPU(Central Processing Unit)、記憶装置および外部とのインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPUは、記憶装置に格納されたプログラムに従って本実施の形態で説明した処理を実行する。   The functions of the control unit 5, the operation unit 6, the storage unit 7 and the display unit 8 according to the present embodiment include a CPU (Central Processing Unit), a computer provided with a storage device and an interface with the outside, and hardware resources thereof. It can be realized by a program to control. The CPU executes the processing described in the present embodiment in accordance with the program stored in the storage device.

本発明は、巻回式リチウムイオン電池などの巻回体に対して複数点の溶接を行なう技術に適用することができる。   The present invention can be applied to a technique of welding a plurality of points to a wound body such as a wound lithium ion battery.

1−1,1−2…溶接電源、2…溶接ヘッド、3−1,3−2…物理量検出部、4−1,4−2…真空圧力検出部、5…制御部、6…操作部、7…記憶部、8…表示部、20−1a,20−2a…上部電極、20−1b,20−2b…下部電極、20−1c,20−2c…中間電極、21−1a,21−1b,21−2a,21−2b…加圧機構、22−1a,22−1b,22−2a,22−2b…吸着機構、24…被接合物、25…巻回体、26…集電体、27−1a,27−1b,27−2a,27−2b…プロジェクション、28−1a,28−1b,28−2a,28−2b…バックプレート、30…電流検出部、31…電圧検出部、32…電力検出部、33…抵抗検出部、34…荷重検出部、35…変位検出部、40…拡管機構、41…挿抜機構。   1-1, 1-2 ... welding power source, 2 ... welding head, 3-1, 3-2 ... physical quantity detection unit, 4-1, 4-2 ... vacuum pressure detection unit, 5 ... control unit, 6 ... operation unit , 7 storage unit, 8 display unit, 20-1a, 20-2a upper electrode, 20-1b, 20-2b lower electrode, 20-1c, 20-2c intermediate electrode, 21-1a, 21- 1b, 21-2a, 21-2b ... pressurization mechanism, 22-1a, 22-1b, 22-2a, 22-2b ... adsorption mechanism, 24 ... bonded object, 25 ... wound body, 26 ... current collector 27-1a, 27-1b, 27-2a, 27-2b ... projection, 28-1a, 28-1b, 28-2a, 28-2b ... back plate, 30 ... current detection unit, 31 ... voltage detection unit, 32: power detection unit, 33: resistance detection unit, 34: load detection unit, 35: displacement detection unit, 40: tube expansion mechanism 41 ... insertion and removal mechanism.

Claims (8)

複数枚の金属箔が積層され渦巻き状に巻回された構造からなる巻回体と、この巻回体の外周面と接するように配置される金属からなる板状部材で、前記巻回体に対して凸状のプロジェクションが形成された集電体と、前記巻回体の複数枚の金属箔を間に挟んで前記集電体と対向するように前記巻回体の内側に配置される金属からなる板状のバックプレートとから構成される被接合物に対して、この被接合物を間に挟んで互いに対向するように前記金属箔の積層方向に沿って配置される複数組の第1、第2の電極と、
前記巻回体の内部に前記第1、第2の電極の組毎に設けられ、前記巻回体の内周面と対向する2面のうち少なくとも一方の面が前記バックプレートを挟み込むようにして前記第1、第2の電極と一直線上に並ぶように配置される複数の第3の電極と、
前記第1、第2の電極のうち少なくとも一方を加圧し、前記被接合物を前記第1、第2の電極によって挟持させる加圧機構と、
前記第1、第2の電極の組毎に設けられ、対応する第1、第2の電極間に電流を供給する複数の溶接電源と、
溶接中の前記被接合物に係る1乃至複数の物理量を検出する物理量検出手段と、
各組が同期して溶接を開始するように前記複数の溶接電源から前記複数組の第1、第2の電極へ電流を供給させ、溶接中に検出される1つの前記物理量が所定の終了条件値に達した時点で前記第1、第2の電極への通電を停止させる制御手段とを備え、
前記複数の溶接電源は、前記被接合物に対する通電方向が同一となるように前記複数組の第1、第2の電極に電流を供給することを特徴とする溶接装置。
A wound body having a structure in which a plurality of metal foils are stacked and wound in a spiral shape, and a plate-like member made of metal disposed so as to be in contact with the outer peripheral surface of the wound body The current collector on which the convex projection is formed, and the metal disposed on the inside of the wound body so as to face the current collector with the plurality of metal foils of the wound body interposed therebetween. And a plurality of first members arranged along the laminating direction of the metal foil so as to face each other with the object to be joined interposed therebetween. , The second electrode,
It is provided for each set of the first and second electrodes inside the wound body, and at least one of two surfaces facing the inner peripheral surface of the wound body sandwich the back plate. A plurality of third electrodes arranged in line with the first and second electrodes;
A pressure mechanism that applies pressure to at least one of the first and second electrodes and causes the object to be bonded to be held between the first and second electrodes;
A plurality of welding power sources provided for each set of the first and second electrodes and supplying current between the corresponding first and second electrodes;
Physical quantity detection means for detecting one or more physical quantities of the object to be welded during welding;
An electric current is supplied from the plurality of welding power sources to the plurality of sets of first and second electrodes so that each set synchronously starts welding, and one of the physical quantities detected during welding has a predetermined termination condition. Control means for stopping energization of the first and second electrodes when the value is reached,
The welding apparatus characterized in that the plurality of welding power sources supply current to the plurality of first and second electrodes such that the current supply direction to the workpiece is the same.
請求項1記載の溶接装置において、
前記制御手段は、溶接中に検出される物理量である、前記第1、第2の電極間の抵抗が、終了条件値として予め設定されている電極間抵抗値に達した時点で前記第1、第2の電極への通電を停止させる第1の制御方式の溶接をn回行った後に(nは1以上の整数)、さらに前記第1の制御方式と異なる第2の制御方式の溶接をm回行う(mは1以上の整数)ことを特徴とする溶接装置。
In the welding apparatus according to claim 1,
The control means is a physical quantity detected during welding when the resistance between the first and second electrodes reaches an inter-electrode resistance value preset as a termination condition value. After n weldings of the first control method for stopping energization of the second electrode (n is an integer of 1 or more), m welding of the second control method different from the first control method is performed m A welding apparatus characterized in that it is carried out once (m is an integer of 1 or more).
請求項2記載の溶接装置において、
前記第2の制御方式の溶接は、溶接中に検出される電極間抵抗以外の物理量が所定の終了条件値に達した時点で前記第1、第2の電極への通電を停止させる溶接であり、
前記電極間抵抗以外の物理量は、前記第1、第2の電極を流れる溶接電流、前記第1、第2の電極間に印加される溶接電圧、前記第1、第2の電極に供給される溶接電力、前記被接合物に印加される荷重、前記被接合物の厚さ方向の変位量のいずれかであることを特徴とする溶接装置。
In the welding apparatus according to claim 2,
The welding of the second control method is a welding that stops the energization of the first and second electrodes when the physical quantity other than the inter-electrode resistance detected during welding reaches a predetermined termination condition value. ,
The physical quantities other than the inter-electrode resistance are supplied to the welding current flowing through the first and second electrodes, the welding voltage applied between the first and second electrodes, and the first and second electrodes. A welding apparatus characterized by any one of a welding power, a load applied to the workpiece, and a displacement in a thickness direction of the workpiece.
請求項2記載の溶接装置において、
前記第2の制御方式の溶接は、前記第1、第2の電極に所定の溶接電流を一定時間供給する定電流制御方式の溶接、前記第1、第2の電極間に所定の溶接電圧を一定時間供給する定電圧制御方式の溶接、前記第1、第2の電極に所定の溶接電力を一定時間供給する定電力制御方式の溶接のいずれかであることを特徴とする溶接装置。
In the welding apparatus according to claim 2,
In the welding of the second control method, welding of a constant current control method for supplying a predetermined welding current to the first and second electrodes for a fixed time, and a predetermined welding voltage between the first and second electrodes A welding apparatus characterized in that it is either a constant voltage control type welding which supplies for a fixed time, or a constant power control type welding which supplies a predetermined welding power to the first and second electrodes for a fixed time.
請求項1乃至4のいずれか1項に記載の溶接装置において、
前記制御手段は、溶接を複数回行う場合に、前記複数組の第1、第2の電極のうち最も遅い組の溶接が終了するのを待ってから、各組が同期して溶接を開始するように前記複数の溶接電源から前記複数組の第1、第2の電極へ電流を供給させて次の溶接を行なうことを特徴とする溶接装置。
The welding apparatus according to any one of claims 1 to 4.
The control means, when welding is performed a plurality of times, waits for the welding of the slowest one of the plurality of sets of first and second electrodes to finish, and then the sets are synchronized to start welding. As described above, a welding apparatus is characterized in that the following welding is performed by supplying current from the plurality of welding power sources to the plurality of first and second electrodes.
請求項1乃至5のいずれか1項に記載の溶接装置において、
さらに、前記バックプレートを真空吸着して、前記巻回体の内周面と対向する前記第3の電極の面に固定する吸着機構を備えることを特徴とする溶接装置。
The welding apparatus according to any one of claims 1 to 5,
Furthermore, the welding apparatus is characterized by comprising an adsorption mechanism for vacuum-adsorbing the back plate and fixing the back plate to the surface of the third electrode opposed to the inner circumferential surface of the wound body.
請求項6記載の溶接装置において、
さらに、溶接終了後に、前記巻回体の軸方向に沿って前記被接合物から前記第3の電極を引き抜くか、または前記巻回体の軸方向に沿って前記第1、第2、第3の電極から前記被接合物を引き抜く挿抜機構と、
前記挿抜機構が前記被接合物から前記第3の電極を引き抜くのに必要な力または前記第1、第2、第3の電極から前記被接合物を引き抜くのに必要な力が所定の閾値以下の場合に、警報を発する警報通知手段を備えることを特徴とする溶接装置。
In the welding device according to claim 6,
Furthermore, after completion of welding, the third electrode is pulled out from the article along the axial direction of the wound body, or the first, second, third, or the like along the axial direction of the wound body. An insertion / extraction mechanism for pulling out the object from the electrode of
The force required to pull the third electrode from the article or the force required to draw the article from the first, second, and third electrodes is equal to or less than a predetermined threshold value. A welding apparatus comprising: alarm notification means for emitting an alarm in the case of.
請求項6記載の溶接装置において、
さらに、溶接終了後に、前記巻回体の軸方向に沿って前記被接合物から前記第3の電極を引き抜くか、または前記巻回体の軸方向に沿って前記第1、第2、第3の電極から前記被接合物を引き抜く挿抜機構と、
前記吸着機構の真空圧力を検出する真空圧力検出手段と、
前記挿抜機構が前記被接合物から前記第3の電極を引き抜いたとき、または前記第1、第2、第3の電極から前記被接合物を引き抜いたときに、前記真空圧力検出手段が検出した真空圧力が所定の閾値以下の場合に、警報を発する警報通知手段を備えることを特徴とする溶接装置。
In the welding device according to claim 6,
Furthermore, after completion of welding, the third electrode is pulled out from the article along the axial direction of the wound body, or the first, second, third, or the like along the axial direction of the wound body. An insertion / extraction mechanism for pulling out the object from the electrode of
Vacuum pressure detection means for detecting the vacuum pressure of the suction mechanism;
The vacuum pressure detection means detects when the insertion / extraction mechanism extracts the third electrode from the object to be bonded, or when the object to be bonded is extracted from the first, second, and third electrodes. A welding apparatus comprising alarm notification means for emitting an alarm when the vacuum pressure is below a predetermined threshold.
JP2015155775A 2015-08-06 2015-08-06 Welding equipment Active JP6511362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155775A JP6511362B2 (en) 2015-08-06 2015-08-06 Welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155775A JP6511362B2 (en) 2015-08-06 2015-08-06 Welding equipment

Publications (2)

Publication Number Publication Date
JP2017030042A JP2017030042A (en) 2017-02-09
JP6511362B2 true JP6511362B2 (en) 2019-05-15

Family

ID=57986986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155775A Active JP6511362B2 (en) 2015-08-06 2015-08-06 Welding equipment

Country Status (1)

Country Link
JP (1) JP6511362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560995A (en) 2017-03-31 2018-10-03 Macgregor Welding Systems Ltd Welding apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321062A (en) * 2001-04-27 2002-11-05 Takao Kinzoku Kogyo Co Ltd Welding device
JP5587061B2 (en) * 2009-09-30 2014-09-10 三洋電機株式会社 Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP6186208B2 (en) * 2013-08-22 2017-08-23 日本アビオニクス株式会社 Welding equipment

Also Published As

Publication number Publication date
JP2017030042A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6186208B2 (en) Welding equipment
US10065262B2 (en) Welding method and welding device
JP7016346B2 (en) Multi-layer metal welding equipment and its welding method
JP6101513B2 (en) Metal foil lap joint method and joint structure
JP2013151016A (en) Welding method
JP2007030013A (en) Electric-joining method and electric-joining apparatus
JP2014147964A (en) Welding device
CA2979104C (en) Dissimilar material joined body and dissimilar material joining method
CN103962695B (en) Welder
JP6112209B2 (en) Resistance spot welding method and manufacturing method of welded structure
JP6511362B2 (en) Welding equipment
JP6238766B2 (en) Welding equipment
JP3794300B2 (en) Spot welding method
JP2013071124A (en) Spot welding method and spot welding equipment
JP4550086B2 (en) Projection welding method for highly conductive workpieces
JP2019537512A (en) How to weld a stack of sheets with magnetic pulses
CN105789504A (en) Battery tray, fabrication method thereof, battery pack and electromobile
JP5836248B2 (en) Spot welding method
JP2020049513A (en) Indirect spot welding device and welding method
CN112338334A (en) Resistance spot-welded joint for aluminum material
JP2003117662A (en) Lamination-type electromagnetic welding method of metal sheet
JP2002035945A (en) Welding apparatus and method for conductive joint member of cell
JP2020075265A (en) Resistance-welding device and resistance-welding method using the same
CN116847940A (en) Method for joining dissimilar metal members
JP2008142722A (en) Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250