JP2017030042A - Welding device - Google Patents

Welding device Download PDF

Info

Publication number
JP2017030042A
JP2017030042A JP2015155775A JP2015155775A JP2017030042A JP 2017030042 A JP2017030042 A JP 2017030042A JP 2015155775 A JP2015155775 A JP 2015155775A JP 2015155775 A JP2015155775 A JP 2015155775A JP 2017030042 A JP2017030042 A JP 2017030042A
Authority
JP
Japan
Prior art keywords
welding
electrodes
wound body
electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015155775A
Other languages
Japanese (ja)
Other versions
JP6511362B2 (en
Inventor
厚 伊藤
Atsushi Ito
厚 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2015155775A priority Critical patent/JP6511362B2/en
Publication of JP2017030042A publication Critical patent/JP2017030042A/en
Application granted granted Critical
Publication of JP6511362B2 publication Critical patent/JP6511362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately perform welding even in welding a plurality of points of a wound body.SOLUTION: A welding device includes: upper electrodes 20-1a, 20-2a, and lower electrodes 20-1b, 20-2b which are arranged with a joining object 24, which is structured of a wound body 25, a collector 26, and back plates 28-1a, 28-1b, 28-2a, 28-2b, interposed therebetween; intermediate electrodes 20-1c, 20-2c arranged inside the wound body 25; a welding power source for supplying a current between the electrodes 20-1a and 20-1b, and between the electrodes 20-2a and 20-2b; a physical quantity detection part for detecting a physical quantity relating to the joining object 24 during welding; and a control part which makes the welding power source supply the current to the electrodes 20-1a, 20-1b, 20-2a, 20-2b so that the respective pairs start welding synchronously, and makes the welding power source stop electric conduction when the physical quantity detected during the welding reaches a termination condition.SELECTED DRAWING: Figure 2

Description

本発明は、溶接装置に係り、特に巻回式リチウムイオン電池などの巻回体の複数点の溶接に適した溶接装置に関するものである。   The present invention relates to a welding apparatus, and more particularly to a welding apparatus suitable for welding a plurality of points of a wound body such as a wound lithium ion battery.

近年、複数の平板状の正極電極および負極電極をセパレータを介して積層して、図8(A)に示すように巻き取った形状の巻回式リチウムイオン電池が使用されるようになってきている。図8(A)における100は正極電極、101は負極電極、102はセパレータである。正極電極100は、アルミニウム(Al)箔にリチウム系の材料を塗布したものであり、負極電極101は、銅(Cu)箔に炭素系の材料を塗布したものである。   In recent years, a wound-type lithium ion battery having a shape in which a plurality of plate-like positive electrode and negative electrode are stacked via a separator and wound as shown in FIG. 8A has come to be used. Yes. In FIG. 8A, 100 is a positive electrode, 101 is a negative electrode, and 102 is a separator. The positive electrode 100 is an aluminum (Al) foil coated with a lithium-based material, and the negative electrode 101 is a copper (Cu) foil coated with a carbon-based material.

図8(A)に示した円筒状の巻回式リチウムイオン電池を、円筒の中心軸を含むXZ平面で切断した断面構造を図8(B)に示す。巻回式リチウムイオン電池の一方の端部には、正極電極100のAl箔のみが積層された領域があり、この積層されたAl箔に外部接続用の集電体103が溶接される。同様に、巻回式リチウムイオン電池の他方の端部には、負極電極101のCu箔のみが積層された領域があり、この積層されたCu箔に外部接続用の集電体104が溶接される。   FIG. 8B shows a cross-sectional structure of the cylindrical wound lithium ion battery shown in FIG. 8A cut along the XZ plane including the central axis of the cylinder. At one end of the wound lithium ion battery, there is a region in which only the Al foil of the positive electrode 100 is laminated, and a current collector 103 for external connection is welded to the laminated Al foil. Similarly, at the other end of the wound lithium ion battery, there is a region where only the Cu foil of the negative electrode 101 is laminated, and the collector 104 for external connection is welded to the laminated Cu foil. The

通常、正極電極100のAl箔と集電体103との溶接および負極電極101のCu箔と集電体104との溶接には、超音波溶接、レーザ溶接、抵抗溶接が用いられている(特許文献1、特許文献2参照)。超音波溶接は、被接合物に垂直方向の圧力を加えながら、接合面に平行な超音波振動を印加して接合する方法である。レーザ溶接は、被接合物にレーザ光を照射して溶融させ接合する方法である。抵抗溶接は、被接合物を上下から一対の電極で挟み込み押圧しながら、電極間に電流を流して、発生するジュール熱で被接合物を溶融させて接合を行う方法である。   Usually, ultrasonic welding, laser welding, and resistance welding are used for welding the Al foil of the positive electrode 100 and the current collector 103 and welding the Cu foil of the negative electrode 101 and the current collector 104 (patent). Reference 1 and Patent Reference 2). Ultrasonic welding is a method of joining by applying ultrasonic vibration parallel to the joining surface while applying a vertical pressure to the workpieces. Laser welding is a method in which a workpiece is irradiated with laser light to be melted and joined. Resistance welding is a method of joining by joining an object to be joined between a pair of electrodes from above and below, passing an electric current between the electrodes, and melting the object to be joined by Joule heat generated.

特開2008−66170号公報JP 2008-66170 A 特開2009−32670号公報JP 2009-32670 A

超音波溶接には、溶接時の超音波振動によって電池から微小な金属粉が脱落するという問題点があった。また、Al箔やCu箔の枚数が増加すると、必要な溶接エネルギーが増加するので、超音波の出力を上げる必要があり、Al箔やCu箔が破れたり切れたりする可能性があった。
レーザ溶接では、AlやCuの反射率が高いため、高エネルギーのレーザ光が必要になるという問題点があった。また、スパッタと呼ばれる金属粉が発生するという問題点があった。
Ultrasonic welding has a problem in that fine metal powder drops from the battery due to ultrasonic vibration during welding. Further, when the number of Al foils or Cu foils increases, the required welding energy increases, so it is necessary to increase the output of ultrasonic waves, and there is a possibility that the Al foil or Cu foil may be torn or cut.
Laser welding has a problem in that high energy laser light is required because of the high reflectivity of Al and Cu. In addition, there is a problem that metal powder called sputtering is generated.

一方、抵抗溶接では、超音波溶接およびレーザ溶接で問題となる金属粉の発生や箔の破損を抑制することができる。ただし、正極電極100のAl箔と集電体103との溶接および負極電極101のCu箔と集電体104との溶接においては、溶接強度の確保などの理由により複数点で溶接を行なう必要がある。   On the other hand, in resistance welding, generation | occurrence | production of the metal powder and foil damage which are problems in ultrasonic welding and laser welding can be suppressed. However, in welding of the Al foil of the positive electrode 100 and the current collector 103 and welding of the Cu foil of the negative electrode 101 and the current collector 104, it is necessary to perform welding at a plurality of points for reasons such as securing welding strength. is there.

しかし、抵抗溶接では、1点ずつ溶接を行なう場合、2点目以降の溶接の際に、既に溶接済みの点に電流が分流してしまうので、この分流の分だけ溶接電極に流す電流を増やす必要があり、良質なナゲット(接合部分)を得るために必要なエネルギーが増加するという問題点があった。また、良質なナゲットを得るための条件設定が複雑になるという問題点があった。
なお、以上の問題点は、リチウムイオン電池に限らず、複数枚のAl箔やCu箔の積層体に対して複数点の溶接を行なう場合には、同様に発生する。
However, in resistance welding, when welding one point at a time, the current is diverted to the already welded points during the second and subsequent welding, so the current flowing to the welding electrode is increased by this diverted amount. Therefore, there is a problem that energy required for obtaining a good nugget (joint part) increases. In addition, there is a problem that the condition setting for obtaining a good quality nugget becomes complicated.
The above problems are not limited to the lithium ion battery, and similarly occur when a plurality of points are welded to a laminate of a plurality of Al foils or Cu foils.

本発明は、上記課題を解決するためになされたもので、巻回式リチウムイオン電池などの巻回体に対して複数点の溶接を行なう場合でも、適切な溶接を実現することができる溶接装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and a welding apparatus capable of realizing appropriate welding even when a plurality of points are welded to a wound body such as a wound lithium ion battery. The purpose is to provide.

本発明の溶接装置は、複数枚の金属箔が積層され渦巻き状に巻回された構造からなる巻回体と、この巻回体の外周面と接するように配置される金属からなる板状部材で、前記巻回体に対して凸状のプロジェクションが形成された集電体と、前記巻回体の複数枚の金属箔を間に挟んで前記集電体と対向するように前記巻回体の内側に配置される金属からなる板状のバックプレートとから構成される被接合物に対して、この被接合物を間に挟んで互いに対向するように前記金属箔の積層方向に沿って配置される複数組の第1、第2の電極と、前記巻回体の内部に前記第1、第2の電極の組毎に設けられ、前記巻回体の内周面と対向する2面のうち少なくとも一方の面が前記バックプレートを挟み込むようにして前記第1、第2の電極と一直線上に並ぶように配置される複数の第3の電極と、前記第1、第2の電極のうち少なくとも一方を加圧し、前記被接合物を前記第1、第2の電極によって挟持させる加圧機構と、前記第1、第2の電極の組毎に設けられ、対応する第1、第2の電極間に電流を供給する複数の溶接電源と、溶接中の前記被接合物に係る1乃至複数の物理量を検出する物理量検出手段と、各組が同期して溶接を開始するように前記複数の溶接電源から前記複数組の第1、第2の電極へ電流を供給させ、溶接中に検出される1つの前記物理量が所定の終了条件値に達した時点で前記第1、第2の電極への通電を停止させる制御手段とを備え、前記複数の溶接電源は、前記被接合物に対する通電方向が同一となるように前記複数組の第1、第2の電極に電流を供給することを特徴とするものである。   The welding apparatus of the present invention includes a wound body having a structure in which a plurality of metal foils are laminated and wound in a spiral shape, and a plate-like member made of metal disposed so as to be in contact with the outer peripheral surface of the wound body. Thus, the current collector in which a convex projection is formed with respect to the wound body, and the wound body so as to face the current collector with a plurality of metal foils sandwiched therebetween Arranged along the stacking direction of the metal foils so as to be opposed to each other with the object to be bonded interposed between the object to be bonded and the plate-shaped back plate made of metal disposed inside A plurality of sets of first and second electrodes and two sets of first and second electrodes provided in each set of the first and second electrodes inside the wound body and facing the inner peripheral surface of the wound body. The first and second electrodes are aligned with at least one of the surfaces sandwiching the back plate. A plurality of third electrodes that are arranged like a pressurization, and a pressurizing mechanism that pressurizes at least one of the first and second electrodes and clamps the object to be joined by the first and second electrodes; A plurality of welding power sources that are provided for each set of the first and second electrodes and supply current between the corresponding first and second electrodes, and one or more of the workpieces that are being welded. A physical quantity detecting means for detecting a physical quantity and a current supplied from the plurality of welding power sources to the first and second electrodes of the plurality of sets so that the respective groups start welding in synchronization are detected during welding. Control means for stopping energization of the first and second electrodes when one of the physical quantities reaches a predetermined end condition value, and the plurality of welding power sources have an energization direction to the workpiece. Supplying current to the plurality of sets of first and second electrodes so as to be the same. It is an feature.

また、本発明の溶接装置の1構成例において、前記制御手段は、溶接中に検出される物理量である、前記第1、第2の電極間の抵抗が、終了条件値として予め設定されている電極間抵抗値に達した時点で前記第1、第2の電極への通電を停止させる第1の制御方式の溶接をn回行った後に(nは1以上の整数)、さらに前記第1の制御方式と異なる第2の制御方式の溶接をm回行う(mは1以上の整数)ことを特徴とするものである。
また、本発明の溶接装置の1構成例において、前記第2の制御方式の溶接は、溶接中に検出される電極間抵抗以外の物理量が所定の終了条件値に達した時点で前記第1、第2の電極への通電を停止させる溶接であり、前記電極間抵抗以外の物理量は、前記第1、第2の電極を流れる溶接電流、前記第1、第2の電極間に印加される溶接電圧、前記第1、第2の電極に供給される溶接電力、前記被接合物に印加される荷重、前記被接合物の厚さ方向の変位量のいずれかである。
また、本発明の溶接装置の1構成例において、前記第2の制御方式の溶接は、前記第1、第2の電極に所定の溶接電流を一定時間供給する定電流制御方式の溶接、前記第1、第2の電極間に所定の溶接電圧を一定時間供給する定電圧制御方式の溶接、前記第1、第2の電極に所定の溶接電力を一定時間供給する定電力制御方式の溶接のいずれかである。
また、本発明の溶接装置の1構成例において、前記制御手段は、溶接を複数回行う場合に、前記複数組の第1、第2の電極のうち最も遅い組の溶接が終了するのを待ってから、各組が同期して溶接を開始するように前記複数の溶接電源から前記複数組の第1、第2の電極へ電流を供給させて次の溶接を行なうことを特徴とするものである。
Moreover, in one structural example of the welding apparatus of this invention, the said control means has preset the resistance between the said 1st, 2nd electrodes which is a physical quantity detected during welding as an end condition value. After the first control method of welding to stop energization of the first and second electrodes when the inter-electrode resistance value is reached, n is performed (n is an integer of 1 or more), and then the first The second control method, which is different from the control method, is welded m times (m is an integer of 1 or more).
Further, in one configuration example of the welding apparatus of the present invention, the second control method welding is performed when the physical quantity other than the interelectrode resistance detected during welding reaches a predetermined end condition value. The welding is to stop energization to the second electrode, and the physical quantity other than the interelectrode resistance is a welding current flowing through the first and second electrodes, and welding applied between the first and second electrodes. Any one of a voltage, welding power supplied to the first and second electrodes, a load applied to the workpiece, and a displacement amount in the thickness direction of the workpiece.
Further, in one configuration example of the welding apparatus of the present invention, the second control method welding is a constant current control type welding in which a predetermined welding current is supplied to the first and second electrodes for a certain period of time. 1. Constant voltage control type welding for supplying a predetermined welding voltage between the second electrodes for a certain period of time, or constant power control type welding for supplying a predetermined welding power to the first and second electrodes for a certain period of time. It is.
Further, in one configuration example of the welding apparatus of the present invention, the control means waits for the slowest welding of the plurality of sets of first and second electrodes to be completed when welding is performed a plurality of times. Then, the next welding is performed by supplying current from the plurality of welding power sources to the plurality of first and second electrodes so that each group starts welding in synchronization. is there.

また、本発明の溶接装置の1構成例は、さらに、前記バックプレートを真空吸着して、前記巻回体の内周面と対向する前記第3の電極の面に固定する吸着機構を備えることを特徴とするものである。
また、本発明の溶接装置の1構成例は、さらに、溶接終了後に、前記巻回体の軸方向に沿って前記被接合物から前記第3の電極を引き抜くか、または前記巻回体の軸方向に沿って前記第1、第2、第3の電極から前記被接合物を引き抜く挿抜機構と、前記挿抜機構が前記被接合物から前記第3の電極を引き抜くのに必要な力または前記第1、第2、第3の電極から前記被接合物を引き抜くのに必要な力が所定の閾値以下の場合に、警報を発する警報通知手段を備えることを特徴とするものである。
また、本発明の溶接装置の1構成例は、さらに、溶接終了後に、前記巻回体の軸方向に沿って前記被接合物から前記第3の電極を引き抜くか、または前記巻回体の軸方向に沿って前記第1、第2、第3の電極から前記被接合物を引き抜く挿抜機構と、前記吸着機構の真空圧力を検出する真空圧力検出手段と、前記挿抜機構が前記被接合物から前記第3の電極を引き抜いたとき、または前記第1、第2、第3の電極から前記被接合物を引き抜いたときに、前記真空圧力検出手段が検出した真空圧力が所定の閾値以下の場合に、警報を発する警報通知手段を備えることを特徴とするものである。
Moreover, one structural example of the welding apparatus of this invention is further equipped with the adsorption | suction mechanism which vacuum-sucks the said backplate and fixes to the surface of the said 3rd electrode facing the internal peripheral surface of the said winding body. It is characterized by.
In addition, according to one configuration example of the welding apparatus of the present invention, the third electrode may be pulled out from the article to be joined along the axial direction of the wound body after the end of welding, or the shaft of the wound body An insertion / extraction mechanism for extracting the object to be bonded from the first, second, and third electrodes along a direction, and a force required for the insertion / extraction mechanism to extract the third electrode from the object to be bonded, or the first It is characterized by comprising alarm notification means for issuing an alarm when the force required for pulling out the object to be joined from the first, second and third electrodes is below a predetermined threshold value.
In addition, according to one configuration example of the welding apparatus of the present invention, the third electrode may be pulled out from the article to be joined along the axial direction of the wound body after the end of welding, or the shaft of the wound body An insertion / extraction mechanism for extracting the object to be bonded from the first, second, and third electrodes along a direction, a vacuum pressure detecting means for detecting a vacuum pressure of the adsorption mechanism, and the insertion / extraction mechanism from the object to be bonded When the vacuum pressure detected by the vacuum pressure detecting means when the third electrode is pulled out or when the workpiece is pulled out from the first, second and third electrodes is below a predetermined threshold value And an alarm notification means for issuing an alarm.

本発明によれば、第1の電極と第2の電極と第3の電極の組を複数組設け、各組が同期して溶接を開始するように通電を行ない、被接合物に対して複数点の溶接を同時に行なうようにしたので、従来の抵抗溶接において複数点の溶接を行なう際に問題となった電流の分流をなくすことができる。その結果、本発明では、適切な溶接を実現することができ、また溶接条件の設定を簡略化することができる。また、本発明では、複数点の溶接を同時に行なうことから、溶接回数を減らすことができ、溶接工程のタクトタイムの改善を図ることができる。また、本発明では、分流に伴う溶接電流の増加をなくすことができるので、溶接電源1台あたりの容量を小さくすることができる。また、本発明では、従来の抵抗溶接と同様に、金属粉の発生や被接合物の破損を回避することができる。   According to the present invention, a plurality of sets of the first electrode, the second electrode, and the third electrode are provided, energization is performed so that each set starts welding in synchronization, and a plurality of sets are applied to the objects to be joined. Since spot welding is performed at the same time, it is possible to eliminate the shunting of current that has become a problem when performing welding at a plurality of points in conventional resistance welding. As a result, in the present invention, appropriate welding can be realized, and setting of welding conditions can be simplified. Moreover, in this invention, since welding of several points is performed simultaneously, the frequency | count of welding can be reduced and the tact time of a welding process can be aimed at. Further, in the present invention, it is possible to eliminate an increase in welding current due to the diversion, and therefore it is possible to reduce the capacity per welding power source. Moreover, in this invention, generation | occurrence | production of metal powder and damage to a to-be-joined object can be avoided like the conventional resistance welding.

また、本発明では、溶接中に検出される物理量である、第1、第2の電極間の抵抗が、終了条件値として予め設定されている電極間抵抗値に達した時点で第1、第2の電極への通電を停止させる第1の制御方式の溶接をn回行うことで、電極の汚れや被接合物表面の酸化膜の影響を軽減することができ、適切な溶接を実現することができる。   In the present invention, when the resistance between the first and second electrodes, which is a physical quantity detected during welding, reaches a resistance value between electrodes set in advance as an end condition value, the first and first electrodes By performing welding of the first control method for stopping energization of the second electrode n times, it is possible to reduce the influence of electrode contamination and the oxide film on the surface of the object to be bonded, and realize appropriate welding. Can do.

また、本発明では、吸着機構を設けることにより、巻回体の内周面と対向する第3の電極の面にバックプレートを容易に固定することができる。   Moreover, in this invention, a back plate can be easily fixed to the surface of the 3rd electrode which opposes the internal peripheral surface of a winding body by providing an adsorption | suction mechanism.

また、本発明では、挿抜機構が被接合物から第3の電極を引き抜くのに必要な力または第1、第2、第3の電極から被接合物を引き抜くのに必要な力が所定の閾値以下の場合に、警報を発することにより、溶接が不適切であることをユーザに通知することができる。   In the present invention, the force required for the insertion / extraction mechanism to pull out the third electrode from the workpiece or the force required to pull out the workpiece from the first, second, and third electrodes is a predetermined threshold value. In the following cases, it is possible to notify the user that welding is inappropriate by issuing an alarm.

また、本発明では、挿抜機構が被接合物から第3の電極を引き抜いたとき、または第1、第2、第3の電極から被接合物を引き抜いたときに、真空圧力検出手段が検出した真空圧力が所定の閾値以下の場合に、警報を発することにより、溶接が不適切であることをユーザに通知することができる。   Further, in the present invention, when the insertion / extraction mechanism pulls out the third electrode from the workpiece, or when the workpiece is pulled out from the first, second and third electrodes, the vacuum pressure detecting means detects When the vacuum pressure is less than or equal to a predetermined threshold, a warning can be issued to notify the user that welding is inappropriate.

本発明の実施の形態に係る溶接装置の構成を示すブロック図である。It is a block diagram which shows the structure of the welding apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る溶接ヘッドの拡大断面図である。It is an expanded sectional view of the welding head concerning an embodiment of the invention. 本発明の実施の形態に係る物理量検出部の構成を示すブロック図である。It is a block diagram which shows the structure of the physical quantity detection part which concerns on embodiment of this invention. 本発明の実施の形態に係る溶接装置の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the welding apparatus which concerns on embodiment of this invention. 溶接中の溶接電流、溶接電圧、溶接電力の変化の1例を示す図である。It is a figure which shows one example of the change of the welding current in welding, welding voltage, and welding electric power. 溶接中の電極間抵抗の変化の1例を示す図である。It is a figure which shows one example of the change of the resistance between electrodes during welding. 溶接中の荷重、変位量の変化の1例を示す図である。It is a figure which shows one example of the load in welding, and the change of a displacement amount. 巻回式リチウムイオン電池の斜視図および断面図である。It is the perspective view and sectional drawing of a winding type lithium ion battery.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態に係る溶接装置の構成を示すブロック図である。本実施の形態の溶接装置は、溶接電源1−1,1−2と、溶接ヘッド2と、溶接中の被接合物に係る1乃至複数の物理量を検出する物理量検出部3−1,3−2と、後述する吸着機構の真空圧力を検出する真空圧力検出部4−1,4−2と、溶接装置全体を制御する制御部5と、ユーザが溶接装置に対して指示を与えるための操作部6と、制御部5のためのプログラムや溶接条件を予め記憶する記憶部7と、ユーザに対する情報提示のための表示部8とを有する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a welding apparatus according to an embodiment of the present invention. The welding apparatus according to the present embodiment includes welding power sources 1-1 and 1-2, a welding head 2, and physical quantity detection units 3-1 and 3- that detect one or more physical quantities relating to an object to be joined. 2, vacuum pressure detectors 4-1 and 4-2 for detecting the vacuum pressure of the suction mechanism, which will be described later, a control unit 5 for controlling the entire welding apparatus, and an operation for the user to give instructions to the welding apparatus A storage unit 7 for storing a program for the control unit 5 and welding conditions in advance, and a display unit 8 for presenting information to the user.

溶接電源1−1,1−2は、溶接ヘッド2の後述する電極間に電流を供給する。このような溶接電源については、例えば特開2013−111588号公報に開示されているので、詳細な説明は省略する。
制御部5と表示部8とは、警報通知手段を構成している。
The welding power sources 1-1 and 1-2 supply current between electrodes (described later) of the welding head 2. Since such a welding power source is disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-111588, detailed description thereof is omitted.
The control unit 5 and the display unit 8 constitute an alarm notification unit.

図2は溶接ヘッド2の拡大断面図である。溶接ヘッド2は、上部電極20−1a(第1の電極)と、下部電極20−1b(第2の電極)と、中間電極20−1c(第3の電極)と、上部電極20−1aと下部電極20−1bとを上下させて被接合物24を挟み込み加圧する加圧機構21−1a,21−1bと、後述するバックプレートを真空吸着する吸着機構22−1a,22−1bとを備えている。   FIG. 2 is an enlarged sectional view of the welding head 2. The welding head 2 includes an upper electrode 20-1a (first electrode), a lower electrode 20-1b (second electrode), an intermediate electrode 20-1c (third electrode), and an upper electrode 20-1a. Pressurization mechanisms 21-1a and 21-1b that sandwich and pressurize the workpiece 24 by moving the lower electrode 20-1b up and down, and suction mechanisms 22-1a and 22-1b that vacuum-suck a back plate to be described later are provided. ing.

また、溶接ヘッド2は、上部電極20−2a(第1の電極)と、下部電極20−2b(第2の電極)と、中間電極20−2c(第3の電極)と、加圧機構21−2a,21−2bと、吸着機構22−2a,22−2bとを備えている。このように、本実施の形態では、上部電極と下部電極と中間電極の組を2組設けている。なお、図2では、吸着機構22−1a,22−1b,22−2a,22−2bを構成するシステムのうち真空ポンプ等の記載を省略し、真空吸着パッドのみを図示している。   The welding head 2 includes an upper electrode 20-2a (first electrode), a lower electrode 20-2b (second electrode), an intermediate electrode 20-2c (third electrode), and a pressurizing mechanism 21. -2a, 21-2b and adsorption mechanisms 22-2a, 22-2b. Thus, in this embodiment, two sets of the upper electrode, the lower electrode, and the intermediate electrode are provided. In FIG. 2, the description of the vacuum pump and the like is omitted in the system constituting the suction mechanisms 22-1a, 22-1b, 22-2a, and 22-2b, and only the vacuum suction pad is illustrated.

加圧機構21−1a,21−1b,21−2a,21−2bには、図示しないロードセルが設けられており、被接合物24に加わる荷重の大きさを電気信号に変換できるようになっている。また、加圧機構21−1a,21−1b,21−2a,21−2bには、図示しない変位センサが設けられており、被接合物24の厚さ方向の変位量を電気信号に変換できるようになっている。吸着機構22−1a,22−1bは中間電極20−1cに取り付けられ、吸着機構22−2a,22−2bは中間電極20−2cに取り付けられている。   The pressurizing mechanisms 21-1a, 21-1b, 21-2a, 21-2b are provided with load cells (not shown) so that the magnitude of the load applied to the object 24 can be converted into electric signals. Yes. Moreover, the pressurization mechanisms 21-1a, 21-1b, 21-2a, 21-2b are provided with displacement sensors (not shown), and can convert the displacement amount in the thickness direction of the workpiece 24 into an electric signal. It is like that. The adsorption mechanisms 22-1a and 22-1b are attached to the intermediate electrode 20-1c, and the adsorption mechanisms 22-2a and 22-2b are attached to the intermediate electrode 20-2c.

さらに、溶接ヘッド2は、溶接開始時に筒状の巻回体25の内部29に挿入され、巻回体25が上下方向(金属箔の積層方向)に拡がるように拡管する拡管機構(図1の40)と、溶接開始時に後述するバックプレートを真空吸着した状態の中間電極20−1c,20−2cを、拡管機構によって拡管された巻回体25の内部29に挿入し、溶接終了後に中間電極20−1c,20−2cを巻回体25の内部29から引き抜く挿抜機構(図1の41)とを備えている。   Furthermore, the welding head 2 is inserted into the inside 29 of the cylindrical wound body 25 at the start of welding, and a tube expansion mechanism (in FIG. 1) that expands the tube so that the wound body 25 expands in the vertical direction (metal foil stacking direction). 40) and intermediate electrodes 20-1c and 20-2c in a state where a back plate, which will be described later, is vacuum-adsorbed at the start of welding, is inserted into the inside 29 of the wound body 25 expanded by the tube expansion mechanism. An insertion / extraction mechanism (41 in FIG. 1) for extracting 20-1c and 20-2c from the inside 29 of the wound body 25 is provided.

次に、本実施の形態の被接合物24について説明する。被接合物24は、複数枚の金属箔が積層され渦巻き状に巻回された構造からなる巻回体25と、巻回体25の外周面と接するように配置される金属からなる板状部材で、巻回体25に対して凸状の突起であるプロジェクション27−1a,27−1b,27−2a,27−2bが形成された集電体26と、巻回体25の複数枚の金属箔を間に挟んで集電体26と対向するように巻回体25の内側に配置される金属からなる板状部材であるバックプレート(以下、BP)28−1a,28−1b,28−2a,28−2bとから構成される。   Next, the workpiece 24 of this embodiment will be described. The object to be bonded 24 includes a wound body 25 having a structure in which a plurality of metal foils are stacked and wound in a spiral shape, and a plate-shaped member made of metal disposed so as to be in contact with the outer peripheral surface of the wound body 25. Thus, the current collector 26 on which the projections 27-1a, 27-1b, 27-2a, and 27-2b, which are projections that are convex with respect to the wound body 25, and the plurality of metals of the wound body 25 are formed. Back plates (hereinafter referred to as BP) 28-1a, 28-1b, 28-, which are plate members made of metal disposed inside the wound body 25 so as to face the current collector 26 with a foil interposed therebetween. 2a, 28-2b.

巻回体25は、図8(B)の巻回式リチウムイオン電池を左側または右側から見た構成に相当する。図8(B)の巻回式リチウムイオン電池を左側から見た構成を巻回体25とすれば、巻回体25を構成する金属箔はAl若しくはAl合金からなる。この場合、集電体26およびBP28−1a,28−1b,28−2a,28−2bもAl若しくはAl合金からなり、電極20−1a〜20−1c,20−2a〜20−2cの材料はCu合金となる。   The wound body 25 corresponds to a configuration in which the wound lithium ion battery in FIG. 8B is viewed from the left side or the right side. If the configuration of the wound lithium ion battery of FIG. 8B viewed from the left side is a wound body 25, the metal foil constituting the wound body 25 is made of Al or an Al alloy. In this case, the current collector 26 and the BPs 28-1a, 28-1b, 28-2a, and 28-2b are also made of Al or an Al alloy, and the materials of the electrodes 20-1a to 20-1c and 20-2a to 20-2c are Cu alloy is formed.

一方、図8(B)の巻回式リチウムイオン電池を右側から見た構成を巻回体25とすれば、巻回体25を構成する金属箔はCu若しくはCu合金からなる。この場合、集電体26およびBP28−1a,28−1b,28−2a,28−2bもCu若しくはCu合金からなり、電極20−1a〜20−1c,20−2a〜20−2cの材料はモリブデン(Mo)、タングステン(W)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)のうち少なくとも1つの元素を含む金属または合金となる。   On the other hand, if the structure which looked at the winding type lithium ion battery of FIG.8 (B) from the right side is made into the wound body 25, the metal foil which comprises the wound body 25 will consist of Cu or Cu alloy. In this case, the current collector 26 and the BP 28-1a, 28-1b, 28-2a, 28-2b are also made of Cu or Cu alloy, and the materials of the electrodes 20-1a to 20-1c and 20-2a to 20-2c are A metal or alloy containing at least one element of molybdenum (Mo), tungsten (W), iron (Fe), nickel (Ni), and titanium (Ti) is obtained.

Al箔の場合と電極20−1a〜20−1c,20−2a〜20−2cの材料が異なる理由は、巻回体25がCu箔からなる場合、電流を流しても巻回体25が発熱し難いため、電極20−1a〜20−1c,20−2a〜20−2cを発熱させる必要があるからである。   The reason why the materials of the electrodes 20-1a to 20-1c and 20-2a to 20-2c are different from the case of the Al foil is that when the wound body 25 is made of Cu foil, the wound body 25 generates heat even when an electric current is passed. This is because the electrodes 20-1a to 20-1c and 20-2a to 20-2c need to generate heat.

図2から明らかなとおり、集電体26は上下方向(金属箔の積層方向)から巻回体25を挟み込むように配置される。集電体26に予め形成される突起であるプロジェクション27−1a,27−1b,27−2a,27−2bは、電極20−1a,20−1b,20−2a,20−2bと巻回体25との間に位置するように配置される。このプロジェクション27−1a,27−1b,27−2a,27−2bは、上部電極20−1a,20−2aと下部電極20−1b,20−2bの数だけ形成される。本実施の形態では、上部電極20−1a,20−2aと下部電極20−1b,20−2bが2個ずつあるので、上側の集電体26と下側の集電体26に2個ずつプロジェクション27−1a,27−1b,27−2a,27−2bが形成される。集電体26が1mm厚の場合でプロジェクション87の高さは1mm程度である。   As is clear from FIG. 2, the current collector 26 is disposed so as to sandwich the wound body 25 from the vertical direction (the metal foil stacking direction). Projections 27-1a, 27-1b, 27-2a, and 27-2b, which are projections formed in advance on the current collector 26, are electrodes 20-1a, 20-1b, 20-2a, and 20-2b and wound bodies. 25 to be located between. The projections 27-1a, 27-1b, 27-2a, and 27-2b are formed as many as the upper electrodes 20-1a and 20-2a and the lower electrodes 20-1b and 20-2b. In the present embodiment, since there are two upper electrodes 20-1a and 20-2a and two lower electrodes 20-1b and 20-2b, two each of the upper current collector 26 and the lower current collector 26. Projections 27-1a, 27-1b, 27-2a, and 27-2b are formed. When the current collector 26 is 1 mm thick, the height of the projection 87 is about 1 mm.

プロジェクション27−1a,27−1b,27−2a,27−2bはコイニング加工により形成される。コイニング加工を採用することにより、プロジェクション27−1a,27−1b,27−2a,27−2bと反対側の集電体26の表面に凹みがない形状にすることができ、巻回体25を電極20−1a,20−1b,20−2a,20−2bによって上下から挟み込んで所定の荷重を加えたときにプロジェクション27−1a,27−1b,27−2a,27−2bが変形して低くなった場合でも、プロジェクション27−1a,27−1b,27−2a,27−2b以外の部分で集電体26と巻回体25とが接触することを回避することができ、荷重がプロジェクション27−1a,27−1b,27−2a,27−2bと巻回体25との接触部に集中的にかかるようにすることができる。   The projections 27-1a, 27-1b, 27-2a, and 27-2b are formed by coining. By adopting the coining process, the surface of the current collector 26 on the opposite side to the projections 27-1a, 27-1b, 27-2a, 27-2b can be formed into a shape having no dent, When a predetermined load is applied between the electrodes 20-1a, 20-1b, 20-2a, and 20-2b, the projections 27-1a, 27-1b, 27-2a, and 27-2b are deformed and lowered. Even in this case, it is possible to avoid the current collector 26 and the wound body 25 from coming into contact with each other in the portions other than the projections 27-1a, 27-1b, 27-2a, and 27-2b. -1a, 27-1b, 27-2a, 27-2b and the contact portion between the wound body 25 can be concentrated.

図3は物理量検出部3−1の構成を示すブロック図である。物理量検出部3−1は、電流検出部30と、電圧検出部31と、電力検出部32と、抵抗検出部33と、荷重検出部34と、変位検出部35とから構成される。   FIG. 3 is a block diagram illustrating a configuration of the physical quantity detection unit 3-1. The physical quantity detection unit 3-1 includes a current detection unit 30, a voltage detection unit 31, a power detection unit 32, a resistance detection unit 33, a load detection unit 34, and a displacement detection unit 35.

電流検出部30は、図示しないホール素子の出力から、電極20−1a,20−1b間を流れる溶接電流I1を検出する。電圧検出部31は、電極20−1a,20−1b間に印加される溶接電圧V1を検出する。電力検出部32は、電流検出部30が検出した溶接電流I1の値と電圧検出部31が検出した溶接電圧V1の値とを積算することにより、電極20−1a,20−1bに供給される溶接電力W1を検出する。   The current detection unit 30 detects a welding current I1 flowing between the electrodes 20-1a and 20-1b from the output of a hall element (not shown). The voltage detector 31 detects a welding voltage V1 applied between the electrodes 20-1a and 20-1b. The power detection unit 32 integrates the value of the welding current I1 detected by the current detection unit 30 and the value of the welding voltage V1 detected by the voltage detection unit 31 to be supplied to the electrodes 20-1a and 20-1b. Welding power W1 is detected.

抵抗検出部33は、電圧検出部31が検出した溶接電圧V1の値と電流検出部30が検出した溶接電流I1の値とから電極20−1a,20−1b間の抵抗R1を算出する。荷重検出部34は、加圧機構21−1a,21−1bに設けられたロードセルの出力に基づいて、被接合物24に印加される荷重G1を検出する。変位検出部35は、加圧機構21−1a,21−1bに設けられた変位センサの出力に基づいて、被接合物24の厚さ方向の変位量D1を検出する。   The resistance detector 33 calculates a resistance R1 between the electrodes 20-1a and 20-1b from the value of the welding voltage V1 detected by the voltage detector 31 and the value of the welding current I1 detected by the current detector 30. The load detection unit 34 detects the load G1 applied to the workpiece 24 based on the output of the load cell provided in the pressurization mechanisms 21-1a and 21-1b. The displacement detector 35 detects the displacement amount D1 in the thickness direction of the workpiece 24 based on the output of the displacement sensor provided in the pressurizing mechanisms 21-1a, 21-1b.

物理量検出部3−2の構成は物理量検出部3−1と同様である。物理量検出部3−2の電流検出部30は、電極20−2a,20−2b間を流れる溶接電流I2を検出し、物理量検出部3−2の電圧検出部31は、電極20−2a,20−2b間に印加される溶接電圧V2を検出する。また、物理量検出部3−2の電力検出部32は、電極20−2a,20−2bに供給される溶接電力W2を検出し、物理量検出部3−2の抵抗検出部33は、電極20−2a,20−2b間の抵抗R2を算出する。また、物理量検出部3−2の荷重検出部34は、加圧機構21−2a,21−2bに設けられたロードセルの出力に基づいて、被接合物24に印加される荷重G2を検出し、物理量検出部3−2の変位検出部35は、加圧機構21−2a,21−2bに設けられた変位センサの出力に基づいて、被接合物24の厚さ方向の変位量D2を検出する。   The configuration of the physical quantity detection unit 3-2 is the same as that of the physical quantity detection unit 3-1. The current detection unit 30 of the physical quantity detection unit 3-2 detects the welding current I2 flowing between the electrodes 20-2a and 20-2b, and the voltage detection unit 31 of the physical quantity detection unit 3-2 detects the electrodes 20-2a and 20-2. -B is applied to the welding voltage V2. The power detection unit 32 of the physical quantity detection unit 3-2 detects the welding power W2 supplied to the electrodes 20-2a and 20-2b, and the resistance detection unit 33 of the physical quantity detection unit 3-2 includes the electrode 20-. The resistance R2 between 2a and 20-2b is calculated. The load detector 34 of the physical quantity detector 3-2 detects the load G2 applied to the workpiece 24 based on the output of the load cell provided in the pressurizing mechanisms 21-2a and 21-2b. The displacement detector 35 of the physical quantity detector 3-2 detects the displacement D2 in the thickness direction of the workpiece 24 based on the output of the displacement sensor provided in the pressurizing mechanisms 21-2a and 21-2b. .

以下、本実施の形態の溶接装置の動作を説明する。図4は溶接装置の動作を説明するフローチャートである。
例えばユーザが操作部6を操作して溶接開始を指示すると、制御部5は、溶接ヘッド2の拡管機構40を制御して、巻回体25の軸方向(図2の紙面と垂直な方向)に沿って拡管機構40を筒状の巻回体25の内部29に挿入させ、巻回体25が上下方向に拡がるように拡管させる(図4ステップS1)。上記のとおり、巻回体25は複数枚の金属箔を積層して渦巻き状に巻いたものであるから、巻回体25を上下方向に拡がるように変形させることは容易である。
Hereinafter, the operation of the welding apparatus of the present embodiment will be described. FIG. 4 is a flowchart for explaining the operation of the welding apparatus.
For example, when the user operates the operation unit 6 to instruct the start of welding, the control unit 5 controls the tube expansion mechanism 40 of the welding head 2 to axially move the wound body 25 (direction perpendicular to the paper surface of FIG. 2). The tube expanding mechanism 40 is inserted into the inside 29 of the cylindrical wound body 25 along the tube so that the wound body 25 expands in the vertical direction (step S1 in FIG. 4). As described above, since the wound body 25 is formed by laminating a plurality of metal foils and wound in a spiral shape, it is easy to deform the wound body 25 so as to expand in the vertical direction.

そして、BP28−1aの下面を吸着機構22−1aによって真空吸着すると共にBP28−1bの上面を吸着機構22−1bによって真空吸着してBP28−1a,28−1bを中間電極20−1cの上下に固定し、同時にBP28−2aの下面を吸着機構22−2aによって真空吸着すると共にBP28−2bの上面を吸着機構22−2bによって真空吸着してBP28−2a,28−2bを中間電極20−2cの上下に固定した状態で、制御部5は、挿抜機構41を制御する。挿抜機構41は、拡管機構40によって拡管された巻回体25の内部29に、中間電極20−1c,20−2cを巻回体25の軸方向に沿って挿入する(図4ステップS2)。   Then, the lower surface of BP28-1a is vacuum-sucked by the suction mechanism 22-1a, and the upper surface of BP28-1b is vacuum-sucked by the suction mechanism 22-1b to place BP28-1a and 28-1b above and below the intermediate electrode 20-1c. At the same time, the lower surface of BP28-2a is vacuum-sucked by the suction mechanism 22-2a and the upper surface of BP28-2b is vacuum-sucked by the suction mechanism 22-2b to attach BP28-2a and 28-2b to the intermediate electrode 20-2c. The control part 5 controls the insertion / extraction mechanism 41 in the state fixed up and down. The insertion / extraction mechanism 41 inserts the intermediate electrodes 20-1c and 20-2c along the axial direction of the wound body 25 into the inside 29 of the wound body 25 expanded by the tube expansion mechanism 40 (step S2 in FIG. 4).

中間電極20−1cは、電極20−1a,20−1bによって被接合物24が上下方向から挟み込まれたときに、電極20−1a,20−1bと一直線上に並ぶように巻回体25の内部29に挿入される。同様に、中間電極20−2cは、電極20−2a,20−2bによって被接合物24が上下方向から挟み込まれたときに、電極20−2a,20−2bと一直線上に並ぶように巻回体25の内部29に挿入される。   The intermediate electrode 20-1c is formed of the wound body 25 so as to be aligned with the electrodes 20-1a and 20-1b when the workpiece 24 is sandwiched between the electrodes 20-1a and 20-1b from above and below. Inserted into the interior 29. Similarly, the intermediate electrode 20-2c is wound so as to be aligned with the electrodes 20-2a and 20-2b when the workpiece 24 is sandwiched from above and below by the electrodes 20-2a and 20-2b. It is inserted into the inside 29 of the body 25.

続いて、制御部5は、拡管機構40を巻回体25の内部29から抜いて、拡管機構40による拡管を解除させた上で、溶接ヘッド2の加圧機構21−1a,21−1b,21−2a,21−2bを制御し、電極20−1a,20−1bによって被接合物24を上下方向から挟み込み加圧すると同時に、電極20−2a,20−2bによって被接合物24を上下方向から挟み込み加圧する(図4ステップS3)。このとき、集電体26は、集電体26のプロジェクション27−1a,27−1b,27−2a,27−2bが、電極20−1a,20−1b,20−2a,20−2bと巻回体25との間に位置するように配置される。   Subsequently, the control unit 5 removes the pipe expansion mechanism 40 from the inside 29 of the wound body 25 to release the pipe expansion by the pipe expansion mechanism 40, and then pressurizes the pressurization mechanisms 21-1a, 21-1b, 21-2a and 21-2b are controlled, and the workpiece 24 is sandwiched and pressurized from the vertical direction by the electrodes 20-1a and 20-1b. At the same time, the workpiece 24 is vertically moved by the electrodes 20-2a and 20-2b. And then pressurizing (step S3 in FIG. 4). At this time, the current collector 26 is formed by winding the projections 27-1a, 27-1b, 27-2a, and 27-2b of the current collector 26 with the electrodes 20-1a, 20-1b, 20-2a, and 20-2b. It arrange | positions so that it may be located between the rotation bodies 25.

なお、図2の例では、加圧機構21−1a,21−1b,21−2a,21−2bがそれぞれ電極20−1a,20−1b,20−2a,20−2bに圧力を加えるようになっているが、上部電極20−1a,20−2aと下部電極20−1b,20−2bのうちどちらか一方の側のみに圧力を加えるようにしてもよいことは言うまでもない。   In the example of FIG. 2, the pressurizing mechanisms 21-1a, 21-1b, 21-2a, 21-2b apply pressure to the electrodes 20-1a, 20-1b, 20-2a, 20-2b, respectively. However, it goes without saying that pressure may be applied only to one of the upper electrodes 20-1a, 20-2a and the lower electrodes 20-1b, 20-2b.

加圧機構21−1a,21−1b,21−2a,21−2bによる加圧の完了後、制御部5は、溶接電源1−1,1−2を制御して、溶接電源1−1から電極20−1a,20−1b間に溶接電流を供給させると同時に、溶接電源1−2から電極20−2a,20−2b間に溶接電流を供給させる。   After the pressurization by the pressurizing mechanisms 21-1a, 21-1b, 21-2a, 21-2b is completed, the control unit 5 controls the welding power sources 1-1 and 1-2 to start from the welding power source 1-1. A welding current is supplied between the electrodes 20-1a and 20-1b and simultaneously, a welding current is supplied from the welding power source 1-2 to the electrodes 20-2a and 20-2b.

溶接電源1−1から供給される電流は、上部電極20−1a、集電体26、巻回体25、BP28−1a、中間電極20−1c、BP28−1b、巻回体25、集電体26、下部電極20−1bという経路で流れる。また、溶接電源1−2から供給される電流は、上部電極20−2a、集電体26、巻回体25、BP28−2a、中間電極20−2c、BP28−2b、巻回体25、集電体26、下部電極20−2bという経路で流れる。   The current supplied from the welding power source 1-1 includes the upper electrode 20-1a, the current collector 26, the wound body 25, BP28-1a, the intermediate electrode 20-1c, BP28-1b, the wound body 25, and the current collector. 26 and the lower electrode 20-1b. Further, the current supplied from the welding power source 1-2 includes the upper electrode 20-2a, the current collector 26, the wound body 25, BP28-2a, the intermediate electrode 20-2c, BP28-2b, the wound body 25, and the current collector. It flows through a path of the electric body 26 and the lower electrode 20-2b.

このような溶接電流の供給により、発生するジュール熱で被接合物24の接合面(金属同士の接合面)を溶融させて接合する。本実施の形態では、加圧機構21−1a,21−1bによる加圧によって集電体26のプロジェクション27−1a,27−1bが変形して低くなり、このプロジェクション27−1aの先端部と、プロジェクション27−1aの真下の位置の巻回体25と、プロジェクション27−1aの真下の位置のBP28−1aとが溶融して、集電体26と巻回体25とBP28−1aとが接合されると共に、プロジェクション27−1bの先端部と、プロジェクション27−1bの真上の位置の巻回体25と、プロジェクション27−1bの真上の位置のBP28−1bとが溶融して、集電体26と巻回体25とBP28−1bとが接合される。   By supplying such a welding current, the joining surface (joint surface between the metals) of the workpiece 24 is melted and joined by the generated Joule heat. In the present embodiment, the projections 27-1a and 27-1b of the current collector 26 are deformed and lowered by the pressurization by the pressurizing mechanisms 21-1a and 21-1b, and the leading end of the projection 27-1a, The wound body 25 at a position directly below the projection 27-1a and the BP28-1a at a position directly below the projection 27-1a are melted, and the current collector 26, the wound body 25, and BP28-1a are joined. At the same time, the tip of the projection 27-1b, the wound body 25 at a position directly above the projection 27-1b, and the BP 28-1b at a position directly above the projection 27-1b are melted to collect a current collector. 26, the wound body 25, and BP28-1b are joined.

同様に、加圧機構21−2a,21−2bによる加圧によってプロジェクション27−2a,27−2bが変形して低くなり、プロジェクション27−2aの先端部と、プロジェクション27−2aの真下の位置の巻回体25と、プロジェクション27−2aの真下の位置のBP28−2aとが溶融して、集電体26と巻回体25とBP28−2aとが接合されると共に、プロジェクション27−2bの先端部と、プロジェクション27−2bの真上の位置の巻回体25と、プロジェクション27−2bの真上の位置のBP28−2bとが溶融して、集電体26と巻回体25とBP28−2bとが接合される。   Similarly, the projections 27-2a and 27-2b are deformed and lowered by the pressurization by the pressurizing mechanisms 21-2a and 21-2b, so that the tip of the projection 27-2a and the position just below the projection 27-2a are located. The wound body 25 and the BP 28-2a immediately below the projection 27-2a are melted to join the current collector 26, the wound body 25, and the BP 28-2a, and the tip of the projection 27-2b. Part, the wound body 25 at a position directly above the projection 27-2b, and the BP 28-2b at a position directly above the projection 27-2b are melted, and the current collector 26, the wound body 25, and the BP 28- 2b is joined.

なお、BP28−1a,28−1b,28−2a,28−2bの厚さは、溶接の際に巻回体25と接する部分が溶けて中間電極20−1c,20−2cと接する部分が溶けない厚さに設定すればよく、例えば集電体26の厚さの1/2以上が適当である。   In addition, the thickness of BP28-1a, 28-1b, 28-2a, 28-2b melt | dissolves the part which contact | connects the winding body 25 in the case of welding, and the part which contact | connects intermediate electrode 20-1c, 20-2c. The thickness may be set to a thickness that is not, for example, ½ or more of the thickness of the current collector 26 is appropriate.

図5は溶接中の溶接電流I1、溶接電圧V1、溶接電力W1の変化の1例を示す図、図6は溶接中の電極間抵抗R1の変化の1例を示す図、図7は溶接中の荷重G1、変位量D1の変化の1例を示す図である。図5〜図7の横軸は時間である。なお、図5の例では、溶接電流I1および溶接電圧V1が正のパルスについてのみ記載しているが、溶接電源1−1のトランス(不図示)の1次側に交流電圧を印加しているので、溶接電流I1および溶接電圧V1が負のパルスの場合もある。なお、溶接電流I2、溶接電圧V2、溶接電力W2、電極間抵抗R2、荷重G2、変位量D2の変化も、溶接電流I1、溶接電圧V1、溶接電力W1、電極間抵抗R1、荷重G1、変位量D1と同様である。   5 is a diagram showing an example of changes in welding current I1, welding voltage V1, and welding power W1 during welding, FIG. 6 is a diagram showing an example of changes in interelectrode resistance R1 during welding, and FIG. 7 is during welding. It is a figure which shows one example of the change of the load G1 and the displacement amount D1. The horizontal axis of FIGS. 5-7 is time. In the example of FIG. 5, the welding current I1 and the welding voltage V1 are described only for positive pulses, but an AC voltage is applied to the primary side of a transformer (not shown) of the welding power source 1-1. Therefore, the welding current I1 and the welding voltage V1 may be negative pulses. The changes in the welding current I2, the welding voltage V2, the welding power W2, the interelectrode resistance R2, the load G2, and the displacement amount D2 are also the welding current I1, the welding voltage V1, the welding power W1, the interelectrode resistance R1, the load G1, and the displacement. It is the same as the quantity D1.

制御部5は、溶接電源1−1,1−2を制御して、電極20−1a,20−1b間および電極20−2a,20−2b間に図5に示したようなパルス電流を印加させ、溶接中に検出される物理量をリアルタイムで監視し、物理量が所定の終了条件値に達した時点で溶接電源1−1,1−2の動作を停止させて、電極20−1a,20−1b間および電極20−2a,20−2b間への通電を終了させ、この通電終了時から所定の冷却時間(例えば数msec)が経過した後に、次のパルス電流の印加を行う。このように、制御部5は、電極20−1a〜20−1cと溶接電源1−1の組と、電極20−2a〜20−2cと溶接電源1−2の組とが同期して溶接を開始するように通電制御を行なう。   The control unit 5 controls the welding power sources 1-1 and 1-2 to apply a pulse current as shown in FIG. 5 between the electrodes 20-1a and 20-1b and between the electrodes 20-2a and 20-2b. The physical quantity detected during welding is monitored in real time, and when the physical quantity reaches a predetermined end condition value, the operation of the welding power sources 1-1 and 1-2 is stopped, and the electrodes 20-1a and 20- The energization between 1b and between the electrodes 20-2a and 20-2b is terminated, and after a predetermined cooling time (for example, several msec) has elapsed from the end of the energization, the next pulse current is applied. As described above, the control unit 5 performs welding in which the set of the electrodes 20-1a to 20-1c and the welding power source 1-1 and the set of the electrodes 20-2a to 20-2c and the welding power source 1-2 are synchronized. Energization control is performed to start.

記憶部7には、溶接の通電パルス毎の終了条件値として、溶接中に検出される物理量の望ましい値が予め設定されている。これらの物理量としては、溶接電流値I0、溶接電圧値V0、電極間抵抗値R0、荷重値G0、変位量D0がある。溶接装置のユーザは、予め対象となる被接合物24を用いて終了条件値設定のための溶接試験を行い、適切な溶接が得られたときの物理量の値を記憶部7に設定しておけばよい。 In the storage unit 7, a desirable value of a physical quantity detected during welding is set in advance as an end condition value for each energization pulse of welding. These physical quantities include a welding current value I 0 , a welding voltage value V 0 , an interelectrode resistance value R 0 , a load value G 0 , and a displacement amount D 0 . The user of the welding apparatus can perform a welding test for setting an end condition value using the object to be joined 24 in advance, and set a physical quantity value when appropriate welding is obtained in the storage unit 7. That's fine.

本実施の形態では、記憶部7に予め設定された電極間抵抗値R0を終了条件値とする抵抗制御方式で最初に溶接を行う(図4ステップS4)。具体的には、制御部5は、電極間抵抗値のフィードバックに基づく抵抗制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの抵抗検出部33で検出される電極間抵抗値R1,R2を監視して、電極間抵抗値R1が記憶部7に予め設定された電極間抵抗値R0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また電極間抵抗値R2が電極間抵抗値R0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 In the present embodiment, welding is first performed by a resistance control method using an interelectrode resistance value R 0 preset in the storage unit 7 as an end condition value (step S4 in FIG. 4). Specifically, when the control unit 5 performs resistance control based on feedback of the interelectrode resistance value, the electrodes detected by the respective resistance detection units 33 of the physical quantity detection units 3-1 and 3-2 for each energization pulse. The inter-electrode resistance values R1 and R2 are monitored, and when the inter-electrode resistance value R1 reaches the inter-electrode resistance value R 0 preset in the storage unit 7, the welding power source 1-1 supplies the electrodes 20-1a and 20-1b. When the inter-electrode resistance value R2 reaches the inter-electrode resistance value R 0 , the energization from the welding power source 1-2 to the electrodes 20-2a and 20-2b is terminated.

制御部5は、抵抗制御方式の溶接をn回行う(nは1以上の整数)。ここでは、電極20−1a,20−1b,20−2a,20−2bに図5に示したような1個のパルス電流を印加することを1回と数える。抵抗制御方式の溶接を複数回行う場合、1回毎に終了条件値が変わるように予め設定しておく。例えば抵抗制御方式の溶接を2回行う場合、1回目の終了条件値である電極間抵抗値R0と2回目の終了条件値である電極間抵抗値R02とは、R0>R02の関係にある。1回毎に終了条件値が低くなる理由は、溶接を重ねる度に電極間抵抗値Rが低くなるからである。このように、抵抗制御方式の溶接を複数回行う場合、1回毎に終了条件値を設定しておく必要がある。また、抵抗制御方式の溶接を複数回行う場合、1回の溶接終了時(通電終了時)から所定の冷却時間が経過した後に、次の溶接を行うようにする。 The control unit 5 performs resistance control type welding n times (n is an integer of 1 or more). Here, the application of one pulse current as shown in FIG. 5 to the electrodes 20-1a, 20-1b, 20-2a, and 20-2b is counted as one time. When performing resistance control type welding a plurality of times, it is set in advance so that the end condition value changes every time. For example, when resistance-control welding is performed twice, the interelectrode resistance value R 0 that is the first end condition value and the interelectrode resistance value R 02 that is the second end condition value are R 0 > R 02 . There is a relationship. The reason why the end condition value decreases every time is that the inter-electrode resistance value R decreases each time welding is repeated. Thus, when performing resistance control type welding a plurality of times, it is necessary to set an end condition value for each time. When performing resistance control welding a plurality of times, the next welding is performed after a predetermined cooling time has elapsed since the end of one welding (at the end of energization).

なお、本実施の形態では、上部電極と下部電極と中間電極の組を2組設けているので、上部電極20−1aと下部電極20−1bと中間電極20−1cの組と、上部電極20−2aと下部電極20−2bと中間電極20−2cの組のうち、どちらかの組の電極間抵抗値Rが先に終了条件値に達する可能性がある。   In the present embodiment, since two sets of the upper electrode, the lower electrode, and the intermediate electrode are provided, the set of the upper electrode 20-1a, the lower electrode 20-1b, the intermediate electrode 20-1c, and the upper electrode 20 are provided. −2a, the lower electrode 20-2b, and the intermediate electrode 20-2c, the inter-electrode resistance value R of either set may reach the end condition value first.

制御部5は、例えば電極間抵抗値R1が先に終了条件値に達した場合、電極間抵抗値R2が終了条件値に達するのを待ち、電極間抵抗値R2が終了条件値に達してから所定の冷却時間が経過した後に、各組が同期して溶接を開始するように次の溶接を行う。また、電極間抵抗値R2が先に終了条件値に達した場合、電極間抵抗値R1が終了条件値に達するのを待ち、電極間抵抗値R1が終了条件値に達してから所定の冷却時間が経過した後に、次の溶接を行うようにする。   For example, when the interelectrode resistance value R1 reaches the end condition value first, the control unit 5 waits for the interelectrode resistance value R2 to reach the end condition value, and after the interelectrode resistance value R2 reaches the end condition value. After a predetermined cooling time has elapsed, the next welding is performed so that the respective groups start welding in synchronization. Further, when the interelectrode resistance value R2 reaches the end condition value first, it waits for the interelectrode resistance value R1 to reach the end condition value, and a predetermined cooling time after the interelectrode resistance value R1 reaches the end condition value. After elapse of time, the next welding is performed.

次に、制御部5は、抵抗制御方式のn回の溶接が終了し(図4ステップS5においてYES)、この溶接終了時(通電終了時)から所定の冷却時間が経過した後に、他の制御方式で溶接を行う(図4ステップS6)。このステップS6の溶接においても、各組が同期して溶接を開始するように通電制御を行なう。   Next, the control unit 5 finishes the resistance control method n times (YES in step S5 in FIG. 4), and after the predetermined cooling time has elapsed from the end of the welding (at the end of energization), performs another control. Welding is performed by the method (step S6 in FIG. 4). Also in the welding in step S6, energization control is performed so that the respective groups start welding in synchronization.

抵抗制御方式以外の制御方式としては、溶接電流値I0を終了条件値とする電流制御方式、溶接電圧値V0を終了条件値とする電圧制御方式、溶接電力値W0を終了条件値とする電力制御方式、荷重値G0を終了条件値とする荷重制御方式、変位量D0を終了条件値とする変位制御方式がある。 As a control method other than the resistance control method, a current control method using a welding current value I 0 as an end condition value, a voltage control method using a welding voltage value V 0 as an end condition value, and a welding power value W 0 as an end condition value. Power control method, load control method using load value G 0 as an end condition value, and displacement control method using displacement amount D 0 as an end condition value.

制御部5は、溶接電流のフィードバックに基づく電流制御を行う場合、図5に示したような通電パルス毎に物理量検出部3−1,3−2のそれぞれの電流検出部30で検出される溶接電流I1,I2をリアルタイムで監視して、溶接電流I1の絶対値が記憶部7に予め設定された溶接電流値I0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また溶接電流I2の絶対値が溶接電流値I0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When the control unit 5 performs current control based on feedback of the welding current, the welding detected by the current detection units 30 of the physical quantity detection units 3-1 and 3-2 for each energization pulse as illustrated in FIG. monitoring the currents I1, I2 in real time, welding current I1 of the absolute value previously set welding current value I 0 electrode from the welding power source 1-1 at which point 20-1a in the storage unit 7, 20-1b to terminate the energization of the, also the absolute value of the welding current electrode 20-2a from the welding power source 1-2 at which point I 0 of the welding current I2, to terminate the energization of the 20-2b.

制御部5は、溶接電圧のフィードバックに基づく電圧制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの電圧検出部31で検出される溶接電圧V1,V2を監視して、溶接電圧V1の絶対値が記憶部7に予め設定された溶接電圧値V0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また溶接電圧V2の絶対値が溶接電圧値V0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When the voltage control based on the feedback of the welding voltage is performed, the control unit 5 monitors the welding voltages V1 and V2 detected by the voltage detection units 31 of the physical quantity detection units 3-1 and 3-2 for each energization pulse. When the absolute value of the welding voltage V1 reaches the welding voltage value V 0 preset in the storage unit 7, the energization from the welding power source 1-1 to the electrodes 20-1a and 20-1b is terminated, and the welding is performed. When the absolute value of the voltage V2 reaches the welding voltage value V 0 , energization from the welding power source 1-2 to the electrodes 20-2a and 20-2b is terminated.

制御部5は、溶接電力のフィードバックに基づく電力制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの電力検出部32で検出される溶接電力W1,W2を監視して、溶接電力W1が記憶部7に予め設定された溶接電力値W0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また溶接電力W2が溶接電力値W0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When the power control based on the feedback of the welding power is performed, the control unit 5 monitors the welding powers W1 and W2 detected by the respective power detection units 32 of the physical quantity detection units 3-1 and 3-2 for each energization pulse. When the welding power W1 reaches the welding power value W 0 preset in the storage unit 7, the energization from the welding power source 1-1 to the electrodes 20-1a and 20-1b is terminated, and the welding power W2 is electrodes 20-2a from the welding power source 1-2 at which point the welding power value W 0, to terminate the energization of the 20-2b.

制御部5は、荷重のフィードバックに基づく荷重制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの荷重検出部34で検出される荷重G1,G2を監視して、荷重G1が記憶部7に予め設定された荷重値G0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また荷重G2が荷重値G0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When performing load control based on load feedback, the control unit 5 monitors the loads G1 and G2 detected by the load detection units 34 of the physical quantity detection units 3-1 and 3-2 for each energization pulse, When the load G1 reaches the load value G 0 preset in the storage unit 7, the energization from the welding power source 1-1 to the electrodes 20-1a and 20-1b is terminated, and the load G2 reaches the load value G 0 . When it reaches, the energization from the welding power source 1-2 to the electrodes 20-2a and 20-2b is terminated.

制御部5は、変位量のフィードバックに基づく変位制御を行う場合、通電パルス毎に物理量検出部3−1,3−2のそれぞれの変位検出部35で検出される変位量D1,D2を監視して、変位量D1が記憶部7に予め設定された変位量D0に達した時点で溶接電源1−1から電極20−1a,20−1bへの通電を終了させ、また変位量D2が変位量D0に達した時点で溶接電源1−2から電極20−2a,20−2bへの通電を終了させる。 When performing the displacement control based on the displacement amount feedback, the control unit 5 monitors the displacement amounts D1 and D2 detected by the respective displacement detection units 35 of the physical quantity detection units 3-1 and 3-2 for each energization pulse. When the displacement amount D1 reaches the displacement amount D 0 preset in the storage unit 7, the energization from the welding power source 1-1 to the electrodes 20-1a and 20-1b is terminated, and the displacement amount D2 is displaced. When the amount D 0 is reached, energization from the welding power source 1-2 to the electrodes 20-2a and 20-2b is terminated.

制御部5は、電流制御方式、電圧制御方式、電力制御方式、荷重制御方式、変位制御方式のいずれかの制御方式の溶接をm回行う(mは1以上の整数)。これらの制御方式の溶接を複数回行う場合、1回毎に終了条件値が変わるようにしてもよいし、複数回の溶接の終了条件値として共通の値を用いてもよい。また、1回毎あるいは複数回毎に制御方式を変えてもよい。   The control unit 5 performs welding of a control method of any one of a current control method, a voltage control method, a power control method, a load control method, and a displacement control method m times (m is an integer of 1 or more). When welding of these control methods is performed a plurality of times, the end condition value may be changed every time, or a common value may be used as the end condition value for a plurality of times of welding. Further, the control method may be changed every time or every plural times.

また、抵抗制御方式の場合と同様に、溶接を複数回行う場合、電極20−1a〜20−1cと溶接電源1−1の組と、電極20−2a〜20−2cと溶接電源1−2の組のうち、どちらかの組の物理量(電流、電圧、電力、荷重、変位)が先に終了条件値に達する可能性がある。この場合、抵抗制御方式と同様に、一方の組の物理量が先に終了条件値に達した後、他方の組の物理量が終了条件値に達するのを待ち、この他方の組の物理量が終了条件値に達してから所定の冷却時間が経過した後に、各組が同期して溶接を開始するように次の溶接を行なえばよい。   Similarly to the resistance control method, when welding is performed a plurality of times, a set of electrodes 20-1a to 20-1c and a welding power source 1-1, electrodes 20-2a to 20-2c, and a welding power source 1-2. There is a possibility that the physical quantity (current, voltage, power, load, displacement) of either group will reach the end condition value first. In this case, similarly to the resistance control method, after the physical quantity of one set reaches the end condition value first, waits for the physical quantity of the other set to reach the end condition value, and the physical quantity of the other set reaches the end condition value. After a predetermined cooling time has elapsed since reaching the value, the next welding may be performed so that the respective groups start welding in synchronization.

m回の溶接が終了した時点で(図4ステップS7においてYES)、中間電極20−1c,20−2cを巻回体25の内部から抜く必要がある。すなわち、制御部5は、加圧機構21−1a,21−1b,21−2a,21−2bを制御して、電極20−1a,20−1b,20−2a,20−2bによる被接合物24への加圧を解除させた後(図4ステップS8)、挿抜機構41を制御する。挿抜機構41は、巻回体25の軸方向に沿って中間電極20−1c,20−2cを巻回体25の内部29から引き抜く(図4ステップS9)。   When m times of welding are completed (YES in step S7 in FIG. 4), it is necessary to remove the intermediate electrodes 20-1c and 20-2c from the inside of the wound body 25. That is, the control unit 5 controls the pressurizing mechanisms 21-1a, 21-1b, 21-2a, and 21-2b to be joined by the electrodes 20-1a, 20-1b, 20-2a, and 20-2b. After releasing the pressure to 24 (step S8 in FIG. 4), the insertion / extraction mechanism 41 is controlled. The insertion / extraction mechanism 41 extracts the intermediate electrodes 20-1c and 20-2c from the inside 29 of the wound body 25 along the axial direction of the wound body 25 (step S9 in FIG. 4).

溶接装置の処理が全て終了するまで吸着機構22−1a,22−1b,22−2a,22−2bがBP28−1a,28−1b,28−2a,28−2bを真空吸着しているので、この真空吸着が中間電極20−1c,20−2cの引き抜きに抗する力として作用する。したがって、挿抜機構41が巻回体25から中間電極20−1c,20−2cを引き抜くのに必要な力が小さい場合、BP28−1a,28−1b,28−2a,28−2bが巻回体25と溶接されておらず、中間電極20−1c,20−2cと共に巻回体25から外れてしまった可能性がある。   Since the adsorption mechanisms 22-1a, 22-1b, 22-2a, 22-2b are vacuum-adsorbing BP28-1a, 28-1b, 28-2a, 28-2b until all the processing of the welding apparatus is completed. This vacuum adsorption acts as a force that resists the extraction of the intermediate electrodes 20-1c and 20-2c. Therefore, when the force required for the insertion / extraction mechanism 41 to pull out the intermediate electrodes 20-1c and 20-2c from the wound body 25 is small, BP28-1a, 28-1b, 28-2a, and 28-2b are wound bodies. 25 and the intermediate electrodes 20-1c and 20-2c together with the intermediate electrodes 20-1c and 20-2c may be detached from the wound body 25.

挿抜機構41には、図示しないロードセルが設けられており、巻回体25から中間電極20−1c,20−2cを引き抜くのに必要な力の大きさをロードセルで電気信号に変換して、このロードセルの出力を制御部5に通知できるようになっている。制御部5は、挿抜機構41が巻回体25から中間電極20−1c,20−2cを引き抜くのに必要な力が所定の閾値以下の場合(図4ステップS10)、溶接が不適切であると判断して、例えば表示部8に警報メッセージを表示させることにより、警報を発する(図4ステップS11)。   The insertion / extraction mechanism 41 is provided with a load cell (not shown). The load cell converts the magnitude of the force required to pull out the intermediate electrodes 20-1c, 20-2c from the wound body 25 into an electric signal. The output of the load cell can be notified to the control unit 5. When the force required for the insertion / extraction mechanism 41 to pull out the intermediate electrodes 20-1c, 20-2c from the wound body 25 is equal to or less than a predetermined threshold (step S10 in FIG. 4), the control unit 5 is inappropriate for welding. For example, an alarm is issued by displaying an alarm message on the display unit 8 (step S11 in FIG. 4).

また、真空圧力検出部4−1は吸着機構22−1a,22−1bの真空圧力を検出し、真空圧力検出部4−2は吸着機構22−2a,22−2bの真空圧力を検出する。挿抜機構41が巻回体25から中間電極20−1c,20−2cを正しく引き抜くことができれば、真空圧力検出部4−1,4−2が検出する真空圧力が高まる(すなわち、真空度が低下する)。一方、BP28−1a,28−1b,28−2a,28−2bが中間電極20−1c,20−2cと共に巻回体25から外れてしまった場合には、真空圧力が低いままとなる。   Further, the vacuum pressure detector 4-1 detects the vacuum pressure of the suction mechanisms 22-1a and 22-1b, and the vacuum pressure detector 4-2 detects the vacuum pressure of the suction mechanisms 22-2a and 22-2b. If the insertion / extraction mechanism 41 can correctly extract the intermediate electrodes 20-1c, 20-2c from the wound body 25, the vacuum pressure detected by the vacuum pressure detectors 4-1, 4-2 increases (that is, the degree of vacuum decreases). To do). On the other hand, if the BP 28-1a, 28-1b, 28-2a, 28-2b is detached from the wound body 25 together with the intermediate electrodes 20-1c, 20-2c, the vacuum pressure remains low.

そこで、制御部5は、挿抜機構41が巻回体25から中間電極20−1c,20−2cを引き抜いたときに、真空圧力検出部4−1,4−2が検出した真空圧力のうち少なくとも1つの真空圧力が所定の真空圧力閾値以下の場合(図4ステップS12)、溶接が不適切であると判断して、例えば表示部8に警報メッセージを表示させることにより、警報を発する(ステップS11)。
以上で、溶接装置の処理が終了する。なお、制御部5は、溶接中に検出した物理量の波形を表示部8に表示させるようにしてもよい。
Therefore, when the insertion / extraction mechanism 41 pulls out the intermediate electrodes 20-1c, 20-2c from the wound body 25, the control unit 5 includes at least the vacuum pressure detected by the vacuum pressure detection units 4-1, 4-2. If one vacuum pressure is equal to or lower than a predetermined vacuum pressure threshold (step S12 in FIG. 4), it is determined that welding is inappropriate, and an alarm is issued by displaying an alarm message on the display unit 8, for example (step S11). ).
This completes the processing of the welding apparatus. The control unit 5 may cause the display unit 8 to display a waveform of a physical quantity detected during welding.

以上のように、本実施の形態では、上部電極と下部電極と中間電極の組を2組設け、各組が同期して溶接を開始するように通電を行ない、被接合物24の上下2点ずつ、計4点の溶接を同時に行なうようにしたので、従来の抵抗溶接において複数点の溶接を行なう際に問題となった電流の分流をなくすことができる。   As described above, in this embodiment, two sets of the upper electrode, the lower electrode, and the intermediate electrode are provided, and energization is performed so that the sets start welding in synchronization with each other. Since a total of four points are welded at a time, it is possible to eliminate the shunting of current that has become a problem when performing welding at a plurality of points in conventional resistance welding.

その結果、本実施の形態では、適切な溶接を実現することができ、また溶接条件の設定を簡略化することができる。また、本実施の形態では、複数点の溶接を同時に行なうことから、溶接回数を減らすことができ、溶接工程のタクトタイムの改善を図ることができる。また、本実施の形態では、分流に伴う溶接電流の増加をなくすことができるので、溶接電源1台あたりの容量を小さくすることができる。   As a result, in this embodiment, appropriate welding can be realized, and setting of welding conditions can be simplified. Moreover, in this Embodiment, since welding of several points is performed simultaneously, the frequency | count of welding can be reduced and the tact time of a welding process can be aimed at. Moreover, in this Embodiment, since the increase in the welding current accompanying a shunt can be eliminated, the capacity | capacitance per welding power supply can be made small.

ただし、分流をなくすためには、上部電極20−1aと下部電極20−1bと中間電極20−1cの組と、上部電極20−2aと下部電極20−2bと中間電極20−2cの組で被接合物24に対する通電方向を同一にする必要がある。本実施の形態では、上部電極20−1aから下部電極20−1bの方向へ電流が流れ、同時に上部電極20−2aから下部電極20−2bの方向へ電流が流れるので、被接合物24に対する通電方向は同一である。   However, in order to eliminate the shunt, a set of the upper electrode 20-1a, the lower electrode 20-1b, and the intermediate electrode 20-1c, and a set of the upper electrode 20-2a, the lower electrode 20-2b, and the intermediate electrode 20-2c are used. It is necessary to make the energization direction with respect to the to-be-joined object 24 the same. In the present embodiment, current flows from the upper electrode 20-1a to the lower electrode 20-1b, and simultaneously, current flows from the upper electrode 20-2a to the lower electrode 20-2b. The direction is the same.

また、本実施の形態では、抵抗制御方式の溶接をn回行った後に、他の制御方式の溶接をm回行う。初回の溶接では、電極20−1a〜20−1c,20−2a〜20−2cの汚れや被接合物表面の酸化膜のために電極20−1a,20−1b間および電極20−2a,20−2b間の通電路が不安定である。そこで、塵の発生を抑えるために、抵抗制御方式の溶接をn回行って、電極20−1a〜20−1c,20−2a〜20−2cの汚れや被接合物表面の酸化膜を除去し、電極間抵抗値R1,R2が低下して通電路が安定したところで、他の制御方式の溶接をm回行う。これにより、本実施の形態では、電極20−1a〜20−1c,20−2a〜20−2cの汚れや被接合物表面の酸化膜の影響を軽減することができ、適切な溶接を実現することができる。   Further, in this embodiment, after performing resistance control type welding n times, welding of another control type is performed m times. In the first welding, the electrodes 20-1a to 20-1c and 20-2a to 20-2c are contaminated and an oxide film on the surface of the object to be joined is formed between the electrodes 20-1a and 20-1b and the electrodes 20-2a and 20b. -B is unstable. Therefore, in order to suppress the generation of dust, resistance control type welding is performed n times to remove dirt on the electrodes 20-1a to 20-1c and 20-2a to 20-2c and an oxide film on the surface of the object to be joined. When the resistance values R1 and R2 between the electrodes decrease and the energization path is stabilized, welding of another control method is performed m times. Thereby, in this Embodiment, the influence of the stain | pollution | contamination of the electrodes 20-1a-20-1c, 20-2a-20-2c and the oxide film of the to-be-joined surface can be reduced, and appropriate welding is implement | achieved. be able to.

また、図4のステップS6で行う溶接の制御方式として、従来の制御方式を採用してもよい。ここでの制御方式としては、所定の溶接電流Iを一定時間供給する定電流制御方式、所定の溶接電圧Vを一定時間供給する定電圧制御方式、所定の溶接電力Wを一定時間供給する定電力制御方式などがある。   Moreover, you may employ | adopt the conventional control system as a control system of welding performed by step S6 of FIG. As a control method here, a constant current control method for supplying a predetermined welding current I for a certain time, a constant voltage control method for supplying a predetermined welding voltage V for a certain time, and a constant power for supplying a predetermined welding power W for a certain time. There are control methods.

なお、本実施の形態では、上部電極と下部電極と中間電極の組を2組設けているが、これに限るものではなく、3組以上設けるようにしてもよい。例えば上部電極と下部電極と中間電極の組を3組設けるとすれば、被接合物24の上下3点ずつ、計6点の溶接を同時に行なうことが可能である。この場合、溶接電源と物理量検出部と真空圧力検出部とを組毎に設ける必要がある。   In this embodiment, two sets of the upper electrode, the lower electrode, and the intermediate electrode are provided. However, the present invention is not limited to this, and three or more sets may be provided. For example, if three sets of an upper electrode, a lower electrode, and an intermediate electrode are provided, a total of six points can be welded simultaneously at the upper and lower three points of the workpiece 24. In this case, it is necessary to provide a welding power source, a physical quantity detection unit, and a vacuum pressure detection unit for each group.

また、本実施の形態では、集電体26を巻回体25の上下に配置しているが、集電体26を巻回体25の上側または下側のどちらか一方のみに配置するようにしてもよい。BPは巻回体25の複数枚の金属箔を間に挟んで集電体26と対向するように配置されるので、巻回体25の上側または下側のうち、集電体26が設けられる側にのみBPを配置することになる。また、集電体26を巻回体25の上側または下側のどちらか一方のみに配置する場合、集電体26が配置されない側については、上部電極または下部電極と巻回体25の外周面とが直に接触し、中間電極と巻回体25の内周面とが直に接触することになる。   In the present embodiment, the current collector 26 is disposed above and below the wound body 25, but the current collector 26 is disposed only on either the upper side or the lower side of the wound body 25. May be. Since the BP is disposed so as to face the current collector 26 with a plurality of metal foils of the wound body 25 interposed therebetween, the current collector 26 is provided on the upper side or the lower side of the wound body 25. The BP is arranged only on the side. In addition, when the current collector 26 is disposed only on either the upper side or the lower side of the wound body 25, the upper electrode or the lower electrode and the outer peripheral surface of the wound body 25 on the side where the current collector 26 is not disposed. Are in direct contact with each other, and the intermediate electrode and the inner peripheral surface of the wound body 25 are in direct contact with each other.

集電体26を巻回体25の上下に配置する場合と比較して、集電体26を巻回体25の上側または下側のどちらか一方のみに配置する場合、一度に溶接できる点数が減るものの、上部電極と下部電極と中間電極の組を2組設ける場合で計2点、上部電極と下部電極と中間電極の組を3組設ける場合で計3点の溶接を同時に行なうことが可能である。   Compared with the case where the current collector 26 is disposed above and below the wound body 25, when the current collector 26 is disposed only on either the upper side or the lower side of the wound body 25, the number of points that can be welded at one time is reduced. Although it is reduced, two sets of upper electrode, lower electrode and intermediate electrode can be welded simultaneously, and two points can be welded simultaneously, and three sets of upper electrode, lower electrode and intermediate electrode can be welded simultaneously. It is.

また、本実施の形態では、ステップS2で中間電極20−1c,20−2cを巻回体25の内部29に挿入し、ステップS9で中間電極20−1c,20−2cを巻回体25の内部29から引き抜いているが、これに限るものではなく、挿抜機構41は、電極に対して被接合物24の挿抜を行なってもよい。   In the present embodiment, the intermediate electrodes 20-1c and 20-2c are inserted into the inside 29 of the wound body 25 in step S2, and the intermediate electrodes 20-1c and 20-2c are inserted into the wound body 25 in step S9. Although it is extracted from the inside 29, the present invention is not limited to this, and the insertion / extraction mechanism 41 may insert / extract the article 24 to / from the electrode.

この場合、挿抜機構41は、中間電極20−1cの吸着機構22−1aによって吸着されたBP28−1aと上部電極20−1aとの間、中間電極20−1cの吸着機構22−1bによって吸着されたBP28−1bと下部電極20−1bとの間、中間電極20−2cのの吸着機構22−2aによって吸着されたBP28−2aと上部電極20−2aとの間、および中間電極20−2cの吸着機構22−2bによって吸着されたBP28−2bと下部電極20−2bとの間に、巻回体25の軸方向に沿って巻回体25と集電体26とを挿入すればよい(ステップS2)。   In this case, the insertion / extraction mechanism 41 is adsorbed by the adsorption mechanism 22-1b of the intermediate electrode 20-1c between the BP 28-1a adsorbed by the adsorption mechanism 22-1a of the intermediate electrode 20-1c and the upper electrode 20-1a. Between the BP 28-1b and the lower electrode 20-1b, between the BP 28-2a adsorbed by the adsorption mechanism 22-2a of the intermediate electrode 20-2c and the upper electrode 20-2a, and of the intermediate electrode 20-2c. The wound body 25 and the current collector 26 may be inserted along the axial direction of the wound body 25 between the BP 28-2b adsorbed by the adsorption mechanism 22-2b and the lower electrode 20-2b (step) S2).

また、挿抜機構41は、巻回体25と集電体26とBP28−1a,28−1b,28−2a,28−2bとが溶接された被接合物24を、巻回体25の軸方向に沿って電極20−1a〜20−1c,20−2a〜20−2cから引き抜くようにすればよい(ステップS9)。   Further, the insertion / extraction mechanism 41 is configured such that the wound body 25, the current collector 26, and the BP 28-1a, 28-1b, 28-2a, 28-2b are welded to the workpiece 24 in the axial direction of the wound body 25. The electrodes 20-1a to 20-1c and 20-2a to 20-2c may be pulled out along (step S9).

本実施の形態では、中間電極20−1c,20−2cの周りに吸着機構22−1a,22−1b,22−2a,22−2bの真空吸着パッドを設けているが、中間電極20−1c,20−2c自体に吸着ノズルを設けるようにしてもよい。
また、本実施の形態では、巻回体25の例として、巻回式リチウムイオン電池を例に挙げて説明しているが、他の巻回体に本発明を適用することも可能である。
In the present embodiment, vacuum suction pads of suction mechanisms 22-1a, 22-1b, 22-2a, and 22-2b are provided around the intermediate electrodes 20-1c and 20-2c. 20-2c itself may be provided with a suction nozzle.
In the present embodiment, a wound lithium ion battery is described as an example of the wound body 25. However, the present invention can be applied to other wound bodies.

本実施の形態の制御部5、操作部6、記憶部7および表示部8の機能は、CPU(Central Processing Unit)、記憶装置および外部とのインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPUは、記憶装置に格納されたプログラムに従って本実施の形態で説明した処理を実行する。   The functions of the control unit 5, the operation unit 6, the storage unit 7, and the display unit 8 of the present embodiment are as follows: a CPU (Central Processing Unit), a storage device, a computer having an interface with the outside, and these hardware resources It can be realized by a program to be controlled. The CPU executes the processing described in the present embodiment in accordance with a program stored in the storage device.

本発明は、巻回式リチウムイオン電池などの巻回体に対して複数点の溶接を行なう技術に適用することができる。   The present invention can be applied to a technique for welding a plurality of points to a wound body such as a wound lithium ion battery.

1−1,1−2…溶接電源、2…溶接ヘッド、3−1,3−2…物理量検出部、4−1,4−2…真空圧力検出部、5…制御部、6…操作部、7…記憶部、8…表示部、20−1a,20−2a…上部電極、20−1b,20−2b…下部電極、20−1c,20−2c…中間電極、21−1a,21−1b,21−2a,21−2b…加圧機構、22−1a,22−1b,22−2a,22−2b…吸着機構、24…被接合物、25…巻回体、26…集電体、27−1a,27−1b,27−2a,27−2b…プロジェクション、28−1a,28−1b,28−2a,28−2b…バックプレート、30…電流検出部、31…電圧検出部、32…電力検出部、33…抵抗検出部、34…荷重検出部、35…変位検出部、40…拡管機構、41…挿抜機構。   1-1, 1-2 ... welding power source, 2 ... welding head, 3-1, 3-2 ... physical quantity detection unit, 4-1, 4-2 ... vacuum pressure detection unit, 5 ... control unit, 6 ... operation unit , 7 ... storage unit, 8 ... display unit, 20-1a, 20-2a ... upper electrode, 20-1b, 20-2b ... lower electrode, 20-1c, 20-2c ... intermediate electrode, 21-1a, 21- 1b, 21-2a, 21-2b ... pressurizing mechanism, 22-1a, 22-1b, 22-2a, 22-2b ... adsorption mechanism, 24 ... object to be joined, 25 ... wound body, 26 ... current collector 27-1a, 27-1b, 27-2a, 27-2b ... projection, 28-1a, 28-1b, 28-2a, 28-2b ... back plate, 30 ... current detection unit, 31 ... voltage detection unit, 32 ... Power detection unit, 33 ... Resistance detection unit, 34 ... Load detection unit, 35 ... Displacement detection unit, 40 ... Tube expansion mechanism 41 ... insertion and removal mechanism.

Claims (8)

複数枚の金属箔が積層され渦巻き状に巻回された構造からなる巻回体と、この巻回体の外周面と接するように配置される金属からなる板状部材で、前記巻回体に対して凸状のプロジェクションが形成された集電体と、前記巻回体の複数枚の金属箔を間に挟んで前記集電体と対向するように前記巻回体の内側に配置される金属からなる板状のバックプレートとから構成される被接合物に対して、この被接合物を間に挟んで互いに対向するように前記金属箔の積層方向に沿って配置される複数組の第1、第2の電極と、
前記巻回体の内部に前記第1、第2の電極の組毎に設けられ、前記巻回体の内周面と対向する2面のうち少なくとも一方の面が前記バックプレートを挟み込むようにして前記第1、第2の電極と一直線上に並ぶように配置される複数の第3の電極と、
前記第1、第2の電極のうち少なくとも一方を加圧し、前記被接合物を前記第1、第2の電極によって挟持させる加圧機構と、
前記第1、第2の電極の組毎に設けられ、対応する第1、第2の電極間に電流を供給する複数の溶接電源と、
溶接中の前記被接合物に係る1乃至複数の物理量を検出する物理量検出手段と、
各組が同期して溶接を開始するように前記複数の溶接電源から前記複数組の第1、第2の電極へ電流を供給させ、溶接中に検出される1つの前記物理量が所定の終了条件値に達した時点で前記第1、第2の電極への通電を停止させる制御手段とを備え、
前記複数の溶接電源は、前記被接合物に対する通電方向が同一となるように前記複数組の第1、第2の電極に電流を供給することを特徴とする溶接装置。
A wound body having a structure in which a plurality of metal foils are laminated and wound in a spiral shape, and a plate-like member made of metal disposed so as to be in contact with the outer peripheral surface of the wound body. A current collector on which a convex projection is formed, and a metal disposed inside the wound body so as to face the current collector with a plurality of metal foils of the wound body interposed therebetween A plurality of sets of first members arranged along the stacking direction of the metal foils so as to face each other with the objects to be joined interposed therebetween. A second electrode;
Provided for each set of the first and second electrodes inside the wound body, so that at least one of the two faces facing the inner peripheral surface of the wound body sandwiches the back plate. A plurality of third electrodes arranged to be aligned with the first and second electrodes;
A pressurizing mechanism that pressurizes at least one of the first and second electrodes and clamps the object to be joined by the first and second electrodes;
A plurality of welding power sources that are provided for each set of the first and second electrodes and supply current between the corresponding first and second electrodes;
Physical quantity detection means for detecting one or more physical quantities related to the workpieces being welded;
A current is supplied from the plurality of welding power sources to the plurality of first and second electrodes so that each group starts welding in synchronization, and one physical quantity detected during welding is a predetermined end condition. Control means for stopping energization of the first and second electrodes when the value is reached,
The welding apparatus, wherein the plurality of welding power supplies supply current to the plurality of sets of first and second electrodes so that energization directions to the objects to be joined are the same.
請求項1記載の溶接装置において、
前記制御手段は、溶接中に検出される物理量である、前記第1、第2の電極間の抵抗が、終了条件値として予め設定されている電極間抵抗値に達した時点で前記第1、第2の電極への通電を停止させる第1の制御方式の溶接をn回行った後に(nは1以上の整数)、さらに前記第1の制御方式と異なる第2の制御方式の溶接をm回行う(mは1以上の整数)ことを特徴とする溶接装置。
The welding device according to claim 1,
When the resistance between the first and second electrodes, which is a physical quantity detected during welding, reaches a resistance value between electrodes set in advance as an end condition value, the control means is the first, After performing welding of the first control method for stopping energization of the second electrode n times (n is an integer of 1 or more), welding of the second control method different from the first control method is performed m The welding apparatus is characterized in that it is performed once (m is an integer of 1 or more).
請求項2記載の溶接装置において、
前記第2の制御方式の溶接は、溶接中に検出される電極間抵抗以外の物理量が所定の終了条件値に達した時点で前記第1、第2の電極への通電を停止させる溶接であり、
前記電極間抵抗以外の物理量は、前記第1、第2の電極を流れる溶接電流、前記第1、第2の電極間に印加される溶接電圧、前記第1、第2の電極に供給される溶接電力、前記被接合物に印加される荷重、前記被接合物の厚さ方向の変位量のいずれかであることを特徴とする溶接装置。
The welding apparatus according to claim 2, wherein
The welding of the second control method is welding that stops energization to the first and second electrodes when a physical quantity other than the interelectrode resistance detected during welding reaches a predetermined end condition value. ,
Physical quantities other than the interelectrode resistance are supplied to the welding current flowing through the first and second electrodes, the welding voltage applied between the first and second electrodes, and the first and second electrodes. The welding apparatus is any one of welding power, a load applied to the workpiece, and a displacement amount in the thickness direction of the workpiece.
請求項2記載の溶接装置において、
前記第2の制御方式の溶接は、前記第1、第2の電極に所定の溶接電流を一定時間供給する定電流制御方式の溶接、前記第1、第2の電極間に所定の溶接電圧を一定時間供給する定電圧制御方式の溶接、前記第1、第2の電極に所定の溶接電力を一定時間供給する定電力制御方式の溶接のいずれかであることを特徴とする溶接装置。
The welding apparatus according to claim 2, wherein
The second control type welding is a constant current control type welding in which a predetermined welding current is supplied to the first and second electrodes for a predetermined time, and a predetermined welding voltage is applied between the first and second electrodes. A welding apparatus comprising: constant voltage control type welding for supplying a predetermined time, or constant power control type welding for supplying a predetermined welding power to the first and second electrodes for a predetermined time.
請求項1乃至4のいずれか1項に記載の溶接装置において、
前記制御手段は、溶接を複数回行う場合に、前記複数組の第1、第2の電極のうち最も遅い組の溶接が終了するのを待ってから、各組が同期して溶接を開始するように前記複数の溶接電源から前記複数組の第1、第2の電極へ電流を供給させて次の溶接を行なうことを特徴とする溶接装置。
The welding apparatus according to any one of claims 1 to 4,
In the case where welding is performed a plurality of times, the control means waits for the slowest welding of the plurality of sets of first and second electrodes to finish, and then each group starts welding in synchronization. Thus, the welding apparatus is characterized in that the next welding is performed by supplying current from the plurality of welding power sources to the plurality of sets of first and second electrodes.
請求項1乃至5のいずれか1項に記載の溶接装置において、
さらに、前記バックプレートを真空吸着して、前記巻回体の内周面と対向する前記第3の電極の面に固定する吸着機構を備えることを特徴とする溶接装置。
The welding apparatus according to any one of claims 1 to 5,
The welding apparatus further includes a suction mechanism that vacuum-sucks the back plate and fixes the back plate to the surface of the third electrode facing the inner peripheral surface of the wound body.
請求項6記載の溶接装置において、
さらに、溶接終了後に、前記巻回体の軸方向に沿って前記被接合物から前記第3の電極を引き抜くか、または前記巻回体の軸方向に沿って前記第1、第2、第3の電極から前記被接合物を引き抜く挿抜機構と、
前記挿抜機構が前記被接合物から前記第3の電極を引き抜くのに必要な力または前記第1、第2、第3の電極から前記被接合物を引き抜くのに必要な力が所定の閾値以下の場合に、警報を発する警報通知手段を備えることを特徴とする溶接装置。
The welding apparatus according to claim 6, wherein
Furthermore, after welding is completed, the third electrode is pulled out from the article to be joined along the axial direction of the wound body, or the first, second, and third electrodes are pulled along the axial direction of the wound body. An insertion / extraction mechanism for extracting the object to be bonded from the electrode of
The force required for the insertion / extraction mechanism to pull out the third electrode from the workpiece or the force required to pull out the workpiece from the first, second, and third electrodes is less than a predetermined threshold. In this case, a welding apparatus comprising an alarm notification means for issuing an alarm.
請求項6記載の溶接装置において、
さらに、溶接終了後に、前記巻回体の軸方向に沿って前記被接合物から前記第3の電極を引き抜くか、または前記巻回体の軸方向に沿って前記第1、第2、第3の電極から前記被接合物を引き抜く挿抜機構と、
前記吸着機構の真空圧力を検出する真空圧力検出手段と、
前記挿抜機構が前記被接合物から前記第3の電極を引き抜いたとき、または前記第1、第2、第3の電極から前記被接合物を引き抜いたときに、前記真空圧力検出手段が検出した真空圧力が所定の閾値以下の場合に、警報を発する警報通知手段を備えることを特徴とする溶接装置。
The welding apparatus according to claim 6, wherein
Furthermore, after welding is completed, the third electrode is pulled out from the article to be joined along the axial direction of the wound body, or the first, second, and third electrodes are pulled along the axial direction of the wound body. An insertion / extraction mechanism for extracting the object to be bonded from the electrode of
A vacuum pressure detecting means for detecting a vacuum pressure of the adsorption mechanism;
When the insertion / extraction mechanism pulls out the third electrode from the workpiece, or when the workpiece is pulled out from the first, second, or third electrode, the vacuum pressure detecting means detects A welding apparatus comprising alarm notification means for issuing an alarm when the vacuum pressure is a predetermined threshold value or less.
JP2015155775A 2015-08-06 2015-08-06 Welding equipment Active JP6511362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155775A JP6511362B2 (en) 2015-08-06 2015-08-06 Welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155775A JP6511362B2 (en) 2015-08-06 2015-08-06 Welding equipment

Publications (2)

Publication Number Publication Date
JP2017030042A true JP2017030042A (en) 2017-02-09
JP6511362B2 JP6511362B2 (en) 2019-05-15

Family

ID=57986986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155775A Active JP6511362B2 (en) 2015-08-06 2015-08-06 Welding equipment

Country Status (1)

Country Link
JP (1) JP6511362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11638967B2 (en) 2017-03-31 2023-05-02 Amada Weld Tech UK Ltd. Welding apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321062A (en) * 2001-04-27 2002-11-05 Takao Kinzoku Kogyo Co Ltd Welding device
JP2011092995A (en) * 2009-09-30 2011-05-12 Sanyo Electric Co Ltd Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
JP2015039713A (en) * 2013-08-22 2015-03-02 日本アビオニクス株式会社 Welding equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321062A (en) * 2001-04-27 2002-11-05 Takao Kinzoku Kogyo Co Ltd Welding device
JP2011092995A (en) * 2009-09-30 2011-05-12 Sanyo Electric Co Ltd Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
JP2015039713A (en) * 2013-08-22 2015-03-02 日本アビオニクス株式会社 Welding equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11638967B2 (en) 2017-03-31 2023-05-02 Amada Weld Tech UK Ltd. Welding apparatus and method

Also Published As

Publication number Publication date
JP6511362B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6186208B2 (en) Welding equipment
JP6166052B2 (en) Welding equipment
EP2614913B1 (en) Welding method and welding device
MX2012015256A (en) Joining method and joining apparatus.
JP6112113B2 (en) Manufacturing method of electronic device
CN103962695A (en) Welding apparatus
CN108907427A (en) Multiple layer metal welder and its welding method
WO2015037652A1 (en) Resistance spot welding method and welded structure
JP2017030042A (en) Welding device
JP2018043279A (en) Dissimilar material joining body and dissimilar material joining method
JP2012071333A (en) Spot welding method and spot welding apparatus
JP2003071569A (en) Spot welding method
JP4550086B2 (en) Projection welding method for highly conductive workpieces
JPH10146679A (en) Electric resistance welding method for different kinds of materials
JP2019537512A (en) How to weld a stack of sheets with magnetic pulses
JP4940321B2 (en) Projection welding method for highly conductive workpieces
JP5836248B2 (en) Spot welding method
JP6762445B1 (en) Spot welding method for aluminum material
JP2013046917A (en) Welding equipment
JP3852824B2 (en) Laminated electromagnetic welding method for thin metal plates
JP2013240810A (en) Apparatus and method for resistance welding
CN112338334A (en) Resistance spot-welded joint for aluminum material
JP6589171B2 (en) Metal resin bonding method and metal resin bonded body
JP2020049513A (en) Indirect spot welding device and welding method
JP6220682B2 (en) Welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250