JP6507648B2 - Microporous membrane and method for producing the same - Google Patents

Microporous membrane and method for producing the same Download PDF

Info

Publication number
JP6507648B2
JP6507648B2 JP2015002952A JP2015002952A JP6507648B2 JP 6507648 B2 JP6507648 B2 JP 6507648B2 JP 2015002952 A JP2015002952 A JP 2015002952A JP 2015002952 A JP2015002952 A JP 2015002952A JP 6507648 B2 JP6507648 B2 JP 6507648B2
Authority
JP
Japan
Prior art keywords
microporous membrane
film
tensile strength
microporous
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015002952A
Other languages
Japanese (ja)
Other versions
JP2016128532A (en
Inventor
本田 孝一
孝一 本田
泰弘 山本
泰弘 山本
浩之 前原
浩之 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
JNC Corp
JNC Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, JNC Petrochemical Corp filed Critical JNC Corp
Priority to JP2015002952A priority Critical patent/JP6507648B2/en
Publication of JP2016128532A publication Critical patent/JP2016128532A/en
Application granted granted Critical
Publication of JP6507648B2 publication Critical patent/JP6507648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Description

本発明はポリプロピレン系重合体からなる微多孔膜、これから得られる蓄電デバイス、及び上記微多孔膜の製造方法に関する。   The present invention relates to a microporous membrane comprising a polypropylene-based polymer, an electricity storage device obtained therefrom, and a method for producing the microporous membrane.

合成樹脂製微多孔膜は、各種分離膜や、電池セパレータの材料として利用されている。中でもポリオレフィン系樹脂は、耐薬剤性が高く、様々な方法で多孔化が可能である点で、薬剤に接した状態で使用される各種分離膜や、電池セパレータ微多孔膜の原料として有用である。   The synthetic resin microporous membrane is used as a material for various separation membranes and battery separators. Among them, polyolefin resins are useful as raw materials for various separation membranes used in contact with drugs and battery separator microporous membranes in that they have high chemical resistance and can be made porous by various methods. .

ポリオレフィン系樹脂フィルムの多孔化方法は、湿式法と乾式法に大別される。湿式法では、ポリオレフィン系樹脂と、可塑剤、オイル、パラフィンなどとの溶融混合物をフィルム状に展開する。次に、ポリオレフィン以外の成分を抽出し、これら成分が存在した部分を空隙化する。その結果、ポリオレフィン系樹脂が微多孔膜に成形加工される。乾式法では、可塑剤、オイル、パラフィンなどの成分や溶剤を含まない、ポリオレフィン系樹脂を主体とする原料を延伸することによって、ポリオレフィン系樹脂を微多孔膜に成形加工する方法である。乾式法として、ポリオレフィン系樹脂中のラメラ構造の間隙に空隙を発生させる方法と、原料に添加した無機添加剤とポリオレフィン系樹脂との界面に空隙を発生させる方法とが知られている。   The method of making the polyolefin resin film porous is roughly classified into a wet method and a dry method. In the wet method, a molten mixture of a polyolefin resin and a plasticizer, oil, paraffin or the like is spread in the form of a film. Next, components other than the polyolefin are extracted, and the portions where these components are present are made void. As a result, the polyolefin resin is formed into a microporous film. The dry method is a method of forming a polyolefin resin into a microporous film by drawing a raw material mainly composed of a polyolefin resin, which does not contain a component such as a plasticizer, oil, or paraffin or a solvent. As a dry method, a method of generating a void in a gap of a lamellar structure in a polyolefin resin and a method of generating a void in an interface between an inorganic additive added to a raw material and a polyolefin resin are known.

電池セパレータ用のポリオレフィン系樹脂製微多孔膜については、特許文献1、2、3に記載されたような、様々な製造方法が知られている。   Various production methods as described in Patent Documents 1, 2 and 3 are known for polyolefin resin microporous films for battery separators.

特許文献1には、ポリオレフィン系樹脂と共役ジエンポリマーとの混合物からなる原料を、湿式法により微多孔フィルムに加工し、得られた微多孔膜を電池セパレータ材として用いることが記載されている。   Patent Document 1 describes that a raw material composed of a mixture of a polyolefin resin and a conjugated diene polymer is processed into a microporous film by a wet method, and the obtained microporous film is used as a battery separator material.

特許文献2には、ポリプロピレンとポリエチレンとの混合物を、乾式法により2段階で延伸することによって微多孔フィルムに加工し、得られた微多孔膜を電池セパレータ材として用いることが記載されている。   Patent Document 2 describes that a mixture of polypropylene and polyethylene is processed into a microporous film by drawing in two steps by a dry method, and the obtained microporous film is used as a battery separator material.

特許文献3には、ポリオレフィンに低分子量物質を配合した混合物を、乾式法により2段階で延伸することによって微多孔フィルムに加工し、得られた微多孔膜を電池セパレータ材として用いることが記載されている。   Patent Document 3 describes that a mixture obtained by blending a low molecular weight substance with a polyolefin is processed into a microporous film by drawing in two steps by a dry method, and the resulting microporous film is used as a battery separator material. ing.

ところで、最近の電池性能に対する要求は、ますます高度化、多様化している。特に、車両や携帯端末などの屋外で使用される工業製品に搭載されるリチウムイオン電池には、優れた充放電特性に加え、高い安全性と強度が求められる。リチウムイオン電池セパレータは、電池筺体内に配置されている部材ではあるが、液状電解質に浸漬された状態で幾層にも捲回されて電池筺体空間を満たしているから、セパレータの強度は電池の強度に大きく寄与する。そのため、強度の高いリチウムイオン電池本体を製造するために、強度の高いセパレータが求められている。   By the way, recent demands for battery performance are becoming increasingly sophisticated and diversified. In particular, lithium ion batteries mounted on industrial products used outdoors such as vehicles and portable terminals are required to have high safety and strength, in addition to excellent charge and discharge characteristics. The lithium ion battery separator is a member disposed in the battery case, but since it is wound into several layers in a state of being immersed in the liquid electrolyte and fills the battery case space, the strength of the separator is It greatly contributes to the strength. Therefore, in order to manufacture a lithium ion battery main body having high strength, a separator having high strength is required.

強度の高いセパレータを製造するためには、セパレータの材料として強度の高い微多孔膜を用いることが求められる。微多孔膜の強度の指標としては、微多孔膜の引張強度と突刺強度が一般的に用いられている。   In order to produce a high strength separator, it is required to use a high strength microporous membrane as a material of the separator. As an indicator of the strength of the microporous membrane, the tensile strength and the piercing strength of the microporous membrane are generally used.

引張強度と突刺強度が高い、電池セパレータ用のポリオレフィン系樹脂製微多孔膜については、特許文献4、5に記載されている。   Patent documents 4 and 5 disclose polyolefin resin microporous films for battery separators that have high tensile strength and puncture strength.

特許文献4には、ポリプリピレンにβ結晶核剤を配合したポリプロピレン組成物を原料とした、引張強度と突刺強度の高い微多孔膜が記載されている。   Patent Document 4 describes a microporous film having high tensile strength and piercing strength, using as a raw material a polypropylene composition in which a β-crystal nucleating agent is mixed with poly (propylene).

特許文献5には、ポリプロピレンにポリエチレンを配合したポリプロピレン組成物を原料とした、引張強度と突刺強度の高い微多孔膜が記載されている。   Patent Document 5 describes a microporous film having high tensile strength and piercing strength, which is made of a polypropylene composition in which polyethylene is blended with polypropylene.

しかしながら、セパレータのイオン電導性を発現するための微多孔膜の空孔率と、微多孔膜の強度とはいわゆるトレードオフの関係を示す傾向があり、空孔率と強度とのバランスに優れる電池セパレータ用ポリオレフィン樹脂製微多孔膜には、未だ改善の余地がある。   However, the porosity of the microporous membrane for expressing the ion conductivity of the separator and the strength of the microporous membrane tend to exhibit a so-called trade-off relationship, and the battery is excellent in the balance between the porosity and the strength. There is still room for improvement in the microporous polyolefin resin membrane for separators.

特開2004−352834号公報JP 2004-352834 A 特開2008−248231号公報JP, 2008-248231, A 特開平8−20660号公報JP-A-8-20660 国際公開第2010/147149号パンフレットWO 2010/147149 pamphlet 特許第5354132号公報Patent No. 5354132

そこで本発明の発明者は、引張強度や突刺強度などの強度が高く、しかも高い空孔率を有する、電池セパレータ材として有用なポリオレフィン系樹脂製微多孔膜を探求した。   Therefore, the inventor of the present invention sought a polyolefin resin microporous film having high strength such as tensile strength and piercing strength and high porosity, which is useful as a battery separator material.

その結果、特定のメルトマスフローレイトを有するポリプロピレン系樹脂を原料として用い、乾式法によって、引張強度や突刺強度などの強度が高く、しかも高い空孔率を有する、電池セパレータ材として有用な微多孔膜を製造することに成功した。   As a result, a microporous film useful as a battery separator material having high strength such as tensile strength and piercing strength and high porosity by a dry method using a polypropylene resin having a specific melt mass flow rate as a raw material Succeeded in manufacturing.

すなわち本発明は以下のものである。   That is, the present invention is as follows.

(発明1)メルトマスフローレイト(MFR、JIS K6758に準拠して230℃、荷重21.18Nで測定)が1.0〜10.0g/10分であるポリプロピレン系重合体からなり、以下の方法(A)で求めた押出方向(MD)の引張強度が200MPa以上、幅方向(TD)の引張強度が10MPa以上であり、かつ、以下の方法(B)で測定された突刺強度が4.9N以上である、微多孔膜。
方法(A):微多孔膜から押出方向(MD)と、幅方向(TD)の2方向に試験片を切り出し、それぞれの試験片(MD方向の試験片、TD方向の試験片)の破断荷重(N)を引張速度500mm/分の条件で測定する。以下の式により押出方向(MD)の引張強度、幅方向(TD)の引張強度を算出する。
押出方向(MD)の引張強度(MPa)=[押出方向(MD)の破断荷重(N)]/[試験片の断面積(mm)]
幅方向(TD)の引張強度(MPa)=[幅方向(TD)の破断荷重(N)]/[試験片の断面積(mm)]
方法(B):微多孔膜表面に先端が直径1mmの球面形状の針で、100mm/分の速度で突刺して針に掛る荷重を測定する。このときの最大荷重(N)を突刺強度の値とする。
(Invention 1) A polypropylene polymer having a melt mass flow rate (MFR, measured at 230 ° C. and a load of 21.18 N according to JIS K 6758) of 1.0 to 10.0 g / 10 min, the following method ( The tensile strength in the extrusion direction (MD) determined in A) is 200 MPa or more, the tensile strength in the width direction (TD) is 10 MPa or more, and the puncture strength measured by the following method (B) is 4.9 N or more Is a microporous membrane.
Method (A): A test piece is cut out from the microporous membrane in two directions, the extrusion direction (MD) and the width direction (TD), and the breaking load of each test piece (a test piece in the MD direction, a test piece in the TD direction) (N) is measured at a tensile speed of 500 mm / min. The tensile strength in the extrusion direction (MD) and the tensile strength in the width direction (TD) are calculated by the following equations.
Tensile strength in the direction of extrusion (MD) (MPa) = [break force in the direction of extrusion (MD) (N)] / [cross-sectional area of test piece (mm 2 )]
Tensile strength in the width direction (TD) (MPa) = [break force in the width direction (TD) (N)] / [cross-sectional area of the test piece (mm 2 )]
Method (B): The surface of the microporous membrane is pierced at a speed of 100 mm / min with a spherical needle whose tip is 1 mm in diameter, and the load applied to the needle is measured. The maximum load (N) at this time is taken as the value of piercing strength.

(発明2)空孔率が45〜55%の範囲にある、発明1の微多孔膜。 (Invention 2) The microporous film of Invention 1 wherein the porosity is in the range of 45 to 55%.

(発明3)ポリプロピレン系重合体が、融点が150〜170℃の範囲にあり、メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が1.0〜10g/10分の範囲にある、任意にエチレン、炭素数4〜8のα−オレフィンから選ばれる少なくとも1種を含んでいてもよい、プロピレン主体の重合体である、発明1または2の微多孔膜。 (Invention 3) The melting point of the polypropylene polymer is in the range of 150 to 170 ° C., and the melt mass flow rate (MFR, measured under the conditions according to JIS K 6758 (230 ° C., 21.18 N)) is 1.0 to 10 g The microporous membrane of the invention 1 or 2 which is a propylene-based polymer according to the invention, which is a propylene-based polymer optionally in the range of 10 minutes and optionally containing at least one selected from ethylene and an α-olefin having 4 to 8 carbon atoms .

(発明4)蓄電デバイスのセパレータに用いられることを特徴とする発明1〜3のいずれかの微多孔膜。 (Invention 4) The microporous film according to any one of Inventions 1 to 3, which is used as a separator of an electricity storage device.

(発明5)蓄電デバイスがリチウムイオン電池である、発明4の微多孔膜。 (Invention 5) The microporous film of Invention 4 wherein the electricity storage device is a lithium ion battery.

(発明6)蓄電デバイスがキャパシタである、発明4の微多孔膜。 (Invention 6) The microporous film of Invention 4 wherein the electricity storage device is a capacitor.

(発明7)発明4の微多孔膜を備える蓄電デバイス。 (Invention 7) An electricity storage device comprising the microporous membrane of Invention 4.

(発明8)発明5の微多孔膜を備えるリチウムイオン電池。 (Invention 8) A lithium ion battery comprising the microporous membrane of Invention 5.

(発明9)発明6の微多孔膜を備えるキャパシタ。 (Invention 9) A capacitor comprising the microporous membrane of Invention 6.

(発明10)以下の工程を含む、発明1〜9のいずれかの記載の微多孔膜の製造方法。
(工程1)JIS K6758に準拠して230℃、荷重21.18Nで測定したメルトマスフローレイト(MFR)が1.0〜10.0g/10分であるポリプロピレン系重合体を押出成形して原反フィルムを製膜する工程。
(工程2)工程1で得られた原反フィルムを熱処理する工程。
(工程3)工程2で得られた熱処理後の原反フィルムを、−5〜45℃で、長さ方向に1.0〜1.1倍に延伸する工程。
(工程4)工程3を終えた延伸フィルムを、ポリプロピレン系重合体の融点よりも5〜65℃低い温度で、長さ方向に1.5〜4.0倍に延伸する工程。
(工程5)工程4で得られた温延伸後のフィルムを、加熱下、長さが0.7〜1.0倍になるように弛緩させる工程。
(Invention 10) A method for producing a microporous membrane according to any of Inventions 1 to 9, which comprises the following steps.
(Step 1) A polypropylene-based polymer having a melt mass flow rate (MFR) of 1.0 to 10.0 g / 10 min measured at 230 ° C. and a load of 21.18 N according to JIS K 6758 is extrusion-molded The process of forming a film.
(Step 2) A step of heat treating the raw film obtained in Step 1.
(Step 3) A step of stretching the heat-treated raw film obtained in Step 2 at 1.0 to 1.1 times in the length direction at -5 to 45 ° C.
(Step 4) A step of stretching the stretched film having finished step 3 by 1.5 to 4.0 times in the length direction at a temperature 5 to 65 ° C. lower than the melting point of the polypropylene polymer.
(Step 5) A step of relaxing the warm-stretched film obtained in Step 4 so that the length becomes 0.7 to 1.0 times under heating.

本発明の微多孔膜は高い強度と高い空孔率を兼ね備える。したがって本発明の微多孔膜は、優れた物質透過性という化学的機能と、高い強度という構造的機能とを兼ね備える素材である。このような本発明の微多孔膜は、分離膜、蓄電デバイスのセパレータなどの部材に適している。   The microporous membrane of the present invention has both high strength and high porosity. Therefore, the microporous membrane of the present invention is a material having a chemical function of excellent material permeability and a structural function of high strength. Such a microporous membrane of the present invention is suitable for a member such as a separation membrane or a separator of a storage device.

(微多孔膜)
本発明の微多孔膜は、メルトマスフローレイト(MFR、JIS K6758に準拠して230℃、荷重21.18Nで測定)が1.0〜10.0g/10分であるポリプロピレン系重合体からなり、以下の方法(A)で求めた押出方向(MD)の引張強度が200MPa以上、幅方向(TD)の引張強度が10MPa以上であり、かつ、以下の方法(B)で測定された突刺強度が4.9N以上である。
方法(A):微多孔膜から押出方向(MD)と、幅方向(TD)の2方向に試験片を切り出し、それぞれの試験片(MD方向の試験片、TD方向の試験片)の破断荷重(N)を引張速度500mm/分の条件で測定する。以下の式により押出方向(MD)の引張強度、幅方向(TD)の引張強度を算出する。
押出方向(MD)の引張強度(MPa)=[押出方向(MD)の破断荷重(N)]/[試験片の断面積(mm)]
幅方向(TD)の引張強度(MPa)=[幅方向(TD)の破断荷重(N)]/[試験片の断面積(mm)]
方法(B):微多孔膜表面に先端が直径1mmの球面形状の針で、100mm/分の速度で突刺して針に掛る荷重を測定する。このときの最大荷重(N)を突刺強度の値とする。
(Microporous membrane)
The microporous membrane of the present invention comprises a polypropylene-based polymer having a melt mass flow rate (MFR, measured at 230 ° C. and a load of 21.18 N according to JIS K 6758) of 1.0 to 10.0 g / 10 min, The tensile strength in the extrusion direction (MD) determined by the following method (A) is 200 MPa or more, the tensile strength in the width direction (TD) is 10 MPa or more, and the puncture strength measured by the following method (B) is It is 4.9N or more.
Method (A): A test piece is cut out from the microporous membrane in two directions, the extrusion direction (MD) and the width direction (TD), and the breaking load of each test piece (a test piece in the MD direction, a test piece in the TD direction) (N) is measured at a tensile speed of 500 mm / min. The tensile strength in the extrusion direction (MD) and the tensile strength in the width direction (TD) are calculated by the following equations.
Tensile strength in the direction of extrusion (MD) (MPa) = [break force in the direction of extrusion (MD) (N)] / [cross-sectional area of test piece (mm 2 )]
Tensile strength in the width direction (TD) (MPa) = [break force in the width direction (TD) (N)] / [cross-sectional area of the test piece (mm 2 )]
Method (B): The surface of the microporous membrane is pierced at a speed of 100 mm / min with a spherical needle whose tip is 1 mm in diameter, and the load applied to the needle is measured. The maximum load (N) at this time is taken as the value of piercing strength.

(微多孔膜の原料)
本発明の微多孔膜の原料は、ポリプロピレン系重合体であって、プロピレンの単独重合体あるいはコモノマーを共重合した共重合体がこれに相当する。本発明で使用するポリプロピレン系重合体としては、結晶性が比較的高い、融点が150〜170℃の範囲にあるものが好ましく、融点が155〜168℃の範囲にあるものがさらに好ましい。上記コモノマーは、一般的には、エチレンおよび炭素数4〜8のα−オレフィンから選ばれる少なくとも1種である。またこれらと共に、2−メチルプロペン、3−メチル−1−ブテン、4−メチル−1−ペンテンなどの炭素数4〜8の分岐オレフィン類、スチレン類、ジエン類を共重合したものであってもよい。
(Raw material of microporous membrane)
The raw material of the microporous membrane of the present invention is a polypropylene polymer, and a homopolymer of propylene or a copolymer obtained by copolymerizing a comonomer corresponds to this. As a polypropylene polymer used by this invention, what has comparatively high crystallinity and whose melting | fusing point is in the range of 150-170 degreeC is preferable, and what has melting | fusing point in the range of 155-168 degreeC is more preferable. The above comonomer is generally at least one selected from ethylene and an α-olefin having 4 to 8 carbon atoms. In addition to these, even if they are copolymerized with branched olefins having 4 to 8 carbon atoms such as 2-methylpropene, 3-methyl-1-butene, 4-methyl-1-pentene, styrenes and dienes. Good.

上記コモノマーの含有量は、微多孔膜が所望の性質を示す限り、いかなる範囲にあってもよい。好ましくは、高結晶性ポリプロピレン系重合体を与える範囲である、重合体100重量部に対して5重量部以下、特に2重量部以下が好ましい。   The content of the comonomer may be in any range as long as the microporous membrane exhibits the desired properties. Preferably, the amount is 5 parts by weight or less, and particularly preferably 2 parts by weight or less, with respect to 100 parts by weight of the polymer, which is a range to give a highly crystalline polypropylene polymer.

また上記ポリプロピレン系重合体のメルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)は1.0〜10g/10分、好ましくは1.0〜5.0g/10分である。   The melt mass flow rate (MFR, measured under the conditions according to JIS K 6758 (230 ° C., 21.18 N)) of the polypropylene polymer is 1.0 to 10 g / 10 min, preferably 1.0 to 5.0 g / l. 10 minutes.

本発明の微多孔膜の原料には、結晶核剤や充填剤などの添加剤を配合することができる。添加剤の種類や量は、多孔性を損なわない範囲であれば、制限はない。   In the raw material of the microporous membrane of the present invention, additives such as a crystal nucleating agent and a filler can be blended. The type and amount of the additive are not limited as long as the porosity is not impaired.

(微多孔膜の製造方法)
本発明の微多孔膜は、上述の原料を用いて、いわゆる乾式法によって製造される。本発明の微多孔膜の製造方法は、以下の工程1〜5を含む。
(Method of manufacturing microporous membrane)
The microporous membrane of the present invention is produced by the so-called dry method using the above-mentioned raw materials. The method for producing a microporous membrane of the present invention includes the following steps 1 to 5.

(工程1:製膜工程)
原料を押出成形して原反フィルムを製膜する工程である。JIS K6758に準拠して230℃、荷重21.18Nで測定したメルトマスフローレイト(MFR)が1.0〜10.0g/10分であるポリプロピレン系重合体を押出機に供給し、ポリプロピレン系重合体をその融点以上の温度で溶融混練し、押出機の先端に取り付けたダイスからポリプロピレン系重合体フィルムを押出す。使用される押出機は限定されない。押出機としては、例えば、単軸押出機、二軸押出機、タンデム型押出機のいずれもが使用可能である。使用されるダイスはフィルム成形に用いられるものであれば、いずれも使用できる。ダイスとしては、例えば、各種T型ダイス使用することができる。原反フィルムの厚みや形状は特に限定されない。好ましくは、ダイスリップクリアランスと原反フィルム厚さの比(ドラフト比)は100以上、さらに好ましくは150以上である。好ましくは、原反フィルムの厚みは10〜200μm、さらに好ましくは15〜100μmである。
(Step 1: film forming step)
In this step, the raw material is extruded to form a raw film. A polypropylene-based polymer having a melt mass flow rate (MFR) of 1.0 to 10.0 g / 10 min measured at 230 ° C. and a load of 21.18 N according to JIS K 6758 is supplied to an extruder, and the polypropylene-based polymer The mixture is melt-kneaded at a temperature above its melting point, and a polypropylene polymer film is extruded from a die attached to the tip of an extruder. The extruder used is not limited. As an extruder, for example, any of a single screw extruder, a twin screw extruder, and a tandem extruder can be used. Any die may be used as long as it is used for film forming. As the dice, for example, various T-shaped dice can be used. The thickness and shape of the raw film are not particularly limited. Preferably, the ratio (draft ratio) of die slip clearance to raw film thickness is 100 or more, more preferably 150 or more. Preferably, the thickness of the raw film is 10 to 200 μm, more preferably 15 to 100 μm.

(工程2:熱処理工程)
工程1を終えた原反フィルムを熱処理する工程である。ポリプロピレン系重合体の融点よりも5〜65℃、好ましくは10〜25℃低い温度で、原反フィルムに長さ方向の一定の張力を加える。張力は、好ましくは、原反フィルムの長さが1.0倍を超え1.1倍以下となる大きさである。
(Step 2: heat treatment step)
It is a process of heat-treating the original fabric film which finished the process 1. A constant tension in the longitudinal direction is applied to the raw film at a temperature 5 to 65 ° C., preferably 10 to 25 ° C. lower than the melting point of the polypropylene polymer. The tension is preferably such that the length of the raw film is more than 1.0 times and not more than 1.1 times.

(工程3:冷延伸工程)
工程2を終えた熱処理後の原反フィルムを比較的低い温度で延伸する工程である。延伸温度は−5〜45℃、好ましくは5〜30℃である。延伸倍率は、長さ方向に1.0〜1.1、好ましくは1.00〜1.08、さらに好ましくは1.02以上1.05未満である。ただし、延伸倍率は1.0倍より大きい。延伸手段は制限されない。ロール延伸法、テンター延伸法などの公知の手段が使用できる。延伸の段数は任意に設定できる。1段延伸でもよく、複数のロールを経て2段以上の延伸を行ってもよい。冷延伸工程で、原反フィルムを構成するポリプロピレン系重合体の分子が配向する。その結果、分子鎖が密なラメラ部と、ラメラ間の分子鎖が疎な領域(クレーズ)とを有する延伸フィルムが得られる。
(Step 3: Cold Stretching Process)
This is a step of stretching the heat-treated raw film after step 2 at a relatively low temperature. The stretching temperature is -5 to 45 ° C, preferably 5 to 30 ° C. The stretching ratio is 1.0 to 1.1, preferably 1.00 to 1.08, and more preferably 1.02 or more and less than 1.05 in the longitudinal direction. However, the draw ratio is greater than 1.0. The stretching means is not limited. Known means such as roll stretching and tenter stretching can be used. The number of stages of stretching can be set arbitrarily. It may be one-stage stretching, or two or more stages of stretching may be performed through a plurality of rolls. In the cold drawing step, the molecules of the polypropylene polymer constituting the raw film are oriented. As a result, it is possible to obtain a stretched film having a lamellar part in which the molecular chains are dense and a region (claze) in which the molecular chains between the lamellas are sparse.

(工程4:温延伸工程)
工程3を終えた延伸フィルムを比較的高い温度で延伸する工程である。延伸温度はポリプロピレン系重合体の融点よりも5〜65℃低い温度、好ましくはポリプロピレン系重合体の融点よりも10〜45℃低い温度である。延伸倍率は、長さ方向に1.5〜4.5倍、好ましくは2.0〜4.0倍、さらに好ましくは3.0〜3.2倍である。延伸手段は制限されない。ロール延伸法、テンター延伸法などの公知の手段が使用できる。延伸の段数は任意に設定できる。1段延伸でもよく、複数のロールを経て2段以上の延伸を行ってもよい。温延伸工程で工程3で生じたクレーズが引き延ばされ、空孔が発生する。
(Step 4: warm drawing step)
This is a step of stretching the stretched film after the step 3 at a relatively high temperature. The stretching temperature is 5 to 65 ° C. lower than the melting point of the polypropylene polymer, preferably 10 to 45 ° C. lower than the melting point of the polypropylene polymer. The stretching ratio is 1.5 to 4.5 times, preferably 2.0 to 4.0 times, and more preferably 3.0 to 3.2 times in the longitudinal direction. The stretching means is not limited. Known means such as roll stretching and tenter stretching can be used. The number of stages of stretching can be set arbitrarily. It may be one-stage stretching, or two or more stages of stretching may be performed through a plurality of rolls. In the warm drawing step, the craze formed in step 3 is stretched to generate pores.

(工程5:弛緩工程)
工程4を終えた温延伸後のフィルムの収縮を防ぐためにフィルムを弛緩させる工程である。弛緩温度は、温延伸の温度よりもやや高い温度であり、0〜20℃高い温度が一般的である。弛緩の度合いは、工程4を終えた延伸フィルムの長さが最終的に0.7〜1.0倍になるように調整される。
(Step 5: relaxation step)
In this step, the film is relaxed in order to prevent the shrinkage of the warm-drawn film which has finished step 4. The relaxation temperature is a temperature slightly higher than the temperature of warm drawing, and a temperature higher by 0 to 20 ° C. is general. The degree of relaxation is adjusted so that the length of the stretched film after step 4 is finally 0.7 to 1.0.

本発明の微多孔膜を特徴づける引張強度は以下の方法(A)により求められる。
方法(A):微多孔膜から押出方向(MD)と、幅方向(TD)の2方向に試験片を切り出し、それぞれの試験片(MD方向の試験片、TD方向の試験片)の破断荷重(N)を引張速度500mm/分の条件で測定する。以下の式により押出方向(MD)の引張強度、幅方向(TD)の引張強度を算出する。
押出方向(MD)の引張強度(MPa)=[押出方向(MD)の破断荷重(N)]/[試験片の断面積(mm)]
幅方向(TD)の引張強度(MPa)=[幅方向(TD)の破断荷重(N)]/[試験片の断面積(mm)]
The tensile strength characterizing the microporous membrane of the present invention is determined by the following method (A).
Method (A): A test piece is cut out from the microporous membrane in two directions, the extrusion direction (MD) and the width direction (TD), and the breaking load of each test piece (a test piece in the MD direction, a test piece in the TD direction) (N) is measured at a tensile speed of 500 mm / min. The tensile strength in the extrusion direction (MD) and the tensile strength in the width direction (TD) are calculated by the following equations.
Tensile strength in the direction of extrusion (MD) (MPa) = [break force in the direction of extrusion (MD) (N)] / [cross-sectional area of test piece (mm 2 )]
Tensile strength in the width direction (TD) (MPa) = [break force in the width direction (TD) (N)] / [cross-sectional area of the test piece (mm 2 )]

本発明の微多孔膜を特徴づける突刺強度以下の方法(B)により求められる。
方法(B):微多孔膜表面に直径1mmの先端が球面形状の針で、100mm/分の速度で突刺して針に掛る荷重を測定する。このときの最大荷重(N)を突刺強度の値とする。
The puncture strength characterizing the microporous membrane of the present invention is determined by the following method (B).
Method (B): The tip of a 1 mm diameter tip is a spherical needle on the surface of the microporous membrane, and the load applied to the needle is measured by piercing at a speed of 100 mm / min. The maximum load (N) at this time is taken as the value of piercing strength.

また本発明の微多孔膜の空孔率は以下の関係式を用いて求めた値である。
(空孔率)
幅50mm×長さ120mmの微多孔膜切片について、以下の計算式により算出した値である。
空孔率(%)=[1−(切片重量)/(切片面積X樹脂密度×切片厚み)]×100
The porosity of the microporous membrane of the present invention is a value determined using the following relational expression.
(Porosity)
It is the value computed by the following formula about the microporous film slice of width 50 mm x length 120 mm.
Porosity (%) = [1- (section weight) / (section area × resin density × section thickness)] × 100

本発明の微多孔膜は、高い引張強度と高い突刺し強度を示す。本発明の微多孔膜の、押出方向(MD)の引張強度(MPa)は200MPa以上、幅方向(TD)の引張強度(MPa)は10MPa以上である。本発明の微多孔膜の突刺強度は4.9N以上である。さらに本発明の微多孔膜は45〜55%という高い空孔率を備える。   The microporous membrane of the present invention exhibits high tensile strength and high puncture strength. The microporous membrane of the present invention has a tensile strength (MPa) in the extrusion direction (MD) of 200 MPa or more, and a tensile strength (MPa) in the width direction (TD) of 10 MPa or more. The puncture strength of the microporous membrane of the present invention is 4.9 N or more. Furthermore, the microporous membrane of the present invention has a high porosity of 45 to 55%.

本発明の微多孔膜の例を以下に示す。なお、実施例、比較例で製造した微多孔膜の引張強度、突刺強度は、以下の操作で測定、算出した。   An example of the microporous membrane of the present invention is shown below. In addition, the tensile strength and the puncture strength of the microporous film manufactured by the Example and the comparative example were measured and computed by the following operations.

(押出方向(MD)の引張強度の測定)
プロピレン系樹脂微多孔フィルムから、押出方向(MD)120mm×幅方向(TD)10mmの試験片を切り出す。引張試験機(島津製作所社製オートグラフ AGS−X)を使い、試験片をつかみ間隔50mmで挟み、500mm/分の速度で引張り、押出方向(MD)の破断荷重(N)を測定する。次に、試験片の引張方向の断面積(10mm×試験片の厚み(mm))を求める。
以下の式により、押出方向(MD)の引張強度(MPa)を算出する。
押出方向(MD)の引張強度(MPa)=[押出方向(MD)の破断荷重(N)]/[試験片の断面積(mm)]
上述の操作を合計5枚の試験片で行う。得られた5回分の押出方向(MD)の引張強度(MPa)の平均値を求める。この平均値を、実施例、比較例の押出方向(MD)の引張強度(MPa)とする。
(Measurement of tensile strength in extrusion direction (MD))
From the propylene-based resin microporous film, a test piece with an extrusion direction (MD) of 120 mm and a width direction (TD) of 10 mm is cut out. Using a tensile tester (Autograph AGS-X manufactured by Shimadzu Corporation), hold the test piece at a grip interval of 50 mm, pull at a speed of 500 mm / min, and measure the breaking load (N) in the extrusion direction (MD). Next, the cross-sectional area (10 mm × thickness of the test piece (mm)) of the test piece in the tensile direction is determined.
The tensile strength (MPa) in the extrusion direction (MD) is calculated by the following equation.
Tensile strength in the direction of extrusion (MD) (MPa) = [break force in the direction of extrusion (MD) (N)] / [cross-sectional area of test piece (mm 2 )]
Perform the above operation with a total of 5 test pieces. The average value of the tensile strength (MPa) in the extrusion direction (MD) of the obtained 5 times is determined. Let this average value be the tensile strength (MPa) of the extrusion direction (MD) of an Example and a comparative example.

(幅方向(TD)の引張強度の測定)
プロピレン系樹脂微多孔フィルムから、幅方向(TD)120mm×押出方向(MD)10mmの試験片を切り出す。引張試験機(島津製作所社製オートグラフ AGS−X)を使い、試験片をつかみ間隔50mmで挟み、500mm/分の速度で引張り、幅方向(MD)の破断荷重(N)を測定する。次に、試験片の引張方向の断面積(10mm×試験片の厚み(mm))を求める。
以下の式により、幅方向(TD)の引張強度(MPa)を算出する。
幅方向(TD)の引張強度(MPa)=[幅方向(TD)の破断荷重(N)]/[試験片の断面積(mm)]
上述の操作を合計5枚の試験片で行う。得られた5回分の幅方向(TD)の引張強度(MPa)の平均値を求める。この平均値を、実施例、比較例の幅方向(TD)の引張強度(MPa)とする。
(Measurement of tensile strength in the width direction (TD))
From the propylene-based resin microporous film, a test piece of 120 mm in width direction (TD) × 10 mm in extrusion direction (MD) is cut out. Using a tensile tester (Autograph AGS-X manufactured by Shimadzu Corporation), hold the test piece at a grip interval of 50 mm, pull at a speed of 500 mm / min, and measure the breaking load (N) in the width direction (MD). Next, the cross-sectional area (10 mm × thickness of the test piece (mm)) of the test piece in the tensile direction is determined.
The tensile strength (MPa) in the width direction (TD) is calculated by the following equation.
Tensile strength in the width direction (TD) (MPa) = [break force in the width direction (TD) (N)] / [cross-sectional area of the test piece (mm 2 )]
Perform the above operation with a total of 5 test pieces. The average value of the obtained tensile strength (MPa) in the width direction (TD) for five times is determined. Let this average value be the tensile strength (MPa) of the width direction (TD) of an Example and a comparative example.

(突刺強度の測定)
プロピレン系樹脂微多孔フィルムから、幅10cm×長さ10cmの正方形片を切り出す。この試験片に対し、直径11mmの穴が開いた治具に固定し、その穴の中央に先端が球面(曲率半径R:0.5mm)の直径1mmの針で、100mm/分の速度で突刺したときの荷重を測定する。この時の最大荷重(N)を突刺強度とする。
(Measurement of puncture strength)
A square piece 10 cm wide x 10 cm long is cut out of the propylene-based resin microporous film. The test piece is fixed to a jig having a hole with a diameter of 11 mm, and a needle having a spherical surface (curvature radius R: 0.5 mm) and a diameter of 1 mm at the center of the hole and a stab at a speed of 100 mm / min. Measure the load when you The maximum load (N) at this time is taken as the puncture strength.

(実施例1)
(原料)微多孔膜の原料として、JIS K6758(230℃、21.18N)に従い測定したメルトマスフローレイト(MFR)が2.0g/10分、融点が165℃のプロピレン単独重合体を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比159でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.04倍に冷延伸した。(工程4)得られた延伸フィルムを145℃で長さ方向に、1段目は2.4倍に、2段目は1.3倍に延伸して、総延伸倍率3.0倍となるように温延伸した。(工程5)得られた延伸フィルムの長さが0.88倍になるように150℃で弛緩させた。こうして最終厚みが20μmの本発明の微多孔膜が得られた。得られた微多孔膜の熱収縮率と空孔率を上述の方法で測定し、その結果を製造条件と共に表1に示す。
Example 1
(Raw material) A propylene homopolymer having a melt mass flow rate (MFR) of 2.0 g / 10 min and a melting point of 165 ° C. measured according to JIS K 6758 (230 ° C., 21.18 N) was used as a raw material of the microporous membrane. (Step 1) The raw material melt-kneaded by a single-screw extruder was extruded from a T-die at a draft ratio of 159 to produce a raw film having a thickness of 22 μm. (Step 2) Next, the raw film was heat-treated at 150 ° C. (Step 3) The raw film was cold stretched by 1.04 times in the lengthwise direction at 30 ° C. (Step 4) The obtained stretched film is stretched at 145 ° C. in the lengthwise direction, the first stage is 2.4 times, and the second stage is 1.3 times, and the total draw ratio is 3.0 times It was warm stretched. (Step 5) The stretched film was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.88 times. Thus, a microporous membrane of the present invention having a final thickness of 20 μm was obtained. The heat shrinkage and porosity of the obtained microporous membrane were measured by the above-described method, and the results are shown in Table 1 together with the production conditions.

(実施例2)
(原料)実施例1と同じ原料を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比159でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.04倍に冷延伸した。(工程4)得られた延伸フィルムを145℃で長さ方向に、1段目は3.0倍に、2段目は1.0倍に延伸して、総延伸倍率3.0倍となるように温延伸した。(工程5)得られた延伸フィルムの長さが0.88倍になるように150℃で弛緩させた。こうして最終厚みが20μmの本発明の微多孔膜が得られた。得られた微多孔膜の熱収縮率と空孔率を上述の方法で測定し、その結果を製造条件と共に表1に示す。
(Example 2)
(Raw materials) The same raw materials as in Example 1 were used. (Step 1) The raw material melt-kneaded by a single-screw extruder was extruded from a T-die at a draft ratio of 159 to produce a raw film having a thickness of 22 μm. (Step 2) Next, the raw film was heat-treated at 150 ° C. (Step 3) The raw film was cold stretched by 1.04 times in the lengthwise direction at 30 ° C. (Step 4) The obtained stretched film is stretched in the lengthwise direction at 145 ° C., the first stage 3.0 times, the second stage 1.0, and the total draw ratio 3.0 times It was warm stretched. (Step 5) The stretched film was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.88 times. Thus, a microporous membrane of the present invention having a final thickness of 20 μm was obtained. The heat shrinkage and porosity of the obtained microporous membrane were measured by the above-described method, and the results are shown in Table 1 together with the production conditions.

(実施例3)
(原料)微多孔膜の原料として、JIS K6758(230℃、21.18N)に従い測定したメルトマスフローレイト(MFR)が1.5g/10分、融点が158℃のプロピレン−エチレン共重合体を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比205でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.07倍に冷延伸した。(工程4)得られた延伸フィルムを128℃で長さ方向に、1段目は3.2倍に、2段目は1.0倍に延伸して、総延伸倍率3.2倍となるように温延伸した。(工程5)得られた延伸フィルムの長さが0.88倍になるように150℃で弛緩させた。こうして最終厚みが20μmの本発明の微多孔膜が得られた。得られた微多孔膜の熱収縮率と空孔率を上述の方法で測定し、その結果を製造条件と共に表1に示す。
(Example 3)
(Raw material) As a raw material of the microporous membrane, a propylene-ethylene copolymer having a melt mass flow rate (MFR) of 1.5 g / 10 min and a melting point of 158 ° C. measured according to JIS K 6758 (230 ° C., 21.18 N) did. (Step 1) The raw material melt-kneaded by a single-screw extruder was extruded from a T-die at a draft ratio 205 to produce a raw film having a thickness of 22 μm. (Step 2) Next, the raw film was heat-treated at 150 ° C. (Step 3) The raw film was cold-stretched at 30 ° C. in the lengthwise direction to 1.07 times. (Step 4) The obtained stretched film is stretched in the lengthwise direction at 128 ° C., the first stage 3.2 times, the second stage 1.0, and the total draw ratio 3.2 times It was warm stretched. (Step 5) The stretched film was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.88 times. Thus, a microporous membrane of the present invention having a final thickness of 20 μm was obtained. The heat shrinkage and porosity of the obtained microporous membrane were measured by the above-described method, and the results are shown in Table 1 together with the production conditions.

(比較例1)
(原料)微多孔膜の原料として、JIS K6758(230℃、21.18N)に従い測定したメルトマスフローレイト(MFR)が0.5g/10分、融点が165℃のプロピレン単独重合体を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比159でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.03倍に冷延伸した(工程4)得られた延伸フィルムを145℃で長さ方向に、1段目は1.0倍に、2段目は2.9倍に延伸して、総延伸倍率2.9倍となるように温延伸した。(工程5)得られた延伸フィルムの長さが0.87倍になるように150℃で弛緩させた。こうして最終厚みが20μmの比較用の微多孔膜が得られた。評価結果を製造条件と共に表1に示す。
(Comparative example 1)
(Raw Material) A propylene homopolymer having a melt mass flow rate (MFR) of 0.5 g / 10 min and a melting point of 165 ° C. measured according to JIS K 6758 (230 ° C., 21.18 N) was used as a raw material of the microporous membrane. (Step 1) The raw material melt-kneaded by a single-screw extruder was extruded from a T-die at a draft ratio of 159 to produce a raw film having a thickness of 22 μm. (Step 2) Next, the raw film was heat-treated at 150 ° C. (Step 3) Cold-stretch the raw film at 30 ° C. in the lengthwise direction to 1.03 times in the lengthwise direction (Step 4) The obtained stretched film is stretched at 145 ° C. in the lengthwise direction, and the first step is 1.0 times The second stage was stretched 2.9 times and warm stretched to a total draw ratio of 2.9 times. (Step 5) The stretched film was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.87 times. Thus, a comparative microporous membrane with a final thickness of 20 μm was obtained. The evaluation results are shown in Table 1 together with the production conditions.

(比較例2)
(原料)比較例1と同じ原料を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比159でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.03倍に冷延伸した(工程4)得られた延伸フィルムを145℃で長さ方向に、1段目は1.0倍に、2段目は2.8倍に延伸して、総延伸倍率2.8倍となるように温延伸した。(工程5)得られた延伸フィルムの長さが0.85倍になるように150℃で弛緩させた。こうして最終厚みが20μmの比較用の微多孔膜が得られた。評価結果を製造条件と共に表1に示す。
(Comparative example 2)
(Raw material) The same raw material as Comparative Example 1 was used. (Step 1) The raw material melt-kneaded by a single-screw extruder was extruded from a T-die at a draft ratio of 159 to produce a raw film having a thickness of 22 μm. (Step 2) Next, the raw film was heat-treated at 150 ° C. (Step 3) Cold-stretch the raw film at 30 ° C. in the lengthwise direction to 1.03 times in the lengthwise direction (Step 4) The obtained stretched film is stretched at 145 ° C. in the lengthwise direction, and the first step is 1.0 times The second stage was stretched 2.8 times and warm stretched to a total stretching ratio of 2.8 times. (Step 5) The stretched film was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.85 times. Thus, a comparative microporous membrane with a final thickness of 20 μm was obtained. The evaluation results are shown in Table 1 together with the production conditions.

Figure 0006507648
Figure 0006507648

実施例1、2、3で得られた本発明の微多孔膜は、比較例1、2に比べて引張強度と突刺強度が高い。しかも、実施例1、2、3で得られた本発明の微多孔膜は、引張強度、突刺強度、空孔率とのバランスからみても比較例1、2よりも優れている。   The microporous films of the present invention obtained in Examples 1, 2 and 3 have higher tensile strength and piercing strength than Comparative Examples 1 and 2. In addition, the microporous films of the present invention obtained in Examples 1, 2 and 3 are superior to Comparative Examples 1 and 2 also in view of the balance among tensile strength, puncture strength and porosity.

本発明の微多孔膜は高い強度と高い空孔率を兼ね備える。したがって本発明の微多孔膜は、優れた物質透過性という化学的機能と、高い強度という構造的機能とを兼ね備える素材である。このような本発明の微多孔膜は、分離膜、蓄電デバイスのセパレータなどの部材に適している。本発明の微多孔膜は、過酷な環境下で使用される車両用電池のセパレータ、屋外で使用されるキャパシタのセパレータの材料として有用である。   The microporous membrane of the present invention has both high strength and high porosity. Therefore, the microporous membrane of the present invention is a material having a chemical function of excellent material permeability and a structural function of high strength. Such a microporous membrane of the present invention is suitable for a member such as a separation membrane or a separator of a storage device. The microporous film of the present invention is useful as a material of a vehicle battery separator used in severe environments and a separator of a capacitor used outdoors.

Claims (10)

メルトマスフローレイト(MFR、JIS K6758に準拠して230℃、荷重21.18Nで測定)が1.0〜10.0g/10分であるポリプロピレン系重合体からなり、以下の方法(A)で求めた押出方向(MD)の引張強度が200MPa以上、幅方向(TD)の引張強度が10MPa以上であり、かつ、以下の方法(B)で測定された突刺強度が4.9N以上である、微多孔膜。

方法(A):
微多孔膜から押出方向(MD)と、幅方向(TD)の2方向に試験片を切り出し、それぞれの試験片(MD方向の試験片、TD方向の試験片)の破断荷重(N)を引張速度500mm/分の条件で測定する。以下の式により押出方向(MD)の引張強度、幅方向(TD)の引張強度を算出する。
押出方向(MD)の引張強度(MPa)=[押出方向(MD)の破断荷重(N)]/[試験片の断面積(mm)]
幅方向(TD)の引張強度(MPa)=[幅方向(TD)の破断荷重(N)]/[試験片の断面積(mm)]

方法(B):
厚み20μmの微多孔膜表面に先端が直径1mmの球面形状の針で、100mm/分の速度で突刺して針に掛る荷重を測定する。このときの最大荷重(N)を突刺強度の値とする。
Melt mass flow rate (MFR, measured at 230 ° C, load 21.18 N according to JIS K 6758) is a polypropylene polymer having a weight of 1.0 to 10.0 g / 10 min, determined by the following method (A) The fineness in the extrusion direction (MD) is 200 MPa or more, the tensile strength in the width direction (TD) is 10 MPa or more, and the puncture strength measured by the following method (B) is 4.9 N or more Porous membrane.

Method (A):
Test pieces are cut out from the microporous membrane in two directions, the extrusion direction (MD) and the width direction (TD), and the breaking load (N) of each test piece (the test piece in the MD direction, the test piece in the TD direction) is tensioned. Measure at a speed of 500 mm / min. The tensile strength in the extrusion direction (MD) and the tensile strength in the width direction (TD) are calculated by the following equations.
Tensile strength in the direction of extrusion (MD) (MPa) = [break force in the direction of extrusion (MD) (N)] / [cross-sectional area of test piece (mm 2 )]
Tensile strength in the width direction (TD) (MPa) = [break force in the width direction (TD) (N)] / [cross-sectional area of the test piece (mm 2 )]

Method (B):
Using a spherical needle with a tip of 1 mm in diameter on the surface of a microporous membrane with a thickness of 20 μm, the load applied to the needle is measured by piercing at a speed of 100 mm / min. The maximum load (N) at this time is taken as the value of piercing strength.
空孔率が45〜55%の範囲にある、請求項1に記載の微多孔膜。   The microporous membrane of claim 1, wherein the porosity is in the range of 45-55%. ポリプロピレン系重合体が、融点が150〜170℃の範囲にあり、メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が1.0〜10g/10分の範囲にある、任意にエチレン、炭素数4〜8のα−オレフィンから選ばれる少なくとも1種を含んでいてもよい、プロピレン主体の重合体である、請求項1または2に記載の微多孔膜。   The polypropylene polymer has a melting point in the range of 150 to 170 ° C., and a melt mass flow rate (MFR, measured under the conditions according to JIS K 6758 (230 ° C., 21.18 N)) is 1.0 to 10 g / 10 min The microporous film according to claim 1 or 2, which is a propylene-based polymer which may contain at least one selected from ethylene and C 4-8 α-olefin optionally in the range. 蓄電デバイスのセパレータに用いられることを特徴とする請求項1〜3のいずれか1項に記載の微多孔膜。   The microporous film according to any one of claims 1 to 3, which is used as a separator of a storage device. 蓄電デバイスがリチウムイオン電池である、請求項4に記載の微多孔膜。   The microporous membrane according to claim 4, wherein the storage device is a lithium ion battery. 蓄電デバイスがキャパシタである、請求項4に記載の微多孔膜。   The microporous membrane according to claim 4, wherein the storage device is a capacitor. 請求項4記載の微多孔膜を備える蓄電デバイス。   An electricity storage device comprising the microporous membrane according to claim 4. 請求項5に記載の微多孔膜を備えるリチウムイオン電池。   A lithium ion battery comprising the microporous membrane according to claim 5. 請求項6に記載の微多孔膜を備えるキャパシタ。   A capacitor comprising the microporous membrane according to claim 6. 以下の工程を含む、請求項1〜9のいずれか1項に記載の微多孔膜の製造方法。
(工程1)JIS K6758に準拠して230℃、荷重21.18Nで測定したメルトマスフローレイト(MFR)が1.0〜10.0g/10分であるポリプロピレン系重合体を押出成形して原反フィルムを製膜する工程。
(工程2)工程1で得られた原反フィルムを、原反フィルムの長さ方向に、原反フィルムの長さが1.0倍を超え1.1倍以下となる一定の大きさの張力を加え、ポリプロピレン系重合体の融点よりも5〜65℃低い温度で熱処理する工程。
(工程3)工程2で得られた熱処理後の原反フィルムを、−5〜45℃で、長さ方向に1.0〜1.1倍に延伸する工程。
(工程4)工程3を終えた延伸フィルムを、ポリプロピレン系重合体の融点よりも5〜65℃低い温度で、長さ方向に3.0〜3.2倍に2段以上で延伸する工程。
(工程5)工程4で得られた温延伸後のフィルムを、加熱下、長さが0.7〜1.0倍になるように弛緩させる工程。
The manufacturing method of the microporous film of any one of Claims 1-9 including the following processes.
(Step 1) A polypropylene-based polymer having a melt mass flow rate (MFR) of 1.0 to 10.0 g / 10 min measured at 230 ° C. and a load of 21.18 N according to JIS K 6758 is extrusion-molded The process of forming a film.
(Step 2) A tension of a certain size such that the length of the raw film is more than 1.0 times and not more than 1.1 times in the length direction of the raw film obtained in the step 1 And heat treatment at a temperature 5 to 65 ° C. lower than the melting point of the polypropylene polymer .
(Step 3) A step of stretching the heat-treated raw film obtained in Step 2 at 1.0 to 1.1 times in the length direction at -5 to 45 ° C.
(Step 4) A step of drawing the stretched film, which has finished Step 3, in two or more steps at 3.0 to 3.2 times in the length direction at a temperature 5 to 65 ° C. lower than the melting point of the polypropylene polymer.
(Step 5) A step of relaxing the warm-stretched film obtained in Step 4 so that the length becomes 0.7 to 1.0 times under heating.
JP2015002952A 2015-01-09 2015-01-09 Microporous membrane and method for producing the same Expired - Fee Related JP6507648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015002952A JP6507648B2 (en) 2015-01-09 2015-01-09 Microporous membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015002952A JP6507648B2 (en) 2015-01-09 2015-01-09 Microporous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016128532A JP2016128532A (en) 2016-07-14
JP6507648B2 true JP6507648B2 (en) 2019-05-08

Family

ID=56384086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015002952A Expired - Fee Related JP6507648B2 (en) 2015-01-09 2015-01-09 Microporous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6507648B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733015B1 (en) * 2016-11-09 2017-05-08 유펙스켐(주) Method of manufacturing battery separator using treatment of modifying surface
CN115668619A (en) * 2020-05-28 2023-01-31 旭化成株式会社 Separator for electricity storage device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA707453B (en) * 1969-11-13 1972-06-28 Celanese Corp Novel open-celled microporous film
JPS4989772A (en) * 1972-12-28 1974-08-27
CN1239226C (en) * 2000-01-10 2006-02-01 Lg化学株式会社 High crystalline polypropylene microporous membrane, multi-component microporous membrane and methods for preparing same
JP4734396B2 (en) * 2008-11-10 2011-07-27 三菱樹脂株式会社 Laminated porous film, lithium battery separator and battery using the same
CN102395623B (en) * 2009-06-19 2013-11-06 三菱树脂株式会社 Porous polypropylene film
JP2011081994A (en) * 2009-10-06 2011-04-21 Asahi Kasei E-Materials Corp Separator for high-temperature preservation characteristics storage device
JP5539789B2 (en) * 2010-06-09 2014-07-02 株式会社プライムポリマー Propylene polymer for microporous film formation and use thereof
JP5692917B2 (en) * 2011-07-26 2015-04-01 旭化成イーマテリアルズ株式会社 Microporous film and battery separator
KR20140081807A (en) * 2011-10-14 2014-07-01 도레이 카부시키가이샤 Porous polypropylene film and electrical storage device
JP2013199545A (en) * 2012-03-23 2013-10-03 Asahi Kasei E-Materials Corp Fine porous film and battery separator
JP6034635B2 (en) * 2012-09-27 2016-11-30 旭化成株式会社 Microporous film and battery separator

Also Published As

Publication number Publication date
JP2016128532A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
KR102432330B1 (en) Polyolefin microporous membrane, manufacturing method thereof, and battery separator
CN105263998B (en) Manufacturing method, cellulose nano-fibrous more microporous compound films and non-aqueous secondary batteries diaphragm containing the cellulose nano-fibrous more micropore stretched films of polyolefin
JP5967589B2 (en) Polyolefin microporous membrane and method for producing the same
KR100943236B1 (en) Microporous polyolefin film with improved meltdown property and preparing method thereof
JP2021036531A (en) Improved microporous membrane separator for lithium-ion secondary battery and related method
JP2008540794A6 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JP2013199545A (en) Fine porous film and battery separator
KR20060121802A (en) Microporous high density polyethylene film and preparing method thereof
US20210115206A1 (en) Porous polyolefin film
JP5731762B2 (en) Microporous film, method for producing the same, and battery separator
JP6507650B2 (en) Microporous membrane and method for producing the same
JP6551343B2 (en) Method for producing polypropylene-based microporous membrane
JP6507648B2 (en) Microporous membrane and method for producing the same
CN112063006B (en) Polyolefin microporous membrane and preparation method thereof
JP4894794B2 (en) Polyolefin resin porous membrane
JP6880775B2 (en) Method for manufacturing polypropylene microporous membrane
JP6486620B2 (en) Laminated microporous film, method for producing the same, and battery separator
JP2021504874A (en) Separator for power storage device
JP6507647B2 (en) Microporous membrane and method for producing the same
JP6550754B2 (en) Microporous membrane and method for producing the same
JP6356000B2 (en) Laminated microporous film, method for producing the same, and battery separator
JP5744831B2 (en) Separation membrane for lithium secondary battery with shutdown characteristics
JP2019073590A (en) Method for producing polypropylene-based microporous film
JP6507649B2 (en) Microporous membrane and method for producing the same
JP2018168316A (en) Method for producing polypropylene-based microporous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6507648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees