JP6506671B2 - Method of manufacturing magnetic sensor and method of manufacturing current sensor - Google Patents
Method of manufacturing magnetic sensor and method of manufacturing current sensor Download PDFInfo
- Publication number
- JP6506671B2 JP6506671B2 JP2015201574A JP2015201574A JP6506671B2 JP 6506671 B2 JP6506671 B2 JP 6506671B2 JP 2015201574 A JP2015201574 A JP 2015201574A JP 2015201574 A JP2015201574 A JP 2015201574A JP 6506671 B2 JP6506671 B2 JP 6506671B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetoresistance effect
- magnetic
- magnetoresistive
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 185
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 230000000694 effects Effects 0.000 claims description 121
- 230000005294 ferromagnetic effect Effects 0.000 claims description 51
- 238000001514 detection method Methods 0.000 claims description 31
- 230000008878 coupling Effects 0.000 claims description 16
- 238000010168 coupling process Methods 0.000 claims description 16
- 238000005859 coupling reaction Methods 0.000 claims description 16
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 239000002902 ferrimagnetic material Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 62
- 101100176188 Onchocerca volvulus gmr-1 gene Proteins 0.000 description 29
- 230000005415 magnetization Effects 0.000 description 20
- 230000035945 sensitivity Effects 0.000 description 15
- 230000006698 induction Effects 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 230000004044 response Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000005293 ferrimagnetic effect Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910003321 CoFe Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910019233 CoFeNi Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910019041 PtMn Inorganic materials 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Hall/Mr Elements (AREA)
Description
本発明は、磁気センサの製造方法および当該磁気センサを用いる電流センサの製造方法に関する。 The present invention relates to a method of manufacturing a magnetic sensor and a method of manufacturing a current sensor using the magnetic sensor.
特許文献1には、被測定電流からの誘導磁界の印加により抵抗値が変化する4つの磁気抵抗効果素子で構成され、2つの磁気抵抗効果素子間の出力を備える磁界検出ブリッジ回路を有する電流センサであって、前記4つの磁気抵抗効果素子は、抵抗変化率が同じであり、反平行結合膜を介して第1の強磁性膜と第2の強磁性膜とを反強磁性的に結合させてなるセルフピン止め型の強磁性固定層と、非磁性中間層と、軟磁性自由層とを有し、前記出力を与える2つの磁気抵抗効果素子の強磁性固定層の磁化方向が互いに180°異なる方向であり、前記磁気検出ブリッジ回路は、電源供給点に対して対称である配線を有する電流センサが開示されている。 Patent Document 1 discloses a current sensor having a magnetic field detection bridge circuit including an output between two magnetoresistance effect elements, which includes four magnetoresistance effect elements whose resistance value is changed by application of an induction magnetic field from a current to be measured. The four magnetoresistance effect elements have the same rate of change in resistance, and antiferromagnetically couple the first ferromagnetic film and the second ferromagnetic film via the antiparallel coupling film. And the nonmagnetic intermediate layer, and the soft magnetic free layer, and the magnetization directions of the ferromagnetic fixed layers of the two magnetoresistance effect elements giving the output differ from each other by 180 °. A current sensor is disclosed, wherein the magnetic detection bridge circuit is a direction, and the wiring is symmetrical with respect to a power supply point.
特許文献1に開示される磁気検出ブリッジ回路を備えることにより、線形応答性に優れる磁気センサが得られ、この特性を活かすことにより、測定精度の高い電流センサを得ることができる。 By providing the magnetic detection bridge circuit disclosed in Patent Document 1, a magnetic sensor having excellent linear response can be obtained, and by utilizing this characteristic, a current sensor with high measurement accuracy can be obtained.
このように磁気センサの線形応答性が高くなると、これまでは相対的に影響が少なかったオフセット値(外部から磁界が印加されていない状態での出力値)や、オフセット温度特性(オフセットの温度依存性)を、さらに低減することが求められるようになる可能性がある。 As described above, when the linear response of the magnetic sensor becomes high, the offset value (output value in the state where no external magnetic field is applied) whose influence has been relatively small until now, the offset temperature characteristic (temperature dependence of offset) It may be required to further reduce the
本発明は、上記のオフセットやオフセット温度特性が小さい磁気センサの製造方法およびかかる磁気センサを用いる電流センサの製造方法を提供することを目的とする。 An object of the present invention is to provide a method of manufacturing a magnetic sensor having a small offset or offset temperature characteristic as described above, and a method of manufacturing a current sensor using such a magnetic sensor.
上記課題を解決すべく本発明者が検討した結果、次のような知見を得た。
(a)オフセットやオフセット温度特性を増加させる要因の一つとして、磁界検出ブリッジ回路が備える4つの磁気抵抗効果素子の製造段階でのばらつきが挙げられる。
(b)この4つの磁気抵抗効果素子の製造段階でのばらつきは、これらの磁気抵抗効果素子を一連の製造プロセスで同時に製造することにより低減させることができる。
(c)そのように同時に製造される場合であっても、4つの磁気抵抗効果素子を、感度(外部磁界に対する抵抗変化率)が異なる一対の磁気抵抗効果素子の2組とすることにより、印加された磁界に対して線形的に応答する出力を有する磁界検出ブリッジ回路が得られる。
(d)抵抗値は等しく感度が異なる一対の磁気抵抗効果素子を同時に製造するためには、一対の磁気抵抗効果素子を、アスペクト比(ミアンダ形状の長尺パターンの全長/長尺パターンの幅)は等しいが長尺パターンの幅は相違するようすればよい。
As a result of the present inventor's examination in order to solve the said subject, the following knowledge was acquired.
(A) One of the factors for increasing the offset and the offset temperature characteristic is variation at the manufacturing stage of the four magnetoresistive elements provided in the magnetic field detection bridge circuit.
(B) Variations in the manufacturing steps of the four magnetoresistive elements can be reduced by simultaneously manufacturing these magnetoresistive elements in a series of manufacturing processes.
(C) Even when they are manufactured simultaneously as such, application is performed by setting the four magnetoresistive elements to two pairs of magnetoresistive elements having different sensitivities (the rate of change in resistance to the external magnetic field). A magnetic field detection bridge circuit is obtained which has an output which responds linearly to the determined magnetic field.
(D) In order to simultaneously manufacture a pair of magnetoresistance effect elements having equal resistance values and different sensitivities, the aspect ratio (length of mean length of long pattern / length of long pattern of meander shape) But the widths of the long patterns may be different.
以上の知見に基づき完成された本発明は、一態様において、外部磁界の変化に応じて抵抗値が変化する4つの磁気抵抗効果素子で構成され、直列に接続された2つの磁気抵抗効果素子からなる部分回路を2つ備える磁界検出ブリッジ回路を有する磁気センサの製造方法であって、前記4つの磁気抵抗効果素子は、いずれも、帯状の長尺パターンが折り返されたミアンダ形状であって、前記長尺パターンは、強磁性固定層と、非磁性中間層と、軟磁性自由層とを有する積層構造を備え、前記4つの磁気抵抗効果素子は、前記長尺パターンの全長を前記長尺パターンの幅で除したアスペクト比は共通するが、前記長尺パターンの幅が相違する2種類の磁気抵抗効果素子である第1の磁気抵抗効果素子および第2の磁気抵抗効果素子から構成され、前記磁界検出ブリッジ回路の前記部分回路の一方では、第1の磁気抵抗効果素子および第2の磁気抵抗効果素子が、この順番で電源給電点に近位な側から直列に接続され、前記磁界検出ブリッジ回路の前記部分回路の他方では、第2の磁気抵抗効果素子および第1の磁気抵抗効果素子が、この順番で電源給電点に近位な側から直列に接続され、前記4つの磁気抵抗効果素子を一連の製膜プロセスで同時に形成することを特徴とする磁気センサの製造方法である。 The present invention completed based on the above findings is, in one aspect, composed of four magnetoresistance effect elements connected in series, each of which comprises four magnetoresistance effect elements whose resistance value changes according to the change of the external magnetic field. The method for manufacturing a magnetic sensor having a magnetic field detection bridge circuit including two partial circuits according to claim 1, wherein each of the four magnetoresistive elements has a meander shape in which a strip-shaped long pattern is folded back, The long pattern has a laminated structure having a ferromagnetic fixed layer, a nonmagnetic intermediate layer, and a soft magnetic free layer, and the four magnetoresistance effect elements have the entire length of the long pattern of the long pattern. The first magnetoresistance effect element and the second magnetoresistance effect element, which are two types of magnetoresistance effect elements having the same aspect ratio divided by the width but different widths of the long patterns, In one of the partial circuits of the magnetic field detection bridge circuit, the first magnetoresistance effect element and the second magnetoresistance effect element are connected in series in this order from the side closest to the power supply point, and the magnetic field detection In the other part of the partial circuit of the bridge circuit, the second magnetoresistance effect element and the first magnetoresistance effect element are connected in series in this order from the side proximal to the power supply point, and the four magnetoresistance effects are provided. A method of manufacturing a magnetic sensor, wherein an element is simultaneously formed by a series of film forming processes.
上記のとおり、ミアンダ形状を有する磁気抵抗効果素子について、アスペクト比を共通としつつ長尺パターンの幅を変化させることによって、感度の異なる2種類の磁気抵抗効果素子を同時に製造することができる。このように、上記の本発明の一態様に係る製造方法では、磁界検出ブリッジを構成する4つの磁気抵抗効果素子は同時に製造されるため、これらの磁気抵抗効果素子は特性ばらつきが生じにくい。したがって、外部から磁界が印加されていない状態での抵抗値と抵抗温度係数のばらつきも生じにくくなり、その結果オフセットやオフセット温度特性が小さい磁気センサが得られやすい。 As described above, with respect to the magnetoresistive effect element having a meander shape, by changing the width of the long pattern while making the aspect ratio common, it is possible to simultaneously manufacture two types of magnetoresistive effect elements having different sensitivities. As described above, in the above-described manufacturing method according to one aspect of the present invention, since the four magnetoresistive elements forming the magnetic field detection bridge are simultaneously manufactured, characteristic variations of these magnetoresistive elements do not easily occur. Therefore, variations in resistance value and temperature coefficient of resistance in the state where no magnetic field is applied from the outside are also less likely to occur, and as a result, a magnetic sensor having a small offset and offset temperature characteristics is easily obtained.
前記強磁性固定層は、反強磁性膜と交換結合している第1の強磁性膜と第2の強磁性膜とを反平行結合膜を介して反強磁性的に結合させてなる積層フェリ型であってもよいし、第1の強磁性膜と第2の強磁性膜とを反平行結合膜を介して反強磁性的に結合させてなるセルフピン型であってもよい。 The ferromagnetic pinned layer is a laminated ferrimagnetic material in which a first ferromagnetic film and a second ferromagnetic film in exchange coupling with an antiferromagnetic film are antiferromagnetically coupled via an antiparallel coupling film. It may be a type, or may be a self-pin type in which a first ferromagnetic film and a second ferromagnetic film are antiferromagnetically coupled via an antiparallel coupling film.
上記の磁気センサの製造方法において、前記4つの磁気抵抗効果素子の近傍に配置され、被測定磁界を相殺するキャンセル磁界を発生するフィードバックコイルをさらに具備し、前記磁界検出ブリッジ回路が備える前記2つの部分回路のそれぞれが有する2つの前記磁気抵抗効果素子の間に設けられた出力の電圧差により前記フィードバックコイルに通電して前記被測定磁界と前記キャンセル磁界とが相殺される平衡状態となったときの前記フィードバックコイルに流れる電流に基づいて前記被測定磁界を測定可能とされてもよい。このようにフィードバックコイルを用いることにより、被測定磁界の測定精度を高めることができる。 In the method of manufacturing a magnetic sensor as described above, the two magnetic flux sensors further include a feedback coil disposed in the vicinity of the four magnetoresistance effect elements and generating a cancellation magnetic field that cancels out the measured magnetic field, and the magnetic field detection bridge circuit includes the two When the feedback coil is energized by the voltage difference of the output provided between the two magnetoresistance effect elements included in each of the partial circuits, and when the magnetic field to be measured and the cancellation magnetic field are in an equilibrium state The measured magnetic field can be measured based on the current flowing through the feedback coil. By using the feedback coil in this manner, the measurement accuracy of the magnetic field to be measured can be enhanced.
上記のようにフィードバックコイルを用いる場合において、前記被測定磁界および前記キャンセル磁界が前記長尺パターンの延びる方向に直交する方向に沿うように印加可能に、前記フィードバックコイルは配置されることにより、キャンセル磁界の印加方向を磁気抵抗効果素子の感度軸方向に沿った方向とすることができる。このため、上記のようにフィードバックコイルを配置することは、被測定磁界の測定精度を高める観点から好ましい。 As described above, in the case of using a feedback coil, the feedback coil is arranged so as to be able to be applied so that the measured magnetic field and the cancellation magnetic field are along the direction orthogonal to the extending direction of the long pattern. The direction of application of the magnetic field can be a direction along the sensitivity axis direction of the magnetoresistive element. For this reason, it is preferable to arrange the feedback coil as described above from the viewpoint of enhancing the measurement accuracy of the measured magnetic field.
前記4つの磁気抵抗効果素子が前記長尺パターンの延びる方向に沿って並置されることにより、4つの磁気抵抗効果素子の感度軸の方向を揃えることが容易となる。したがって、上記のように4つの磁気抵抗効果素子が並置されることは、被測定磁界の測定精度を高める観点から好ましい。 By arranging the four magnetoresistive elements in parallel along the extending direction of the long pattern, it becomes easy to align the directions of the sensitivity axes of the four magnetoresistive elements. Therefore, as described above, the four magnetoresistive elements are preferably juxtaposed from the viewpoint of enhancing the measurement accuracy of the magnetic field to be measured.
本発明は、他の一態様において、上記の本発明の一態様に係る製造方法により製造された磁気センサを用いて、前記磁気抵抗効果素子の前記長尺パターンの長手方向に沿った方向に流れる被測定電流により生じた誘導磁界を測定して、前記被測定電流を定量的に測定することを特徴とする電流センサの製造方法である。上記のとおり、本発明の一実施形態に係る製造方法により製造された磁気センサは、オフセットやオフセット温度特性が小さいため、被測定電流により生じた誘導磁界をかかる磁気センサを用いて測定することにより、被測定電流を高精度に定量測定することが可能である。 In another aspect, the present invention uses the magnetic sensor manufactured by the manufacturing method according to the above aspect of the present invention to flow in the direction along the longitudinal direction of the long pattern of the magnetoresistive element. A method of manufacturing a current sensor, comprising measuring an induced magnetic field generated by a current to be measured and quantitatively measuring the current to be measured. As described above, since the magnetic sensor manufactured by the manufacturing method according to one embodiment of the present invention has small offset and offset temperature characteristics, the induced magnetic field generated by the current to be measured is measured using this magnetic sensor. It is possible to quantitatively measure the measured current with high accuracy.
本発明によれば、オフセットやオフセット温度特性が小さい磁気センサの製造方法が提供される。また、かかる磁気センサを用いる電流センサの製造方法も提供される。 According to the present invention, a method of manufacturing a magnetic sensor with small offset and offset temperature characteristics is provided. Also provided is a method of manufacturing a current sensor using such a magnetic sensor.
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。本発明の一実施形態に係る電流センサは、磁気平衡式の磁気センサを備える磁気平衡式電流センサである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. The current sensor according to an embodiment of the present invention is a magnetic balance type current sensor including a magnetic balance type magnetic sensor.
図1は、本発明の一実施形態に係る磁気平衡式電流センサを示す図である。本実施の形態においては、図1に示す磁気平衡式電流センサは、被測定電流が流れる導体11の近傍に配設される。この磁気平衡式電流センサは、導体11に流れる被測定電流による誘導磁界Aを打ち消す磁界(キャンセル磁界)Bを生じさせるフィードバック回路を備える磁気センサ12からなる。このフィードバック回路は、直線的に流れる被測定電流によって発生する磁界を打ち消す方向に巻回されたフィードバックコイル121と、4つの磁気抵抗効果素子122a〜122dを備える磁界検出ブリッジ回路とを有する。 FIG. 1 is a diagram showing a magnetic balance type current sensor according to an embodiment of the present invention. In the present embodiment, the magnetic balance type current sensor shown in FIG. 1 is disposed in the vicinity of the conductor 11 through which the current to be measured flows. This magnetic balance type current sensor comprises a magnetic sensor 12 provided with a feedback circuit that generates a magnetic field (canceling magnetic field) B that cancels the induced magnetic field A due to the measured current flowing in the conductor 11. The feedback circuit includes a feedback coil 121 wound in a direction that cancels out the magnetic field generated by the linearly-measured current to be measured, and a magnetic field detection bridge circuit including four magnetoresistance effect elements 122a to 122d.
フィードバックコイル121は平面コイルで構成されている。この構成においては、磁気コアを有しないので、低コストでフィードバックコイルを作製することができる。また、トロイダルコイルの場合に比べて、フィードバックコイルから生じるキャンセル磁界が広範囲に拡がることを防止でき、周辺回路に影響を与えることを回避できる。さらに、トロイダルコイルの場合に比べて、被測定電流が交流の場合に、フィードバックコイルによるキャンセル磁界の制御が容易であり、制御のために流す電流もそれほど大きくならない。これらの効果については、被測定電流が交流で高周波になるほど大きくなる。フィードバックコイル121は平面コイルで構成する場合において、平面コイルの形成面と平行な面内で誘導磁界Aとキャンセル磁界Bの両方が生じるように平面コイルが設けられていることが好ましい。 The feedback coil 121 is configured by a planar coil. In this configuration, since the magnetic core is not provided, the feedback coil can be manufactured at low cost. Further, compared to the case of the toroidal coil, the cancellation magnetic field generated from the feedback coil can be prevented from spreading over a wide range, and the influence on the peripheral circuit can be avoided. Furthermore, compared to the case of the toroidal coil, when the current to be measured is alternating current, control of the cancellation magnetic field by the feedback coil is easy, and the current flowing for control does not become so large. These effects become greater as the measured current becomes higher with alternating current. When the feedback coil 121 is formed of a planar coil, it is preferable that a planar coil be provided so that both the induction magnetic field A and the cancel magnetic field B are generated in a plane parallel to the formation surface of the planar coil.
磁気抵抗効果素子122a〜122dは、被測定電流からの誘導磁界Aの印加により抵抗値が変化する。この4つの磁気抵抗効果素子122a〜122dにより磁界検出ブリッジ回路を構成している。このように磁気抵抗効果素子を有する磁界検出ブリッジ回路を用いることにより、高感度の磁気平衡式電流センサを実現することができる。 The resistance value of the magnetoresistive effect elements 122a to 122d changes due to the application of the induction magnetic field A from the current to be measured. A magnetic field detection bridge circuit is configured by the four magnetoresistance effect elements 122a to 122d. By using the magnetic field detection bridge circuit having the magnetoresistance effect element as described above, a highly sensitive magnetic balanced current sensor can be realized.
この磁界検出ブリッジ回路は、被測定電流により生じた誘導磁界Aに応じた電圧差を生じる2つの出力を備える。図1に示す磁界検出ブリッジ回路においては、磁気抵抗効果素子122bと磁気抵抗効果素子122cとの間の接続点に電源給電点である電源端子Vddが接続されており、磁気抵抗効果素子122aと磁気抵抗効果素子122dとは一方の端部がそれぞれグランド(Gnd2,Gnd1)に接続されている。さらに、この磁界検出ブリッジ回路においては、直列に接続された磁気抵抗効果素子122bと磁気抵抗効果素子122dと間の接続点から一つの出力(Out1)を取り出し、直列に接続された磁気抵抗効果素子122aと磁気抵抗効果素子122cと間の接続点から一つの出力(Out2)を取り出している。これらの2つの出力における電位差(Out1−Out2、中点電位差)は増幅器で増幅され、フィードバックコイル121に電流(フィードバック電流)として与えられる。このフィードバック電流は、誘導磁界Aに応じた中点電圧差に対応する。このとき、フィードバックコイル121には、誘導磁界Aを相殺するキャンセル磁界Bが発生する。そして、誘導磁界Aとキャンセル磁界Bとが相殺される平衡状態となったときのフィードバックコイル121に流れる電流に基づいて検出部(具体的には検出用抵抗を用いればよい。)で誘導磁界Aの大きさを測定し、その結果に基づいて被測定電流を算出する。 The magnetic field detection bridge circuit has two outputs that generate a voltage difference according to the induced magnetic field A generated by the current to be measured. In the magnetic field detection bridge circuit shown in FIG. 1, a power supply terminal Vdd, which is a power supply point, is connected to a connection point between the magnetoresistance effect element 122b and the magnetoresistance effect element 122c. One end of the resistive effect element 122d is connected to the ground (Gnd2, Gnd1). Furthermore, in this magnetic field detection bridge circuit, one output (Out1) is taken out from the connection point between the magnetoresistive effect element 122b and the magnetoresistive effect element 122d connected in series, and the magnetoresistive effect element connected in series One output (Out2) is taken out from the connection point between 122a and the magnetoresistance effect element 122c. The potential difference (Out1-Out2, midpoint potential difference) at these two outputs is amplified by the amplifier and is given to the feedback coil 121 as a current (feedback current). This feedback current corresponds to the midpoint voltage difference according to the induction magnetic field A. At this time, in the feedback coil 121, a cancellation magnetic field B that cancels out the induction magnetic field A is generated. Then, based on the current flowing through the feedback coil 121 when the induction magnetic field A and the cancellation magnetic field B are in an equilibrium state where they cancel each other, the induction magnetic field A is detected in the detection unit (specifically, a detection resistor may be used) The measured current is calculated based on the result of measurement.
本発明の一実施形態に係る電流センサが備える磁気センサ12が有する磁気抵抗効果素子122a〜122dは、いずれも図2や図3に示すように、その長手方向が互いに平行になるように配置された複数の帯状の長尺パターン(ストライプ)SPが折り返してなる形状(ミアンダ形状)を有するGMR素子である。複数の長尺パターンSPは、両端部で電極ELにより直列に連結される。このミアンダ形状において、感度軸方向(Pin方向)は、長尺パターンSPの長手方向(ストライプ長手方向)に対して直交する幅方向(ストライプ幅方向)である。このミアンダ形状においては、誘導磁界Aおよびキャンセル磁界Bが長尺パターンSPの幅方向(ストライプ幅方向)に沿うように印加される。 The magnetoresistance effect elements 122a to 122d included in the magnetic sensor 12 included in the current sensor according to the embodiment of the present invention are all disposed so that the longitudinal directions thereof are parallel to each other as shown in FIG. 2 and FIG. It is a GMR element having a shape (meander shape) in which a plurality of strip-like long patterns (stripes) SP are folded back. The plurality of long patterns SP are connected in series by the electrodes EL at both ends. In this meander shape, the sensitivity axis direction (Pin direction) is a width direction (stripe width direction) orthogonal to the longitudinal direction (stripe longitudinal direction) of the long pattern SP. In this meander shape, the induction magnetic field A and the cancellation magnetic field B are applied along the width direction (stripe width direction) of the long pattern SP.
このミアンダ形状においては、線形応答性を高める観点から、ピン(Pin)方向の幅が1μm〜10μmであることが好ましい。この場合において、リニアリティを考慮すると、長手方向が誘導磁界Aの方向およびキャンセル磁界Bの方向に対して共に垂直になることが望ましい。このようなミアンダ形状にすることにより、ホール素子よりも少ない端子数(2端子)で磁気抵抗効果素子の出力を採ることができる。 In this meander shape, the width in the direction of the pin (Pin) is preferably 1 μm to 10 μm from the viewpoint of enhancing the linear response. In this case, in consideration of linearity, it is desirable that the longitudinal direction be both perpendicular to the direction of the induction magnetic field A and the direction of the cancellation magnetic field B. With such a meander shape, the output of the magnetoresistive element can be obtained with the number of terminals (two terminals) smaller than that of the Hall element.
本発明の一実施形態に係る磁気センサ12が有する4つの磁気抵抗効果素子122a〜122dは、印加された磁界に対する線形応答性に優れる信号をこれらの磁気抵抗効果素子を備える磁気ブリッジ回路から出力可能としつつ、一連の製膜プロセスで同時に製造されうるように、次に説明するような2種類の磁気抵抗効果素子(第1の磁気抵抗効果素子GMR1、第2の磁気抵抗効果素子GMR2)から構成されている。 The four magnetoresistive elements 122a to 122d included in the magnetic sensor 12 according to an embodiment of the present invention can output signals excellent in linear response to an applied magnetic field from the magnetic bridge circuit including these magnetoresistive elements. And the two magnetoresistive elements (a first magnetoresistive element GMR1 and a second magnetoresistive element GMR2) as described below so that they can be manufactured simultaneously by a series of film forming processes. It is done.
2種類の磁気抵抗効果素子の一方である第1の磁気抵抗効果素子GMR1は、図1に示されるように、磁気抵抗効果素子122cおよび磁気抵抗効果素子122dを構成し、相対的に高感度の素子からなる。図2は、第1の磁気抵抗効果素子GMR1の平面図である。 The first magnetoresistance effect element GMR1, which is one of the two types of magnetoresistance effect elements, constitutes the magnetoresistance effect element 122c and the magnetoresistance effect element 122d as shown in FIG. It consists of elements. FIG. 2 is a plan view of the first magnetoresistance effect element GMR1.
2種類の磁気抵抗効果素子の他方である第2の磁気抵抗効果素子GMR2は、図1に示されるように、磁気抵抗効果素子122aおよび磁気抵抗効果素子122bを構成し、相対的に低感度の素子からなる。図2は、第2の磁気抵抗効果素子GMR2の平面図である。 As shown in FIG. 1, the second magnetoresistive element GMR2, which is the other of the two magnetoresistive elements, constitutes the magnetoresistive element 122a and the magnetoresistive element 122b, and has relatively low sensitivity. It consists of elements. FIG. 2 is a plan view of the second magnetoresistance effect element GMR2.
磁気抵抗効果素子の感度は長尺パターンSPの幅Wに依存し、基本的な傾向として、当該幅Wが広いほど感度が高い。第1の磁気抵抗効果素子GMR1の幅と第2の磁気抵抗効果素子GMR2の幅とを対比すると、第1の磁気抵抗効果素子GMR1の幅の方が広い。したがって、第1の磁気抵抗効果素子GMR1の方が第2の磁気抵抗効果素子GMR2よりも感度が高い。 The sensitivity of the magnetoresistive element depends on the width W of the long pattern SP, and the basic tendency is that the wider the width W, the higher the sensitivity. When the width of the first magnetoresistance effect element GMR1 is compared with the width of the second magnetoresistance effect element GMR2, the width of the first magnetoresistance effect element GMR1 is wider. Therefore, the sensitivity of the first magnetoresistance effect element GMR1 is higher than that of the second magnetoresistance effect element GMR2.
ここで、4つの磁気抵抗効果素子122a〜122dから構成される磁界検出ブリッジ回路の2つの中点電位差(Out1−Out2)が、磁界が印加されていない状態で0Vとなるようにする観点から、第1の磁気抵抗効果素子GMR1の素子抵抗は第2の磁気抵抗効果素子GMR2の素子抵抗と等しいことが好ましい。上記のように第1の磁気抵抗効果素子GMR1と第2の磁気抵抗効果素子GMR2とは幅が異なることから、素子抵抗を等しくする要請に応えるために、第1の磁気抵抗効果素子GMR1と第2の磁気抵抗効果素子GMR2とは次に説明するアスペクト比が等しくなるように長尺パターンSPの全長が調整されている。本明細書においてアスペクト比とは、ミアンダ形状を有する磁気抵抗効果素子の長尺パターンSPの全長Ltを長尺パターンSPの幅Wで除した値を意味する。磁気抵抗効果素子の素子抵抗Rは、シート抵抗Rs、長尺パターンSPの全長Ltおよび長尺パターンSPの幅Wを用いて、次の式で表される。
R = Rs×Lt/W
Here, from the viewpoint of setting the two midpoint potential differences (Out1-Out2) of the magnetic field detection bridge circuit configured of the four magnetoresistive elements 122a to 122d to 0 V in the state where the magnetic field is not applied, The element resistance of the first magnetoresistive element GMR1 is preferably equal to the element resistance of the second magnetoresistive element GMR2. As described above, since the first magnetoresistance effect element GMR1 and the second magnetoresistance effect element GMR2 have different widths, the first magnetoresistance effect element GMR1 and the first magnetoresistance effect element GMR1 are required to meet the requirement for equalizing the element resistance. The total length of the long pattern SP is adjusted so that the aspect ratio described below of the second magnetoresistance effect element GMR2 becomes equal. In the present specification, the aspect ratio means a value obtained by dividing the total length Lt of the long pattern SP of the magnetoresistive element having a meander shape by the width W of the long pattern SP. The element resistance R of the magnetoresistive element is expressed by the following equation using the sheet resistance Rs, the total length Lt of the long pattern SP, and the width W of the long pattern SP.
R = Rs x Lt / W
したがって、同じ材料であってシート抵抗Rsが等しい場合には、アスペクト比が等しければ素子抵抗Rが等しくなる。したがって、アスペクト比を等しくしつつ、長尺パターンSPの幅Wを変化させることにより、素子抵抗Rが等しく感度が異なる磁気抵抗効果素子を同時に製造することができる。 Therefore, in the case of the same material and the sheet resistance Rs being equal, the element resistance R becomes equal if the aspect ratio is equal. Therefore, by changing the width W of the long pattern SP while equalizing the aspect ratio, it is possible to simultaneously manufacture magnetoresistive elements having the same element resistance R and different sensitivities.
第1の磁気抵抗効果素子GMR1のアスペクト比は、第1の磁気抵抗効果素子GMR1が長尺パターンSPを6本有するため、6×L1/W1となる。一方、第2の磁気抵抗効果素子GMR2のアスペクト比は、第2の磁気抵抗効果素子GMR2が長尺パターンSPを3本有するため、3×L2/W2となる。したがって、第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2は、6×L1/W1=3×L2/W2の関係を満たすように長尺パターンSPの形状が設定されている。 The aspect ratio of the first magnetoresistance effect element GMR1 is 6 × L1 / W1 because the first magnetoresistance effect element GMR1 has six long patterns SP. On the other hand, the aspect ratio of the second magnetoresistance effect element GMR2 is 3 × L2 / W2 because the second magnetoresistance effect element GMR2 has three long patterns SP. Therefore, the shape of the long pattern SP is set such that the first magnetoresistive element GMR1 and the second magnetoresistive element GMR2 satisfy the relationship of 6 × L1 / W1 = 3 × L2 / W2.
このような関係を有する第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2として、次のような形状を有する磁気抵抗効果素子を試作した。 As the first magnetoresistance effect element GMR1 and the second magnetoresistance effect element GMR2 having such a relationship, magnetoresistance effect elements having the following shapes were produced on a trial basis.
第1の磁気抵抗効果素子GMR1
長尺パターンSPの全長Lt:540μm
(長尺パターンSPの長手方向の長さL1:90μm)
長尺パターンSPの幅W1:3.0μm
アスペクト比:180
First magnetoresistance effect element GMR1
Total length Lt of long pattern SP: 540 μm
(Length L1 in the longitudinal direction of the long pattern SP: 90 μm)
Width W1 of the long pattern SP: 3.0 μm
Aspect ratio: 180
第2の磁気抵抗効果素子GMR2
長尺パターンSPの全長Lt:144μm
(長尺パターンSPの長手方向の長さL2:48μm)
長尺パターンSPの幅W2:0.8μm
アスペクト比:180
Second magnetoresistance effect element GMR2
Total length Lt of long pattern SP: 144 μm
(Length L2 in the longitudinal direction of the long pattern SP: 48 μm)
Width W2 of the long pattern SP: 0.8 μm
Aspect ratio: 180
これらの第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2は、いずれも外部磁界がゼロの状態での素子抵抗は2250Ωであり、素子抵抗の印加磁界に対する応答性プロファイルは、図4に示されるとおりであった。すなわち、長尺パターンSPの幅Wが広い第1の磁気抵抗効果素子GMR1の方が、長尺パターンSPの幅Wが狭い第2の磁気抵抗効果素子GMR2よりも、印加磁界に対してより高感度であった。 The first magnetoresistance effect element GMR1 and the second magnetoresistance effect element GMR2 each have an element resistance of 2250 Ω when the external magnetic field is zero, and the response profile of the element resistance to the applied magnetic field is shown in FIG. It was as shown in 4. That is, the first magnetoresistance effect element GMR1 having a longer width W of the elongated pattern SP is higher in the applied magnetic field than the second magnetoresistance effect element GMR2 having a narrower width W of the elongated pattern SP. It was sensitivity.
これらの第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2を図1に示されるように組み込んで磁界検出ブリッジ回路を得た。図1に示されるように、第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2のいずれも、強磁性固定層は長尺パターンSPの幅方向に沿った向き(例えばY1Y2方向Y2向き)となるように磁化され、軟磁性自由層は外部から磁界が印加されていない状態で長尺パターンSPの長手方向に沿った向き(例えばX1X2方向X2向き)となるように磁化された。この磁界検出ブリッジ回路の中点電位差(Out1−Out2)の出力電圧の印加磁界に対する応答性は、図5に示されるようになった。具体的には、第1の磁気抵抗効果素子GMR1の印加磁界に対して線形的に応答する範囲(±4mT程度の範囲)で、出力電圧の印加磁界に対する応答性プロファイルも線形性を示した。 The first magnetoresistive element GMR1 and the second magnetoresistive element GMR2 are incorporated as shown in FIG. 1 to obtain a magnetic field detection bridge circuit. As shown in FIG. 1, in each of the first magnetoresistance effect element GMR1 and the second magnetoresistance effect element GMR2, the ferromagnetic pinned layer is oriented along the width direction of the elongated pattern SP (for example, in Y1 Y2 direction Y2 The soft magnetic free layer is magnetized so as to be oriented along the longitudinal direction of the long pattern SP (for example, in the X1 × 2 direction X2 direction) when no magnetic field is applied from the outside. The responsiveness to the applied magnetic field of the output voltage of the midpoint potential difference (Out1-Out2) of this magnetic field detection bridge circuit is as shown in FIG. Specifically, the response profile of the output voltage to the applied magnetic field also showed linearity in a range (a range of about ± 4 mT) which linearly responds to the applied magnetic field of the first magnetoresistance effect element GMR1.
本発明の一実施形態に係る磁気抵抗効果素子122a〜122dの長尺パターンSPの積層構造(磁気抵抗効果膜)について、図6を用いて説明する。長尺パターンSPは、図6に示すように、基板29に設けられた積層構造を有する。長尺パターンSPは、シード層20、反強磁性膜21aと第1の強磁性膜21bと反平行結合膜21cと第2の強磁性膜21dとからなる積層フェリ型の強磁性固定層21、非磁性中間層22、軟磁性自由層(フリー磁性層)23、および保護層25を含む。 The layered structure (the magnetoresistive film) of the long patterns SP of the magnetoresistive effect elements 122a to 122d according to the embodiment of the present invention will be described with reference to FIG. The long pattern SP has a laminated structure provided on the substrate 29, as shown in FIG. The long pattern SP includes a seed layer 20, a laminated ferrimagnetic fixed layer 21 composed of an antiferromagnetic film 21a, a first ferromagnetic film 21b, an antiparallel coupling film 21c, and a second ferromagnetic film 21d. It includes a nonmagnetic intermediate layer 22, a soft magnetic free layer (free magnetic layer) 23, and a protective layer 25.
シード層20は、NiFeCrあるいはCrなどで構成される。なお、上記積層構造において、基板29とシード層20との間に、例えば、Ta,Hf,Nb,Zr,Ti,Mo,Wのうち少なくとも1つの元素などの非磁性材料で構成される下地層を設けてもよい。 The seed layer 20 is made of NiFeCr or Cr. In the above laminated structure, an underlayer formed of a nonmagnetic material such as at least one of Ta, Hf, Nb, Zr, Ti, Mo and W between the substrate 29 and the seed layer 20, for example. May be provided.
強磁性固定層21は、反強磁性膜21aと第1の強磁性膜21bとが交換結合し、第1の強磁性膜21bと第2の強磁性膜21dとが反平行結合膜21cを介して反強磁性的に結合することにより、一方の向きに磁化が固定されている。 In the ferromagnetic fixed layer 21, the antiferromagnetic film 21a and the first ferromagnetic film 21b are exchange coupled, and the first ferromagnetic film 21b and the second ferromagnetic film 21d are antiparallel coupling film 21c. Magnetization is fixed in one direction by coupling antiferromagnetically.
反強磁性膜21aを構成する材料として、IrMn系の材料やPtMn系の材料が例示される。第1の強磁性膜21bおよび第2の強磁性膜21dを構成する材料として、いずれもCoFe合金が例示される。第1の強磁性膜21bと第2の強磁性膜21dと間に位置する反平行結合膜21cはRuなどにより構成される。 Examples of the material constituting the antiferromagnetic film 21a include IrMn-based materials and PtMn-based materials. As a material which comprises the 1st ferromagnetic film 21b and the 2nd ferromagnetic film 21d, a CoFe alloy is illustrated by all. The antiparallel coupling film 21c located between the first ferromagnetic film 21b and the second ferromagnetic film 21d is made of Ru or the like.
非磁性中間層22は、Cuなどにより構成される。軟磁性自由層(フリー磁性層)23は、CoFe合金、NiFe合金、CoFeNi合金などの磁性材料で構成される。保護層25は、Taなどで構成される。 The nonmagnetic intermediate layer 22 is made of Cu or the like. The soft magnetic free layer (free magnetic layer) 23 is made of a magnetic material such as a CoFe alloy, a NiFe alloy, or a CoFeNi alloy. The protective layer 25 is made of Ta or the like.
シード層20、強磁性固定層21を構成する反強磁性膜21a、第1の強磁性膜21b、反平行結合膜21cおよび第2の強磁性膜21d、非磁性中間層22、軟磁性自由層(フリー磁性層)23、ならびに保護層25はいずれもスパッタリング等の方法により製膜される。 Seed layer 20, antiferromagnetic film 21a constituting the ferromagnetic fixed layer 21, first ferromagnetic film 21b, antiparallel coupling film 21c and second ferromagnetic film 21d, nonmagnetic intermediate layer 22, soft magnetic free layer The (free magnetic layer) 23 and the protective layer 25 are all formed by a method such as sputtering.
ここで、反強磁性膜21aと強磁性固定層21は磁気抵抗効果膜(長尺パターンを構成する積層構造)を成膜後に磁場中で熱処理することにより、強磁性固定層21の磁化を強く固定することができる。本発明の一実施形態に係る磁気センサの製造方法では、磁界検出ブリッジ回路を構成する磁気抵抗効果素子122a〜122dは、一連の製膜プロセスで同時に製造される。このため、4つの磁気抵抗効果素子122a〜122dは、強磁性固定層21がいずれも一方の向き(例えばY1Y2方向Y2向き)に磁化される。また、4つの磁気抵抗効果素子122a〜122dは、ミアンダ形状に伴う形状異方性によって外部から磁界が印加されていない状態で軟磁性自由層(フリー磁性層)23がいずれも一方の向き(例えばX1X2方向X2向き)となるように磁化される。このように、4つの磁気抵抗効果素子122a〜122dにおける強磁性固定層21および軟磁性自由層(フリー磁性層)23は、それぞれの磁化の向きが揃った状態で製造される。このように製造されても、4つの磁気抵抗効果素子122a〜122dは、素子抵抗が等しく感度が異なる2種類の磁気抵抗効果素子GMR1,GMR2から構成されるため、磁界検出ブリッジ回路の中点電位差を印加磁界に対して線形的に応答させることが実現されている。 Here, the antiferromagnetic film 21a and the ferromagnetic fixed layer 21 are formed of a magnetoresistive film (laminated structure forming a long pattern), and heat treatment is performed in a magnetic field after the film formation, thereby making the magnetization of the ferromagnetic fixed layer 21 strong. It can be fixed. In the method of manufacturing a magnetic sensor according to an embodiment of the present invention, the magnetoresistive effect elements 122a to 122d constituting the magnetic field detection bridge circuit are simultaneously manufactured by a series of film forming processes. Therefore, in each of the four magnetoresistance effect elements 122a to 122d, the ferromagnetic pinned layer 21 is magnetized in one direction (for example, in the Y1Y2 direction Y2 direction). In the four magnetoresistance effect elements 122a to 122d, the soft magnetic free layer (free magnetic layer) 23 is directed in one direction (for example, in the state where no magnetic field is applied from the outside due to the shape anisotropy associated with the meander shape) It is magnetized so as to be X1 × 2 direction X2 direction). As described above, the ferromagnetic pinned layer 21 and the soft magnetic free layer (free magnetic layer) 23 of the four magnetoresistive elements 122a to 122d are manufactured in a state in which the magnetization directions are uniform. Even if manufactured in this manner, the four magnetoresistance effect elements 122a to 122d are composed of two types of magnetoresistance effect elements GMR1 and GMR2 having equal element resistances and different sensitivities. It has been realized to have a linear response to the applied magnetic field.
このように、本発明の一実施形態に係る製造方法では、磁気抵抗効果素子122a〜122dが一連の製膜プロセスで同時に形成されるため、磁気抵抗効果素子122a〜122dをそれぞれ別の製膜プロセスで形成する場合に比べて、膜厚や組成のばらつきが抑制される。その結果、4つの磁気抵抗効果素子122a〜122dの特性ばらつきが抑制される。それゆえ、4つの磁気抵抗効果素子122a〜122dを備える磁気センサ12のオフセットやオフセット温度特性が小さくなり、この磁気センサ12を用いてなる電流センサの測定精度が高くなる。 As described above, in the manufacturing method according to one embodiment of the present invention, since the magnetoresistive effect elements 122a to 122d are simultaneously formed in a series of film forming processes, the magnetoresistive effect elements 122a to 122d are respectively formed into different film forming processes. Variations in film thickness and composition are suppressed as compared with the case of forming by As a result, the characteristic variation of the four magnetoresistance effect elements 122a to 122d is suppressed. Therefore, the offset and offset temperature characteristics of the magnetic sensor 12 including the four magnetoresistance effect elements 122a to 122d become smaller, and the measurement accuracy of the current sensor using this magnetic sensor 12 becomes higher.
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described to facilitate the understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents that fall within the technical scope of the present invention.
例えば、図7に示されるように、磁気センサ12’がフィードバックコイルを備えず、電流センサは磁気比例式電流センサであってもよい。また、磁気抵抗効果膜の強磁性固定層は、反強磁性材料を用いなくても磁化を固定できるセルフピン型であっても良い。反強磁性膜を用いる積層フェリ型の強磁性固定層は、強磁場耐性が高いものの耐熱性が低い傾向がある。これに対し、セルフピン型の強磁性固定層は、積層フェリ型とは逆に、強磁場耐性が低いが耐熱性が高いという傾向がある。したがって、磁気センサの使用環境などに応じて、強磁性固定層の種類を設定すればよい。 For example, as shown in FIG. 7, the magnetic sensor 12 'may not include a feedback coil, and the current sensor may be a magnetic proportional current sensor. The ferromagnetic pinned layer of the magnetoresistive film may be a self-pin type in which the magnetization can be pinned without using an antiferromagnetic material. The laminated ferrimagnetic ferromagnetic fixed layer using the antiferromagnetic film tends to have low heat resistance although it has high resistance to a strong magnetic field. On the other hand, the self-pinned ferromagnetic pinned layer tends to be low in resistance to a strong magnetic field but high in heat resistance, contrary to the laminated ferrimagnetic layer. Therefore, the type of the ferromagnetic fixed layer may be set according to the use environment of the magnetic sensor and the like.
以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples and the like, but the scope of the present invention is not limited to these examples and the like.
(実施例1)
図1に示される磁界検出ブリッジ回路およびフィードバックコイルを備える磁気センサを基板上に複数個製造した。磁界検出ブリッジ回路が備える4つの磁気抵抗効果素子122a〜122dは、いずれも帯状の長尺パターンを複数備えるミアンダ形状を有し、これらのうち、2つの磁気抵抗効果素子122c,122dについては、相対的に感度が高い第1の磁気抵抗効果素子GMR1を用いた。残りの2つの磁気抵抗効果素子122a,122bについては、相対的に感度が低い第2の磁気抵抗効果素子GMR2を用いた。第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2は次の形状的特徴を有していた。
Example 1
A plurality of magnetic sensors comprising the magnetic field detection bridge circuit and the feedback coil shown in FIG. 1 were manufactured on a substrate. The four magnetoresistance effect elements 122a to 122d included in the magnetic field detection bridge circuit each have a meander shape including a plurality of strip-like long patterns, and among these, relative to the two magnetoresistance effect elements 122c and 122d, The first magnetoresistance effect element GMR1 with high sensitivity is used. For the remaining two magnetoresistive elements 122a and 122b, the second magnetoresistive element GMR2 having a relatively low sensitivity is used. The first magnetoresistance effect element GMR1 and the second magnetoresistance effect element GMR2 have the following geometrical features.
第1の磁気抵抗効果素子GMR1
長尺パターンSPの全長Lt:540μm
(長尺パターンSPの長手方向の長さL1:90μm)
長尺パターンSPの幅W1:3.0μm
アスペクト比:180
First magnetoresistance effect element GMR1
Total length Lt of long pattern SP: 540 μm
(Length L1 in the longitudinal direction of the long pattern SP: 90 μm)
Width W1 of the long pattern SP: 3.0 μm
Aspect ratio: 180
第2の磁気抵抗効果素子GMR2
長尺パターンSPの全長Lt:144μm
(長尺パターンSPの長手方向の長さL2:48μm)
長尺パターンSPの幅W2:0.8μm
アスペクト比:180
Second magnetoresistance effect element GMR2
Total length Lt of long pattern SP: 144 μm
(Length L2 in the longitudinal direction of the long pattern SP: 48 μm)
Width W2 of the long pattern SP: 0.8 μm
Aspect ratio: 180
第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2はいずれも外部磁界がゼロの状態での素子抵抗は2250Ωであり、素子抵抗の印加磁界に対する応答性は、図4に示されるとおりであった。また、磁界検出ブリッジ回路の中点電位差(Out1−Out2)の出力電圧の印加磁界に対する応答性は、図5に示されるようになった。 The first magnetoresistance effect element GMR1 and the second magnetoresistance effect element GMR2 each have an element resistance of 2250 Ω when the external magnetic field is zero, and the response of the element resistance to the applied magnetic field is shown in FIG. It was. Further, the responsiveness of the output voltage of the midpoint potential difference (Out1-Out2) of the magnetic field detection bridge circuit to the applied magnetic field is as shown in FIG.
第1の磁気抵抗効果素子GMR1および第2の磁気抵抗効果素子GMR2は、いずれも、ミアンダ形状における長尺パターンについて、絶縁層を有する基板上に、下からシード層;NiFeCr(42)/強磁性固定層[反強磁性層;Ir22Mn78(60)/第1の強磁性膜;Co70Fe30(15)/反平行結合膜;Ru(8.5)/第2の強磁性膜;Co90Fe10(20)]/非磁性中間層;Cu(20)/軟磁性自由層[Co90Fe10(10)/Ni82.5Fe17.5(70)]/保護層;Ta(100)の順にスパッタリングにより積層されたものであった。なお、括弧内の数値は層厚を示し単位はÅである。 The first magnetoresistance effect element GMR1 and the second magnetoresistance effect element GMR2 are both seed layers from the bottom on the substrate having the insulating layer for the long pattern in the meander shape; NiFeCr (42) / ferromagnetic Fixed layer [antiferromagnetic layer; Ir 22 Mn 78 (60) / first ferromagnetic film; Co 70 Fe 30 (15) / antiparallel coupling film; Ru (8.5) / second ferromagnetic film; Co 90 Fe 10 (20)] / nonmagnetic interlayer; Cu (20) / soft magnetic free layer [Co 90 Fe 10 (10) / Ni 82.5 Fe 17.5 (70)] / protective layer; 100) was laminated by sputtering in the order of 100). The numerical values in parentheses indicate the layer thickness and the unit is Å.
4つの磁気抵抗効果素子は同時に製造された。磁気抵抗効果膜の製膜後に磁場中で熱処理することで、反強磁性層と強磁性固定層の間に強い交換結合が生じ、強磁性固定層の磁化は一方の向きに磁化された。また、軟磁性自由層は、磁場中製膜と形状異方性により、ミアンダ形状における長尺パターンの長手方向の一方の向きに磁化された。したがって、4つの磁気抵抗効果素子122a〜122dは、強磁性固定層の磁化の向きが等しく、外部磁界が印加されていない状態における軟磁性自由層の磁化の向きが等しかった。 Four magnetoresistive elements were manufactured simultaneously. Heat treatment in a magnetic field after forming the magnetoresistive film causes strong exchange coupling between the antiferromagnetic layer and the ferromagnetic pinned layer, and the magnetization of the ferromagnetic pinned layer is magnetized in one direction. In addition, the soft magnetic free layer was magnetized in one longitudinal direction of the long pattern in the meander shape due to film formation in a magnetic field and shape anisotropy. Therefore, in the four magnetoresistance effect elements 122a to 122d, the magnetization directions of the ferromagnetic fixed layers are equal, and the magnetization directions of the soft magnetic free layer in the state where no external magnetic field is applied are equal.
基板上に製造された複数の磁気センサから任意に300個以上を選び出し、オフセット値(外部から磁界が印加されていない状態でのキャンセル電流の大きさ(以下同じ)、単位:mA)を測定した。また、温度が85℃の場合のオフセット値OF1(単位:mA)と温度が25℃の場合のオフセット値OF2(単位:mA)とを測定して、次の式によりオフセット温度特性OT(単位:μA/℃)を測定した。
OT = (OF1−OF2)/(85℃−25℃)
300 or more were arbitrarily selected from a plurality of magnetic sensors manufactured on the substrate, and the offset value (the magnitude of the cancel current in the state where no magnetic field was applied from the outside (the same applies hereinafter), unit: mA) was measured . Further, the offset value OF1 (unit: mA) when the temperature is 85 ° C. and the offset value OF2 (unit: mA) when the temperature is 25 ° C. are measured, and the offset temperature characteristic OT (unit: μA / ° C) was measured.
OT = (OF 1 -OF 2) / (85 ° C-25 ° C)
得られたオフセット値およびオフセット温度特性OTのヒストグラムを求めた。その結果を図9および図10に示す。 A histogram of the obtained offset value and offset temperature characteristic OT was determined. The results are shown in FIG. 9 and FIG.
(比較例1)
図1に示される磁界検出ブリッジ回路およびフィードバックコイルを備える磁気センサを基板上に複数個製造した。磁界検出ブリッジ回路が備える4つの磁気抵抗効果素子122a〜122dは、いずれも帯状の長尺パターンを複数備えるミアンダ形状であってそのミアンダ形状が共通の形状的特徴を有する第3の磁気抵抗効果素子GMR3から構成された。第3の磁気抵抗効果素子GMR3は、図8に示されるように、ミアンダ形状における帯状の長尺パターンC−SPは、固定磁性層21が反強磁性膜21aを備えず、RKKY相互作用に基づくピン止め構造を有していた。
(Comparative example 1)
A plurality of magnetic sensors comprising the magnetic field detection bridge circuit and the feedback coil shown in FIG. 1 were manufactured on a substrate. The four magnetoresistance effect elements 122a to 122d included in the magnetic field detection bridge circuit are each a meander shape having a plurality of strip-like long patterns, and the third magnetoresistance effect element having a shape characteristic common to the meander shapes. It consisted of GMR3. In the third magnetoresistance effect element GMR3, as shown in FIG. 8, the strip-shaped long pattern C-SP in the meander shape does not include the antiferromagnetic film 21a in the pinned magnetic layer 21 and is based on the RKKY interaction. It had a pinning structure.
具体的には、第3の磁気抵抗効果素子GMR3は、ミアンダ形状における長尺パターンC−SPについて、絶縁層を有する基板上に、下からシード層;NiFeCr(42)/強磁性固定層[第1の強磁性膜;Co40Fe60(19)/反平行結合膜;Ru(3.6)/第2の強磁性膜;Co90Fe10(24)]/非磁性中間層;Cu(20)/軟磁性自由層[Co90Fe10(10)/Ni82.5Fe17.5(70)]/保護層;Ta(100)の順にスパッタリングにより積層されたものであった。なお、括弧内の数値は層厚を示し単位はÅである。 Specifically, in the third magnetoresistive element GMR3, the long pattern C-SP in meander shape is formed on the substrate having the insulating layer from the bottom with the seed layer; NiFeCr (42) / ferromagnetic fixed layer 1 ferromagnetic film; Co 40 Fe 60 (19) / antiparallel coupling film; Ru (3.6) / second ferromagnetic film; Co 90 Fe 10 (24)] / nonmagnetic interlayer; Cu (20) Soft magnetic free layer [Co 90 Fe 10 (10) / Ni 82.5 Fe 17.5 (70)] / protective layer; Ta (100) stacked in this order by sputtering. The numerical values in parentheses indicate the layer thickness and the unit is Å.
4つの磁気抵抗効果素子は個別に製造された。第1の強磁性膜は、磁場中製膜によりミアンダ形状における長尺パターンC−SPの幅方向の一方の向きに磁化された。具体的には、磁気抵抗効果素子122aの磁化の向き(Y1Y2方向Y1向き)は、これに直列に接続される磁気抵抗効果素子122cの磁化の向きと反対向き(Y1Y2方向Y2向き)とされ、磁気抵抗効果素子122b(Y1Y2方向Y1向き)の磁化の向きは、これに直列に接続される磁気抵抗効果素子122dの磁化の向きと反対向き(Y1Y2方向Y2向き)とされた。磁気抵抗効果素子122aの磁化の向きは磁気抵抗効果素子122bの磁化の向きと等しかった。 Four magnetoresistive elements were manufactured separately. The first ferromagnetic film was magnetized in one direction in the width direction of the long pattern C-SP in the meander shape by film formation in a magnetic field. Specifically, the magnetization direction (Y1Y2 direction Y1 direction) of the magnetoresistive effect element 122a is opposite to the magnetization direction (Y1Y2 direction Y2 direction) of the magnetoresistive effect element 122c connected in series thereto. The direction of magnetization of the magnetoresistive effect element 122b (in the Y1Y2 direction Y1 direction) was made opposite (in the Y1Y2 direction Y2 direction) to the direction of the magnetization of the magnetoresistive effect element 122d connected in series thereto. The direction of magnetization of the magnetoresistive element 122a was equal to the direction of magnetization of the magnetoresistive element 122b.
軟磁性自由層は、磁場中製膜によりミアンダ形状における長尺パターンの長手方向の一方の向きに磁化された。具体的には、磁気抵抗効果素子122aの磁化の向き(X1X2方向X1向き)は、これに直列に接続される磁気抵抗効果素子122cの磁化の向きと反対向き(X1X2方向X2向き)とされ、磁気抵抗効果素子122b(X1X2方向X1向き)の磁化の向きは、これに直列に接続される磁気抵抗効果素子122dの磁化の向きと反対向き(X1X2方向X2向き)とされた。磁気抵抗効果素子122aの磁化の向きは磁気抵抗効果素子122bの磁化の向きと等しかった。 The soft magnetic free layer was magnetized in one direction in the longitudinal direction of the long pattern in the meander shape by film formation in a magnetic field. Specifically, the magnetization direction (X1 X 2 direction X 1 direction) of the magnetoresistive effect element 122 a is made opposite (X 1 X 2 direction X 2 direction) to the magnetization direction of the magnetoresistive effect element 122 c connected in series thereto. The direction of the magnetization of the magnetoresistive effect element 122 b (in the X1 × 2 direction X1 direction) was made opposite (in the X1 × 2 direction X2 direction) to the direction of the magnetization of the magnetoresistive effect element 122 d connected in series. The direction of magnetization of the magnetoresistive element 122a was equal to the direction of magnetization of the magnetoresistive element 122b.
基板上に形成された複数の磁気センサから任意に300個以上を選び出し、オフセット値(キャンセル電流の大きさ、単位:mA)を測定した。また、温度が85℃の場合のオフセット値OF1(キャンセル電流の大きさ、単位:mA)と温度が25℃の場合のオフセット値OF2(キャンセル電流の大きさ、単位:mA)とを測定して、次の式によりオフセット温度特性OT(単位:μA/℃)を測定した。
OT = (OF1−OF2)/(85℃−25℃)
From the plurality of magnetic sensors formed on the substrate, 300 or more were arbitrarily selected and offset values (magnitude of cancellation current, unit: mA) were measured. Also, measure the offset value OF1 (size of cancellation current, unit: mA) when the temperature is 85 ° C and the offset value OF2 (size of cancellation current, unit: mA) when the temperature is 25 ° C. The offset temperature characteristic OT (unit: μA / ° C.) was measured by the following equation.
OT = (OF 1 -OF 2) / (85 ° C-25 ° C)
得られたオフセット値およびオフセット温度特性OTのヒストグラムを求めた。その結果を図9および図10に示す。 A histogram of the obtained offset value and offset temperature characteristic OT was determined. The results are shown in FIG. 9 and FIG.
図9および図10に示されるように、実施例1に係る磁気センサは、比較例1に係る磁気センサよりもオフセット値およびオフセット温度特性が小さく、実施例1に係る磁気センサを用いてなる電流センサは、比較例1に係る磁気センサを用いてなる電流センサよりも高精度に電流を測定可能であることが確認された。 As shown in FIG. 9 and FIG. 10, the magnetic sensor according to Example 1 has smaller offset value and offset temperature characteristics than the magnetic sensor according to Comparative Example 1, and the current obtained using the magnetic sensor according to Example 1 It was confirmed that the sensor can measure the current with higher accuracy than the current sensor formed by using the magnetic sensor according to Comparative Example 1.
11・・・導体
12,12’・・・磁気センサ
121・・・フィードバックコイル
122a,122b,122c,122d・・・磁気抵抗効果素子
Vdd・・・電源端子
Out1・・・磁気抵抗効果素子122bと磁気抵抗効果素子122dと間の接続点からの出力
Out2・・・磁気抵抗効果素子122aと磁気抵抗効果素子122bと間の接続点からの出力
Gnd1・・・磁気抵抗効果素子122dの一方の端部に接続されたグランド
Gnd2・・・磁気抵抗効果素子122aの一方の端部に接続されたグランド
GMR1・・・第1の磁気抵抗効果素子
GMR2・・・第2の磁気抵抗効果素子
SP・・・長尺パターン
C−SP・・・第3の磁気抵抗効果素子GMR3の長尺パターン
EL・・・電極
W1・・・第1の磁気抵抗効果素子GMR1の長尺パターンSPの幅
W2・・・第2の磁気抵抗効果素子GMR2の長尺パターンSPの幅
L1・・・第1の磁気抵抗効果素子GMR1の長尺パターンSPの長手方向の長さ
L2・・・第2の磁気抵抗効果素子GMR2の長尺パターンSPの長手方向の長さ
20・・・シード層
21・・・強磁性固定層
21a・・・反強磁性膜
21b・・・第1の強磁性膜
21c・・・反平行結合膜
21d・・・第2の強磁性膜
22・・・非磁性中間層
23・・・軟磁性自由層(フリー磁性層)
25・・・保護層
29・・・基板
11 Conductor 12, 12 'Magnetic sensor 121 Feedback coil 122a 122b 122c 122d Magnetoresistance effect element Vdd Power supply terminal Out 1 Magnetoresistance effect element 122b and Output Out2 from the connection point between the magnetoresistance effect element 122d: Output Gnd1 from the connection point between the magnetoresistance effect element 122a and the magnetoresistance effect element 122b: One end of the magnetoresistance effect element 122d Ground Gnd2 connected to the ground GMR1 connected to one end of the magnetoresistance effect element 122a first magnetoresistance effect element GMR2 second magnetoresistance effect element SP Long pattern C-SP: third magnetoresistive element GMR3 long pattern EL: electrode W1: first magnetoresistive element GM Width W2 of the long pattern SP of R1 ... Width of the long pattern SP of the second magnetoresistance effect element GMR2 ... Length of the long pattern SP of the first magnetoresistance effect element GMR1 L2: length in the longitudinal direction of the long pattern SP of the second magnetoresistance effect element GMR2 20: seed layer 21: ferromagnetic fixed layer 21a: antiferromagnetic film 21b: first 1 ferromagnetic film 21c ... antiparallel coupling film 21d ... second ferromagnetic film 22 ... nonmagnetic intermediate layer 23 ... soft magnetic free layer (free magnetic layer)
25 ・ ・ ・ Protective layer 29 ・ ・ ・ Substrate
Claims (7)
前記4つの磁気抵抗効果素子は、いずれも、
帯状の長尺パターンが折り返されたミアンダ形状であって、
前記長尺パターンは、強磁性固定層と、非磁性中間層と、軟磁性自由層とを有する積層構造を備え、
前記4つの磁気抵抗効果素子は、前記長尺パターンの全長を前記長尺パターンの幅で除したアスペクト比は共通するが、前記長尺パターンの幅が相違する2種類の磁気抵抗効果素子である第1の磁気抵抗効果素子および第2の磁気抵抗効果素子から構成され、
前記磁界検出ブリッジ回路の前記部分回路の一方では、第1の磁気抵抗効果素子および第2の磁気抵抗効果素子が、この順番で電源給電点に近位な側から直列に接続され、前記磁界検出ブリッジ回路の前記部分回路の他方では、第2の磁気抵抗効果素子および第1の磁気抵抗効果素子が、この順番で電源給電点に近位な側から直列に接続され、
前記4つの磁気抵抗効果素子を一連の製膜プロセスで同時に形成することを特徴とする磁気センサの製造方法。 A magnetic sensor having a magnetic field detection bridge circuit which is composed of four magnetoresistance effect elements whose resistance value changes according to a change of an external magnetic field, and which includes two partial circuits consisting of two magnetoresistance effect elements connected in series. A manufacturing method,
Each of the four magnetoresistive elements is
The belt-like long pattern has a meander shape folded back,
The long pattern has a laminated structure having a ferromagnetic fixed layer, a nonmagnetic intermediate layer, and a soft magnetic free layer,
The four magnetoresistive elements are two types of magnetoresistive elements having a common aspect ratio obtained by dividing the total length of the long pattern by the width of the long pattern, but having different widths of the long pattern. A first magnetoresistive element and a second magnetoresistive element,
In one of the partial circuits of the magnetic field detection bridge circuit, the first magnetoresistance effect element and the second magnetoresistance effect element are connected in series in this order from the side proximal to the power supply point, and the magnetic field detection In the other of the partial circuits of the bridge circuit, the second magnetoresistance effect element and the first magnetoresistance effect element are connected in series in this order from the side proximal to the power supply point,
A method of manufacturing a magnetic sensor, wherein the four magnetoresistive elements are simultaneously formed by a series of film forming processes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015201574A JP6506671B2 (en) | 2015-10-09 | 2015-10-09 | Method of manufacturing magnetic sensor and method of manufacturing current sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015201574A JP6506671B2 (en) | 2015-10-09 | 2015-10-09 | Method of manufacturing magnetic sensor and method of manufacturing current sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017072570A JP2017072570A (en) | 2017-04-13 |
JP6506671B2 true JP6506671B2 (en) | 2019-04-24 |
Family
ID=58537400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015201574A Active JP6506671B2 (en) | 2015-10-09 | 2015-10-09 | Method of manufacturing magnetic sensor and method of manufacturing current sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6506671B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3058899B2 (en) * | 1990-02-21 | 2000-07-04 | 浜松光電株式会社 | Magnetic sensing element |
JP2980215B2 (en) * | 1992-03-04 | 1999-11-22 | シーケーディ 株式会社 | Magnetic sensor |
JPH0888423A (en) * | 1994-09-19 | 1996-04-02 | Asahi Chem Ind Co Ltd | Magnetic sensor |
JPH08242027A (en) * | 1995-03-03 | 1996-09-17 | Mitsubishi Electric Corp | Magnetic resistor circuit |
US7557562B2 (en) * | 2004-09-17 | 2009-07-07 | Nve Corporation | Inverted magnetic isolator |
-
2015
- 2015-10-09 JP JP2015201574A patent/JP6506671B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017072570A (en) | 2017-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6130775B2 (en) | Current sensor | |
JP5572208B2 (en) | Magnetic sensor and magnetic balance type current sensor using the same | |
JP5411285B2 (en) | Magnetic balanced current sensor | |
JP6233863B2 (en) | Magnetic sensor, magnetic sensor manufacturing method, and current sensor | |
JP6842741B2 (en) | Magnetic sensor | |
WO2011111536A1 (en) | Magnetic-balance current sensor | |
JPWO2012081377A1 (en) | Magnetic sensor and method of manufacturing magnetic sensor | |
CN109643755B (en) | Magnetic sensor and current sensor | |
CN103314304A (en) | Electromagnetic proportional current sensor | |
JP2017072375A (en) | Magnetic sensor | |
WO2011111537A1 (en) | Current sensor | |
US20130057274A1 (en) | Current sensor | |
JP5597305B2 (en) | Current sensor | |
JP6529885B2 (en) | Magnetic sensor, method of measuring magnetic field, current sensor, and method of measuring current | |
JP6522485B2 (en) | Method of manufacturing magnetic sensor | |
WO2011111747A1 (en) | Current sensor provided with magnetic detection element | |
JP6506671B2 (en) | Method of manufacturing magnetic sensor and method of manufacturing current sensor | |
WO2011111457A1 (en) | Magnetism sensor and magnetic-balance current sensor provided therewith | |
JP6282990B2 (en) | Magnetic sensor and current sensor | |
WO2015125699A1 (en) | Magnetic sensor | |
JP7261656B2 (en) | Magnetic sensor and manufacturing method thereof | |
JP2017139269A (en) | Magnetic sensor, method for manufacturing magnetic sensor, and current sensor | |
JP5517315B2 (en) | Current sensor | |
JP2015099882A (en) | Magnetic sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190305 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190329 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6506671 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |