JP6504664B2 - Ceramic sinter, method for producing the same, and member comprising the ceramic sinter - Google Patents

Ceramic sinter, method for producing the same, and member comprising the ceramic sinter Download PDF

Info

Publication number
JP6504664B2
JP6504664B2 JP2015171054A JP2015171054A JP6504664B2 JP 6504664 B2 JP6504664 B2 JP 6504664B2 JP 2015171054 A JP2015171054 A JP 2015171054A JP 2015171054 A JP2015171054 A JP 2015171054A JP 6504664 B2 JP6504664 B2 JP 6504664B2
Authority
JP
Japan
Prior art keywords
phase
powder
sno
conductive
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015171054A
Other languages
Japanese (ja)
Other versions
JP2017048073A (en
Inventor
尚史 楠瀬
尚史 楠瀬
幸太 堤
幸太 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Kagawa University NUC
Original Assignee
Nippon Tungsten Co Ltd
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd, Kagawa University NUC filed Critical Nippon Tungsten Co Ltd
Priority to JP2015171054A priority Critical patent/JP6504664B2/en
Publication of JP2017048073A publication Critical patent/JP2017048073A/en
Application granted granted Critical
Publication of JP6504664B2 publication Critical patent/JP6504664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、半導体製造装置の構成部材、静電気放電防止部材又はスパッタリングターゲットに好適に用いられる、アルミナ(Al)を母相とするセラミックス焼結体及びその製造方法に関する。 The present invention relates to a ceramic sintered body having alumina (Al 2 O 3 ) as a matrix, which is suitably used as a component of a semiconductor manufacturing apparatus, an electrostatic discharge prevention member or a sputtering target, and a method for manufacturing the same.

アルミナ(Al)は、耐熱性、電気絶縁性及び耐プラズマ性に優れており、低コストプロセスである大気雰囲気中での常圧焼結により製造が可能であるため、従来の高温構造材料としての応用以外にも、半導体製造装置(静電チャック、シャワープレート、フォーカスリング等)の構成部材への応用がなされてきた。しかし、半導体製造装置の構成部材としてセラミックス材料を用いる場合は、用途に合わせて電気抵抗率を広い範囲で制御する必要があり、Alは絶縁体であるため、半導体製造装置の構成部材への応用はこれまで制限されていた。 Alumina (Al 2 O 3 ) is excellent in heat resistance, electrical insulation and plasma resistance, and can be manufactured by pressureless sintering in the atmosphere, which is a low-cost process, and therefore, it can be manufactured by conventional high temperature structure In addition to the application as materials, application to components of semiconductor manufacturing apparatuses (electrostatic chucks, shower plates, focus rings, etc.) has been made. However, when using a ceramic material as a component of a semiconductor manufacturing apparatus, it is necessary to control the electrical resistivity in a wide range according to the application, and Al 2 O 3 is an insulator, so it is a component of the semiconductor manufacturing apparatus Applications to this have been limited so far.

従来、絶縁性材料の電気抵抗率を低下させる技術として、絶縁性材料に導電性粒子を添加する技術が知られている(例えば特許文献1)。また、特許文献2には、アルミニウム元素(Al)、インジウム元素(In)及びスズ元素(Sn)を含む酸化物原料を不活性ガス雰囲気で焼成することで導電性粉体を製造する技術が開示されている。   Conventionally, as a technique for reducing the electrical resistivity of the insulating material, a technique for adding conductive particles to the insulating material is known (for example, Patent Document 1). In addition, Patent Document 2 discloses a technique for producing a conductive powder by firing an oxide material containing aluminum element (Al), indium element (In) and tin element (Sn) in an inert gas atmosphere. It is done.

ただし、これら従来の技術では、電気抵抗率を低下させるために多量の導電性物質を添加していた。例えば上述の特許文献1では、インジウム元素(In)の使用量低減を目的としているものの、最低でも10mol%のインジウム元素(In)を添加していた。しかし、このように母相中に多量の導電性物質を添加すると、アルミナ母相の優れた機械的特性が損なわれてしまうという問題があった。また、インジウム元素(In)は非常に高価であるため、インジウム元素(In)を多量に添加することは、コストアップの原因となっていた。   However, in these conventional techniques, a large amount of conductive material is added to lower the electrical resistivity. For example, in the above-mentioned patent document 1, although it aimed at the usage-amount reduction of indium element (In), at least 10 mol% indium element (In) was added. However, when such a large amount of conductive material is added to the matrix, there is a problem that the excellent mechanical properties of the alumina matrix are lost. In addition, since indium element (In) is very expensive, adding a large amount of indium element (In) has been a cause of cost increase.

特開2001−316183号公報JP 2001-316183 A 特開2008−127267号公報JP, 2008-127267, A

本発明が解決しようとする課題は、アルミナ(Al)を母相とするセラミックス焼結体の電気抵抗率を、導電性物質を多量に添加することなく低下させることができる技術を提供することにある。 The problem to be solved by the present invention is to provide a technique capable of lowering the electric resistivity of a ceramic sintered body having alumina (Al 2 O 3 ) as a matrix without adding a large amount of a conductive substance. It is to do.

本発明の一観点によれば、Alからなる母相中に、下記(1)〜(3)から選択される1種又は2種以上の導電相を合計で1〜mol%含み、前記導電相は、前記母相の結晶粒界間に面状又は線状に存在しており前記導電相中に占めるSnO の量が15mass%以下であり、電気抵抗率が10 Ω・cm以下である、セラミックス焼結体が提供される。
(1)In
(2)In中にSnOが固溶したITO相
(3)ITO相とルチル型SnOの2相
According to one aspect of the present invention, the parent phase consisting of Al 2 O 3 contains 1 to 3 mol% in total of one or more conductive phases selected from the following (1) to (3): the electronically conductive phase, the inter-grain boundaries of the matrix phase is present in planar or linear, the amount of SnO 2 occupied in the conductive phase is at most 15 mass%, the electrical resistivity of 10 4 Omega A ceramic sintered body having a size of at most cm is provided.
(1) In 2 O 3 phase (2) In 2 O 3 ITO phase SnO 2 was dissolved in (3) ITO phase and 2-phase rutile SnO 2

また、本発明の他の観点によれば、前記本発明のセラミックス焼結体からなる半導体製造装置の構成部材(静電チャック、シャワープレート、フォーカスリング等)、静電気放電防止部材及びスパッタリングターゲットが提供される。   Further, according to another aspect of the present invention, constituent members (electrostatic chuck, shower plate, focus ring, etc.), an electrostatic discharge prevention member and a sputtering target of a semiconductor manufacturing apparatus comprising the ceramic sintered body according to the present invention are provided. Be done.

さらに、本発明の他の観点によれば、前記本発明のセラミックス焼結体を製造する方法であって、Al粉末にIn粉末を1〜mol%添加し混合した原料粉末、又はAl粉末にIn粉末及びSnO粉末を合計で1〜mol%添加し混合した原料粉末(この原料粉末においてIn 粉末及びSnO 粉末の合計に占めるSnO 粉末の量は15mass%以下である。)を成型し、1700℃以上の大気雰囲気中で焼結する、セラミックス焼結体の製造方法が提供される。 Furthermore, according to another aspect of the present invention, there is provided a method of producing the ceramic sintered body according to the present invention , wherein the raw material is prepared by adding 1 to 3 mol% of In 2 O 3 powder to Al 2 O 3 powder. Raw material powder obtained by adding 1 to 3 mol% of In 2 O 3 powder and SnO 2 powder in total to powder or Al 2 O 3 powder and mixed (this raw material powder accounts for the total of In 2 O 3 powder and SnO 2 powder The method for producing a ceramic sintered body is provided, wherein the amount of SnO 2 powder is 15 mass% or less) and sintered in an air atmosphere of 1700 ° C. or more.

本発明によれば、導電相が母相の結晶粒界間に面状又は線状に存在しているため、導電相の量が1〜5mol%と少量であっても、半導体製造装置の構成部材、静電気放電防止部材又はスパッタリングターゲットに用いることができる程度まで電気抵抗率を低下させることができる。また、導電相の量が少量であるので、母相であるアルミナ(Al)の優れた機械的特性は維持される。さらに、焼結体のほとんどの部分が安価なアルミナであるために、高価な酸化インジウム(In)の使用量が少なくて済み、しかも大気雰囲気中の焼結にて製造可能であるため、低コストにて製造可能である。よって、本発明のセラミックス焼結体は、半導体製造装置の構成部材、静電気放電防止部材又はスパッタリングターゲットとして好適に用いることができる。 According to the present invention, since the conductive phase is present in the form of a plane or in a line between the crystal grain boundaries of the matrix phase, the configuration of the semiconductor manufacturing apparatus even if the amount of the conductive phase is as small as 1 to 5 mol%. The electrical resistivity can be lowered to such an extent that it can be used for a member, an electrostatic discharge prevention member or a sputtering target. In addition, since the amount of the conductive phase is small, the excellent mechanical properties of the matrix phase alumina (Al 2 O 3 ) are maintained. Furthermore, since most of the sintered body is inexpensive alumina, the amount of expensive indium oxide (In 2 O 3 ) used can be small, and moreover, it can be manufactured by sintering in the atmosphere. And can be manufactured at low cost. Therefore, the ceramic sintered body of the present invention can be suitably used as a component of a semiconductor manufacturing apparatus, an electrostatic discharge prevention member or a sputtering target.

1700℃で焼結を行った試料の電気抵抗率と導電相の量との関係を表したグラフである。It is a graph showing the relationship between the electrical resistivity of the sample sintered at 1700 ° C. and the amount of the conductive phase. Al(母相)に、90mass%−10mass%SnO(導電相)を2mol%存在させた焼結体のSEM像であって、焼結温度が1650℃の場合である。The Al 2 O 3 (mother phase), a SEM image of 90mass% -10mass% SnO 2 (conductive phase) were present 2 mol% sintered body, the sintering temperature is the case of 1650 ° C.. Al(母相)に、90mass%−10mass%SnO(導電相)を2mol%存在させた焼結体のSEM像であって、焼結温度が1700℃の場合である。The Al 2 O 3 (mother phase), a SEM image of 90mass% -10mass% SnO 2 (conductive phase) were present 2 mol% sintered body, the sintering temperature is the case of 1700 ° C..

本発明のセラミックス焼結体は、Alからなる母相中に、(1)In相、(2)In中にSnOが固溶したITO相、及び(3)ITO相とルチル型SnOの2相から選択される1種又は2種以上の導電相を合計で1〜5mol%含む。なお、(1)In相に固溶限の範囲内でSnOを添加すると、(2)In中にSnOが固溶したITO相となり、固溶限を超えてSnOを添加すると、(3)ITO相とルチル型SnOの2相となる。導電相中に占めるSnOの量が多いと、当該導電相による電気抵抗率低下の効果が低下するので、導電相中に占めるSnOの量は15mass%以下であることが好ましい。また、導電相の量が1mol%未満では必要な導電性が得られず、5mol%を超えると、焼結が進みにくくなり、また、酸化インジウム(In)の使用量が増えるため原料コストが上がる。 Ceramics sintered body of the present invention, in a mother phase made of Al 2 O 3, (1) In 2 O 3 phase, (2) In 2 O ITO phase SnO 2 was dissolved in 3, and (3 1) A total of 1 to 5 mol% of one or more conductive phases selected from the ITO phase and the rutile SnO 2 phase. (1) When SnO 2 is added to the In 2 O 3 phase within the range of solid solution limit, it becomes (2) ITO phase in which SnO 2 is solid-solved in In 2 O 3 and exceeds the solid solution limit Addition of 2 results in (3) two phases of ITO phase and rutile SnO 2 . When the amount of SnO 2 occupied in the conductive phase is large, the effect of lowering the electrical resistivity due to the conductive phase is reduced, and therefore the amount of SnO 2 occupied in the conductive phase is preferably 15 mass% or less. Also, if the amount of the conductive phase is less than 1 mol%, the required conductivity can not be obtained, and if it exceeds 5 mol%, sintering becomes difficult to progress, and the amount of indium oxide (In 2 O 3 ) used increases. The cost goes up.

本発明のセラミックス焼結体において導電相は、母相の結晶粒界間に面状又は線状に存在している。より具体的には、本発明のセラミックス焼結体において導電相は、二つの母相結晶が面接触する二面粒界ではその二面粒界に沿って「面状」に存在し、母相結晶の三重点や多点粒界ではその結晶粒界に沿って「線状」に存在している。このように導電相が母相の結晶粒界間に面状又は線状に存在することで、導電相の量が1〜5mol%と少量であっても、電気抵抗率は最低で10−1Ω・cm程度まで低下する。すなわち、本発明のセラミックス焼結体において導電相は多結晶体中で連続的な粒界相を形成し、この導電相(粒界相)が3次元導電ネットワークとして作用し、その結果、少量であっても電気抵抗率の低下に有効に寄与すると考えられる。 In the ceramic sintered body of the present invention, the conductive phase is present in the form of a plane or a line between the crystal grain boundaries of the matrix phase. More specifically, in the ceramic sintered body according to the present invention, the conductive phase is present “planar” along the two face grain boundaries at the two face grain boundaries where two parent phase crystals face contact, and the parent phase In the triple points and multipoint grain boundaries of crystals, they are present “linearly” along the grain boundaries. Thus, the presence of the conductive phase in the form of a plate or a line between the crystal grain boundaries of the matrix phase allows the electric resistivity to be at least 10 −1 even if the amount of the conductive phase is as small as 1 to 5 mol%. It decreases to about Ω · cm. That is, in the ceramic sintered body of the present invention, the conductive phase forms a continuous grain boundary phase in a polycrystalline body, and this conductive phase (grain boundary phase) acts as a three-dimensional conductive network, and as a result, a small amount Even if they are present, they are considered to effectively contribute to the reduction of the electrical resistivity.

本発明のセラミックス焼結体は、Al粉末にIn粉末を1〜5mol%添加し混合した原料粉末、又はAl粉末にIn粉末及びSnO粉末を1〜5mol%添加し混合した原料粉末を成型し、1700℃以上の大気雰囲気中で保持して焼結することで、製造できる。 The ceramic sintered body of the present invention is a raw material powder obtained by adding 1 to 5 mol% of In 2 O 3 powder to Al 2 O 3 powder and mixing them, or 1 of In 2 O 3 powder and SnO 2 powder in Al 2 O 3 powder. It can manufacture by shape | molding the raw material powder which 5 mol% added and mixed, hold | maintaining and sintering in the air atmosphere of 1700 degreeC or more.

通常、Alを母相とするセラミックス焼結体はおよそ1500℃程度で緻密化するので、アルミナを主材料とするセラミックスの一般的な焼結温度は1500℃程度であった。これに対して本発明では、焼結温度を1700℃以上という高温にすることで、焼結の過程でIn粉末又はIn粉末及びSnO粉末が液状の導電相となり、これが母相であるAlの結晶粒界に押しやられた結果、上述のとおり導電相が母相の結晶粒界間に面状又は線状に存在することになると考えられる。 Usually, since a ceramic sintered body having Al 2 O 3 as a matrix phase is densified at about 1500 ° C., a general sintering temperature of ceramics having alumina as a main material is about 1500 ° C. On the other hand, in the present invention, by setting the sintering temperature to a high temperature of 1700 ° C. or more, the In 2 O 3 powder or the In 2 O 3 powder and the SnO 2 powder become a liquid conductive phase in the process of sintering. As a result of being pushed to the crystal grain boundaries of Al 2 O 3 which is the matrix phase, it is considered that the conductive phase exists in the form of a plane or a line between the crystal grain boundaries of the matrix phase as described above.

なお、本発明における焼結温度の上限は特に限定されないが、必要以上に高温にする必要はなく、経済性等を考慮すると焼結温度の上限は1800℃程度とすることができる。また、焼結温度での保持時間は5分程度と短くてもよく、更にはなくてもよい。   The upper limit of the sintering temperature in the present invention is not particularly limited, but it is not necessary to make the temperature higher than necessary, and the upper limit of the sintering temperature can be about 1800 ° C. in consideration of economics and the like. Further, the holding time at the sintering temperature may be as short as about 5 minutes, or may not be necessary.

本発明のセラミックス焼結体は、上述のとおり半導体製造装置の構成部材、静電気放電防止部材又はスパッタリングターゲットに好適に用いることができる。半導体製造装置の構成部材としては代表的には静電チャック(ジョンソン・ラーベック型静電チャック)が挙げられる。本発明のセラミックス焼結体は、その導電相の量や成分を本発明の範囲で調整することで、電気抵抗率を10−1Ω・cm程度までの範囲で制御可能であるので、上述の各部材に求められる電気抵抗率とすることができる。例えば、ジョンソン・ラーベック型静電チャックに用いる場合は、電気抵抗率を10〜1012Ω・cmの範囲に制御し、静電気放電防止部材に用いる場合は、電気抵抗率を10〜1011Ω・cmの範囲に制御する。同様に、プラズマガスを面状の複数の孔を通過させ、ウエハー上部に注ぐためのシャワーヘッドにあたるシャワープレートや、プラズマに晒したくない部材を保護する役割のフォーカスリングなどにも好適に用いることができる。 The ceramic sintered body of the present invention can be suitably used as a component of a semiconductor manufacturing apparatus, an electrostatic discharge prevention member or a sputtering target as described above. As a component of the semiconductor manufacturing apparatus, typically, an electrostatic chuck (Johnson-Laerbeck electrostatic chuck) may be mentioned. The ceramic sintered body of the present invention can control the electrical resistivity in the range up to about 10 −1 Ω · cm by adjusting the amount and the component of the conductive phase in the range of the present invention, so The electrical resistivity required for each member can be obtained. For example, in the case of using the Johnson-Rahbeck electrostatic chuck, the electrical resistivity is controlled in the range of 10 8 to 10 12 Ω · cm, and in the case of using it as an electrostatic discharge prevention member, the electrical resistivity of 10 8 to 10 11 Control in the range of Ω · cm. Similarly, it may be suitably used for a shower plate that passes a plasma gas through a plurality of planar holes and for a shower head for pouring onto the upper part of the wafer, and a focus ring that plays a role of protecting members that do not want to be exposed to plasma. it can.

これらの本発明のセラミックス焼結体は、上述のとおり大気雰囲気中の常圧焼結にて製造可能であり、また高価な酸化インジウム(In)の使用量が少なくて済むため、低コストにて製造可能である。 These ceramic sintered bodies according to the present invention can be manufactured by pressureless sintering in an air atmosphere as described above, and the amount of expensive indium oxide (In 2 O 3 ) can be reduced, so the amount is low. It can be manufactured at cost.

原料粉末として、Al粉末、In粉末及びSnO粉末を用いた。Al粉末へのIn粉末及びSnO粉末の総量の添加の割合は0〜5mol%とした、また、Inに対するSnOの添加の割合は0〜20mass%とした。 As raw material powders, Al 2 O 3 powder, In 2 O 3 powder and SnO 2 powder were used. The ratio of addition of the total amount of In 2 O 3 powder and SnO 2 powder to Al 2 O 3 powder was 0 to 5 mol%, and the ratio of addition of SnO 2 to In 2 O 3 was 0 to 20 mass% .

秤量した原料粉末にエタノールを加え、超音波ホモジナイザーを用いて分散処理を行った後、十分に乾燥させた。得られた乾燥粉末を1軸プレスとCIPでφ15mmに成型し、大気雰囲気中(常圧)、焼結温度1650〜1800℃、保持時間5分間で焼結を行った。   After adding ethanol to the weighed raw material powder and performing dispersion treatment using an ultrasonic homogenizer, it was sufficiently dried. The obtained dry powder was formed into a diameter of 15 mm with a uniaxial press and CIP, and was sintered in an air atmosphere (normal pressure) at a sintering temperature of 1650 to 1800 ° C. for a holding time of 5 minutes.

得られた焼結体の特性評価として、アルキメデス法による密度測定、3端子法(二重リング電極法、電気学会大学講座「電気材料」電気学会 発売元(株)オーム社、p.266〜267に記載の方法)と4探針法(JIS K 7194:1994)による電気抵抗率の測定、及びJIS R 1634(1998年版)7.3に順じ、水を用いる代わりにトルエンを用いた測定法による開気孔率の測定を行った。その結果を表1〜3に示す。表1〜3において*印を付した試料比較例で、それ以外は本発明の実施例である。 As evaluation of the characteristics of the obtained sintered body, density measurement by Archimedes method, three-terminal method (double ring electrode method, Institute of Electrical Engineers of Japan "Electrical materials" Electrical Institute of Japan Release company Ohm Co., Ltd., p. 266-267 ) And 4-probe method (JIS K 7194: 1994), and in accordance with JIS R 1634 (1998 edition) 7.3, a measuring method using toluene instead of water The open porosity was measured by The results are shown in Tables 1 to 3. The samples marked * in Tables 1 to 3 are comparative examples, and the others are examples of the present invention.

なお、前記の3端子法および4探針法は、測定方法の相違により、正確に測定可能な電気抵抗率の範囲が異なる。本実施例では、まず3端子法にて1×10(Ω・cm)以上の電気抵抗率を示した場合にはその値を記載し、1×10(Ω・cm)未満の電気抵抗率を示した場合には4探針法を用いて測定し、4探針法の値を記載した。 In the three-terminal method and the four-probe method described above, the range of the electrical resistivity that can be accurately measured differs depending on the difference in the measuring method. In this example, when the electric resistivity of 1 × 10 3 (Ω · cm) or more is first shown by the three-terminal method, the value is described, and the electric resistance of less than 1 × 10 3 (Ω · cm) When the ratio was shown, it measured using 4 probe method, and the value of 4 probe method was described.

また、得られた焼結体についてX線回折装置(島津製作所製:XRD−6100)により相の同定を行ったところ、アルミナ相と併せて、下記(1)〜(3)から選択される1種又は2種以上の導電相が確認された。
(1)In
(2)In中にSnOが固溶したITO相
(3)ITO相とルチル型SnOの2相
In addition, when the phase identification was performed on the obtained sintered body using an X-ray diffractometer (manufactured by Shimadzu Corporation: XRD-6100), it was selected from the following (1) to (3) in combination with the alumina phase. A species or two or more conductive phases were identified.
(1) In 2 O 3 phase (2) In 2 O 3 ITO phase SnO 2 was dissolved in (3) ITO phase and 2-phase rutile SnO 2

例えば、No.35の試料(SnOを混合せず、アルミナとInを混合した試料)では、アルミナ相と併せて「(1)In相」が確認された。
No.38の試料(アルミナと、95mass%In+5mass%SnOを混合した試料)では、アルミナ相と併せて「(2)In中にSnOが固溶したITO相」が確認された。
No.39の試料(アルミナと、90mass%In+10mass%SnOを混合した試料)では、アルミナ相と併せて、「(2)In中にSnOが固溶したITO相」と、微弱なSnO相が確認された。
No.40の試料(アルミナと、85mass%In+15mass%SnOを混合した試料)では、アルミナ相と併せて、「(3)ITO相とルチル型のSnOの2相」が確認された。
他の試料でも同様に、InとSnOの合計量に対するSnO量が、0%の場合はIn相、5%の場合はITO相、10%の場合はITO相に加えて微量のSnO相、15%以上の場合はITO相とルチル型SnOの2相が確認された。
For example, no. In the 35 samples (samples in which SnO 2 was not mixed but alumina and In 2 O 3 were mixed), “(1) In 2 O 3 phase” was confirmed in combination with the alumina phase.
No. In the 38 samples (samples in which alumina and 95 mass% In 2 O 3 + 5 mass% SnO 2 are mixed), “(2) ITO phase in which SnO 2 is solid-solved in In 2 O 3 ” is confirmed in combination with the alumina phase. It was done.
No. In the 39 samples (samples in which alumina and 90 mass% In 2 O 3 + 10 mass% SnO 2 are mixed), “(2) ITO phase in which SnO 2 forms a solid solution in In 2 O 3 ” is combined with the alumina phase , Weak SnO 2 phase was confirmed.
No. In (40) samples (samples in which alumina and 85 mass% In 2 O 3 + 15 mass% SnO 2 were mixed), “(3) ITO phase and rutile type SnO 2 two phase” were confirmed in combination with the alumina phase. .
Similarly, in the other samples, the amount of SnO 2 relative to the total amount of In 2 O 3 and SnO 2 is 0% for the In 2 O 3 phase, 5% for the ITO phase, and 10% for the ITO phase. In addition, a trace amount of SnO 2 phase, and in the case of 15% or more, two phases of ITO phase and rutile SnO 2 were confirmed.

図1は1700℃で焼結を行った試料の電気抵抗率と導電相の量との関係を表したグラフである。同図に示すように、導電相の量が最大5mol%と少量であっても、電気抵抗率を10−1Ω・cm程度まで低下させることができた。また、導電相中に占めるSnOの量が多いと、当該導電相による電気抵抗率低下の効果は低下するが、SnOの量が20mass%の導電相によっても、電気抵抗率低下の効果は見られた。ただし、電気抵抗率を効果的に低下させるには、導電相中に占めるSnOの量は15mass%以下であることが好ましく、10mass%以下であることがより好ましい。 FIG. 1 is a graph showing the relationship between the electrical resistivity of a sample sintered at 1700 ° C. and the amount of the conductive phase. As shown in the figure, even if the amount of the conductive phase is as small as 5 mol% at maximum, the electrical resistivity can be reduced to about 10 −1 Ω · cm. In addition, when the amount of SnO 2 occupied in the conductive phase is large, the effect of lowering the electrical resistivity by the conductive phase is reduced, but the effect of decreasing the electrical resistivity is also caused by the conductive phase of which the amount of SnO 2 is 20 mass%. It was seen. However, in order to effectively reduce the electrical resistivity, the amount of SnO 2 occupied in the conductive phase is preferably 15 mass% or less, and more preferably 10 mass% or less.

なお、導電相を5mol%含むNo.74の試料は、電気抵抗率は1(Ω・cm)以下であったが、開気孔率が高く、これ以上導電相を増やすと開気孔率の小さい焼結体は得にくくなる。   No. 5 containing 5 mol% of the conductive phase. The electric resistivity of the sample No. 74 was 1 (Ω · cm) or less, but the open porosity is high, and when the conductive phase is increased more than this, it is difficult to obtain a sintered body having a small open porosity.

図2A及び図2Bは、Al(母相)に、90mass%In−10mass%SnO(導電相)を2mol%存在させた焼結体のSEM像であって、図2Aは焼結温度が1650℃の場合(No.32の試料)、図2Bは焼結温度が1700℃の場合(No.39の試料)である。なお、SEM観察においては、前記各試料を平面研削盤にて研削後、Arイオンエッチングにて研削傷を取る処理をした。図2A及び図2BのSEM像において、黒色部がアルミナ相であり、白色部が導電相である。導電相はX線回折装置での観察によりITO相とあわせて微弱なSnO相が観察された。 2A and 2B are SEM images of a sintered body in which 90% by mass of In 2 O 3 -10% by mass of SnO 2 (conductive phase) is present in Al 2 O 3 (matrix phase), and FIG. Is a case where the sintering temperature is 1650 ° C. (sample of No. 32), and FIG. 2B is a case where the sintering temperature is 1700 ° C. (sample of No. 39). In addition, in SEM observation, after grinding each said sample with a surface grinder, the processing which removes a grinding flaw by Ar ion etching was performed. In the SEM images of FIGS. 2A and 2B, the black part is an alumina phase and the white part is a conductive phase. In the conductive phase, a weak SnO 2 phase was observed together with the ITO phase by observation with an X-ray diffractometer.

1650℃で焼結を行った(No.32の試料)(本発明の範囲外の比較例)は高抵抗のままであり、図2AのSEM像からわかるように、その導電相は丸みを帯びており、母相中に粒子状で分散していることが確認された。一方、1700℃で焼結を行った(No.39の試料)(本発明の範囲内の実施例)は電気抵抗率が低下しており、図2BのSEM像からわかるように、その導電相は母相の結晶粒界間に沿って面状又は線状に伸びるように存在していることが確認された。すなわち、図2BのSEM像において、円で囲んだ部分が線状の導電相の断面、長円で囲んだ部分が面状の導電相の断面で、これらの線状又は面状の導電相がアルミナの粒界に立体的に存在していた。これらの導電相は、図2AのSEM像で観察された「粒子状」の導電相とは、明らかに形態が異なる。このように、本発明のセラミックス焼結体において導電相は多結晶体中で連続的な粒界相を形成し、この導電相(粒界相)が3次元導電ネットワークとして作用し、その結果、少量であっても電気抵抗率の低下に有効に寄与すると考えられる。   Sintered at 1650 ° C. (sample No. 32) (comparative example outside the scope of the present invention) remains high resistance, and as can be seen from the SEM image of FIG. 2A, the conductive phase is rounded It was confirmed that the particles were dispersed in the form of particles in the matrix. On the other hand, in the case of sintering at 1700 ° C. (sample No. 39) (example within the scope of the present invention), the electrical resistivity is lowered, and as can be seen from the SEM image of FIG. It has been confirmed that the is present so as to extend planarly or linearly along the grain boundaries of the matrix. That is, in the SEM image of FIG. 2B, the encircled portion is a cross section of the linear conductive phase, and the encircled portion is a cross section of the planar conductive phase, these linear or planar conductive phases being It existed sterically at grain boundaries of alumina. These conductive phases are clearly different in form from the “particulate” conductive phases observed in the SEM image of FIG. 2A. Thus, in the ceramic sintered body of the present invention, the conductive phase forms a continuous grain boundary phase in the polycrystal, and this conductive phase (grain boundary phase) acts as a three-dimensional conductive network, as a result, Even a small amount is considered to effectively contribute to the reduction of the electrical resistivity.

Claims (6)

Alからなる母相中に、下記(1)〜(3)から選択される1種又は2種以上の導電相を合計で1〜mol%含み、
前記導電相は、前記母相の結晶粒界間に面状又は線状に存在しており
前記導電相中に占めるSnO の量が15mass%以下であり、
電気抵抗率が10 Ω・cm以下である、セラミックス焼結体。
(1)In
(2)In中にSnOが固溶したITO相
(3)ITO相とルチル型SnOの2相
1 to 3 mol% in total of one or two or more conductive phases selected from the following (1) to (3) in a parent phase consisting of Al 2 O 3 ,
The conductive phase is present in planar or linear between the grain boundaries of the matrix phase,
The amount of SnO 2 occupied in the conductive phase is 15 mass% or less,
A ceramic sintered body having an electrical resistivity of 10 4 Ω · cm or less .
(1) In 2 O 3 phase (2) In 2 O 3 ITO phase SnO 2 was dissolved in (3) ITO phase and 2-phase rutile SnO 2
請求項に記載のセラミックス焼結体からなる半導体製造装置の構成部材。 The component member of the semiconductor manufacturing apparatus which consists of a ceramic sintered compact of Claim 1 . 静電チャックである請求項に記載の半導体製造装置の構成部材。 The component of the semiconductor manufacturing apparatus according to claim 2 , which is an electrostatic chuck. 請求項に記載のセラミックス焼結体からなる静電気放電防止部材。 An electrostatic discharge prevention member comprising the ceramic sintered body according to claim 1 . 請求項に記載のセラミックス焼結体からなるスパッタリングターゲット。 A sputtering target comprising the ceramic sintered body according to claim 1 . 請求項1に記載のセラミックス焼結体を製造する方法であって、Al粉末にIn粉末を1〜mol%添加し混合した原料粉末、又はAl粉末にIn粉末及びSnO粉末を合計で1〜mol%添加し混合した原料粉末(この原料粉末においてIn 粉末及びSnO 粉末の合計に占めるSnO 粉末の量は15mass%以下である。)を成型し、1700℃以上の大気雰囲気中で焼結する、セラミックス焼結体の製造方法。 A method of manufacturing a ceramic sintered body according to claim 1, Al 2 O 3 powder to In 2 O 3 powder. 1 to 3 mol% added to and mixed with raw material powders, or Al 2 O 3 powder to In in 2 O 3 amounts of powder and SnO 2. 1 to powder in total 3 mol% added to and mixed with the raw material powder (SnO 2 powder occupying in the raw material powder to the sum of the in 2 O 3 powder and SnO 2 powder is 15 mass% or less A method of producing a ceramic sintered body, which is molded and sintered in an air atmosphere at 1700 ° C. or higher.
JP2015171054A 2015-08-31 2015-08-31 Ceramic sinter, method for producing the same, and member comprising the ceramic sinter Active JP6504664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171054A JP6504664B2 (en) 2015-08-31 2015-08-31 Ceramic sinter, method for producing the same, and member comprising the ceramic sinter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171054A JP6504664B2 (en) 2015-08-31 2015-08-31 Ceramic sinter, method for producing the same, and member comprising the ceramic sinter

Publications (2)

Publication Number Publication Date
JP2017048073A JP2017048073A (en) 2017-03-09
JP6504664B2 true JP6504664B2 (en) 2019-04-24

Family

ID=58279106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171054A Active JP6504664B2 (en) 2015-08-31 2015-08-31 Ceramic sinter, method for producing the same, and member comprising the ceramic sinter

Country Status (1)

Country Link
JP (1) JP6504664B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430211A (en) * 1977-08-12 1979-03-06 Asahi Glass Co Ltd Small spheres of electric conductive ceramic and method of making same
US6641939B1 (en) * 1998-07-01 2003-11-04 The Morgan Crucible Company Plc Transition metal oxide doped alumina and methods of making and using
JP3807235B2 (en) * 2000-02-28 2006-08-09 株式会社豊田中央研究所 Discharge resistant composite material and manufacturing method thereof
JP2003095732A (en) * 2001-09-19 2003-04-03 Toshiba Ceramics Co Ltd Method of producing electroconductive alumina ceramics
JP4601300B2 (en) * 2004-01-28 2010-12-22 京セラ株式会社 Semiconductive ceramic and image forming apparatus using the same
JP2008127267A (en) * 2006-11-24 2008-06-05 Idemitsu Kosan Co Ltd Conductive powder and sintered compact of the same
JP5998787B2 (en) * 2011-12-02 2016-09-28 Toto株式会社 Semiconductive ceramic sintered body
JP2017036205A (en) * 2015-08-11 2017-02-16 出光興産株式会社 Conductor, substrate and laminate using the same

Also Published As

Publication number Publication date
JP2017048073A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US11011404B2 (en) Ceramic structure, member for substrate-holding apparatus, and method for producing the ceramic structure
KR102657287B1 (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
KR102497967B1 (en) Composite sintered body, semiconductor manufacturing equipment member, and manufacturing method of composite sintered body
TWI441204B (en) Semiconductor ceramic composition for ntc thermistors
JPWO2013150779A1 (en) Oxide sintered body and wiring board using the same
JP7418468B2 (en) High-density corrosion-resistant layer arrangement for electrostatic chuck
US7915189B2 (en) Yttrium oxide material, member for semiconductor-manufacturing apparatus, and method for producing yttrium oxide material
Xiang et al. Contribution of Bi0. 5Na0. 5ZrO3 on phase boundary and piezoelectricity in K0. 48Na0. 52Nb0. 96Sb0. 04O3-Bi0. 5Na0. 5SnO3-xBi0. 5Na0. 5ZrO3 ternary ceramics
Wang et al. Evolution of phase structure, microstructure, and electrical properties in (1− x)(K, Na) NbO3–x (Bi, Na, Li, Ba) ZrO3 lead-free ceramics
TWI783000B (en) Heaters for semiconductor manufacturing equipment
JP6504664B2 (en) Ceramic sinter, method for producing the same, and member comprising the ceramic sinter
KR101692219B1 (en) Composite for vacuum-chuck and manufacturing method of the same
JP2022048679A (en) Composite sintered body, semiconductor manufacturing equipment member, and manufacturing method of composite sintered body
JP4939379B2 (en) Aluminum nitride sintered body for electrostatic chuck
JP2007214287A (en) Electrostatic chuck
KR102655140B1 (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of producing composite sintered body
Hatano et al. (Li, Na, K) NbO3-based multilayer piezoceramic with Ag/Pd inner electrodes
CN112750692B (en) Composite sintered body and method for producing composite sintered body
JP4043219B2 (en) Electrostatic chuck
JP4623159B2 (en) Electrostatic chuck
JP2008288428A (en) Electrostatic chuck
JP5192221B2 (en) Ceramic sintered body and electrostatic chuck using the same
JP6444078B2 (en) Electrode embedded body
JP6166205B2 (en) Sample holder
JP2022048078A (en) Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6504664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250