JP6504079B2 - Connection structure between drive shaft member and driven shaft member - Google Patents

Connection structure between drive shaft member and driven shaft member Download PDF

Info

Publication number
JP6504079B2
JP6504079B2 JP2016033935A JP2016033935A JP6504079B2 JP 6504079 B2 JP6504079 B2 JP 6504079B2 JP 2016033935 A JP2016033935 A JP 2016033935A JP 2016033935 A JP2016033935 A JP 2016033935A JP 6504079 B2 JP6504079 B2 JP 6504079B2
Authority
JP
Japan
Prior art keywords
drive shaft
shaft member
coupling
connection
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016033935A
Other languages
Japanese (ja)
Other versions
JP2017150577A (en
Inventor
俊博 村木
俊博 村木
渡邊 治
治 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016033935A priority Critical patent/JP6504079B2/en
Publication of JP2017150577A publication Critical patent/JP2017150577A/en
Application granted granted Critical
Publication of JP6504079B2 publication Critical patent/JP6504079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

本発明は、従動軸部材と発熱する駆動軸部材とを連結する駆動軸部材と従動軸部材との連結構造に関する。   BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a connection structure between a drive shaft member that connects a driven shaft member and a drive shaft member that generates heat and the driven shaft member.

近年では、エンジン(内燃機関)及び回転電機を駆動源としてオイルポンプを駆動するフォークリフト等の産業車両がある。例えば、上記の産業車両では、エンジンのクランクシャフトが回転電機のロータに接続され、回転電機のロータがオイルポンプのシャフトに接続されており、回転電機のシャフトがオイルポンプのシャフトとカップリング部材を介して接続されている。上記の産業車両では、回転電機が発電機として作動する場合には、エンジンが回転電機とオイルポンプの駆動源となり、回転電機が電動機として作動する場合には、回転電機がオイルポンプの駆動源となる。そしてオイルポンプは、エンジンあるいは回転電機から駆動され、荷役用の油圧を発生する。なお、オイルポンプのシャフトを従動軸部材とした場合、回転電機のロータが駆動軸部材に相当する。上記のように、カップリング部材を介して駆動軸部材と従動軸部材とを連結する連結構造には、種々の構造が提案されている。   In recent years, there are industrial vehicles such as a forklift that drives an oil pump using an engine (internal combustion engine) and a rotating electrical machine as a drive source. For example, in the above industrial vehicle, the crankshaft of the engine is connected to the rotor of the rotating electrical machine, the rotor of the rotating electrical machine is connected to the shaft of the oil pump, and the shaft of the rotating electrical machine is the shaft of the oil pump and the coupling member Connected through. In the above-described industrial vehicle, when the rotating electrical machine operates as a generator, the engine serves as a driving source for the rotating electrical machine and the oil pump, and when the rotating electrical machine operates as a motor, the rotating electrical machine serves as a driving source for the oil pump. Become. The oil pump is driven by an engine or a rotating electrical machine to generate a load handling hydraulic pressure. When the shaft of the oil pump is a driven shaft member, the rotor of the rotary electric machine corresponds to the drive shaft member. As described above, various structures have been proposed for the connection structure in which the drive shaft member and the driven shaft member are connected via the coupling member.

例えば特許文献1には、エンジンの出力シャフトと、ダイナモのシャフトと、をカップリングを介して接続した回転装置が開示されている。この回転装置では、エンジンの出力シャフトは、カップリングにおける第2の部材に接続され、ダイナモのシャフトは、カップリングにおける第1の部材に接続され、第1の部材と第2の部材とが、ボルトで強固に連結されている。また、第1の部材と第2の部材との対向面には、放熱用の溝部が放射状に形成されている。   For example, Patent Document 1 discloses a rotating device in which an output shaft of an engine and a shaft of a dynamo are connected via a coupling. In this rotating device, the output shaft of the engine is connected to the second member of the coupling, the shaft of the dynamo is connected to the first member of the coupling, and the first and second members are It is firmly connected by bolts. Further, on the opposing surface of the first member and the second member, a groove for heat dissipation is radially formed.

特開2011−223805号公報JP, 2011-223805, A

特許文献1に記載の発明では、カップリングにおける第1の部材と第2の部材とがボルトで強固に連結されているので、エンジンのトルク変動が、ダイナモに直接伝達されるので、あまり好ましくない。エンジンのトルク変動を吸収するために、第1の部材と第2の部材との間に、弾性体を設けることが好ましい。しかし、第1の部材と第2の部材との間に、単純に弾性体を挟み込んだ場合、ダイナモやエンジンからの熱が、第1の部材や第2の部材から直接弾性体に伝導されてしまう。一般的に弾性体は熱に弱いので、カップリングの耐久性が低下する可能性があり、第1の部材と第2の部材との間に、単純に弾性体を挟み込む構造は、好ましくない。   In the invention described in Patent Document 1, since the first member and the second member in the coupling are firmly connected by bolts, torque fluctuation of the engine is directly transmitted to the dynamo, which is not preferable. . Preferably, an elastic body is provided between the first member and the second member in order to absorb engine torque fluctuations. However, when an elastic body is simply sandwiched between the first member and the second member, heat from the dynamo or engine is conducted directly from the first member or the second member to the elastic body. I will. In general, since the elastic body is weak to heat, the durability of the coupling may decrease, and a structure in which the elastic body is simply sandwiched between the first member and the second member is not preferable.

本発明は、このような点に鑑みて創案されたものであり、カップリング部材を介した、従動軸部材と発熱する駆動軸部材との連結構造において、駆動軸部材のトルク変動を吸収できるカップリング部材を用いるとともに、熱によるカップリング部材の耐久性の低下を抑制することができる駆動軸部材と従動軸部材との連結構造を提供することを課題とする。   The present invention has been made in view of such a point, and in a coupling structure between a driven shaft member and a heat generating drive shaft member via a coupling member, it is possible to absorb a torque fluctuation of the drive shaft member. An object of the present invention is to provide a connection structure between a drive shaft member and a driven shaft member which can suppress deterioration in durability of the coupling member due to heat while using a ring member.

上記課題を解決するため、本発明に係る駆動軸部材と従動軸部材との連結構造は次の手段をとる。まず、本発明の第1の発明は、従動軸部材と発熱する駆動軸部材とを連結する、駆動軸部材と従動軸部材との連結構造であって、前記従動軸部材は、カップリング部材を介して前記駆動軸部材と連結されており、前記カップリング部材は、前記駆動軸部材に接続される駆動側接続部材と、前記従動軸部材に接続される従動側接続部材と、前記駆動軸部材と前記従動軸部材との間に生じるトルク変動を吸収する弾性樹脂部材と、を有している。そして、前記カップリング部材における前記駆動軸部材の側の面であるカップリング面は、前記駆動側接続部材における前記駆動軸部材の側の面となる締結面と、前記従動側接続部材における前記駆動軸部材の側の面となる非締結面が前記弾性樹脂部材で覆われた樹脂非締結面と、を有しており、前記駆動軸部材における前記カップリング部材の側の面である駆動軸接続面は、前記駆動軸部材の回転軸方向から見た場合に前記締結面と重なる領域の面である接続面と、前記回転軸方向から見た場合に前記樹脂非締結面と重なる領域の面である非接続面と、を有している。そして、前記接続面と前記締結面は、直接接続、あるいは断熱部材または放熱部材を挟んだ状態で接続、あるいは前記駆動軸部材と前記カップリング部材との間に設けられた他部材を挟んだ状態で接続、あるいは前記断熱部材または前記放熱部材と、前記他部材とを挟んだ状態で接続されており、前記非接続面と前記樹脂非締結面は、接続されることなく、少なくとも前記断熱部材または前記放熱部材が挟み込まれた状態とされている、駆動軸部材と従動軸部材との連結構造である。   In order to solve the said subject, the connection structure of the drive shaft member which concerns on this invention, and a driven shaft member takes the following means. First, a first aspect of the present invention is a connecting structure of a drive shaft member and a driven shaft member, which connects the driven shaft member and the heat generating drive shaft member, wherein the driven shaft member is a coupling member. And the coupling member is connected to the drive side connection member connected to the drive shaft member, the driven side connection member connected to the driven shaft member, and the drive shaft member And an elastic resin member that absorbs torque fluctuations occurring between the first and second driven shaft members. And the coupling surface which is a surface by the side of the drive shaft member in the coupling member is a fastening surface which becomes the surface by the side of the drive shaft member in the drive side connection member, and the drive in the driven side connection member A non-fastening surface which is a surface on the side of the shaft member has a resin non-fastening surface covered with the elastic resin member, and a drive shaft connection is a surface on the side of the coupling member in the drive shaft member The surface is a connection surface which is a surface of a region overlapping with the fastening surface when viewed from the rotational shaft direction of the drive shaft member, and a surface of a region which overlaps the resin non-fastening surface when viewed from the rotational shaft direction And a non-connecting surface. The connection surface and the fastening surface are directly connected, or connected in a state in which a heat insulating member or a heat dissipating member is interposed, or in a state in which another member provided between the drive shaft member and the coupling member is interposed. Connection, or the heat insulation member or the heat radiation member, and the other member in a sandwiched state, and the non-connection surface and the resin non-fastening surface are not connected, at least the heat insulation member or It is the connection structure of the drive shaft member and the driven shaft member which is in the state where the heat dissipation member is sandwiched.

この第1の発明では、弾性樹脂部材にて駆動側軸部材のトルク変動を吸収できる。また、カップリング面における樹脂非締結面と、駆動軸接続面における非接続面と、の間に断熱部材または放熱部材を挟み込まれた状態とすることで、駆動軸部材からカップリング部材の弾性樹脂部材への熱の伝導を抑制する。これにより、熱によるカップリング部材の耐久性の低下を抑制することができる。   In the first aspect of the invention, the elastic resin member can absorb the torque fluctuation of the drive side shaft member. Further, the elastic resin of the drive shaft member to the coupling member can be obtained by sandwiching the heat insulating member or the heat radiating member between the resin non-fastening surface of the coupling surface and the non-connecting surface of the drive shaft connection surface. Suppress the conduction of heat to the components. Thereby, the fall of the endurance of the coupling member by heat can be controlled.

次に、本発明の第2の発明は、従動軸部材と発熱する駆動軸部材とを連結する、駆動軸部材と従動軸部材との連結構造であって、前記従動軸部材は、カップリング部材を介して前記駆動軸部材と連結されており、前記カップリング部材は、前記駆動軸部材に接続される駆動側接続部材と、前記従動軸部材に接続される従動側接続部材と、前記駆動軸部材と前記従動軸部材との間に生じるトルク変動を吸収する弾性樹脂部材と、を有している。そして、前記カップリング部材における前記駆動軸部材の側の面であるカップリング面は、前記駆動側接続部材における前記駆動軸部材の側の面となる締結面が前記弾性樹脂部材で覆われた樹脂締結面と、前記従動側接続部材における前記駆動軸部材の側の面となる非締結面が前記弾性樹脂部材で覆われた樹脂非締結面と、を有しており、前記駆動軸部材における前記カップリング部材の側の面である駆動軸接続面は、前記駆動軸部材の回転軸方向から見た場合に前記樹脂締結面と重なる領域の面である接続面と、前記回転軸方向から見た場合に前記樹脂非締結面と重なる領域の面である非接続面と、を有している。そして、前記接続面と前記樹脂締結面は、少なくとも断熱部材または放熱部材を挟んだ状態で接続されており、前記非接続面と前記樹脂非締結面は、接続されることなく、少なくとも前記断熱部材または前記放熱部材が挟み込まれた状態とされている、駆動軸部材と従動軸部材との連結構造である。   A second aspect of the present invention is a coupling structure of a drive shaft member and a driven shaft member, which couples the driven shaft member and the heat generating drive shaft member, wherein the driven shaft member is a coupling member. And the coupling member is connected to the drive side connection member connected to the drive shaft member, the driven side connection member connected to the driven shaft member, and the drive shaft And an elastic resin member that absorbs torque fluctuations generated between the member and the driven shaft member. The coupling surface, which is a surface on the side of the drive shaft member in the coupling member, is a resin in which a fastening surface which is a surface on the side of the drive shaft member in the drive side connection member is covered by the elastic resin member. And a non-fastening surface which is a surface on the side of the drive shaft member in the driven side connection member has a non-fastening surface covered with the elastic resin member, and The drive shaft connection surface which is a surface on the side of the coupling member is a connection surface which is a surface of a region overlapping the resin fastening surface when viewed from the rotation shaft direction of the drive shaft member, and viewed from the rotation shaft direction And a non-connecting surface which is a surface of a region overlapping with the resin non-fastening surface. The connection surface and the resin fastening surface are connected in a state of sandwiching at least a heat insulating member or a heat radiating member, and the non-connecting surface and the resin non fastening surface are not connected at least the heat insulating member. Or it is a connection structure of a drive shaft member and a driven shaft member in which the above-mentioned heat dissipation member is made into the state where it was inserted.

この第2の発明では、弾性樹脂部材にて駆動側軸部材のトルク変動を吸収できる。また、カップリング面における樹脂非締結面と駆動軸接続面における非接続面との間、及びカップリング面における樹脂締結面と駆動軸接続面における接続面との間、に断熱部材または放熱部材を挟み込まれた状態とすることで、駆動軸部材からカップリング部材の弾性樹脂部材への熱の伝導を抑制する。これにより、熱によるカップリング部材の耐久性の低下を抑制することができる。   In the second aspect, the elastic resin member can absorb the torque fluctuation of the drive side shaft member. In addition, a heat insulating member or a heat dissipating member is provided between the resin non-fastening surface in the coupling surface and the non-connecting surface in the drive shaft connection surface, and between the resin fastening surface in the coupling surface and the connection surface in the drive shaft connection surface. The sandwiching state suppresses the conduction of heat from the drive shaft member to the elastic resin member of the coupling member. Thereby, the fall of the endurance of the coupling member by heat can be controlled.

次に、本発明の第3の発明は、上記第1の発明または第2の発明に係る駆動軸部材と従動軸部材との連結構造であって、前記駆動軸部材は、内部空間が形成されて少なくとも前記カップリング部材の側が開口された円筒状であり、前記断熱部材または前記放熱部材の形状は、前記カップリング部材の側から前記駆動軸部材を見る前記回転軸方向から見た場合に前記駆動軸接続面を覆う形状であるとともに前記内部空間を覆う領域の少なくとも一部には前記回転軸方向に貫通する貫通孔を有する形状、とされている、駆動軸部材と従動軸部材との連結構造である。   Next, according to a third aspect of the present invention, there is provided a coupling structure between a drive shaft member and a driven shaft member according to the first or second invention, wherein the drive shaft member is formed with an internal space. Of the heat insulating member or the heat radiating member, the shape of the heat insulating member or the heat dissipating member is the shape of the heat insulating member or the heat dissipating member when viewed from the direction of the rotation axis when viewing the drive shaft member from the coupling member side. Connection between a drive shaft member and a driven shaft member, which has a shape covering a drive shaft connection surface and having a through hole penetrating in the direction of the rotation shaft in at least a part of the region covering the internal space It is a structure.

この第3の発明では、断熱部材または放熱部材の形状は、駆動軸接続面を覆う形状であるとともに前記内部空間を覆う領域の少なくとも一部に貫通孔を有する、ドーナツ円板状の形状を有している。この形状の断熱部材または放熱部材とすることで、駆動軸部材からカップリング部材の弾性樹脂部材への熱の伝導を抑制し、熱によるカップリング部材の耐久性の低下を抑制することができる。   In the third invention, the heat insulating member or the heat radiating member has a donut disk shape having a shape covering the drive shaft connection surface and having a through hole in at least a part of the region covering the internal space. doing. By setting it as the heat insulation member or heat dissipation member of this shape, the conduction of heat from the drive shaft member to the elastic resin member of the coupling member can be suppressed, and the decrease in durability of the coupling member due to heat can be suppressed.

次に、本発明の第4の発明は、上記第1の発明または第2の発明に係る駆動軸部材と従動軸部材との連結構造であって、前記駆動軸部材は、内部空間が形成されて少なくとも前記カップリング部材の側が開口された円筒状であり、前記断熱部材または前記放熱部材の形状は、前記カップリング部材の側から前記駆動軸部材を見る前記回転軸方向から見た場合に前記駆動軸接続面と前記内部空間とを覆う形状とされている、駆動軸部材と従動軸部材との連結構造である。   Next, according to a fourth aspect of the present invention, there is provided a coupling structure between a drive shaft member and a driven shaft member according to the first or second invention, wherein the drive shaft member has an internal space formed therein. Of the heat insulating member or the heat radiating member, the shape of the heat insulating member or the heat dissipating member is the shape of the heat insulating member or the heat dissipating member when viewed from the direction of the rotation axis when viewing the drive shaft member from the coupling member side. It is a connection structure of a drive shaft member and a driven shaft member, which is shaped to cover the drive shaft connection surface and the internal space.

この第4の発明では、ドーナツ円板状の形状の断熱部材または放熱部材とした第3の発明に対して、貫通孔を設けない円板状の形状の断熱部材または放熱部材としている。これにより、駆動軸部材からカップリング部材の弾性樹脂部材への熱の伝導の抑制に加えて、内部空間から弾性樹脂部材への熱の伝導も抑制するので、熱によるカップリング部材の耐久性の低下を、さらに抑制することができる。   In the fourth aspect of the present invention, the heat insulating member or the heat dissipating member in the form of a disk having no through hole is provided in contrast to the third invention in which the heat insulating member or the heat dissipating member is in the shape of a donut disc. Thereby, in addition to the suppression of the conduction of heat from the drive shaft member to the elastic resin member of the coupling member, the conduction of heat from the internal space to the elastic resin member is also suppressed, so the durability of the coupling member due to heat The reduction can be further suppressed.

第1の実施の形態におけるパワーユニットを説明する断面図である。It is a sectional view explaining a power unit in a 1st embodiment. 第1の実施の形態における駆動軸部材の駆動軸接続面の構造と、カップリング部材のカップリング面の外観等と、駆動軸部材とカップリング部材とで断熱部材を挟み込んで連結する様子を説明する斜視図である。The structure of the drive shaft connection surface of the drive shaft member in the first embodiment, the appearance etc. of the coupling surface of the coupling member, and the manner in which the heat insulation member is sandwiched and connected by the drive shaft member and the coupling member are described. Is a perspective view. 第1の実施の形態において、駆動軸部材の駆動軸接続面に、断熱部材を挟んでカップリング部材を接続した状態を説明する側面図である。In 1st embodiment, it is a side view explaining the state which connected the coupling member on both sides of the heat insulation member to the drive shaft connection surface of a drive shaft member. 第1の実施の形態において、回転電機の外観と、回転電機の駆動軸部材の駆動軸接続面へ、断熱部材を挟んで、カップリング部材を取り付ける様子と、カップリング部材の外観等を説明する斜視図である。In the first embodiment, the appearance of the rotary electric machine and the manner in which the coupling member is attached to the drive shaft connection surface of the drive electric shaft member of the rotary electric machine with the heat insulating member interposed therebetween, and the outer appearance of the coupling member will be described. It is a perspective view. 第2の実施の形態における駆動軸部材の駆動軸接続面の構造と、カップリング部材のカップリング面の外観等と、駆動軸部材とカップリング部材とで断熱部材を挟み込んで連結する様子を説明する斜視図である。The structure of the drive shaft connection surface of the drive shaft member in the second embodiment, the appearance etc. of the coupling surface of the coupling member, and the manner in which the heat insulation member is sandwiched and connected by the drive shaft member and the coupling member are described. Is a perspective view. 第3の実施の形態における駆動軸部材の駆動軸接続面の構造と、カップリング部材のカップリング面の外観等と、駆動軸部材とカップリング部材とで放熱部材を挟み込んで連結する様子を説明する斜視図である。The structure of the drive shaft connection surface of the drive shaft member in the third embodiment, the appearance of the coupling surface of the coupling member, etc. and the manner in which the heat dissipation member is sandwiched and coupled by the drive shaft member and the coupling member are described. Is a perspective view. カップリング部材の、その他の構造の例を説明する斜視図である。It is a perspective view explaining the example of other structures of a coupling member. 図7に示したカップリング部材をVIII方向から見た斜視図である。It is the perspective view which looked at the coupling member shown in FIG. 7 from the VIII direction.

以下に本発明を実施するための形態を図面を用いて説明する。
●[パワーユニットの構造(図1)]
本実施の形態では、産業車両としてのフォークリフトのパワーユニットに用いられる駆動軸部材と従動軸部材との連結構造を例として説明する。図1に示すように、パワーユニット10は、エンジン20と、回転電機30と、オイルポンプ40と、にて構成されている。なお、便宜上、エンジン20の側を後側とし、オイルポンプ40の側を前側として説明する。なお、以降の実施の形態の説明において、回転電機30のロータ32が、発熱する駆動軸部材に相当し、オイルポンプ40のポンプシャフト42が、従動軸部材に相当する。また、ロータ32とポンプシャフト42は、カップリング部材50を介して連結されている。またロータ32とカップリング部材50との間には断熱部材60が挟み込まれている。なお図1に示す例ではプレート部材を有していないパワーユニットの例を示しているが、プレート部材を有する場合は、図1における太点線にて示すように、ロータ32と断熱部材60との間にプレート部材70が挟み込まれる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
● [Structure of power unit (Fig. 1)]
In the present embodiment, a connection structure between a drive shaft member and a driven shaft member used in a power unit of a forklift as an industrial vehicle will be described as an example. As shown in FIG. 1, the power unit 10 is configured by an engine 20, a rotating electrical machine 30, and an oil pump 40. In addition, for convenience, the side of the engine 20 will be described as the rear side, and the side of the oil pump 40 will be described as the front side. In the following description of the embodiment, the rotor 32 of the rotary electric machine 30 corresponds to a drive shaft member that generates heat, and the pump shaft 42 of the oil pump 40 corresponds to a driven shaft member. Further, the rotor 32 and the pump shaft 42 are connected via a coupling member 50. Further, a heat insulating member 60 is interposed between the rotor 32 and the coupling member 50. Although the example shown in FIG. 1 shows an example of a power unit having no plate member, when it has a plate member, it is between the rotor 32 and the heat insulating member 60 as shown by the thick dotted line in FIG. The plate member 70 is inserted into the

エンジン20は、回転電機30の後側に配置され、エンジン20のクランクシャフト22の一方端部(前端部)は、エンジンハウジング21の前面側から突出されている。そして当該クランクシャフト22の突出端部には、小径の接続軸部22aがクランクシャフト22と同軸状に形成されている。また、接続軸部22aは、回転電機30のロータ32の後端に接続されている。従って、クランクシャフト22の回転動力は、ロータ32に伝達される。また回転電機30が駆動源となった場合、ロータ32の回転動力はクランクシャフト22に伝達される。なお、エンジンハウジング21は、シリンダヘッド、シリンダヘッドカバー、シリンダブロック、クランクケース、オイルパン等を含む。   The engine 20 is disposed on the rear side of the rotating electrical machine 30, and one end (front end) of the crankshaft 22 of the engine 20 protrudes from the front side of the engine housing 21. A small-diameter connecting shaft 22 a is formed coaxially with the crankshaft 22 at the projecting end of the crankshaft 22. The connection shaft 22 a is connected to the rear end of the rotor 32 of the rotary electric machine 30. Therefore, the rotational power of the crankshaft 22 is transmitted to the rotor 32. Further, when the rotating electrical machine 30 becomes a drive source, the rotational power of the rotor 32 is transmitted to the crankshaft 22. The engine housing 21 includes a cylinder head, a cylinder head cover, a cylinder block, a crank case, an oil pan and the like.

オイルポンプ40は、回転電機30の前側に配置され、オイルポンプ40のポンプシャフト42は、ポンプハウジング41の後面側から突出されている。そしてポンプシャフト42の先端部(後端部)には、小径の接続軸部42aがポンプシャフト42と同軸状に形成されている。そして接続軸部42aは、カップリング部材50の従動側接続部材52に接続されている。またポンプハウジング41の後側には、オイルポンプ40を回転電機30に対して支持するポンプ支持部材43が取り付けられている。ポンプ支持部材43は、例えば、回転電機30の側からオイルポンプ40の側に向かって径が徐々に小さくなる円錐筒状の形状を有しており、前面側がオイルポンプ40に締結され、後面側が回転電機30に締結されている。またポンプ支持部材43には、内部空間43kと外部とを連通して廃熱を行うための開口孔43aが複数形成されている。なお、開口孔43aの形成位置、形状、個数、サイズ等は適宜設定される。   The oil pump 40 is disposed on the front side of the rotary electric machine 30, and the pump shaft 42 of the oil pump 40 protrudes from the rear surface side of the pump housing 41. A small diameter connection shaft 42 a is formed coaxially with the pump shaft 42 at the front end (rear end) of the pump shaft 42. The connection shaft portion 42 a is connected to the driven connection member 52 of the coupling member 50. Further, a pump support member 43 for supporting the oil pump 40 with respect to the rotary electric machine 30 is attached to the rear side of the pump housing 41. The pump support member 43 has, for example, a conical cylindrical shape in which the diameter gradually decreases from the side of the rotary electric machine 30 toward the side of the oil pump 40, the front side is fastened to the oil pump 40, and the rear side is It is fastened to the rotating electrical machine 30. Further, the pump support member 43 is formed with a plurality of opening holes 43a for communicating waste heat between the internal space 43k and the outside. The formation position, the shape, the number, the size, and the like of the opening holes 43a are appropriately set.

回転電機30は、エンジン20の前側、かつオイルポンプ40の後側に配置されている。回転電機30は、モータハウジング31aからなるハウジング本体31と、エンドプレート35と、モータカバー36と、を備えている。ハウジング本体31は、略円筒状に形成されている。またエンドプレート35は、略円板状に形成され、中央部にはクランクシャフト22の先端部を挿通するための貫通孔が形成され、ハウジング本体31に対して後側の開口端面を閉鎖するように取り付けられている。そしてエンドプレート35は、エンジンハウジング21に締結されている。またモータカバー36は、略円板状に形成され、中央部にはカップリング部材50を取り付けるための貫通孔が形成され、ハウジング本体31に対して前側の開口端面を閉鎖するように取り付けられている。そしてモータカバー36はポンプ支持部材43と締結されている。またモータカバー36の中央部の貫通孔の孔縁部には、後側に突出した円筒状の筒部36aが形成されている。そして筒部36aの先端(後端)は、後述するロータコア33の前端面と、所定の隙間を隔てて近接されている。   The rotary electric machine 30 is disposed on the front side of the engine 20 and on the rear side of the oil pump 40. The rotary electric machine 30 includes a housing body 31 formed of a motor housing 31a, an end plate 35, and a motor cover 36. The housing main body 31 is formed in a substantially cylindrical shape. Further, the end plate 35 is formed in a substantially disc shape, and a through hole for inserting the tip end portion of the crankshaft 22 is formed in the central portion, and the opening end face on the rear side with respect to the housing main body 31 is closed. Is attached to The end plate 35 is fastened to the engine housing 21. Further, the motor cover 36 is formed in a substantially disc shape, and a through hole for attaching the coupling member 50 is formed in the central portion, and the motor cover 36 is attached to the housing main body 31 so as to close the open end face on the front side. There is. The motor cover 36 is fastened to the pump support member 43. Further, at the hole edge portion of the through hole at the central portion of the motor cover 36, a cylindrical tube portion 36a which protrudes to the rear side is formed. The front end (rear end) of the cylindrical portion 36a is in close proximity to the front end surface of the rotor core 33 described later with a predetermined gap.

ハウジング本体31の内部には、フランジ部32aを有する略円筒状のロータ32が、回転軸32J回りに回転自在となるように支持されている。またロータ32の円筒面の外壁には、永久磁石等のロータコア33が取り付けられている。そして略円筒状のハウジング本体31の内壁には、ロータコア33との間に所定の微小隙間が空くようにコイル等を備えたステータコア34が取り付けられている。ロータ32は、内部空間32kを有する略円筒形状を有しており、少なくともカップリング部材50の側が開口している。そしてロータ32の前端(オイルポンプ40の側の端部)は、断熱部材60を介してカップリング部材50の駆動側接続部材51に締結(接続)されている。なお、カップリング部材50の外観について、以下に説明する。   Inside the housing body 31, a substantially cylindrical rotor 32 having a flange portion 32a is supported so as to be rotatable around a rotation shaft 32J. Further, a rotor core 33 such as a permanent magnet is attached to the outer wall of the cylindrical surface of the rotor 32. A stator core 34 provided with a coil or the like is attached to the inner wall of the substantially cylindrical housing main body 31 so as to have a predetermined minute gap with the rotor core 33. The rotor 32 has a substantially cylindrical shape having an internal space 32k, and at least the side of the coupling member 50 is open. The front end of the rotor 32 (the end on the oil pump 40 side) is fastened (connected) to the drive-side connecting member 51 of the coupling member 50 via the heat insulating member 60. The external appearance of the coupling member 50 will be described below.

●[カップリング部材50の外観(図2、図4)]
カップリング部材50は、図2、図4に示すように、駆動側接続部材51と、従動側接続部材52と、弾性樹脂部材53と、にて構成されている。また図2、図4に示すカップリング部材50は、駆動側接続部材51と、従動側接続部材52と、弾性樹脂部材53とを組み付けた状態のカップリング部材50の斜視図を示している。なお、図1におけるカップリング部材50の断面図は、図2に示すカップリング部材50のI−I断面図を示している。図2、図4に示すように、回転方向に隣り合う駆動側接続部材51と従動側接続部材52との間には、弾性樹脂部材53が挟み込まれている。駆動側接続部材51は、駆動軸部材に相当する回転電機30のロータ32に接続され、従動側接続部材52は、従動軸部材に相当するオイルポンプ40のポンプシャフト42(図1参照)に接続される。また弾性樹脂部材53は、駆動側接続部材51と従動側接続部材52との間となるように配置され、自身の弾性力にて、駆動側接続部材51からの回転動力を従動側接続部材52に伝達する際のトルク変動を吸収する。このように図2、図4に示す例では、カップリング部材50は円柱状の形状を有しており、回転方向に沿って駆動側接続部材51と従動側接続部材52とが交互に配置され、回転方向において駆動側接続部材51と従動側接続部材52との間には弾性樹脂部材53が配置されている。またカップリング部材50は、ロータ32の側の面となるカップリング面50mを有している。またカップリング面50mは、後述する締結面51mと樹脂非締結面53mとを有している。
● [Appearance of the coupling member 50 (FIG. 2, FIG. 4)]
The coupling member 50 is comprised by the drive side connection member 51, the driven side connection member 52, and the elastic resin member 53, as shown to FIG. 2, FIG. The coupling member 50 shown in FIGS. 2 and 4 is a perspective view of the coupling member 50 in a state in which the drive side connection member 51, the driven side connection member 52, and the elastic resin member 53 are assembled. In addition, sectional drawing of the coupling member 50 in FIG. 1 has shown II sectional drawing of the coupling member 50 shown in FIG. As shown in FIGS. 2 and 4, an elastic resin member 53 is sandwiched between the drive-side connection member 51 and the driven-side connection member 52 adjacent in the rotational direction. The drive side connection member 51 is connected to the rotor 32 of the rotary electric machine 30 corresponding to the drive shaft member, and the driven side connection member 52 is connected to the pump shaft 42 (see FIG. 1) of the oil pump 40 corresponding to the driven shaft member. Be done. The elastic resin member 53 is disposed between the drive-side connection member 51 and the driven-side connection member 52, and the rotational force from the drive-side connection member 51 is transmitted to the driven-side connection member 52 by its own elastic force. Absorbs torque fluctuations during transmission to the Thus, in the example shown in FIG. 2 and FIG. 4, the coupling member 50 has a cylindrical shape, and the drive side connection members 51 and the driven side connection members 52 are alternately arranged along the rotation direction. An elastic resin member 53 is disposed between the drive side connection member 51 and the driven side connection member 52 in the rotational direction. Further, the coupling member 50 has a coupling surface 50m which is a surface on the side of the rotor 32. The coupling surface 50m has a fastening surface 51m and a resin non-fastening surface 53m, which will be described later.

駆動側接続部材51は、金属または合金等(例えばアルミニウム)にて形成されて、高い剛性と高い耐熱性を有している。また駆動側接続部材51は、ロータ32とボルト等にて締結するための締結孔51aを有している。そしてカップリング面50mは、駆動側接続部材51におけるロータ32の側の面となる締結面51mを有している。。図1に示す例では、駆動側接続部材51の締結面51mは、断熱部材60を挟んでロータ32と対向して、ボルトBにてロータ32(駆動軸部材)に締結(連結)されている。   The drive side connection member 51 is formed of metal, alloy or the like (for example, aluminum), and has high rigidity and high heat resistance. Further, the drive side connection member 51 has a fastening hole 51a for fastening the rotor 32 and a bolt or the like. The coupling surface 50 m has a fastening surface 51 m which is a surface on the side of the rotor 32 in the drive side connection member 51. . In the example shown in FIG. 1, the fastening surface 51 m of the drive side connection member 51 is fastened (connected) to the rotor 32 (drive shaft member) by the bolt B so as to face the rotor 32 with the heat insulation member 60 interposed therebetween. .

従動側接続部材52は、金属または合金等(例えばアルミニウム)にて形成されて、高い剛性と高い耐熱性を有している。また従動側接続部材52の中央部には開口孔52cが形成されており、図1に示すように、開口孔52cにポンプシャフト42の接続軸部42aがスプライン嵌合され、従動側接続部材52は、ポンプシャフト42(従動軸部材)に締結(連結)されている。そしてカップリング面50mは、従動側接続部材52におけるロータ32の側の面となる非締結面が弾性樹脂部材53で覆われた樹脂非締結面53mを有している。   The driven connection member 52 is formed of metal, alloy or the like (for example, aluminum), and has high rigidity and high heat resistance. Further, an opening hole 52c is formed in the central portion of the driven side connecting member 52, and as shown in FIG. 1, the connecting shaft portion 42a of the pump shaft 42 is spline fitted in the opening hole 52c. Is fastened (connected) to the pump shaft 42 (driven shaft member). The coupling surface 50m has a resin non-fastening surface 53m in which a non-fastening surface, which is a surface on the side of the rotor 32 in the driven side connection member 52, is covered with the elastic resin member 53.

弾性樹脂部材53は、弾性力を有する樹脂にて形成されており、その弾性力にて、駆動側接続部材51からの回転動力を従動側接続部材52に伝達する際のトルク変動を吸収する。また弾性樹脂部材53は、上述したように、樹脂非締結面53mを有している。なお、弾性樹脂部材53は、樹脂であるため、金属や合金等と比較すると、耐熱性は低い。   The elastic resin member 53 is formed of a resin having an elastic force, and absorbs the torque fluctuation when transmitting the rotational power from the drive side connecting member 51 to the driven side connecting member 52 by the elastic force. Further, as described above, the elastic resin member 53 has the resin non-fastening surface 53m. In addition, since the elastic resin member 53 is a resin, its heat resistance is lower than that of a metal, an alloy, or the like.

駆動側接続部材51と弾性樹脂部材53と従動側接続部材52とを組み付けた状態のカップリング部材50は、図2に示すように、締結面51mと樹脂非締結面53mとを有するカップリング面50mを、ロータ32の側に有している。   Coupling member 50 in a state where drive side connection member 51, elastic resin member 53 and driven side connection member 52 are assembled is a coupling surface having a fastening surface 51m and a resin non-fastening surface 53m, as shown in FIG. 50 m are provided on the side of the rotor 32.

●[第1の実施の形態における駆動軸部材と従動軸部材との連結構造(図2〜図4)]
図2に示すように、ロータ32におけるカップリング部材50の側の面である駆動軸接続面32mは、接続面32cと、非接続面32dと、を有している。接続面32cは、ロータ32の回転軸32Jの方向から見た場合に締結面51mと重なる領域の面であり、断熱部材60を挟んで締結面51mと対向する面である。非接続面32d(図2中において点線のハッチングにて示す領域)は、ロータ32の回転軸32Jの方向から見た場合に樹脂非締結面53mと重なる領域の面であり、断熱部材60を挟んで樹脂非締結面53mと対向する面である。接続面32cには、締結面51mの締結孔51aに対応する位置に締結孔32eが形成されている。
[Connection structure of drive shaft member and driven shaft member in the first embodiment (FIGS. 2 to 4)]
As shown in FIG. 2, a drive shaft connection surface 32 m which is a surface on the side of the coupling member 50 in the rotor 32 has a connection surface 32 c and a non-connection surface 32 d. The connection surface 32 c is a surface of a region overlapping the fastening surface 51 m when viewed in the direction of the rotation shaft 32 J of the rotor 32, and is a surface facing the fastening surface 51 m with the heat insulating member 60 interposed therebetween. The non-connecting surface 32 d (the region indicated by hatching in dotted lines in FIG. 2) is a surface of a region overlapping the resin non-fastening surface 53 m when viewed from the direction of the rotation shaft 32 J of the rotor 32. And the resin non-fastening surface 53m. Fastening holes 32e are formed in the connection surface 32c at positions corresponding to the fastening holes 51a of the fastening surface 51m.

ロータ32の形状は、図1及び図2に示すように、少なくともカップリング部材50の側の底面部が開口した略円筒状であり、内部空間32kを有している。断熱部材60の形状は、図2、図3及び図4に示すように、カップリング部材50の側からロータ32を見る回転軸32Jの方向から見た場合に、駆動軸接続面32mと内部空間32kとを覆う形状(この場合、円板状)とされている。また断熱部材60には、図2及び図4に示すように、縁部の周囲における位置であって締結孔32eと締結孔51aに対応する位置に、締結孔60aが形成されている。また断熱部材60の材質は、例えばガラスエポキシ樹脂である。   The shape of the rotor 32 is, as shown in FIGS. 1 and 2, substantially cylindrical with at least the bottom portion on the side of the coupling member 50 open, and has an internal space 32k. The shape of the heat insulating member 60 is, as shown in FIG. 2, FIG. 3 and FIG. 4, the drive shaft connection surface 32m and the internal space when viewed from the direction of the rotation shaft 32J looking at the rotor 32 from the coupling member 50 side. It has a shape (in this case, a disk shape) covering 32k. Further, as shown in FIGS. 2 and 4, in the heat insulating member 60, fastening holes 60a are formed at positions around the edge and corresponding to the fastening holes 32e and the fastening holes 51a. The material of the heat insulating member 60 is, for example, glass epoxy resin.

そして図1及び図4に示すように、締結孔51aと締結孔60aと締結孔32eにはボルトBが挿通され、駆動軸接続面32mとカップリング面50m(図2参照)との間に、断熱部材60が挟み込まれて締結(接続)されている。従って、締結面51m(図2参照)と接続面32cは、断熱部材60を挟んだ状態で接続されている。なお、図1において太点線にて示したプレート部材70を有する場合では、締結面51mと接続面32cは、断熱部材60と、プレート部材70(駆動軸部材とカップリング部材との間に設けられた他部材に相当)とを、挟んだ状態で接続される。また、樹脂非締結面53m(図2参照)と非接続面32dは、接続されることなく、少なくとも断熱部材60が挟み込まれた状態とされている(プレート部材70を有する場合では、断熱部材60とプレート部材70とが挟み込まれた状態とされている)。断熱部材60は、ロータ32の熱が、駆動軸接続面32mからカップリング面50m(特に樹脂非締結面53m、図2参照)へと伝導されることを抑制する。   As shown in FIGS. 1 and 4, a bolt B is inserted through the fastening hole 51a, the fastening hole 60a and the fastening hole 32e, and between the drive shaft connection surface 32m and the coupling surface 50m (see FIG. 2), The heat insulating member 60 is sandwiched and fastened (connected). Accordingly, the fastening surface 51m (see FIG. 2) and the connection surface 32c are connected in a state in which the heat insulating member 60 is sandwiched. In the case where the plate member 70 indicated by a thick dotted line in FIG. 1 is provided, the fastening surface 51m and the connection surface 32c are provided between the heat insulating member 60 and the plate member 70 (drive shaft member and coupling member (Equivalent to other members) are connected in a sandwiching manner. Further, the resin non-fastening surface 53m (see FIG. 2) and the non-connection surface 32d are not connected, and at least the heat insulating member 60 is sandwiched (in the case of having the plate member 70, the heat insulating member 60 And the plate member 70 are held between them). The heat insulating member 60 prevents the heat of the rotor 32 from being conducted from the drive shaft connection surface 32m to the coupling surface 50m (particularly, the resin non-fastening surface 53m, see FIG. 2).

また、ロータ32の内部空間32kに熱が溜まっている場合がある。この内部空間32kに溜まっている熱がカップリング面50mに伝導されることを抑制するために、断熱部材60には、縁部の周囲に形成された締結孔60a(図2及び図4参照)を除いて、中央部(内部空間32kを覆う領域)には貫通孔が形成されていない。つまり、断熱部材60は、ロータ32の内部空間32kとカップリング面50mとの間を連通することなく遮断している。従って、断熱部材60は、ロータ32の内部空間32kからカップリング面50mへと熱が伝導されることを抑制し、カップリング面50m(特に樹脂非締結面53m)への熱の伝導を、更に抑制する。   In addition, heat may be accumulated in the internal space 32k of the rotor 32. In order to suppress the heat accumulated in the internal space 32k from being conducted to the coupling surface 50m, the heat insulating member 60 is provided with fastening holes 60a formed around the edge (see FIGS. 2 and 4). The through hole is not formed in the central portion (region covering the internal space 32k) except for the above. That is, the heat insulating member 60 blocks the communication between the internal space 32k of the rotor 32 and the coupling surface 50m without communication. Therefore, the heat insulating member 60 suppresses the conduction of heat from the internal space 32k of the rotor 32 to the coupling surface 50m, and further conducts the conduction of heat to the coupling surface 50m (particularly the resin non-fastening surface 53m). Suppress.

これに対して、従来のロータの駆動軸接続面とカップリング面との間には、断熱部材も放熱部材も挟み込まれていないので、ロータからの熱が、樹脂非締結面に直接伝導される。   On the other hand, since neither the heat insulating member nor the heat radiating member is sandwiched between the drive shaft connection surface and the coupling surface of the conventional rotor, the heat from the rotor is directly conducted to the resin non-fastening surface .

第1の実施の形態における駆動軸部材(この場合、ロータ32)と従動軸部材(この場合、ポンプシャフト42)との連結構造では、駆動軸接続面32mとカップリング面50mとの間(すなわち、非接続面32dと樹脂非締結面53mとの間)に、中央部に貫通孔が形成されていない断熱部材60が挟み込まれた状態としているので、上述したように、ロータ32の駆動軸接続面32mからカップリング面50mに伝導される熱を抑制するとともに、ロータ32の内部空間32kからカップリング面50mに伝導される熱も抑制することができる。従って、カップリング部材50の耐久性の低下(熱による弾性樹脂部材の劣化等)を抑制することができる。また、断熱部材60としてガラスエポキシ樹脂を用いた場合、断熱部材60の厚さを数[mm]程度に抑えることができるので、パワーユニット10の軸長が必要以上に長くなることを抑制することができる。なお、断熱部材60を放熱部材に置き換えてもよい。   In the connection structure between the drive shaft member (in this case, the rotor 32) and the driven shaft member (in this case, the pump shaft 42) in the first embodiment, between the drive shaft connection surface 32m and the coupling surface 50m (ie, Since the heat insulating member 60 in which the through hole is not formed at the central portion is interposed between the non-connecting surface 32d and the resin non-fastening surface 53m), as described above, the drive shaft connection of the rotor 32 is While suppressing the heat conducted from the surface 32m to the coupling surface 50m, the heat conducted from the inner space 32k of the rotor 32 to the coupling surface 50m can also be restrained. Therefore, it is possible to suppress a decrease in the durability of the coupling member 50 (such as deterioration of the elastic resin member due to heat). Further, when a glass epoxy resin is used as the heat insulating member 60, the thickness of the heat insulating member 60 can be suppressed to about several millimeters, so that the axial length of the power unit 10 can be prevented from being longer than necessary. it can. The heat insulating member 60 may be replaced by a heat dissipating member.

●[第2の実施の形態における駆動軸部材と従動軸部材との連結構造(図5)]
次に図5を用いて、駆動軸部材と従動軸部材との連結構造の第2の実施の形態について説明する。第2の実施の形態では、断熱部材61の形状が、図2及び図4に示す第1の実施の形態の断熱部材60の形状に対して、中央部(内部空間32kを覆う領域の少なくとも一部)に貫通孔61cが形成されている点が異なる。以下、この相違点について主に説明する。
[Connection structure of drive shaft member and driven shaft member in the second embodiment (FIG. 5)]
Next, a second embodiment of the connection structure between the drive shaft member and the driven shaft member will be described with reference to FIG. In the second embodiment, the shape of the heat insulating member 61 is the same as the shape of the heat insulating member 60 of the first embodiment shown in FIGS. In that the through hole 61c is formed in the part). Hereinafter, this difference will be mainly described.

図5に示すロータ32の形状は、図2に示すロータ32の形状と同じであり、少なくともカップリング部材50の側の底面部が開口した略円筒状であり、内部空間32kを有している。断熱部材61は、図5に示すように、中央部に貫通孔61cが形成されている。つまり、断熱部材61の形状は、カップリング部材50の側からロータ32を見る回転軸32Jの方向から見た場合に、駆動軸接続面32mを覆う形状であるとともに内部空間32kを覆う領域の少なくとも一部には回転軸32Jの方向に貫通する貫通孔61cを有する形状とされている。また、断熱部材61の縁部の周囲には、第1の実施の形態の断熱部材60と同様に、締結孔61aが形成されている。図5に示す例では、断熱部材61の形状は、中央部に貫通孔61cが形成されたドーナツ円板状の形状である。   The shape of the rotor 32 shown in FIG. 5 is the same as the shape of the rotor 32 shown in FIG. 2 and is substantially cylindrical with at least the bottom portion on the coupling member 50 side open, and has an internal space 32k. . As shown in FIG. 5, in the heat insulating member 61, a through hole 61c is formed in the central portion. That is, the shape of the heat insulating member 61 is a shape that covers the drive shaft connection surface 32m and at least a region covering the internal space 32k when viewed from the direction of the rotation shaft 32J looking at the rotor 32 from the coupling member 50 side. A part has a through hole 61c penetrating in the direction of the rotation shaft 32J. Further, similar to the heat insulating member 60 of the first embodiment, a fastening hole 61 a is formed around the edge of the heat insulating member 61. In the example shown in FIG. 5, the shape of the heat insulating member 61 is a donut disk shape in which the through hole 61c is formed at the center.

そして図5に示すように、締結面51mと接続面32cは、断熱部材60を挟んだ状態で接続されている。なお、図1において太点線にて示したプレート部材70を有する場合では、締結面51mと接続面32cは、断熱部材60と、プレート部材70(駆動軸部材とカップリング部材との間に設けられた他部材に相当)とを、挟んだ状態で接続される。また、樹脂非締結面53mと非接続面32dは、接続されることなく、少なくとも断熱部材60が挟み込まれた状態とされている(プレート部材70を有する場合では、断熱部材60とプレート部材70とが挟み込まれた状態とされている)。   And as shown in FIG. 5, the fastening surface 51m and the connection surface 32c are connected in the state which pinched | interposed the heat insulation member 60. As shown in FIG. In the case where the plate member 70 indicated by a thick dotted line in FIG. 1 is provided, the fastening surface 51m and the connection surface 32c are provided between the heat insulating member 60 and the plate member 70 (drive shaft member and coupling member (Equivalent to other members) are connected in a sandwiching manner. Further, at least the heat insulating member 60 is held between the resin non-fastening surface 53 m and the non-connecting surface 32 d without being connected (in the case of having the plate member 70, the heat insulating member 60 and the plate member 70 Is in a state of being pinched).

そして、断熱部材61は、ロータ32の駆動軸接続面32mからカップリング面50mに伝導される熱を抑制するとともに、第1の実施の形態に対して、断熱部材の材料を節約することができる。   And while the heat insulation member 61 suppresses the heat conducted from the drive shaft connection surface 32m of the rotor 32 to the coupling surface 50m, the material of the heat insulation member can be saved with respect to the first embodiment. .

なお、断熱部材の形状を、図5の()内に示す複数の扇形状の形状を有する断熱部材62の形状としてもよい。断熱部材62は、ロータ32の側からカップリング部材50を見る回転軸32Jの方向から見た場合に、カップリング面50mの樹脂非締結面53mを覆う形状であるとともに、カップリング面50mの締結面51mを覆わない形状である。逆方向から見た場合では、断熱部材62は、ロータ32の駆動軸接続面32mの非接続面32dを覆う形状であるとともに、駆動軸接続面32mの接続面32cを覆わない形状である。この場合、締結面51mと接続面32cは、直接接続されている。なお、図1において太点線にて示したプレート部材70を有する場合では、締結面51mと接続面32cは、プレート部材70(駆動軸部材とカップリング部材との間に設けられた他部材に相当)を挟んだ状態で接続される。また、樹脂非締結面53mと非接続面32dは、接続されることなく、少なくとも断熱部材61が挟み込まれた状態とされている(プレート部材70を有する場合では、断熱部材61とプレート部材70とが挟み込まれた状態とされている)。   The shape of the heat insulating member may be the shape of the heat insulating member 62 having a plurality of fan-shaped shapes shown in () of FIG. 5. The heat insulating member 62 is shaped to cover the resin non-fastening surface 53m of the coupling surface 50m when viewed from the direction of the rotary shaft 32J looking at the coupling member 50 from the side of the rotor 32, and also the fastening of the coupling surface 50m It does not cover the surface 51m. When viewed from the opposite direction, the heat insulating member 62 is shaped to cover the non-connecting surface 32 d of the drive shaft connecting surface 32 m of the rotor 32 and is shaped not to cover the connecting surface 32 c of the drive shaft connecting surface 32 m. In this case, the fastening surface 51m and the connection surface 32c are directly connected. In the case where the plate member 70 indicated by the thick dotted line in FIG. 1 is provided, the fastening surface 51m and the connection surface 32c correspond to the plate member 70 (other members provided between the drive shaft member and the coupling member). It is connected in the state which sandwiches). Further, at least the heat insulating member 61 is held between the resin non-fastening surface 53m and the non-connection surface 32d without being connected (in the case where the plate member 70 is provided, the heat insulating member 61 and the plate member 70 Is in a state of being pinched).

この断熱部材62は、ロータ32の駆動軸接続面32mの非接続面32dからカップリング面50mの樹脂非締結面53mに伝導される熱を抑制するとともに、上述した断熱部材61に対して、断熱部材の材料を更に節約することができる。なお、断熱部材61、62を放熱部材に置き換えてもよい。   The heat insulating member 62 suppresses the heat conducted from the non-connecting surface 32d of the drive shaft connecting surface 32m of the rotor 32 to the resin non-fastening surface 53m of the coupling surface 50m, and heat-insulates the heat insulating member 61 described above. The material of the component can be further saved. Note that the heat insulating members 61 and 62 may be replaced with heat dissipating members.

●[第3の実施の形態における駆動軸部材と従動軸部材との連結構造(図6)]
次に図6を用いて、駆動軸部材と従動軸部材との連結構造の第3の実施の形態について説明する。第3の実施の形態では、図2に示す第1の実施の形態の断熱部材60の代わりに、駆動軸接続面32mとカップリング面50mとの間に放熱部材63を挟み込む点が異なる。以下、この相違点について主に説明する。
[Connection structure of drive shaft member and driven shaft member in the third embodiment (FIG. 6)]
Next, a third embodiment of the connecting structure between the drive shaft member and the driven shaft member will be described with reference to FIG. The third embodiment is different from the heat insulating member 60 of the first embodiment shown in FIG. 2 in that the heat radiation member 63 is sandwiched between the drive shaft connection surface 32m and the coupling surface 50m. Hereinafter, this difference will be mainly described.

放熱部材63は、図6に示すように、熱伝導率が比較的高い材質(例えばアルミニウム)で形成され、略円柱状の形状を有しており、側面には、周方向に連続するフィン63fが複数形成されている。また放熱部材63には、縁部の周囲における位置であって締結孔32eと締結孔51aに対応する位置に、締結孔63aが形成されている。放熱部材63は、締結孔51aと締結孔63aと締結孔32eにボルトBが挿通されて締結されることで、駆動軸接続面32mとカップリング面50mとの間に挟み込まれた状態で締結(接続)される。放熱部材63は、ロータ32の熱が、駆動軸接続面32m及び内部空間32kからカップリング面50m(特に樹脂非締結面53m)へと伝導されることを抑制する。なお、放熱部材63の中央部に、第2の実施の形態にて説明した断熱部材61のように貫通孔を設けるようにしてもよい。また第2の実施の形態にて説明した断熱部材62のように、非接続面32dを覆う複数の放熱部材に分割するようにしてもよい。   As shown in FIG. 6, the heat dissipation member 63 is formed of a material (for example, aluminum) having a relatively high thermal conductivity, and has a substantially cylindrical shape, and fins 63f continuous in the circumferential direction on the side surface A plurality of are formed. Further, in the heat dissipation member 63, fastening holes 63a are formed at positions around the edge and corresponding to the fastening holes 32e and the fastening holes 51a. The heat radiation member 63 is fastened in a state of being sandwiched between the drive shaft connection surface 32m and the coupling surface 50m by inserting and fastening the bolt B into the fastening hole 51a, the fastening hole 63a and the fastening hole 32e. Connected). The heat dissipation member 63 suppresses the heat of the rotor 32 from being conducted from the drive shaft connection surface 32m and the internal space 32k to the coupling surface 50m (particularly, the resin non-fastening surface 53m). A through hole may be provided in the central portion of the heat radiating member 63 as in the heat insulating member 61 described in the second embodiment. Further, as in the heat insulating member 62 described in the second embodiment, the heat dissipating member may be divided into a plurality of heat dissipating members covering the non-connection surface 32 d.

●[カップリング部材の、その他の構造(図7、図8)]
以上、第1〜第3の実施の形態にて説明した駆動軸部材と従動軸部材との連結構造では、ロータ32からカップリング部材50へ伝導される熱を充分に抑制することができる。従って、図2〜図6にて説明した第1〜第3の実施の形態における接続面32cと締結面51mとの間に断熱部材または放熱部材を挟み込んだ構造(すなわち、図5に示した分割状態の断熱部材62の構造を除く構造)において、カップリング部材の構造を、例えば図7及び図8に示す構造としてもよい。図7及び図8に示すカップリング部材50Aは、図2〜図6に示すカップリング部材50の弾性樹脂部材53が、弾性樹脂部材54に変更されて締結面51mを弾性樹脂部材54で覆っている点が異なる(駆動側接続部材51と従動側接続部材52は同じ)。以下、この相違点について主に説明する。
● [Other structure of the coupling member (Figures 7 and 8)]
As described above, in the connection structure between the drive shaft member and the driven shaft member described in the first to third embodiments, the heat conducted from the rotor 32 to the coupling member 50 can be sufficiently suppressed. Therefore, a structure in which the heat insulating member or the heat dissipating member is interposed between the connection surface 32c and the fastening surface 51m in the first to third embodiments described in FIGS. 2 to 6 (that is, the division shown in FIG. 5) In the structure except the structure of the heat insulating member 62 in the state, the structure of the coupling member may be, for example, a structure shown in FIG. 7 and FIG. In the coupling member 50A shown in FIGS. 7 and 8, the elastic resin member 53 of the coupling member 50 shown in FIGS. 2 to 6 is changed to the elastic resin member 54 so that the fastening surface 51m is covered with the elastic resin member 54. (The drive side connecting member 51 and the driven side connecting member 52 are the same). Hereinafter, this difference will be mainly described.

図7及び図8に示すように、カップリング部材50Aのカップリング面50Amには駆動側接続部材51が露出することなく、弾性樹脂部材54のみが露出している。つまり、図7及び図8に示すカップリング部材50Aは、図2〜図6に示すカップリング部材50における締結面51mを、弾性樹脂部材54にて覆ったものである。すなわち、カップリング面50Amは、駆動側接続部材51におけるロータ32(駆動軸部材)の側の面となる締結面が弾性樹脂部材54で覆われた樹脂締結面54maと、従動側接続部材52におけるロータ32の側の面となる非締結面が弾性樹脂部材54で覆われた樹脂非締結面54mb(図7中に点線のハッチングにて示す領域)と、を有している。また、ロータ32の締結孔32eに対応する位置、かつ駆動側接続部材51の締結孔51aに対応する位置には、弾性樹脂部材54に締結孔54nが形成されている。この弾性樹脂部材54の構造は、図2及び図3に示す弾性樹脂部材53の構造に対してシンプルな構造となるので、カップリング部材の製造を、より容易にすることができる。   As shown in FIGS. 7 and 8, only the elastic resin member 54 is exposed on the coupling surface 50Am of the coupling member 50A without the drive side connecting member 51 being exposed. That is, the coupling member 50A shown in FIG. 7 and FIG. 8 covers the fastening surface 51m of the coupling member 50 shown in FIGS. 2 to 6 with the elastic resin member 54. That is, the coupling surface 50Am is a resin fastening surface 54ma whose fastening surface which is a surface on the side of the rotor 32 (drive shaft member) in the drive side connection member 51 is covered with the elastic resin member 54; A non-fastening surface which is a surface on the side of the rotor 32 has a resin non-fastening surface 54mb (an area indicated by hatching in dotted lines in FIG. 7) covered with the elastic resin member 54. Further, a fastening hole 54 n is formed in the elastic resin member 54 at a position corresponding to the fastening hole 32 e of the rotor 32 and at a position corresponding to the fastening hole 51 a of the drive side connecting member 51. The structure of the elastic resin member 54 is a simple structure with respect to the structure of the elastic resin member 53 shown in FIGS. 2 and 3, so that the manufacturing of the coupling member can be made easier.

ロータ32の駆動軸接続面32mは、図2に示すように、ロータ32の回転軸32Jの方向から見た場合に樹脂締結面54ma(図7参照)と重なる領域の面である接続面32cと、回転軸32Jの方向から見た場合に樹脂非締結面54mb(図7参照)と重なる領域である非接続面32dと、を有している。   The drive shaft connection surface 32m of the rotor 32, as shown in FIG. 2, is a connection surface 32c which is a surface of a region overlapping the resin fastening surface 54ma (see FIG. 7) when viewed from the direction of the rotation shaft 32J of the rotor 32. And a non-connecting surface 32d which is an area overlapping with the resin non-fastening surface 54mb (see FIG. 7) when viewed in the direction of the rotation shaft 32J.

そして、接続面32cと樹脂締結面54maは、(プレート部材70の有無にかかわらず)少なくとも断熱部材または放熱部材を挟んだ状態で接続される。また非接続面32dと樹脂非締結面54mbは、接続されることなく、(プレート部材70の有無にかかわらず)少なくとも断熱部材または放熱部材が挟み込まれた状態とされている。   The connection surface 32c and the resin fastening surface 54ma are connected (with or without the plate member 70) sandwiching at least the heat insulating member or the heat radiating member. Further, the non-connecting surface 32d and the resin non-fastening surface 54mb are not connected to each other (with or without the plate member 70) and at least a heat insulating member or a heat dissipating member is sandwiched.

以上に説明した駆動軸部材(この場合、ロータ32)と従動軸部材(この場合、ポンプシャフト42)との連結構造によれば、カップリング部材50、50Aの弾性樹脂部材53、54にて駆動側軸部材のトルク変動を吸収できるとともに、駆動軸部材からの熱がカップリング部材50、50Aの弾性樹脂部材53、54に伝導されることを抑制し、カップリング部材50、50Aの耐久性の低下(熱による弾性樹脂部材の劣化等)を抑制することができる。   According to the connection structure between the drive shaft member (in this case, the rotor 32) and the driven shaft member (in this case, the pump shaft 42) described above, the elastic resin members 53, 54 of the coupling members 50, 50A drive While being able to absorb the torque fluctuation of the side shaft member, it is suppressed that the heat from the drive shaft member is conducted to the elastic resin members 53, 54 of the coupling members 50, 50A, and the durability of the coupling members 50, 50A It is possible to suppress a decrease (such as deterioration of the elastic resin member due to heat).

本発明の、駆動軸部材と従動軸部材の連結構造は、本実施の形態で説明した構成、構造、形状等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。例えば、カップリング部材50、50Aの構造、駆動側接続部材51の形状や、従動側接続部材52の形状や、弾性樹脂部材53、54の形状等は、本実施の形態にて説明したものに限定されるものではない。   The connection structure of the drive shaft member and the driven shaft member of the present invention is not limited to the configuration, structure, shape, etc. described in the present embodiment, and various changes, additions, and deletions can be made within the scope of the present invention. Is possible. For example, the structures of the coupling members 50 and 50A, the shape of the drive side connecting member 51, the shape of the driven side connecting member 52, the shapes of the elastic resin members 53 and 54, etc. are the same as those described in the present embodiment. It is not limited.

また、ロータ32とカップリング部材50、50Aとの間に他部材を設ける場合の例としてプレート部材70を設ける例を説明したが、他部材はプレート部材に限定されるものではなく、種々の部材を他部材とすることができる。   Although an example in which the plate member 70 is provided is described as an example in the case of providing another member between the rotor 32 and the coupling members 50 and 50A, the other members are not limited to the plate member, and various members Can be another member.

また、本実施の形態の説明では、産業車両としてのフォークリフトのパワーユニットに用いられる回転電機のロータを駆動軸部材、当該パワーユニットのオイルポンプのポンプシャフトを従動軸部材、とした例を説明したが、駆動軸部材は前記ロータに限定されるものではなく、従動軸部材は前記ポンプシャフトに限定されるものではない。従って、種々の機器及び種々の用途に用いられている駆動軸部材と従動軸部材との連結構造に適用することが可能である。   Further, in the description of the present embodiment, an example in which the rotor of the rotating electric machine used for the power unit of a forklift as an industrial vehicle is a drive shaft member and the pump shaft of the oil pump of the power unit is a driven shaft member has been described. The drive shaft member is not limited to the rotor, and the driven shaft member is not limited to the pump shaft. Therefore, it is possible to apply to the connection structure of the drive shaft member and driven shaft member which are used for various apparatuses and various applications.

10 パワーユニット
20 エンジン
21 エンジンハウジング
22 クランクシャフト
30 回転電機
31 ハウジング本体
31a モータハウジング
32 ロータ(駆動軸部材)
32c 接続面
32d 非接続面
32e 締結孔
32J 回転軸
32k 内部空間
32m 駆動軸接続面
33 ロータコア
34 ステータコア
36 モータカバー
36a 筒部
40 オイルポンプ
42 ポンプシャフト(従動軸部材)
43 ポンプ支持部材
50、50A カップリング部材
50m、50Am カップリング面
51 駆動側接続部材
51a 締結孔
51m 締結面
52 従動側接続部材
53 弾性樹脂部材
53m 樹脂非締結面
54 弾性樹脂部材
54ma 樹脂締結面
54mb 樹脂非締結面
54n 締結孔
60、61、62 断熱部材
60a、61a、62a、63a 締結孔
63 放熱部材
63f フィン
70 プレート部材(他部材)

DESCRIPTION OF SYMBOLS 10 Power unit 20 Engine 21 Engine housing 22 Crankshaft 30 Electric rotating machine 31 Housing main body 31a Motor housing 32 Rotor (drive shaft member)
32c connecting surface 32d non-connecting surface 32e fastening hole 32J rotating shaft 32k internal space 32m drive shaft connecting surface 33 rotor core 34 stator core 36 motor cover 36a tube 40 oil pump 42 pump shaft (following shaft member)
43 pump support member 50, 50A coupling member 50m, 50Am coupling surface 51 drive side connecting member 51a fastening hole 51m fastening surface 52 driven side connecting member 53 elastic resin member 53m resin non fastening surface 54 elastic resin member 54ma resin fastening surface 54mb Resin non-fastening surface 54n Fastening holes 60, 61, 62 Heat insulation members 60a, 61a, 62a, 63a Fastening holes 63 Heat dissipation member 63f Fin 70 Plate member (other members)

Claims (4)

従動軸部材と発熱する駆動軸部材とを連結する、駆動軸部材と従動軸部材との連結構造であって、
前記従動軸部材は、カップリング部材を介して前記駆動軸部材と連結されており、
前記カップリング部材は、前記駆動軸部材に接続される駆動側接続部材と、前記従動軸部材に接続される従動側接続部材と、前記駆動軸部材と前記従動軸部材との間に生じるトルク変動を吸収する弾性樹脂部材と、を有しており、
前記カップリング部材における前記駆動軸部材の側の面であるカップリング面は、前記駆動側接続部材における前記駆動軸部材の側の面となる締結面と、前記従動側接続部材における前記駆動軸部材の側の面となる非締結面が前記弾性樹脂部材で覆われた樹脂非締結面と、を有しており、
前記駆動軸部材における前記カップリング部材の側の面である駆動軸接続面は、前記駆動軸部材の回転軸方向から見た場合に前記締結面と重なる領域の面である接続面と、前記回転軸方向から見た場合に前記樹脂非締結面と重なる領域の面である非接続面と、を有しており、
前記接続面と前記締結面は、直接接続、あるいは断熱部材または放熱部材を挟んだ状態で接続、あるいは前記駆動軸部材と前記カップリング部材との間に設けられた他部材を挟んだ状態で接続、あるいは前記断熱部材または前記放熱部材と、前記他部材とを挟んだ状態で接続されており、
前記非接続面と前記樹脂非締結面は、接続されることなく、少なくとも前記断熱部材または前記放熱部材が挟み込まれた状態とされている、
駆動軸部材と従動軸部材との連結構造。
A connecting structure of a drive shaft member and a driven shaft member, which connects the driven shaft member and the heat generating drive shaft member,
The driven shaft member is coupled to the drive shaft member via a coupling member,
The coupling member includes a drive-side connection member connected to the drive shaft member, a driven-side connection member connected to the driven shaft member, and a torque fluctuation generated between the drive shaft member and the driven shaft member. And an elastic resin member that absorbs
A coupling surface which is a surface on the side of the drive shaft member in the coupling member is a fastening surface which is a surface on the side of the drive shaft member in the drive side connection member and the drive shaft member in the driven side connection member A non-fastening surface which is a surface on the side of the resin, and a non-fastening surface of the resin covered with the elastic resin member;
A drive shaft connection surface which is a surface on the side of the coupling member in the drive shaft member is a connection surface which is a surface of a region overlapping with the fastening surface when viewed from the rotation shaft direction of the drive shaft member; And a non-connecting surface which is a surface of a region overlapping with the resin non-fastening surface when viewed from the axial direction;
The connection surface and the fastening surface are directly connected, or connected in a state in which a heat insulating member or a heat dissipating member is sandwiched, or connected in a state in which another member provided between the drive shaft member and the coupling member is interposed. Or connected in a state in which the heat insulating member or the heat radiating member and the other member are sandwiched,
The non-connecting surface and the resin non-fastening surface are not connected to each other, and at least the heat insulating member or the heat dissipating member is sandwiched.
Connection structure between the drive shaft member and the driven shaft member.
従動軸部材と発熱する駆動軸部材とを連結する、駆動軸部材と従動軸部材との連結構造であって、
前記従動軸部材は、カップリング部材を介して前記駆動軸部材と連結されており、
前記カップリング部材は、前記駆動軸部材に接続される駆動側接続部材と、前記従動軸部材に接続される従動側接続部材と、前記駆動軸部材と前記従動軸部材との間に生じるトルク変動を吸収する弾性樹脂部材と、を有しており、
前記カップリング部材における前記駆動軸部材の側の面であるカップリング面は、前記駆動側接続部材における前記駆動軸部材の側の面となる締結面が前記弾性樹脂部材で覆われた樹脂締結面と、前記従動側接続部材における前記駆動軸部材の側の面となる非締結面が前記弾性樹脂部材で覆われた樹脂非締結面と、を有しており、
前記駆動軸部材における前記カップリング部材の側の面である駆動軸接続面は、前記駆動軸部材の回転軸方向から見た場合に前記樹脂締結面と重なる領域の面である接続面と、前記回転軸方向から見た場合に前記樹脂非締結面と重なる領域の面である非接続面と、を有しており、
前記接続面と前記樹脂締結面は、少なくとも断熱部材または放熱部材を挟んだ状態で接続されており、
前記非接続面と前記樹脂非締結面は、接続されることなく、少なくとも前記断熱部材または前記放熱部材が挟み込まれた状態とされている、
駆動軸部材と従動軸部材との連結構造。
A connecting structure of a drive shaft member and a driven shaft member, which connects the driven shaft member and the heat generating drive shaft member,
The driven shaft member is coupled to the drive shaft member via a coupling member,
The coupling member includes a drive-side connection member connected to the drive shaft member, a driven-side connection member connected to the driven shaft member, and a torque fluctuation generated between the drive shaft member and the driven shaft member. And an elastic resin member that absorbs
A coupling surface which is a surface on the side of the drive shaft member in the coupling member is a resin fastening surface in which a fastening surface which is a surface on the side of the drive shaft member in the drive side connection member is covered by the elastic resin member. And a non-fastening surface which is a surface on the side of the drive shaft member in the driven side connecting member has a non-fastening surface of resin covered with the elastic resin member,
A drive shaft connection surface which is a surface on the side of the coupling member in the drive shaft member is a connection surface which is a surface of a region overlapping the resin fastening surface when viewed from the rotational shaft direction of the drive shaft member; And a non-connecting surface which is a surface of a region overlapping the resin non-fastening surface when viewed from the rotation axis direction,
The connection surface and the resin fastening surface are connected in a state in which at least a heat insulating member or a heat dissipating member is sandwiched,
The non-connecting surface and the resin non-fastening surface are not connected to each other, and at least the heat insulating member or the heat dissipating member is sandwiched.
Connection structure between the drive shaft member and the driven shaft member.
請求項1または2に記載の駆動軸部材と従動軸部材との連結構造であって、
前記駆動軸部材は、内部空間が形成されて少なくとも前記カップリング部材の側が開口された円筒状であり、
前記断熱部材または前記放熱部材の形状は、前記カップリング部材の側から前記駆動軸部材を見る前記回転軸方向から見た場合に前記駆動軸接続面を覆う形状であるとともに前記内部空間を覆う領域の少なくとも一部には前記回転軸方向に貫通する貫通孔を有する形状、とされている、
駆動軸部材と従動軸部材との連結構造。
It is a connection structure of the drive shaft member according to claim 1 or 2 and a driven shaft member, wherein
The drive shaft member has a cylindrical shape in which an internal space is formed and at least the side of the coupling member is opened,
The shape of the heat insulating member or the heat radiating member is a region that covers the drive shaft connection surface and covers the internal space when viewed from the direction of the rotation shaft when the drive shaft member is viewed from the coupling member side. At least a portion of the through-hole penetrating in the rotational axis direction,
Connection structure between the drive shaft member and the driven shaft member.
請求項1または2に記載の駆動軸部材と従動軸部材との連結構造であって、
前記駆動軸部材は、内部空間が形成されて少なくとも前記カップリング部材の側が開口された円筒状であり、
前記断熱部材または前記放熱部材の形状は、前記カップリング部材の側から前記駆動軸部材を見る前記回転軸方向から見た場合に前記駆動軸接続面と前記内部空間とを覆う形状とされている、
駆動軸部材と従動軸部材との連結構造。

It is a connection structure of the drive shaft member according to claim 1 or 2 and a driven shaft member, wherein
The drive shaft member has a cylindrical shape in which an internal space is formed and at least the side of the coupling member is opened,
The shape of the heat insulating member or the heat radiating member is a shape that covers the drive shaft connection surface and the internal space when viewed from the direction of the rotation shaft when the drive shaft member is viewed from the coupling member side. ,
Connection structure between the drive shaft member and the driven shaft member.

JP2016033935A 2016-02-25 2016-02-25 Connection structure between drive shaft member and driven shaft member Active JP6504079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033935A JP6504079B2 (en) 2016-02-25 2016-02-25 Connection structure between drive shaft member and driven shaft member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033935A JP6504079B2 (en) 2016-02-25 2016-02-25 Connection structure between drive shaft member and driven shaft member

Publications (2)

Publication Number Publication Date
JP2017150577A JP2017150577A (en) 2017-08-31
JP6504079B2 true JP6504079B2 (en) 2019-04-24

Family

ID=59741694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033935A Active JP6504079B2 (en) 2016-02-25 2016-02-25 Connection structure between drive shaft member and driven shaft member

Country Status (1)

Country Link
JP (1) JP6504079B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065450B1 (en) * 2018-06-14 2020-01-13 정길용 Disk type magnetic coupling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635542Y2 (en) * 1979-09-28 1981-08-21
DE19721196A1 (en) * 1997-05-21 1998-11-26 Klein Schanzlin & Becker Ag Machine unit with integrated heat barrier
JP3482343B2 (en) * 1998-08-20 2003-12-22 富士機工株式会社 Damper for steering column
US7980123B2 (en) * 2007-05-25 2011-07-19 Assembly & Test Worldwide, Inc. Test stand with jointed drive shaft

Also Published As

Publication number Publication date
JP2017150577A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US7472768B2 (en) Drive system, especially for a motor vehicle
EP2600002B1 (en) Electric pump
EP2988019A2 (en) Electric device, gearbox and associated method
JP6509288B2 (en) Vehicle drive
WO2012140771A1 (en) Power transmission device
EP3540922A1 (en) Drive device
US20120319458A1 (en) In-wheel motor drive apparatus and method for designing the same
JP6236301B2 (en) Electric pump
JP6504079B2 (en) Connection structure between drive shaft member and driven shaft member
JP5507131B2 (en) Motor unit
JP2007181273A (en) Pump device
JP2019533412A (en) Electric drive unit with cooling sleeve
US20180111470A1 (en) Power train apparatus
US9133809B2 (en) Flywheel arrangement for an internal combustion engine
JP2020060221A (en) Motor built-in type flexible meshing-type gear device
WO2021182011A1 (en) In-wheel motor drive device
JP2010221775A (en) Power transmission device for hybrid vehicle
US20180111468A1 (en) Power train
JP6554043B2 (en) Connection structure between drive shaft member and driven shaft member
JP6504080B2 (en) Connection structure between drive shaft member and driven shaft member
JP6583047B2 (en) Rotating electric machine
JP2014087231A (en) Rotary electric machine
WO2022239484A1 (en) Pump device
WO2017090403A1 (en) Electro-mechanical integrated motor
JP5655763B2 (en) Rotating electrical machine case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R151 Written notification of patent or utility model registration

Ref document number: 6504079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151