JP6501518B2 - Transfer method of internal standard solution and transfer device therefor - Google Patents

Transfer method of internal standard solution and transfer device therefor Download PDF

Info

Publication number
JP6501518B2
JP6501518B2 JP2014265907A JP2014265907A JP6501518B2 JP 6501518 B2 JP6501518 B2 JP 6501518B2 JP 2014265907 A JP2014265907 A JP 2014265907A JP 2014265907 A JP2014265907 A JP 2014265907A JP 6501518 B2 JP6501518 B2 JP 6501518B2
Authority
JP
Japan
Prior art keywords
internal standard
internal
standard solution
aqueous solution
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014265907A
Other languages
Japanese (ja)
Other versions
JP2016125878A5 (en
JP2016125878A (en
Inventor
一行 石井
一行 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Priority to JP2014265907A priority Critical patent/JP6501518B2/en
Publication of JP2016125878A publication Critical patent/JP2016125878A/en
Publication of JP2016125878A5 publication Critical patent/JP2016125878A5/ja
Application granted granted Critical
Publication of JP6501518B2 publication Critical patent/JP6501518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、例えば水に含まれる揮発性有機化合物の定量分析に好適で、試料に内部標準液の自動注入を容易かつ安価に実現し、試料に内部標準液を均一に分布させて一様なパージ効率を得られ、回収率の低い成分と内部標準物質の回収率のばらつきを抑制し、分析の信頼性を得られるようにした、内部標準液の移送方法およびその移送装置に関する。   The present invention is suitable, for example, for quantitative analysis of volatile organic compounds contained in water, realizes automatic injection of the internal standard solution to the sample easily and inexpensively, uniformly distributes the internal standard solution to the sample, and is uniform The present invention relates to a method and apparatus for transferring an internal standard solution, which can obtain purge efficiency, suppress variation in recovery rates of components with low recovery rates and internal standard substances, and obtain analysis reliability.

上下水、環境水等の試料中の揮発性有機化合物(VOC)を分析する際、一般にパージ・トラップ法やヘッドスペ−ス法等を前処理として用いた後、ガスクロマトグラフ質量分析計(GC/MS)で検出する。
前記GC/MSを使用して測定を行なう場合、測定毎に検出器の感度が変化するという問題がある。また、VOCの中で親水性が高い成分である1,4-ジオキサンは水に馴染み易く、他のVOCに比べて水中からの回収率が低く、サンプルの状態によって前処理の回収率が変動し易いという問題がある。
これらの問題を解決するため、通常は測定毎に内部標準物質を含んだ溶液である内部標準液を一定量試料に注入して検出器の感度補正・前処理装置の回収率補正を行い、測定ないし分析の信頼性を得るようにしている。内部標準物質としては、実試料中に含まれていない成分であって、物性が似ており、定量目的成分に近い位置で検出し、高純度な成分であることが必要である。
When analyzing volatile organic compounds (VOCs) in samples such as water and sewage, environmental water, etc., a gas chromatograph mass spectrometer (GC / MS) is generally used after the purge / trap method, head space method, etc. are used as pretreatment. To detect.
When performing measurement using the GC / MS, there is a problem that the sensitivity of the detector changes with each measurement. In addition, 1,4-dioxane, which is a highly hydrophilic component among VOCs, is easily compatible with water, and the recovery rate from water is lower than other VOCs, and the recovery rate of pretreatment varies depending on the state of the sample. There is a problem that it is easy.
In order to solve these problems, an internal standard solution, which is usually a solution containing an internal standard substance, is injected into a fixed amount of sample for each measurement to correct the sensitivity of the detector and the recovery rate of the pretreatment device, and measure And I try to get the reliability of the analysis. The internal standard substance is a component which is not contained in the actual sample and which has similar physical properties, is detected at a position close to the target component for quantification, and is required to be a highly pure component.

例えば、パージ・トラップ法を適用した分析装置では、パージガス供給口と第1六方弁との間の配管に内部標準ガス自動注入機構を介挿し、該自動注入機構は内部標準ガスボンベと、マスフローコントローラと、三方弁とを備え、マスフローコントローラによってガスボンベから供給される内部標準ガスの流量を自動制御し、前記三方弁の開閉時間を制御することによって、試料濃縮過程に内部標準ガスを前記配管の中間位置に注入し、その注入量を自在に変化させ、内部標準ガスを試料中のVOCとともに濃縮・回収してガスクロマトグラフ(GC)へ導入するようにしている(例えば、特許文献1参照)。   For example, in an analyzer applying the purge trap method, an internal standard gas automatic injection mechanism is inserted in the pipe between the purge gas supply port and the first six-way valve, and the automatic injection mechanism includes the internal standard gas cylinder, mass flow controller, And the three-way valve, the mass flow controller automatically controls the flow rate of the internal standard gas supplied from the gas cylinder, and controls the open / close time of the three-way valve, to control the open / close time of the three-way valve. The internal standard gas is concentrated and recovered together with the VOC in the sample and introduced into a gas chromatograph (GC) (for example, see Patent Document 1).

しかし、前記分析装置は、パージガスを内部標準ガスと一緒にパージ容器に導入し、容器中の液体試料をパージガスでバブリングして、試料中のパージ成分を内部標準ガスと一緒に濃縮管へ送り出しているため、内部標準液をガス化して使用する場合、液体に比べて取り扱いが複雑になり、また内部標準液をガス化して使用しているため、回収率の補正には使用できない、という問題があった。
しかも、内部標準ガス自動注入機構はマスフローコントローラと三方弁とを要して、構造が複雑で高価かつ大型化を助長する等の問題があった。
However, the analyzer introduces the purge gas into the purge vessel together with the internal standard gas, bubbles the liquid sample in the vessel with the purge gas, and sends out the purge component in the sample into the concentration pipe together with the internal standard gas. Therefore, when using internal standard solution in gasification, handling becomes more complicated than in liquid, and since internal standard solution is used in gasification, it can not be used for correction of recovery rate. there were.
In addition, the internal standard gas automatic injection mechanism requires a mass flow controller and a three-way valve, and has a problem that the structure is complicated and the cost and size increase are promoted.

一方、内部標準ガスの代わりに内部標準液を使用する際、内部標準液の背後に試料を配置し、当該試料によって内部標準液を押し出す場合、内部標準液の送液方向前方には液相が存在しないため、内部標準液がパージ管の試料貯留域ではない壁面等に付着してしまうという現象が生じ得る。
例えば、内部標準物質として1,4-ジオキサン-d8が含まれている内部標準液の場合、内部標準液のパージ管の試料貯留域ではない壁面等への付着により、試料中の1,4-ジオキサンと同じパージ効率にならない可能性があった。その場合、内部標準物質として親水性が高く回収率の低い物質、例えば上述した1,4-ジオキサン-d8では、測定値に大きな影響を及ぼすことが懸念されていた。
また、内部標準液と試料が十分に攪拌されないままパージ・トラップ装置へ送り出され、内部標準液の試料内の分布が不均一になってパージ効率が変わってしまう可能性があった。
On the other hand, when using the internal standard solution instead of the internal standard gas, place the sample behind the internal standard solution, and when pushing out the internal standard solution by the sample, the liquid phase is in front of the feeding direction of the internal standard solution. Since it does not exist, a phenomenon may occur in which the internal standard solution adheres to the wall surface or the like which is not the sample storage area of the purge pipe.
For example, in the case of an internal standard solution containing 1,4-dioxane-d8 as an internal standard substance, the adhesion of the internal standard solution to a wall surface or the like other than the sample storage area of the purge pipe results in It might not have the same purge efficiency as dioxane. In that case, a substance having high hydrophilicity and low recovery rate as an internal standard substance, for example, the above-mentioned 1,4-dioxane-d8 was concerned about having a large influence on measured values.
In addition, the internal standard solution and the sample may be sent to the purge / trap apparatus without being sufficiently stirred, and the distribution of the internal standard solution in the sample may become nonuniform to change the purge efficiency.

特開2000−346759号公報Unexamined-Japanese-Patent No. 2000-346759

本発明はこのような問題を解決し、例えば水に含まれる揮発性有機化合物の定量分析に好適で、試料に内部標準液の自動注入を容易かつ安価に実現し、試料に内部標準液を均一に分布させて一様なパージ効率を得られ、回収率の低い成分と内部標準物質の回収率のばらつきを抑制し、分析の信頼性を得られるようにした、内部標準液の移送方法およびその移送装置を提供することを目的とする。   The present invention solves such problems and is suitable for quantitative analysis of volatile organic compounds contained in water, for example. Automatic injection of internal standard solution to sample is realized easily and inexpensively, internal standard solution to sample is uniform. Distribution method of internal standard solution and distribution uniformity, obtaining uniform purge efficiency, suppressing variation in recovery rate of low recovery components and internal standard substance, and obtaining analysis reliability The purpose is to provide a transfer device.

請求項1の発明は、水系溶液に内部標準液を注入し、該内部標準液は親水性と揮発性を有する内部標準物質を含み、該内部標準液の前後に水系溶液を配置して気相抽出部へ導入する内部標準液の移送方法において、前記内部標準液の内部標準物質は、1,4-ジオキサン-d8を含んでおり、内部標準液と水系溶液との混和ないし撹拌を促し、水系溶液に内部標準液を均一に分布させて気相抽出部へ導入し得るようにしている。
したがって、気相抽出部では各成分の一様なパージ効率を得られ、例えば試料中の揮発性有機化合物に含まれる1,4-ジオキサンのように、回収率の低い成分と内部標準物質の回収率のばらつきを抑制し、分析精度の信頼性を得られるようにしている。
請求項2の発明は、水系溶液の送液管と、内部標準液を送液する内標導管とに連通する内標導入弁の内部に所定量の内部標準液を導入し、水系溶液に対する内部標準液の注入量を調量し、水系溶液に対する内部標準液の最適な注入量を調整し、内部標準液の最適な使用とその実効を図るようにしている。
According to the invention of claim 1, the internal standard solution is injected into the aqueous solution, the internal standard solution contains the internal standard substance having hydrophilicity and volatility, and the aqueous solution is disposed before and after the internal standard solution. In the method of transferring the internal standard solution introduced into the extraction unit, the internal standard substance of the internal standard solution contains 1,4-dioxane-d8, which promotes the mixing or stirring of the internal standard solution with the aqueous solution, The internal standard solution is uniformly distributed in the solution so that it can be introduced into the gas phase extraction unit.
Therefore, uniform purge efficiency of each component can be obtained in the gas phase extraction unit, and for example, recovery of components with low recovery rate and internal standard substance such as 1,4-dioxane contained in volatile organic compounds in the sample It is possible to suppress the variation of the rate and obtain the reliability of the analysis accuracy.
According to the invention of claim 2 , the internal standard solution of a predetermined amount is introduced into the inside of the internal mark introduction valve in communication with the water supply tube of the aqueous solution and the internal standard conduit which transmits the internal standard solution. injected volume metering of standard solution, to adjust the optimum injection amount of the internal standard solution for an aqueous solution, and the optimal use and its effective internal standard solution in Figure so that.

請求項3の発明は、内標導入弁内部の注入スペースを内標導管に連通し、内部標準液を注入スペースに導入後、内標導入弁を軸回りに回動して注入スペースを送液管に連通し、前記注入スペースに収容した内部標準液を送液管に導入し、内標導入弁を回動して内部標準液を内標導管から送液管へ簡便に導入するようにしている。
請求項4の発明は、内標導入弁の下流側または上流側の内標導管に設けた抵抗部を介し、送液管に対する内部標準液の導入量を調量し、水系溶液に対し最適な内部標準液の導入を実現し、内部標準液の適切な使用と有効利用を図るようにしている。
請求項5の発明は、水系溶液の各成分を分析後、内標導入弁の注入スペースを前記送液管に連通し、該送液管の下流側から不活性ガスを導入し、前記注入スペースと送液管を洗浄し、成分分析後の注入スペースと送液管の洗浄を簡易迅速に実現するようにしている。
The invention of claim 3 communicates the injection space inside the internal mark introduction valve with the internal mark conduit, introduces the internal standard solution into the injection space, and then pivots the internal mark introduction valve to send the injection space communicating with the tube, the internal standard solution which contains the injection space is introduced into the liquid feed pipe, and in so that to easily introduce internal standard solution from internal standard conduit by rotating the internal standard inlet valve into the liquid feed pipe ing.
According to the invention of claim 4, the amount of the internal standard solution introduced into the liquid feed pipe is metered through the resistance portion provided in the internal standard conduit downstream or upstream of the internal standard introduction valve, and it is optimum for the aqueous solution. to achieve introduction of the internal standard solution, and the proper use and effective use of the internal standard solution in Figure so that.
According to the invention of claim 5, after analyzing each component of the aqueous solution, the injection space of the internal mark introduction valve is communicated with the liquid feed pipe, an inert gas is introduced from the downstream side of the liquid feed pipe, and the injection space And the liquid feed tube is cleaned, and cleaning of the injection space and the liquid feed tube after component analysis is realized in a simple and quick manner.

請求項の発明は、水系溶液に親水性と揮発性を有する内部標準物質を含む内部標準液を注入可能に設け、該内部標準液の前後に水系溶液を配置して、気相抽出部へ送液可能にした内部標準液の移送装置において、内部標準液の内部標準物質が1,4-ジオキサン-d8を含んでいるとともに、水系溶液の送液管と内部標準液を送液する内標導管とが連通可能な交差部に内標導入弁を回動可能に設け、該内標導入弁の内部に前記送液管と内標導管に選択的に連通可能な注入スペースを設け、該注入スペースを内標導管に連通し、所定量の内部標準液を注入スペースに導入可能に設け、内部標準液の導入後、内標導入弁を回動し、注入スペースを送液管に連通して、該注入スペースに導入した内部標準液を送液管の水系溶液中に導入可能にし、内部標準液と水系溶液との混和ないし撹拌を促し、水系溶液に内部標準液を均一に分布させて気相抽出部へ導入し得るようにしている。
したがって、気相抽出部では各成分の一様なパージ効率を得られ、例えば試料中の揮発性有機化合物に含まれる1,4-ジオキサンのように、回収率の低い成分と内部標準物質の回収率のばらつきを抑制し、分析精度の信頼性を得られるようにしている。
In the invention of claim 6 , an internal standard solution containing an internal standard substance having hydrophilicity and volatility is provided in an aqueous solution so as to be pourable, the aqueous solution is disposed before and after the internal standard solution, and a gas phase extraction unit is provided. An internal standard of the internal standard solution containing 1,4-dioxane-d8 , and an internal standard for transporting the aqueous solution solution and the internal standard solution, in the transfer apparatus of the internal standard solution which can be transported. An internal mark introduction valve is rotatably provided at an intersection where communication with the conduit is possible, and an injection space which can selectively communicate with the liquid feed pipe and the internal mark conduit is provided inside the internal mark introduction valve, and the injection Connect the space to the internal mark conduit, and introduce a predetermined amount of internal standard solution into the injection space. After introducing the internal standard solution, rotate the internal mark introduction valve to communicate the injection space to the liquid delivery pipe. allows introduction of the internal standard solution was introduced into the infusion space in an aqueous solution of the liquid supply tube, the inner Encourage mixing or agitation of the standard solution and the aqueous solution is uniformly distributed internal standard solution in an aqueous solution so that can be introduced into the gas phase extractor.
Therefore, uniform purge efficiency of each component can be obtained in the gas phase extraction unit, and for example, recovery of components with low recovery rate and internal standard substance such as 1,4-dioxane contained in volatile organic compounds in the sample It is possible to suppress the variation of the rate and obtain the reliability of the analysis accuracy.

請求項の発明は、注入スペースは、内標導入弁の軸方向と直交方向に貫通形成した溝孔であり、簡単な構成によって内標導管から送液管への内部標準液の導入を実現するようにしている。
請求項の発明は、内標導入弁の下流側または上流側の内標導管に抵抗部を設けて送液管に対する内部標準液の導入量を調量可能にし、水系溶液に対し最適な内部標準液の導入を実現し、内部標準液の適切な使用と有効利用を図るようにしている。
In the invention of claim 7 , the injection space is a slot formed in a direction perpendicular to the axial direction of the internal mark introduction valve, and the introduction of the internal standard solution from the internal mark conduit into the liquid delivery pipe is realized by a simple configuration. It has to be so that.
According to the invention of claim 8 , the resistance part is provided in the internal mark conduit on the downstream side or upstream side of the internal mark introduction valve to make it possible to measure the introduction amount of the internal standard solution to the liquid feed pipe, to achieve introduction of the standard solution, and the proper use and effective use of the internal standard solution in Figure so that.

請求項の発明は、水系溶液の各成分を分析後、注入スペースを前記送液管に連通し、該送液管の下流側から不活性ガスを導入し、前記注入スペースと送液管を洗浄可能にし、成分分析後の注入スペースと送液管の洗浄を簡易迅速に実現するようにしている。 In the invention of claim 9 , after analyzing each component of the aqueous solution, the injection space is communicated with the liquid feed pipe, an inert gas is introduced from the downstream side of the liquid feed pipe, and the injection space and the liquid feed pipe are It is made washable, and cleaning of the injection space and the liquid feed tube after component analysis is realized in a simple and quick manner.

請求項1の発明は、内部標準液の内部標準物質は、1,4-ジオキサン-d8を含んでいるから、内部標準液と水系溶液との混和ないし撹拌を促し、水系溶液に内部標準液を均一に分布させて気相抽出部へ導入することができる。
したがって、気相抽出部では各成分の一様なパージ効率を得られ、例えば試料中の揮発性有機化合物に含まれる1,4-ジオキサンのように、回収率の低い成分と内部標準物質の回収率のばらつきを抑制し、分析精度の信頼性を得ることができる。
請求項2の発明は、水系溶液の送液管と、内部標準液を送液する内標導管とに連通する内標導入弁の内部に所定量の内部標準液を導入し、水系溶液に対する内部標準液の注入量を調量するから、水系溶液に対する内部標準液の最適な注入量を調整し、内部標準液の最適な使用とその実効を図ることができる。
The invention of claim 1, internal standard internal standard solution, since that contains a 1,4-dioxane-d8, encourage mixing or agitation of the internal standard solution and an aqueous solution, internal standard solution in an aqueous solution Can be uniformly distributed and introduced into the vapor phase extraction unit.
Therefore, uniform purge efficiency of each component can be obtained in the gas phase extraction unit, and for example, recovery of components with low recovery rate and internal standard substance such as 1,4-dioxane contained in volatile organic compounds in the sample to suppress the variation rate can Rukoto obtain the reliability of analytical precision.
According to the invention of claim 2 , the internal standard solution of a predetermined amount is introduced into the inside of the internal mark introduction valve in communication with the water supply tube of the aqueous solution and the internal standard conduit which transmits the internal standard solution. since injected amount adjustment amount of standard solution, to adjust the optimum injection amount of the internal standard solution for aqueous solutions, optimal use of the internal standard solution and the effectiveness can FIG Rukoto.

請求項3の発明は、内標導入弁内部の注入スペースを内標導管に連通し、内部標準液を注入スペースに導入後、内標導入弁を軸回りに回動して注入スペースを送液管に連通し、前記注入スペースに収容した内部標準液を送液管に導入するから、内標導入弁を回動して内部標準液を内標導管から送液管へ簡便に導入することができる。
請求項4の発明は、内標導入弁の下流側または上流側の内標導管に設けた抵抗部を介し、送液管に対する内部標準液の導入量を調量するから、水系溶液に対し最適な内部標準液の導入を実現し、内部標準液の適切な使用と有効利用を図ることができる。
請求項5の発明は、水系溶液の各成分を分析後、内標導入弁の注入スペースを前記送液管に連通し、該送液管の下流側から不活性ガスを導入し、前記注入スペースと送液管を洗浄するから、成分分析後の注入スペースと送液管の洗浄を簡易迅速に実現することができる。
The invention of claim 3 communicates the injection space inside the internal mark introduction valve with the internal mark conduit, introduces the internal standard solution into the injection space, and then pivots the internal mark introduction valve to send the injection space communicating with the tube, Rukoto be easily introduced from the introduction of an internal standard solution accommodated in the injection space feeding tube, the internal standard solution from internal standard conduit by rotating the internal standard inlet valve into the liquid feed pipe Can.
The invention of claim 4 is most suitable for a water-based solution because the amount of introduction of the internal standard solution to the liquid feed pipe is metered through the resistance portion provided in the internal mark conduit downstream or upstream of the internal mark introduction valve. achieves the introduction of an internal standard solution, it is FIG Rukoto proper use and effective use of the internal standard solution.
According to the invention of claim 5, after analyzing each component of the aqueous solution, the injection space of the internal mark introduction valve is communicated with the liquid feed pipe, an inert gas is introduced from the downstream side of the liquid feed pipe, and the injection space Since the liquid feed pipe is cleaned, it is possible to realize the washing of the injection space and the liquid feed pipe after the component analysis in a simple and quick manner .

請求項の発明は、内部標準液の内部標準物質が1,4-ジオキサン-d8を含んでいるとともに、水系溶液の送液管と内部標準液を送液する内標導管とが連通可能な交差部に内標導入弁を回動可能に設け、該内標導入弁の内部に前記送液管と内標導管に選択的に連通可能な注入スペースを設け、該注入スペースを内標導管に連通し、所定量の内部標準液を注入スペ−スに導入可能に設け、内部標準液の導入後、内標導入弁を回動し、注入スペースを送液管に連通して、該注入スペースに導入した内部標準液を送液管の水系溶液中に導入可能にしたから、内部標準液と水系溶液との混和ないし撹拌を促し、水系溶液に内部標準液を均一に分布させて気相抽出部へ導入することができる。
したがって、気相抽出部では各成分の一様なパージ効率を得られ、例えば試料中の揮発性有機化合物に含まれる1,4-ジオキサンのように、回収率の低い成分と内部標準物質の回収率のばらつきを抑制し、分析精度の信頼性を得ることができる。
According to the invention of claim 6 , the internal standard substance of the internal standard solution contains 1,4-dioxane-d8, and the water supply tube of the aqueous solution can communicate with the internal standard pipe for conveying the internal standard solution. An internal mark introduction valve is rotatably provided at the intersection, and an injection space capable of selectively communicating with the liquid feed pipe and the internal mark conduit is provided inside the internal mark introduction valve, and the injection space is used as the internal mark conduit. In communication, a predetermined amount of internal standard solution can be introduced into the injection space, and after the introduction of the internal standard solution, the internal mark introduction valve is rotated to connect the injection space to the liquid feed pipe, and the injection space Since the internal standard solution introduced in the column can be introduced into the aqueous solution of the liquid feed tube, mixing or stirring of the internal standard solution and the aqueous solution is promoted, and the internal standard solution is uniformly distributed in the aqueous solution to perform gas phase extraction. It can be introduced to the department.
Therefore, uniform purge efficiency of each component can be obtained in the gas phase extraction unit, and for example, recovery of components with low recovery rate and internal standard substance such as 1,4-dioxane contained in volatile organic compounds in the sample to suppress the variation rate can Rukoto obtain the reliability of analytical precision.

請求項の発明は、注入スペースは、内標導入弁の軸方向と直交方向に貫通形成した溝孔であるから、簡単な構成によって内標導管から送液管への内部標準液の導入を実現することができる。
請求項の発明は、内標導入弁の下流側または上流側の内標導管に抵抗部を設けて送液管に対する内部標準液の導入量を調量可能にしたから、水系溶液に対し最適な内部標準液の導入を実現し、内部標準液の適切な使用と有効利用を図ることができる。
According to the invention of claim 7 , since the injection space is a slot formed in a direction perpendicular to the axial direction of the internal mark introduction valve, the introduction of the internal standard solution from the internal mark conduit into the liquid delivery pipe can be achieved by a simple configuration. You realize you can Rukoto.
The invention according to claim 8 is most suitable for a water-based solution because a resistance portion is provided in the inner-mark conduit downstream or upstream of the inner-mark introduction valve so that the introduction amount of the internal standard solution to the liquid feed pipe can be measured. achieves the introduction of an internal standard solution, it is FIG Rukoto proper use and effective use of the internal standard solution.

請求項の発明は、水系溶液の各成分を分析後、注入スペースを前記送液管に連通し、該送液管の下流側から不活性ガスを導入し、前記注入スペースと送液管を洗浄可能にしたから、成分分析後の注入スペースと送液管の洗浄を簡易迅速に実現することができる。 In the invention of claim 9 , after analyzing each component of the aqueous solution, the injection space is communicated with the liquid feed pipe, an inert gas is introduced from the downstream side of the liquid feed pipe, and the injection space and the liquid feed pipe are because was washable, can it to achieve a cleaning of the injection space and liquid supply tube after component analysis quickly easily.

本発明を水系溶液中のVOCの定量分析に適用した実施形態を示す説明図で、パージ・トラップ部より上流側の第1および第2貯留部に水系溶液を導入する状況を示している。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing an embodiment in which the present invention is applied to quantitative analysis of VOC in an aqueous solution, and shows a situation where the aqueous solution is introduced into first and second reservoirs upstream of the purge trap. 第1および第2貯留部に水系溶液を導入後、内標弁に内部標準液を導入する状況を示している。The situation where the internal standard solution is introduced into the internal mark valve after introducing the aqueous solution into the first and second reservoirs is shown. 内部標準液を水系溶液に注入後、この内部標準液と水系溶液をパージ・トラップ部へ導入する状況を示している。The figure shows the situation where the internal standard solution and the aqueous solution are introduced into the purge / trap section after the internal standard solution is injected into the aqueous solution.

本発明を適用した内標弁による内部標準液の全量注入時の状況を順に示す拡大断面図で、(a)は内標注入前、(b)は内標注入時、(c)は内標注入後、の各状況を示している。It is an expanded sectional view showing the situation at the time of whole quantity injection of internal standard solution by the internal mark valve to which the present invention is applied, (a) before internal mark injection, (b) at internal mark injection, (c) internal mark After injection, each situation is shown. 水系溶液と内部標準液をパージ・トラップ部へ送液する際の状況を拡大して示す断面図である。It is sectional drawing which expands and shows the condition at the time of sending an aqueous solution and an internal standard solution to a purge * trap part. トラップ装置よってトラップした吸着成分を分析装置へ導入して分析している状況を示している。The situation where the adsorption component trapped by the trap device is introduced into the analyzer and analyzed is shown. 水系溶液を分析後に貯留部を洗浄している状況を示している。It shows the situation where the reservoir is cleaned after analysis of the aqueous solution.

本発明の前記実施形態の応用形態の要部を示す説明図で、(a)は水系溶液に内部標準液を注入し、ミキサーに導入して撹拌後、パージ・トラップ部へ導入する状況を示している。(b)は前記ミキサーの他の形態を示し、直管状の導管に多数のガラスビーズを収容して構成している。It is explanatory drawing which shows the principal part of the application form of the said embodiment of this invention, (a) injects an internal standard solution into a water-system solution, shows the condition which introduce | transduces into a purge trap part after introduce | transducing into a mixer and stirring. ing. (B) shows another form of the mixer, in which a large number of glass beads are accommodated in a straight tubular conduit. 本発明の第実施形態の要部の内標導入部を示す説明図である。It is explanatory drawing which shows the internal mark introducing | transducing part of the principal part of 2nd Embodiment of this invention. 前記第実施形態に適用した内標弁による内部標準液の所望量注入時の状況を順に示す拡大断面図で、(a)は内標注入前、(b)は内標注入時、(c)は内標注入後、の各状況を示している。The expanded sectional view which shows the condition at the time of injection of the desired quantity of the internal standard solution by the internal mark valve applied to the said 2nd embodiment in order, (a) before internal mark injection, (b) at internal mark injection, (c ) Shows each situation after injection of the internal mark.

以下、本発明を被検体である水系溶液のVOCの成分分析として、パージ・トラップ法を採用した図示の実施形態について説明すると、図1乃至図7において1は成分分析装置で、これはVOC成分を含む水系溶液を貯留部へ送出し、該水系溶液に後述する液状の内部標準液(以下、単に内標と呼ぶ)を自動注入する内標導入部2と、前記水系溶液と内標を導入し、不活性ガスでパージを行うことによって分析対象成分を液相から気相へ抽出させ、その気相を濃縮し、GCまたはGC/MS等の検出器を備えた分析装置へ導入する気相抽出部であるパージ・トラップ部3と、洗浄液または搬送用加圧ガスを内標導入部2へ送出するとともに、水系溶液の採取とその計量並びに搬送と洗浄の諸機構を備えたオートサンプラ−部4と、で構成されている。   Hereinafter, the illustrated embodiment in which the purge and trap method is adopted as the component analysis of VOC of the aqueous solution which is the subject according to the present invention will be described. In FIGS. 1 to 7, 1 is a component analyzer. Water source solution containing water to the storage section, and an internal mark introducing section 2 for automatically injecting a liquid internal standard solution (hereinafter simply referred to as Component is extracted from the liquid phase into the gas phase, and the gas phase is concentrated and introduced into an analyzer equipped with a detector such as GC or GC / MS. An auto sampler unit equipped with a purge / trap unit 3 which is an extraction unit, a cleaning solution or a pressurized gas for transfer to the internal mark introducing unit 2 and with various mechanisms for collecting an aqueous solution and measuring, transporting and cleaning. It consists of 4 There.

前記水系溶液は、分析対象成分を含むものと含まないものの双方を含み、前記内標導入部2は、水系溶液の送液管5の中流部に介挿した注入機構を備えた電磁弁からなる内標導入弁8と、該内標導入弁8に連通する内標導管9とで構成され、前記内標導入弁8を挟む送液管5の上流側と下流側位置に、所定容量の第1および第2貯留部6,7を設けている
実施形態の場合、前記送液管5は折曲可能で透明または半透明のフッ素樹脂製の細管を折曲して配管され、第1および第2貯留部6,7は、前述と同質の細管を所定径のループ状に捲回して所定容量に構成し、その両側の管端部を送液管5に嵌合して装着し、または送液管5の所定位置を捲回して一体に構成している。
The aqueous solution contains both the one containing the analysis target component and the one not containing it, and the internal label introducing unit 2 comprises a solenoid valve provided with an injection mechanism inserted in the middle stream part of the water supply tube 5 of the aqueous solution. The internal mark introduction valve 8 and the internal mark conduit 9 communicating with the internal mark introduction valve 8 have predetermined volumes of upstream and downstream positions of the liquid feed pipe 5 sandwiching the internal mark introduction valve 8. In the embodiment in which the first and second reservoirs 6 and 7 are provided, the liquid delivery pipe 5 is piped by bending a bendable transparent or semitransparent fluorine resin thin tube, and (2) Reservoir 6 and 7 are formed into a predetermined volume by winding a thin tube of the same quality as that described above in a loop shape of a predetermined diameter, and fitting the tube end portions on both sides thereof to liquid tube 5 The predetermined position of the liquid pipe 5 is wound and integrally configured.

前記内標導入弁8は送液管5と内標導管9との交差部に回動可能に配置され、その作動をパーソナルコンピュータを駆使した制御装置(図示略)によって切換え制御され、後述する溝孔と送液管5または内標導管9との連通を切換え可能にしている。
前記内標導入弁8は、その円筒軸状の内部に軸方向と直交方向に溝孔8aが貫通して形成され、該溝孔8aは内標の注入スペースとして機能し、その回動位置によって前記送液管5または内標導管9と連通可能にされている。
前記内標導管9の一端は内標収納容器11に挿入され、該容器11に不活性ガス源に連通する加圧ガス導管12が挿入され、該導管12から導入された不活性ガスによって、前記容器11内の内標13を前記内標導管9へ押し出し、内標導入弁8へ供給可能にしている。前記不活性ガスとしてはヘリウムガスまたは窒素ガス等を使用している。
The internal mark introduction valve 8 is rotatably disposed at the intersection of the liquid feed pipe 5 and the internal mark conduit 9, and its operation is controlled by a control device (not shown) utilizing a personal computer, and a groove described later The communication between the hole and the liquid feed pipe 5 or the internal mark conduit 9 can be switched.
The internal mark introduction valve 8 has a groove 8a formed in the cylindrical shaft and penetrating in the direction perpendicular to the axial direction, and the groove 8a functions as an injection space for the internal mark, depending on its rotational position. It is possible to communicate with the liquid delivery pipe 5 or the internal mark conduit 9.
One end of the internal mark conduit 9 is inserted into the internal mark storage container 11, the pressurized gas conduit 12 communicating with the inert gas source is inserted into the container 11, and the inert gas introduced from the conduit 12 The internal mark 13 in the container 11 is pushed to the internal mark conduit 9 so that it can be supplied to the internal mark introduction valve 8. Helium gas or nitrogen gas is used as the inert gas.

前記内標導管9は内標導入弁8の周面に前記送液管5と直交方向に配置され、その上流部が前記不活性ガス源等の加圧部45に連絡し、その下流側端部が排出容器10に挿入され、該排出容器10に供給した内標13の余剰分を排出可能にしている。   The internal mark conduit 9 is disposed on the circumferential surface of the internal mark introduction valve 8 in a direction perpendicular to the liquid feed pipe 5, and the upstream portion thereof communicates with the pressurizing portion 45 such as the inert gas source, and the downstream end The part is inserted into the discharge container 10, and the surplus part of the internal mark 13 supplied to the discharge container 10 can be discharged.

前記内標導入弁8は、内標注入前は図1の実線のように閉弁し、内標導入弁8と内標導管9を遮断し、代わりに第1および第2貯留部6,7を連通させて、これらに前記水系溶液16を導入可能にしている。
すなわち、前記溝孔8aは前記制御装置を介して送液管5に連通可能に配置され、送液管5に導入した水系溶液16を内部へ導入可能にしている。この状況は図4(a)のようである。
Before the injection of the internal mark, the internal mark introduction valve 8 is closed as shown by the solid line in FIG. 1, and the internal mark introduction valve 8 and the internal mark conduit 9 are shut off. Instead, the first and second reservoirs 6, 7 are closed. Are connected so that the aqueous solution 16 can be introduced into them.
That is, the groove 8a is disposed so as to be in communication with the liquid feed pipe 5 via the control device, so that the aqueous solution 16 introduced into the liquid feed pipe 5 can be introduced into the inside. This situation is as shown in FIG. 4 (a).

次に、内標13の注入時は、内標導入弁8を図1の破線のように切換えて開弁し、内標
導入弁8を内標導管9に連通して内標13を導入し、その余剰分を排出容器10へ排出可能にしている。
すなわち、前記制御装置を介して、内標導入弁8を内標注入前の状況から時計方向へ90°回動し、前記溝孔8aを内標導管9へ連通可能に配置して、内標13を導入可能にしている。この状況は図4(b)のようである。
Next, when the internal mark 13 is injected, the internal mark introduction valve 8 is switched as shown by the broken line in FIG. 1 to open, and the internal mark introduction valve 8 is communicated with the internal mark conduit 9 to introduce the internal mark 13 , And the surplus can be discharged to the discharge container 10.
That is, the internal mark introduction valve 8 is turned clockwise by 90 ° from the situation before the internal mark injection via the control device, and the groove hole 8a is arranged to be able to communicate with the internal mark conduit 9, It is possible to introduce 13. This situation is as shown in FIG. 4 (b).

前記内標13の注入後、内標導入弁8を図1の実線のように切換えて閉弁し内標導入弁
8を復旧して、内標導入弁8と内標導管9を遮断し、代わりに第1および第2貯留部6,7に連通させている。
すなわち、前記制御装置を介して、内標導入弁8を内標注入時から反時計方向へ90°回動し、前記溝孔8aを送液管5に連通可能に配置して、前記溝孔8a内に導入した内標13の全量を送液管5内の水系溶液16中に注入可能にしている。この状況は図4(c)および図5のようで、水系溶液16中に所定量の内標13がサンドイッチ状に配置される
After the injection of the internal mark 13, the internal mark introduction valve 8 is switched as shown by the solid line in FIG. 1 to close and restore the internal mark introduction valve 8 to shut off the internal mark introduction valve 8 and the internal mark conduit 9; Instead, it is in communication with the first and second reservoirs 6 and 7.
That is, the internal mark introduction valve 8 is rotated by 90 ° counterclockwise from the time of internal mark injection via the control device, and the groove hole 8a is disposed so as to be able to communicate with the liquid feed pipe 5, The entire amount of the internal standard 13 introduced into the inside 8a can be poured into the aqueous solution 16 in the liquid feed pipe 5. This situation is as shown in FIG. 4 (c) and FIG. 5, and a predetermined amount of internal mark 13 is arranged in a sandwich form in the aqueous solution 16.

実施形態では、前記内標13は水系溶液中の目的対象成分に含まれていない成分であり、物性が似ており、定量目的成分に近い位置で溶出し、高純度な成分である必要があり、実施形態ではフルオロベンゼンと1,4-ジオキサン-d8、トルエン-d8とp-ロモフルオロベンゼンの4成分を使用している。
このうち、フルオロベンゼン、トルエン-d8、p-ロモフルオロベンゼンは、検出器の感度の補正を図り、1,4-ジオキサン-d8は1,4-ジオキサンの補正を図るようにしている。
In the embodiment, the internal standard 13 is a component which is not contained in the target component in the aqueous solution, the physical properties are similar, it is necessary to elute at a position close to the quantitative target component and to be a high purity component in the embodiment fluorobenzene and 1,4-dioxane-d8, using four components of toluene-d8 p-Bed Romo fluorobenzene.
Among these, fluorobenzene, toluene-d8, p-Bed Romo fluorobenzene, aims to correct the sensitivity of the detector, 1,4-dioxane-d8 are to achieve correction of 1,4-dioxane.

前記送液管5の上流側に内外二重管構造のニ−ドル14が配置され、該ニ−ドル14の尖端部を常時は後述の排出容器に収容し、その外側通路(図示略)に不活性ガスを導入可能なガス導管15を接続している。
前記ニードル14の直下に、前述の水系溶液16を収容する容器17が配置され、その蓋にニードル14の尖端部を抜き差し可能にしている。
The needle 14 of the inner and outer double pipe structure is disposed on the upstream side of the liquid feed pipe 5, and the pointed end of the needle 14 is always accommodated in the discharge container described later, and the outer passage (not shown). A gas conduit 15 capable of introducing an inert gas is connected.
Immediately below the needle 14, a container 17 for containing the aqueous solution 16 described above is disposed, and the tip of the needle 14 can be inserted into and removed from the lid.

そして、ニードル14の先端部を前記容器17内の水系溶液16に挿入し、ガス導管15に注入した不活性ガスをニードル14の外側通路に導入して、水系溶液16を内側通路(図示略)に連通する送液管5へ押し出し可能にしている。
図中、18はニードル14から排出された洗浄液を収容する排出容器、19は水系溶液16の余剰分を収容する排出容器で、送液管5の下流側端部に配置されている。
Then, the tip of the needle 14 is inserted into the aqueous solution 16 in the container 17, the inert gas injected into the gas conduit 15 is introduced into the outer passage of the needle 14, and the aqueous solution 16 is not shown. Can be pushed out to the liquid feed pipe 5 communicating with the
In the figure, reference numeral 18 denotes a discharge container for containing the cleaning liquid discharged from the needle 14, and 19 denotes a discharge container for containing the surplus portion of the aqueous solution 16, which is disposed at the downstream end of the liquid feed pipe 5.

前記送液管5の第1貯留部6より上流側に第1切換弁20が配置され、また第2貯留部7より下流側に第2切換弁21が配置され、前記第1切換弁20にパージ・トラップ導入管22が接続され、第2切換弁21に不活性ガス源に連通する加圧ガス導管23が接続されている。
前記第1および第2切換弁20,21は電磁弁で構成され、これらの作動は前記制御装置によって制御されている。
A first switching valve 20 is disposed upstream of the first storage portion 6 of the liquid delivery pipe 5, and a second switching valve 21 is disposed downstream of the second storage portion 7. The purge / trap introduction pipe 22 is connected, and the second switching valve 21 is connected to the pressurized gas conduit 23 communicating with the inert gas source.
The first and second switching valves 20 and 21 are constituted by solenoid valves, and their operation is controlled by the control device.

すなわち、前記第1および第2切換弁20,21は、水系溶液16を第1および第2貯留部6,7へ導入する際、図1の実線のように切換えられ、また内標13を含む水系溶液16をパージ・トラップ導入管22へ導入する際、第1切換弁20および第2切換弁21を図1の破線のように切換え、更に第1および第2貯留部6,7を洗浄および乾燥する際、第1切換弁20を図1の実線のように、第2切換弁21を図1の破線のようにそれぞれ切換え可能にしている。   That is, when the aqueous solution 16 is introduced into the first and second reservoirs 6 and 7, the first and second switching valves 20 and 21 are switched as shown by the solid line in FIG. When the aqueous solution 16 is introduced into the purge / trap introduction pipe 22, the first switching valve 20 and the second switching valve 21 are switched as shown by the broken line in FIG. 1, and the first and second reservoirs 6, 7 are cleaned and When drying, the first switching valve 20 is switchable as shown by a solid line in FIG. 1 and the second switching valve 21 is switched as shown by a broken line in FIG.

前記パージ・トラップ部3は、パージ・トラップ導入管22から導入される水系溶液16の所定成分をパ−ジするパージ管24と、パージしたガス状のVOCをトラップするトラップ管25と、トラップしたVOCの成分を分析する分析装置26、とを備えている。
このうち、前記パージ管24は略U字管状に形成され、その両側の施栓した閉塞端を上側に配置し、その一方の閉塞端にパージ・トラップ導入管22の端部を挿入して、内標13を注入した水系溶液16を導入し、パージ管24の上部にパージ導管27の一端を挿入している。
The purge / trap unit 3 traps the purge pipe 24 which purges a predetermined component of the aqueous solution 16 introduced from the purge / trap introduction pipe 22, and the trap pipe 25 which traps the purged gaseous VOC. And an analyzer 26 for analyzing the components of the VOC.
Among them, the purge pipe 24 is formed substantially in a U-shape, and the closed closed ends on both sides thereof are disposed on the upper side, and the end of the purge / trap introduction pipe 22 is inserted into one closed end thereof. An aqueous solution 16 into which a mark 13 is injected is introduced, and one end of a purge conduit 27 is inserted into the upper portion of the purge pipe 24.

また、パージ管24の他方の閉塞端に、不活性ガス源に連通する加圧ガス導管28が接続され、この不活性ガスをパージガスとしてパージ管24へ導入し、前記水系溶液16と内標13に含まれるVOCを水中から分離し、上方に滞留する分離ガスをパージ導管27へ押し出し可能にしている。図中、29は水系溶液16と内標13が混在している溶液である。   Further, a pressurized gas conduit 28 communicating with an inert gas source is connected to the other closed end of the purge pipe 24 and this inert gas is introduced into the purge pipe 24 as a purge gas, and the aqueous solution 16 and internal mark 13 are introduced. The VOC contained therein is separated from the water, and the separation gas staying above can be pushed out to the purge conduit 27. In the figure, 29 is a solution in which the aqueous solution 16 and the internal standard 13 are mixed.

前記トラップ管25は、内部に前記分離ガスをトラップ可能な吸着剤30を収容してトラップ導管31に介挿され、その外周面にヒータ(図示略)を装着し、該ヒータを加熱して吸着剤30にトラップした分離ガスを脱着し、分析導管32を介して分析装置26へ導入可能にしている。
前記分析装置26は検出器を備えたGCまたはGC/MSからなり、トランスファーライン33を介して分析導管32を所定温度に加温し、コールドスポットを作らず分析精度を確保させている。
The trap tube 25 accommodates therein the adsorbent 30 capable of trapping the separation gas and is inserted into the trap conduit 31. A heater (not shown) is attached to the outer peripheral surface of the trap tube 25 to heat and adsorb the heater. The separated gas trapped in the agent 30 is desorbed and can be introduced into the analyzer 26 through the analysis conduit 32.
The analyzer 26 is a GC or GC / MS equipped with a detector, and the analysis conduit 32 is heated to a predetermined temperature via the transfer line 33 to ensure analysis accuracy without forming a cold spot.

前記パージ導管27の下流側に第3切換弁34が介挿され、該切換弁34は電磁弁で構成され、前記水系溶液のパージ・トラップ時にパージ導管27との連通と遮断を可能にし、その作動を前記制御装置によって制御している。また、前記第3切換弁34に不活性ガス源に連通する加圧ガス導管35が接続され、この不活性ガスを第3切換弁34へ導入可能にしている。   A third switching valve 34 is interposed downstream of the purge conduit 27, and the switching valve 34 is constituted by a solenoid valve to enable communication with and shut off from the purge conduit 27 during purge and trap of the aqueous solution, The operation is controlled by the controller. Further, a pressurized gas conduit 35 communicating with an inert gas source is connected to the third switching valve 34 so that the inert gas can be introduced into the third switching valve 34.

すなわち、前記第3切換弁34は前記水系溶液のパージ・トラップ時に、図1の実線のように切換えられてパージ導管27と連通し、分離ガスをトラップ管25へ移動可能にしている。
また、前記第3切換弁34はトラップ管25の除湿・乾燥時に図1の破線のように切換えられて、加圧ガス導管35とパージ導管27の上流側への連通を遮断し、加圧ガス導管35をパージ導管27の下流側へ連通させて、不活性ガスをトラップ管25へ導入可能にしている。
That is, at the time of purge and trap of the aqueous solution, the third switching valve 34 is switched as shown by a solid line in FIG. 1 and communicated with the purge conduit 27 to make the separated gas movable to the trap pipe 25.
Further, the third switching valve 34 is switched as shown by the broken line in FIG. 1 at the time of dehumidification and drying of the trap pipe 25 to shut off the communication between the pressurized gas conduit 35 and the purge conduit 27 to the upstream side. A conduit 35 is in communication with the purge conduit 27 downstream so that inert gas can be introduced into the trap tube 25.

前記トラップ導管31の一端に第4切換弁36が接続され、該切換弁36は電磁弁で構成され、前記水系溶液16のパージ・トラップ時に図1の実線のように切換えてパージ導管27と連通し、該導管27を移動する分離ガスを吸着剤30に吸着し、吸着後の分離ガスを外部へ排出可能にしている。
前記第4切換弁36に不活性ガス源に連通する加圧ガス導管37が接続され、該切換弁36は分析時に破線のように切換えられ、不活性ガスによって吸着剤30から脱着した分離ガスを分析装置26へ移送可能にしている。
A fourth switching valve 36 is connected to one end of the trap conduit 31, and the switching valve 36 is constituted by an electromagnetic valve, and is switched as shown by the solid line in FIG. The separated gas moving through the conduit 27 is adsorbed to the adsorbent 30, and the separated gas after adsorption can be discharged to the outside.
A pressurized gas conduit 37 communicating with an inert gas source is connected to the fourth switching valve 36, and the switching valve 36 is switched as shown by a broken line at the time of analysis to separate the separated gas desorbed from the adsorbent 30 by the inert gas. It is transportable to the analyzer 26.

前記パージ導管27の下流側端部と、トラップ導管31の一端と、分析導管32の一端とが第5切換弁38の各ポートに接続され、該切換弁38は電磁弁で構成され、その作動を前記制御装置によって制御している。
前記第5切換弁38は、パージ・トラップ時に図1の実線のように切換えてパージ導管27をトラップ導管31に連通し、該パージ導管27を移動する分離ガスをトラップ管25へ移送可能にしている。
また、不活性ガス源に連通する加圧ガス導管39を第5切換弁38に接続し、該導管39をパージ・トラップ時に図1の実線のように切換えて分析導管32に連通させ、不活性ガスを分析装置26へ導入可能にしている。
The downstream end of the purge conduit 27, one end of the trap conduit 31, and one end of the analysis conduit 32 are connected to each port of the fifth switching valve 38, and the switching valve 38 is composed of a solenoid valve, and its operation is Is controlled by the controller.
The fifth switching valve 38 is switched as shown by the solid line in FIG. 1 at the time of purge and trap to connect the purge conduit 27 to the trap conduit 31 so that the separated gas moving through the purge conduit 27 can be transferred to the trap tube 25. There is.
Further, the pressurized gas conduit 39 communicating with the inert gas source is connected to the fifth switching valve 38, and the conduit 39 is switched as shown by the solid line in FIG. Gas can be introduced into the analyzer 26.

一方、前記加圧ガス導管23の上流側に第6切換弁40と第7切換弁41とが離間して配置され、これらは電磁弁で構成され、その作動を前記制御装置によって制御している。
このうち、第6および第7切換弁40,41は水系溶液16を第1および第2貯留部6,7へ導入する際、図1の実線のように切換えられて連通し、第7切換弁41に接続した前記ガス通路15へ不活性ガスを供給可能にしている。
そして、水系溶液16をパージ・トラップ部へ導入する際、第6および第7切換弁40,41は図3の実線のように切換えられて連通し、不活性ガスを送液管5およびパージ・トラップ導入管22へ移送可能にしている。
On the other hand, a sixth switching valve 40 and a seventh switching valve 41 are disposed on the upstream side of the pressurized gas conduit 23 separately from each other, these are constituted by solenoid valves, and the operation thereof is controlled by the control device .
Among them, the sixth and seventh switching valves 40 and 41 are switched and communicated as shown by the solid line in FIG. 1 when introducing the aqueous solution 16 into the first and second reservoirs 6 and 7, and the seventh switching valve It is possible to supply an inert gas to the gas passage 15 connected to 41.
When the aqueous solution 16 is introduced into the purge / trap portion, the sixth and seventh switching valves 40 and 41 are switched as shown by the solid line in FIG. It is made transferable to the trap introduction pipe 22.

また、第1および第2貯留部6,7の洗浄時は、第6および第7切換弁40,41を図7の実線のように切換え、不活性ガス源に連通する加圧ガス導管42から不活性ガスを洗浄容器43へ導入し、該容器43に収容した洗浄液44を加圧ガス導管23へ送り出し、これを第1および第2貯留部6,7と送液管5へ移動して洗浄し、洗浄後の洗浄液44を排出容器18へ排出させている。   Also, when cleaning the first and second reservoirs 6, 7, the sixth and seventh switching valves 40, 41 are switched as shown by the solid line in FIG. 7, and the pressurized gas conduit 42 communicated with the inert gas source Inert gas is introduced into the cleaning vessel 43, the cleaning solution 44 contained in the vessel 43 is sent out to the pressurized gas conduit 23, and this is moved to the first and second reservoirs 6, 7 and the liquid delivery pipe 5 for cleaning. And discharge the washing liquid 44 after washing to the discharge container 18.

なお、この実施形態では第1および第2貯留部6,7をループ状に捲回して構成しているが、これに限らず直管状の導管を大径に形成して所定容量に構成したものでも良い。   In this embodiment, the first and second reservoirs 6, 7 are wound in a loop, but the present invention is not limited to this. But it is good.

このように構成した内部標準液の移送方法およびその移送装置は、水系溶液16を導入可能な送液管5にパージ・トラップ部3を連通および遮断可能に配置し、該送液管5に第1および第2貯留部6,7を離間して配置する。
実施形態の第1および第2貯留部6,7は、細管を捲回して所定容量のループ状に構成し、それらの両端部を送液管5の中流部に嵌合して装着し、または細管を捲回して一体に構成し、それらの間に内標導入弁8を開閉可能に配置する。
The method and apparatus for transferring the internal standard solution configured as described above arranges the purge / trap portion 3 so as to be able to communicate with and shut off the liquid feed pipe 5 to which the aqueous solution 16 can be introduced. The 1 and 2nd storage parts 6 and 7 are spaced apart and arranged.
In the first and second reservoirs 6 and 7 of the embodiment, a thin tube is wound to form a loop having a predetermined volume, and both ends thereof are fitted and attached to the midstream portion of the liquid delivery tube 5, or The thin tubes are wound to form an integral structure, and the internal mark introduction valve 8 is disposed so as to be able to open and close between them.

前記内標導入弁8は制御装置によって開閉制御され、この内標導入弁8に内標導管9を連通および遮断可能に配置する。
すなわち、前記内標導入弁8を送液管5と内標導管9に回動可能に介挿し、その作動をパーソナルコンピュータを駆使した制御装置(図示略)によって切換え制御し、その溝孔8aと送液管5または内標導管9との連通を切換え可能にしている。
前記内標導入弁8は、その円筒軸状の内部に内標13の注入スペースとして、溝孔8aを軸方向と直交方向に貫通して形成しており、該溝孔8aが内標13の計量手段として機能し、従来のような複雑で高価な計量機構を要しない。
The internal mark introduction valve 8 is controlled by the control device to open and close, and the internal mark introduction valve 8 is arranged to be able to communicate with and shut off the internal mark conduit 9.
That is, the internal mark introduction valve 8 is rotatably inserted in the liquid feed pipe 5 and the internal mark conduit 9, and the operation is controlled by a control device (not shown) using a personal computer, and the groove hole 8a and The communication with the liquid feed pipe 5 or the internal mark conduit 9 can be switched.
The inner mark introduction valve 8 is formed as a filling space for the inner mark 13 inside the cylindrical shaft, and the slot hole 8 a is formed to penetrate in the direction perpendicular to the axial direction. It functions as a weighing means and does not require a complicated and expensive weighing mechanism as in the prior art.

前記内標導管9の一端を内標収納容器11に挿入し、該容器11に不活性ガス源に連通する加圧ガス導管12を挿入し、該導管12から導入された不活性ガスによって、前記容器11内の内標13を前記内標導管9へ押し出し、内標導入弁8へ供給可能にする。
前記内標導管9を内標導入弁8の周面に前記送液管5と直交方向に配置し、その上流部を前記不活性ガス源等の加圧部45に連絡し、その下流側端部を排出容器10に挿入し、該排出容器10に供給した内標13の余剰分を排出可能にする。
One end of the internal mark conduit 9 is inserted into the internal mark storage container 11, and the pressurized gas conduit 12 communicating with the inert gas source is inserted into the container 11, and the inert gas introduced from the conduit 12 The internal mark 13 in the container 11 is pushed to the internal mark conduit 9 and can be supplied to the internal mark introduction valve 8.
The internal mark conduit 9 is disposed on the circumferential surface of the internal mark introduction valve 8 in a direction perpendicular to the liquid feed pipe 5, and the upstream portion thereof is communicated with the pressurizing portion 45 such as the inert gas source, and the downstream end The part is inserted into the discharge container 10, and the surplus portion of the internal mark 13 supplied to the discharge container 10 can be discharged.

前記水系溶液16はVOC成分を含む水等を使用し、内標13としては水系溶液中の目的対象成分に含まれていない成分であり、物性が似ており、分析対象成分に近い位置で溶出し、高純度な成分である必要があり、実施形態ではフルオロベンゼン、1,4-ジオキ
サン-d8、トルエン-d8、p-ロモフルオロベンゼン等を使用する。
このうち、フルオロベンゼン、トルエン-d8、p-ロモフルオロベンゼンは、検出器の感度の補正を図り、1,4-ジオキサン-d8は1,4-ジオキサンの補正を図るようにする。
The aqueous solution 16 uses water or the like containing a VOC component, and the internal standard 13 is a component not included in the target component in the aqueous solution, has similar physical properties, and is eluted at a position close to the analyte and, must be a high purity component, fluorobenzene in embodiments, 1,4-dioxane-d8, toluene-d8, using a p- Bed Romo fluorobenzene and the like.
Among these, fluorobenzene, toluene-d8, p-Bed Romo fluorobenzene, aims to correct the sensitivity of the detector, 1,4-dioxane-d8 is to achieve a correction of 1,4-dioxane.

前記フルオロベンゼン、p-ロモフルオロベンゼン、トルエン-d8は回収率が高い成分で、パージを行なうことによって略全量が揮発しトラップ管25へ吸着される一方、1,4-ジオキサン-d8は親水性が高く回収率が低い成分であるため、パージを行なってもトラップ管25へ吸着される割合が低い。 The fluorobenzene, p- Bed Romo fluorobenzene, toluene -d8 is a high component recovery, while being adsorbed to the trap pipe 25 to evaporate the substantially whole amount by performing the purge, 1,4-dioxane -d8 hydrophilic Since the component is a component having a high degree of recovery and a low recovery rate, the rate of adsorption to the trap tube 25 is low even after purging.

このように実施形態の内部標準液の移送装置は、既設装置の一部を改変して容易に対応でき、内標13の特別な計量手段や制御機構を要しないから、従来のように内部標準ガスの流量を自動制御するマスフローコントローラや、開閉時間を制御する三方弁を要せず、その分構成が簡単で、容易かつ安価に製作することができる。
しかも、この実施形態では後述のように内標13の前後に水系溶液16を配置し、内標13をサンドイッチ状に挟み込んでパージ・トラップ部3へ送り込んでいるから、内標13が水系溶液16に容易かつ速やかに馴染んで、これらが均一かつ精密に分布する。
したがって、例えば内標13の背後に水系溶液16を配置し、水系溶液16によって内標を押し出す方法に比べ、内標13が水系溶液16に速やかで、かつ均一に分布する。
As described above, the transfer device of the internal standard solution of the embodiment can be easily coped with by modifying a part of the existing device and does not require any special measuring means or control mechanism of the internal mark 13, so that the internal standard as in the prior art A mass flow controller for automatically controlling the flow rate of gas and a three-way valve for controlling the open / close time are not required, and the configuration is simple, and it can be manufactured easily and inexpensively.
Moreover, in this embodiment, the aqueous solution 16 is disposed before and after the internal standard 13 as described later, and the internal standard 13 is sandwiched between the internal standard 13 and sent to the purge / trap portion 3. It adapts easily and quickly, and distributes them uniformly and precisely.
Therefore, for example, as compared with the method of disposing the aqueous solution 16 behind the internal standard 13 and extruding the internal standard by the aqueous solution 16, the internal standard 13 is distributed quickly and uniformly in the aqueous solution 16.

次に、前記移送装置を使用して内標13を水系溶液に注入する場合は、ニードル14を排出容器18から引き上げ、その尖端を容器17の蓋に刺し込んで内部の水系溶液16に挿入する。
そして、第1,2,6,7切換弁20,21,40,41と、内標導入弁8を図1の実線のように切換え、内標導入弁8と内標導管9を遮断して、不活性ガスを加圧ガス導管23へ送り込み、該ガスをガス導管15を介してニードル14の外側通路(図示略)へ導入し、容器17内の水系溶液16をニ−ドル14の内側通路(図示略)から送液管5へ押し出す。
Next, when injecting the internal mark 13 into the aqueous solution using the transfer device, the needle 14 is pulled up from the discharge container 18 and its tip is pierced into the lid of the container 17 and inserted into the aqueous solution 16 inside. .
Then, switch the first, second, sixth and seventh switching valves 20, 21, 40 and 41 and the internal mark introduction valve 8 as shown by the solid line in FIG. 1, and shut off the internal mark introduction valve 8 and the internal mark conduit 9 Inert gas is fed into the pressurized gas conduit 23, and the gas is introduced into the outer passage (not shown) of the needle 14 through the gas conduit 15 and the aqueous solution 16 in the container 17 is in the inner passage of the needle 14. It pushes out to the liquid feeding pipe 5 from (illustration omitted).

前記押し出された水系溶液16は、送液管5に導かれて第1貯留部6へ移動し、該貯留部6を充填後、内標導入弁8内を貫流して第2貯留部7に導かれ、該貯留部7を充填後、その余剰分を排出容器19へ排出する。
この状況は図1のようで、第1および第2貯留部6,7と、それらの間を含む送液管5に水系溶液16が充填される。
この場合、第1および第2貯留部6,7に分析対象成分を含む水系溶液16を導入しているが、その何れか一方の貯留部に分析対象成分を含む水系溶液16を導入し、他方の貯留部に分析対象成分を含まない水系溶液16を導入して、測定することも可能である。
その際、分析対象成分を含まない水系溶液16を先に第2貯留部7へ導入し、この後に分析対象成分を含む水系溶液16を第1貯留部6へ導入することも可能であり、この反対であっても良い。
The extruded aqueous solution 16 is guided to the liquid feed pipe 5 and moves to the first storage section 6, and after filling the storage section 6, flows through the inside of the internal mark introduction valve 8 to the second storage section 7. After being introduced and filling the storage portion 7, the surplus portion is discharged to the discharge container 19.
This situation is as shown in FIG. 1, and the aqueous solution 16 is filled in the first and second reservoirs 6 and 7 and the fluid delivery pipe 5 including the space between them.
In this case, the aqueous solution 16 containing the component to be analyzed is introduced into the first and second reservoirs 6 and 7, but the aqueous solution 16 containing the component to be analyzed is introduced into either one of the reservoirs, It is also possible to introduce an aqueous solution 16 which does not contain the component to be analyzed into the storage section of and measure it.
At that time, it is possible to first introduce the aqueous solution 16 not containing the component to be analyzed into the second storage section 7 first, and then introduce the aqueous solution 16 containing the component to be analyzed into the first storage section 6 It may be the opposite.

この後、ニードル14を容器17から引き抜いて排出容器18内へ移動し、第1,2,7切換弁20,21,41と内標導入弁8を図2の実線のように切換え、内標導入弁8と内標導管9を連通する。
そして、不活性ガスを加圧ガス導管12へ送り込み、該ガスを内標収納容器11へ導入して内標13を内標導管9へ押し出し、これを内標導入弁8へ導いて溝孔8aに導入し、導入後の余剰分を排出容器10へ排出する。この状況は図2のようである。
Thereafter, the needle 14 is pulled out of the container 17 and moved into the discharge container 18, and the first, second, and seventh switching valves 20, 21, 41 and the inner mark introduction valve 8 are switched as shown by solid lines in FIG. The introduction valve 8 and the internal mark conduit 9 are in communication.
Then, an inert gas is fed into the pressurized gas conduit 12, the gas is introduced into the internal mark storage container 11, the internal mark 13 is extruded into the internal mark conduit 9, and this is introduced into the internal mark introduction valve 8 to form the slot 8a. And discharge the surplus after introduction into the discharge container 10. This situation is as shown in FIG.

すなわち、内標13を内標導入弁8へ注入する際、前記制御装置を介して、内標導入弁
8を内標注入前の状況から時計方向へ90°回動し、前記溝孔8aを内標導管9へ連通させて、内部に内標13を導入する。この状況は図4(b)のようである。
That is, when the internal mark 13 is injected into the internal mark introduction valve 8, the internal mark introduction valve 8 is rotated clockwise by 90 ° from the situation before the internal mark injection via the control device, and the groove hole 8a is The internal mark 13 is introduced into the interior by communicating with the internal mark conduit 9. This situation is as shown in FIG. 4 (b).

そして、前記制御装置を介して、内標導入弁8を内標注入時から反時計方向へ90°回
動し、前記溝孔8aを送液管5に連通可能に配置し、前記溝孔8a内に導入した内標13の全量を送液管5内の水系溶液16中に注入する。この状況は図4(c)および図5のようで、水系溶液16中に所定量の内標13がサンドイッチ状に配置される。
したがって、液相の水系溶液16の間に液相の内標13が密接に3層に配置され、内標13が両側の水系溶液16に親水して馴染み拡散する。
実施形態では、本発明の所期の効果を得るために、内標13が1μLのとき、その前後に0.5mL以上の水系溶液16を配置しているが、これに限定されるものではない。
Then, the internal mark introduction valve 8 is rotated by 90 ° counterclockwise from the time of injection of the internal mark via the control device, and the groove hole 8a is disposed so as to be able to communicate with the liquid feed pipe 5, The entire amount of the internal standard 13 introduced into the inside is poured into the aqueous solution 16 in the liquid feeding pipe 5. This situation is as shown in FIG. 4 (c) and FIG. 5, and a predetermined amount of internal mark 13 is arranged in a sandwich form in the aqueous solution 16.
Therefore, the internal mark 13 of the liquid phase is closely arranged in three layers between the aqueous solution 16 of the liquid phase, and the internal mark 13 becomes hydrophilic to the aqueous solution 16 on both sides and becomes familiar and diffused.
In the embodiment, in order to obtain the desired effect of the present invention, when the internal standard 13 is 1 μL, 0.5 mL or more of the aqueous solution 16 is disposed before and after that, but it is not limited to this .

こうして水系溶液16に内標13を注入後、これをパージ・トラップ部3へ導入する際は、第1〜7切換弁20,21,34,36,38,40,41を図3の実線のように切換え、加圧導管23と送液管5の中流部と、パージ・トラップ導入管22を連通し、またパージ導管27をトラップ導管31に連通する。
そして、加圧導管23の上流側から不活性ガスを送り込み、該ガスを送液管5へ移動して、該導入管5に充填した水系溶液16と内標13をパージ・トラップ導入管22側へ送り出す。
Thus, when the internal standard 13 is injected into the aqueous solution 16 and then introduced into the purge / trap section 3, the first to seventh switching valves 20, 21, 34, 36, 38, 40, 41 are shown by solid lines in FIG. As a result, the pressure conduit 23 and the midstream portion of the liquid feed pipe 5 are communicated with the purge / trap introduction pipe 22, and the purge conduit 27 is communicated with the trap pipe 31.
Then, an inert gas is fed from the upstream side of the pressurizing conduit 23, and the gas is moved to the liquid feeding pipe 5, and the aqueous solution 16 and internal mark 13 filled in the introducing pipe 5 are purged and introduced into the pipe 22 side. Send to

このうち、第2貯留部7内の水系溶液16は前記ガスに押圧されて、該貯留部7のループに沿って回流し、内標導入弁8側へ移動して、第2貯留部7のループ内の水系溶液16に遠心力が働く。
その際、流速の大きい導管中央部では、水系溶液16部に作用する遠心力が、管内壁面付近の流速の小さい水系溶液16部に働くそれよりも大きいため、前記中央部の水系溶液16はループ管の外側へ押しやられ、管内壁付近の水系溶液16は内壁に沿ってループ管の内側に回り込む。
Among them, the aqueous solution 16 in the second reservoir 7 is pressed by the gas and circulated along the loop of the reservoir 7 to move toward the internal mark introduction valve 8 side. A centrifugal force acts on the aqueous solution 16 in the loop.
At that time, the centrifugal force acting on 16 parts of the aqueous solution is larger than that acting on the small aqueous solution 16 parts near the inner wall of the pipe in the central part of the conduit where the flow rate is high. It is pushed to the outside of the tube, and the aqueous solution 16 near the inner wall of the tube wraps around the inside of the loop tube along the inner wall.

一方、第2貯留部7の断面内の圧力分布は一様ではなく、ループ管の外側の内壁で高く、内側の内壁で低くなるため、第2貯留部7の管軸に垂直な断面内に、一対の循環流である二次流れが生じる。
すなわち、この一対の二次流れの一方は、ループ管の内側から外側へ循環し、他方はループ管の外側から内側へ循環する。
したがって、第2貯留部7内では、水系溶液16の流速と圧力が不規則に変動して乱流に似た流れを呈し、大小様々な渦運動が形成されて、水系溶液16の混合ないし攪拌が活発に行なわれる。
On the other hand, the pressure distribution in the cross section of the second reservoir 7 is not uniform, and is high at the outer inner wall of the loop tube and low at the inner inner wall, so that the pressure distribution in the cross section perpendicular to the tube axis of the second reservoir 7 is There is a secondary flow which is a pair of circulating flows.
That is, one of the pair of secondary flows circulates from the inside to the outside of the loop tube, and the other circulates from the outside to the inside of the loop tube.
Therefore, in the second reservoir 7, the flow velocity and pressure of the aqueous solution 16 fluctuate irregularly to present a flow resembling a turbulent flow, and a large and small vortex movement is formed, and mixing or stirring of the aqueous solution 16 is performed. Is actively conducted.

この後、前記水系溶液16は、第2貯留部7を流出して内標導入弁8へ導かれるが、水系溶液16の前述した乱流に似た流れは、介在する水系溶液16に伝播して注入された内標13の一端に波及し、それらの混合ないし攪拌を促す。
この後、前記内標13は前記ガスに押圧されて水系溶液16と一緒に第1貯留部6側へ移動し、該貯留部6のループ内を移動する。
その際、第1貯留部6内のループでは、前述と同様に水系溶液16の流速と圧力が不規則に変動して乱流に似た流れを呈し、大小様々な渦運動が形成されて、水系溶液16と内標13の混合ないし攪拌が活発に行なわれ、内標13が水系溶液16に均一に分布する。
Thereafter, the aqueous solution 16 flows out of the second reservoir 7 and is guided to the internal mark introduction valve 8, but the flow similar to the aforementioned turbulent flow of the aqueous solution 16 is propagated to the intervening aqueous solution 16. It spreads to one end of the injected internal mark 13 and promotes their mixing or stirring.
Thereafter, the internal mark 13 is pressed by the gas and moves together with the aqueous solution 16 toward the first reservoir 6 to move in the loop of the reservoir 6.
At that time, in the loop in the first reservoir 6, the flow velocity and the pressure of the aqueous solution 16 fluctuate irregularly to exhibit a flow resembling a turbulent flow as described above, and a large and small vortex movement is formed, The mixing or stirring of the aqueous solution 16 and the internal standard 13 is actively performed, and the internal standard 13 is uniformly distributed in the aqueous solution 16.

こうして内標13を注入された水系溶液16は、第1切換弁20からパージ・トラップ導入管22を経てパージ管24に導入され、導入後、パージ管24の他端の加圧導管28から不活性ガスを送り込み、水系溶液16と内標13が混在した溶液を強制的にパージし、このパ−ジ成分をパージ導管27へ送り出す。
この場合、前述のように内標13が水系溶液16に均一に分布してパージ管24に導入されるから、内標13の分布状況によってパージ効率、つまり水溶液中にパージガスを流して気液平衡を作り、揮発性成分を回収する効率、が相違し、回収率が異なる不具合を解消し得る。
Thus, the aqueous solution 16 into which the internal mark 13 has been injected is introduced into the purge pipe 24 from the first switching valve 20 through the purge / trap inlet pipe 22, and after introduction, it is not supplied from the pressurizing conduit 28 at the other end of the purge pipe 24. The active gas is fed to forcibly purge the mixed solution of the aqueous solution 16 and the internal standard 13, and the purge component is sent to the purge conduit 27.
In this case, since the internal standard 13 is uniformly distributed in the aqueous solution 16 and introduced into the purge pipe 24 as described above, the purge efficiency according to the distribution situation of the internal standard 13, that is, the purge gas flows in the aqueous solution to achieve gas-liquid equilibrium. It is possible to eliminate the problem that the efficiency of recovering the volatile component is different and the recovery rate is different.

したがって、水系溶液16内での内標13の不均一な分布によって、パージ効率がばらつき変化する事態を抑制し得る。特に、水系溶液16と内標13中の回収率の低い成分である1,4-ジオキサンと1,4-ジオキサン-d8に同様のパージ効率を得られるから、回収率のばらつきが小さくなる。   Therefore, the uneven distribution of the internal standard 13 in the aqueous solution 16 can prevent the purge efficiency from changing and changing. In particular, the same purge efficiency can be obtained for 1,4-dioxane and 1,4-dioxane-d8 which are components with low recovery rates in the aqueous solution 16 and the internal standard 13, so that the variation in recovery rates is reduced.

前記パージ成分を第3切換弁34を経て第5切換弁38へ導入し、該切換弁38からトラップ導管31へ移動して、該導管31に介挿したトラップ管25の吸着剤30にトラップし、余剰分を第4切換弁36から外部へ排出する。この状況は図3のようである。
この後、前記トラップ成分を分析する場合は、第4および第5切換弁36,38を図6の実線のように切換え、トラップ導管31を分析導管32に連通し、前記トラップ管25を加熱して吸着剤30にトラップしたトラップ成分を脱着する。
The purge component is introduced into the fifth switching valve 38 through the third switching valve 34, moved from the switching valve 38 to the trap conduit 31, and trapped in the adsorbent 30 of the trap pipe 25 interposed in the conduit 31. , And discharge the surplus from the fourth switching valve 36 to the outside. This situation is as shown in FIG.
Thereafter, when analyzing the trap component, the fourth and fifth switching valves 36, 38 are switched as shown by the solid line in FIG. 6, and the trap conduit 31 is communicated with the analysis conduit 32 to heat the trap tube 25. Thus, the trap component trapped in the adsorbent 30 is desorbed.

そして、加圧導管37から不活性ガスを送り込み、これをトラップ管25に導いて脱着成分を第5切換弁38を介し分析導管32へ送り出し、更に分析装置26へ導入して前記脱着成分を検出し分析する。
その際、前述のように内標13が水系溶液16に均一に分布され、該水系溶液16と内標13中の各成分に対し同様なパージ効率を得られるから、回収率の低い成分である1,4-ジオキサンと内標13の1,4-ジオキサン-d8も同様のパージ効率を得られ、回収率のばらつきが小さくなるため、分析精度の信頼性を得られる。
Then, an inert gas is fed from the pressurizing conduit 37, led to the trap pipe 25, and the desorbed component is sent out to the analysis conduit 32 through the fifth switching valve 38, and further introduced to the analyzer 26 to detect the desorbed component. Analyze.
At that time, since the internal standard 13 is uniformly distributed in the aqueous solution 16 as described above, and the same purge efficiency can be obtained for each component in the aqueous solution 16 and internal standard 13, it is a component having a low recovery rate. The same purge efficiency can be obtained from 1,4-dioxane and the internal standard 13, 1,4-dioxane-d8, and the variation in recovery rate is reduced, so that the reliability of analytical accuracy can be obtained.

こうして水系溶液16の各成分を分析後、例えば第1および第2貯留部6,7を洗浄する場合は、第1,2,6,7切換弁20,21,40,41と、内標導入弁8を図7の実線のように切換え、加圧導管42に不活性ガスを送り込み、これを洗浄容器43へ導入する。
このようにすると、洗浄液44が洗浄容器43から押し出され、第6切換弁40を介し加圧導管23へ送り出され、第7,2切換弁41,21を経て第2貯留部7へ移動し、次いで内標導入弁8から第1貯留部6へ移動して、それらを洗浄する。
そして、洗浄液44を送液管5の端部側へ移動してノズル14へ導入し、該ノズル14を洗浄後に洗浄液44を排出容器18に排出する。この状況は図7のようである。
After analyzing each component of the aqueous solution 16 in this manner, for example, when cleaning the first and second reservoirs 6 and 7, the first, second, sixth, and seventh switching valves 20, 21, 40, and 41 The valve 8 is switched as shown by the solid line in FIG. 7 to feed inert gas into the pressurization conduit 42 and introduce it into the cleaning vessel 43.
Then, the cleaning liquid 44 is pushed out of the cleaning container 43, sent out to the pressurizing conduit 23 through the sixth switching valve 40, and moved to the second reservoir 7 through the seventh and second switching valves 41 and 21, Then, it moves from the internal mark introduction valve 8 to the first reservoir 6 to wash them.
Then, the cleaning liquid 44 is moved to the end portion side of the liquid feeding pipe 5 and introduced into the nozzle 14, and after cleaning the nozzle 14, the cleaning liquid 44 is discharged to the discharge container 18. This situation is as shown in FIG.

このように本発明はVOC成分を含む水系溶液16をパージ・トラップする際、水系溶液16に液体の内標13を注入し、これらをサンドイッチ状に配置してパージ・トラップ部3へ導入しているから、内標13が水系溶液16に馴染み易く均一に分布し、水系溶液16中の目的成分と内標13のパージ効率を同一にして、分析精度の信頼性を得るようにしたものである。   As described above, according to the present invention, when the aqueous solution 16 containing the VOC component is purged and trapped, the internal mark 13 of the liquid is injected into the aqueous solution 16, and these are arranged in a sandwich and introduced into the purge and trap portion 3. Because the internal standard 13 conforms to the aqueous solution 16 and is uniformly distributed, the target component in the aqueous solution 16 and the purge efficiency of the internal standard 13 are made identical to obtain the reliability of the analysis accuracy. .

図8乃至図10は本発明の応用形態と他の実施形態を示し、前述の実施形態と対応する構成部分に同一の符号を用いている。このうち、図8は本発明の前記実施形態の応用形態を示し、この応用形態は水系溶液16に内標13を注入後、これらを更に攪拌して内標13の均一な分布状態を得られる二つの形態を示している。
このうち(a)は、第1切換弁20とパージ管24との間のパージ・トラップ導入管22にミキサー46を配置し、該ミキサー46はフッ素樹脂製の細管を所定径のループ状に捲回して所定容量に構成し、その両側の管端部を前記導入管22に嵌合して装着している
8 to 10 show the application form and other embodiments of the present invention, and the same reference numerals are used for components corresponding to the above-described embodiments. Of these, FIG. 8 shows a modified embodiment of the embodiment of the present invention, this application mode is obtained after injection Uchishirube 13 in an aqueous solution 16, a uniform distribution of internal standard 13 thereof was further stirred Two forms are shown.
Among them, in (a), a mixer 46 is disposed in the purge / trap introduction pipe 22 between the first switching valve 20 and the purge pipe 24, and the mixer 46 chops a thin tube made of fluorocarbon resin into a loop of a predetermined diameter. It is turned to form a predetermined volume, and the tube ends on both sides thereof are fitted and attached to the introduction tube 22.

そして、内標13を水系溶液16に注入後、これらをパージ・トラップ部3に導入する際、内標13を注入した水系溶液16を前記ミキサー46へ導入し、該ミキサー46では前述と同様に、水系溶液16の流速と圧力が不規則に変動して乱流に似た流れを呈し、大小様々な渦運動が形成されて、水系溶液16と内標13の混合ないし攪拌が活発に行なわれ、内標13と水系溶液16の分布状態が更に均一化されてパージ管24に導入され、各成分に対し同様なパ−ジ効率を得られるようにしている。   Then, after injecting the internal standard 13 into the aqueous solution 16, when introducing them into the purge / trap portion 3, the aqueous solution 16 into which the internal standard 13 is injected is introduced into the mixer 46, and the mixer 46 similarly to the above. The flow velocity and pressure of the aqueous solution 16 fluctuate irregularly to exhibit a turbulent flow, and a large and small vortex movement is formed, and the mixing or stirring of the aqueous solution 16 and the internal mark 13 is actively performed. The distribution of the internal standard 13 and the aqueous solution 16 is further homogenized and introduced into the purge pipe 24 so that the same purge efficiency can be obtained for each component.

図8(b)は前記ミキサー46の別の形態として、所定長さの直管状のミキシング管47を介挿し、該管47に多数のガラスビ−ズ48を収容し、該ビ−ズ48に水系溶液16と内標13を接触させ、かつそれらの接触面積を増大させて、攪拌精度の向上と内標13と水系溶液16の分布状態を更に均一化してパージ管24に導入し、各成分に対し同様なパージ効率を得られるようにしている。   As another form of the mixer 46, FIG. 8 (b) interposes a straight tubular mixing tube 47 of a predetermined length, accommodates a large number of glass beads 48 in the tube 47, and a water system in the beads 48. The solution 16 and the internal standard 13 are brought into contact with each other, and the contact area thereof is increased to further improve the stirring accuracy and to make the distribution of the internal standard 13 and the aqueous solution 16 more uniform and introduce them into the purge pipe 24. However, the same purge efficiency can be obtained.

図9および図10は本発明の第の実施形態を示し、この実施形態は内標導管9の内標導入弁8よりも下流側または上流側、実施形態では下流側に抵抗部49を配置し、前記抵抗部49によって注入機構における内標量を調量可能にしている。
すなわち、前記抵抗部49は、当該部の導管の内径を内標導管9よりも増減し、または当該部の導管の長さを長尺若しくは縮小して管路抵抗を加減し、内標導入弁8に対する内標13の注入量を調量可能にしている。
前記実施形態の抵抗部49は、導管の内径を内標導管9よりも縮径し、および/または当該部の導管の長さを長尺にして管路抵抗を増大し、内標導入弁8に対する内標13の注入量ないし導入量を抑制している。
9 and 10 show a second embodiment of the present invention, in which the resistance portion 49 is disposed downstream or upstream of the internal symbol introduction valve 8 of the internal symbol conduit 9, in the embodiment downstream of the internal symbol introduction valve 8. The internal standard quantity in the injection mechanism can be metered by the resistance portion 49.
That is, the resistance portion 49 increases or decreases the inner diameter of the conduit of the portion than that of the internal mark conduit 9, or lengthens or reduces the length of the conduit of the portion to adjust the resistance of the conduit, thereby improving the internal mark introduction valve. The injection amount of the internal standard 13 with respect to 8 can be metered.
Resistance portion 49 of the embodiment, a reduced diameter than the internal standard line 9 the internal diameter of the conduit, and / or the length of the conduit of the part pipeline resistance increases in the long, internal standard induction valve 8 The injection amount or introduction amount of the internal standard 13 with respect to

前記抵抗部49による内標導入弁8の内標13の注入状況は図10のようで、内標13の注入前は前記溝孔8aは前記制御装置を介して送液管5に連通可能に配置され、送液管5に導入した水系溶液16を内部へ導入可能にしている。この状況は図10(a)のようである。
次に、内標13の注入時は、内標導入弁8を内標注入前から時計方向へ90°回動し、前記溝孔8aを内標導管9へ連通可能に配置して、内部に内標13を導入可能にする。
その際、抵抗部49による管路抵抗によって、内標13の導入速度が減速され注入量が減少する。実施形態では、内標13の注入量が溝孔8aの容積相当分の約1/2に調量されている。この状況は図10(b)のようである。
The injection condition of the internal mark 13 of the internal mark introduction valve 8 by the resistance part 49 is as shown in FIG. 10, and before the injection of the internal mark 13, the groove hole 8 a can be communicated with the liquid feeding pipe 5 via the control device It is arranged, and the aqueous solution 16 introduced into the liquid feed pipe 5 can be introduced into the inside. This situation is as shown in FIG. 10 (a).
Next, at the time of injection of the internal mark 13, the internal mark introduction valve 8 is rotated by 90 ° clockwise before injecting the internal mark, and the groove hole 8a is arranged to be able to communicate with the internal mark conduit 9, Make the internal mark 13 installable.
At that time, the introduction speed of the internal standard 13 is decelerated and the injection amount is decreased by the pipe resistance by the resistance portion 49. In the embodiment, the injection amount of the internal mark 13 is metered to about 1/2 of the volume equivalent of the slot 8a. This situation is as shown in FIG. 10 (b).

前記内標13の注入後、内標導入弁8を切換えて閉弁し、内標導入弁8と内標導管9を遮断し、代わりに第1および第2貯留部6,7を連通させて、内標導入弁8を復旧する。
すなわち、前記制御装置を介して、内標導入弁8を内標注入時から反時計方向へ90°回動し、前記溝孔8aを送液管5に連通させて、前記溝孔8a内に導入した内標13の先端部を送液管5内の水系溶液16に密接させて注入する。この状況は図10(c)のようである。
このようにこの実施形態では、抵抗部49によって内標導入弁8に対する内標13の注入量を調整し、この調量した内標13を水系溶液16に導入して、水系溶液16の分析条件に応じた最適量の内標13の注入を実現し、内標13の適確な使用と有効利用を図るようにしている。
After the injection of the internal mark 13, the internal mark introduction valve 8 is switched to close and the internal mark introduction valve 8 and the internal mark conduit 9 are shut off, and instead, the first and second reservoirs 6, 7 are communicated. , Restore the internal symbol introduction valve 8.
That is, the internal mark introduction valve 8 is rotated by 90 ° counterclockwise from the time of injection of the internal mark through the control device, and the groove hole 8a is communicated with the liquid feed pipe 5 to enter the groove hole 8a. The tip of the introduced internal standard 13 is brought into close contact with the aqueous solution 16 in the liquid feed pipe 5 and injected. This situation is as shown in FIG. 10 (c).
As described above, in this embodiment, the injection amount of the internal standard 13 to the internal standard introduction valve 8 is adjusted by the resistance section 49, and the measured internal standard 13 is introduced into the aqueous solution 16, and the analysis conditions of the aqueous solution 16 The injection of the internal standard 13 of the optimal amount according to is implemented, and the appropriate use and effective use of the internal standard 13 are aimed at.

本発明の内部標準液の移送方法およびその移送装置は、試料に内部標準液の自動注入を容易かつ安価に実現し、試料に内部標準液を均一に分布させて一様なパージ効率を得られ、回収率の低い成分と内部標準物質の回収率のばらつきを抑制して、分析の信頼性を得られるから、例えば水に含まれる揮発性有機化合物の定量分析に好適である。   The transfer method and transfer device of the internal standard solution of the present invention realize automatic injection of the internal standard solution to the sample easily and inexpensively, and uniformly distribute the internal standard solution to the sample to obtain uniform purge efficiency. Since the reliability of the analysis can be obtained by suppressing the variation in the recovery rate of the component having a low recovery rate and the internal standard substance, it is suitable, for example, for quantitative analysis of volatile organic compounds contained in water.

3 気相抽出部(パージ・トラップ部)
5 送液管
6 第1貯留部
7 第2貯留部
8 切換弁(内標弁)
13 内部標準液
3 Gas phase extraction unit (purge and trap unit)
5 liquid feed pipe 6 first reservoir 7 second reservoir 8 switching valve (internal mark valve)
13 Internal standard solution

46,47 ミキサー
48 ガラスビーズ
49 抵抗部
46, 47 mixer 48 glass bead 49 resistor

Claims (9)

水系溶液に内部標準液を注入し、該内部標準液は親水性と揮発性を有する内部標準物質を含み、該内部標準液の前後に水系溶液を配置して気相抽出部へ導入する内部標準液の移送方法において、前記内部標準液の内部標準物質は、1,4-ジオキサン-d8を含んでいることを特徴とする内部標準液の移送方法。 An internal standard solution is injected into the aqueous solution, the internal standard solution contains an internal standard substance having hydrophilicity and volatility, and the internal standard solution is placed before and after the internal standard solution and introduced into the gas phase extraction unit. in the transfer method of the liquid, the internal standard of the internal standard solution, method of transferring an internal standard solution, wherein Rukoto include 1,4-dioxane-d8. 水系溶液の送液管と、内部標準液を送液する内標導管とに連通する内標導入弁の内部に所定量の内部標準液を導入し、水系溶液に対する内部標準液の注入量を調量する請求項1記載の内部標準液の移送方法。 A predetermined amount of internal standard solution is introduced into the inside of the internal mark introduction valve in communication with the water supply tube of the aqueous solution and the internal standard conduit that supplies the internal standard solution, and the injection amount of the internal standard solution to the aqueous solution is adjusted. The method of transferring an internal standard solution according to claim 1, wherein 内標導入弁内部の注入スペースを内標導管に連通し、内部標準液を注入スペースに導入後、内標導入弁を軸回りに回動して注入スペースを送液管に連通し、前記注入スペースに収容した内部標準液を送液管に導入する請求項記載の内部標準液の移送方法。 The injection space inside the internal mark introduction valve communicates with the internal mark conduit, and after introducing the internal standard solution into the injection space, the internal mark introduction valve is pivoted around the axis to communicate the injection space with the liquid delivery pipe, the injection 3. The method of transferring an internal standard solution according to claim 2 , wherein the internal standard solution contained in the space is introduced into the liquid feed pipe . 前記内標導入弁の下流側または上流側の内標導管に設けた抵抗部を介し、送液管に対する内部標準液の導入量を調量する請求項記載の内部標準液の移送方法。 4. The method of transferring an internal standard solution according to claim 3, wherein the amount of introduction of the internal standard solution into the liquid feed pipe is metered through a resistance portion provided in the internal symbol conduit downstream or upstream of the internal symbol introduction valve . 水系溶液の各成分を分析後、内標導入弁の注入スペースを前記送液管に連通し、該送液管の下流側から不活性ガスを導入し、前記注入スペースと送液管を洗浄する請求項記載の内部標準液の移送方法。 After analysis of each component of the aqueous solution, the injection space of the internal standard introduction valve is communicated with the liquid feed pipe, inert gas is introduced from the downstream side of the liquid feed pipe, and the injection space and liquid feed pipe are cleaned. The transfer method of the internal standard solution of Claim 3 . 水系溶液に親水性と揮発性を有する内部標準物質を含む内部標準液を注入可能に設け、In the aqueous solution, an internal standard solution containing an internal standard substance having hydrophilicity and volatility is injectably provided.
該内部標準液の前後に水系溶液を配置して、気相抽出部へ送液可能にした内部標準液の移送装置において、内部標準液の内部標準物質が1,4-ジオキサン-d8を含んでいるとともに、水系溶液の送液管と内部標準液を送液する内標導管とが連通可能な交差部に内標導入弁を回動可能に設け、該内標導入弁の内部に前記送液管と内標導管に選択的に連通可能な注入スペースを設け、該注入スペースを内標導管に連通し、所定量の内部標準液を注入スペースに導入可能に設け、内部標準液の導入後、内標導入弁を回動し注入スペースを送液管に連通して、該注入スペースに導入した内部標準液を送液管の水系溶液中に導入可能に設けたことを特徴とする内部標準液の移送装置。In the transfer device of the internal standard solution in which the aqueous solution is disposed before and after the internal standard solution and the liquid can be sent to the gas phase extraction unit, the internal standard substance of the internal standard solution contains 1,4-dioxane-d8 In addition, an internal mark introduction valve is rotatably provided at the intersection where the water supply pipe of the aqueous solution and the internal mark conduit for supplying the internal standard liquid can communicate with each other, and the liquid is supplied to the inside of the internal mark introduction valve An injection space which can selectively communicate with the pipe and the internal standard conduit is provided, the injection space is in communication with the internal standard conduit, and a predetermined amount of internal standard solution can be introduced into the injection space. An internal standard solution characterized in that the internal standard introduction valve is turned to communicate the injection space with the liquid feed pipe so that the internal standard liquid introduced into the injection space can be introduced into the aqueous solution of the liquid feed pipe. Transport device.
前記注入スペースは、内標導入弁の軸方向と直交方向に貫通形成した溝孔である請求項6記載の内部標準液の移送装置。 The transfer device for the internal standard solution according to claim 6, wherein the injection space is a slot formed in a direction perpendicular to the axial direction of the internal mark introduction valve . 前記内標導入弁の下流側または上流側の内標導管に抵抗部を設けて送液管に対する内部標準液の導入量を調量可能にした請求項記載の内部標準液の移送装置。 The transfer device for the internal standard solution according to claim 6 , wherein a resistance portion is provided on the downstream side or the upstream side of the internal symbol introduction valve of the internal symbol introduction valve so that the introduction amount of the internal standard solution to the liquid feed pipe can be metered . 水系溶液の各成分を分析後、注入スペースを前記送液管に連通し、該送液管の下流側から不活性ガスを導入し、前記注入スペースと送液管を洗浄可能にした請求項記載の内部標準液の移送装置。 After analyzing each component of the aqueous solution, the infusion space communicating with the liquid feed tube, claim an inert gas is introduced from the downstream side of said transmission liquid pipe and allows cleaning the injection space and liquid supply tube 6 Transfer device for internal standard solution as described.
JP2014265907A 2014-12-26 2014-12-26 Transfer method of internal standard solution and transfer device therefor Active JP6501518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265907A JP6501518B2 (en) 2014-12-26 2014-12-26 Transfer method of internal standard solution and transfer device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265907A JP6501518B2 (en) 2014-12-26 2014-12-26 Transfer method of internal standard solution and transfer device therefor

Publications (3)

Publication Number Publication Date
JP2016125878A JP2016125878A (en) 2016-07-11
JP2016125878A5 JP2016125878A5 (en) 2017-12-21
JP6501518B2 true JP6501518B2 (en) 2019-04-17

Family

ID=56356946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265907A Active JP6501518B2 (en) 2014-12-26 2014-12-26 Transfer method of internal standard solution and transfer device therefor

Country Status (1)

Country Link
JP (1) JP6501518B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487115B (en) * 2020-03-26 2021-03-26 江苏省计量科学研究院(江苏省能源计量数据中心) Pneumatic solution dilution and distribution device
CN116106525B (en) * 2023-04-13 2023-09-15 深圳市帝迈生物技术有限公司 blood analyzer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126691A (en) * 1991-10-30 1993-05-21 Shimadzu Corp Standard sample feeder and liquid chromatograph
JP3665680B2 (en) * 1996-06-05 2005-06-29 ジーエルサイエンス株式会社 Trace analysis method and liquid chromatograph
JPH1090134A (en) * 1996-09-20 1998-04-10 G L Sci Kk Method and analyzer for analyzing water for trace volatile organic compound
JP2000346759A (en) * 1999-06-04 2000-12-15 Dkk Corp Sample-analyzing device
JP4087321B2 (en) * 2003-09-17 2008-05-21 株式会社クラレ POLYVINYL ALCOHOL POLYMER AND PROCESS FOR PRODUCING THE SAME
CN104755422B (en) * 2012-10-26 2016-11-09 三菱瓦斯化学株式会社 The manufacture method of cyanogen halides, cyanate esters and manufacture method thereof and resin combination

Also Published As

Publication number Publication date
JP2016125878A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
CA2569728C (en) Interface from a thermal desorption unit to a chromatographic column
Kataoka et al. Developments and applications of capillary microextraction techniques: a review
US5866004A (en) Automated supercritical fluid extraction method and apparatus
JP6279076B2 (en) Gas intake system for isotope ratio analyzer
AU2005269451B2 (en) System for regulating fluid flowing through chromatographic column
EP2632561B1 (en) Method and system for liquid chromatograph with compressibility and viscosity monitoring to identify fluids
Barri et al. Advances and developments in membrane extraction for gas chromatography: Techniques and applications
JP5146264B2 (en) Gas sample introduction apparatus and gas chromatograph apparatus provided with the same
JP6501518B2 (en) Transfer method of internal standard solution and transfer device therefor
CN103448374B (en) In stream, bubble reduces device and method, fluid Supplying apparatus and chromatogram arrangement
US7752896B2 (en) Specimen pretreating device and probe used therefor
JP4626616B2 (en) Analytical method and apparatus by mass injection into gas chromatograph
JP2005140659A (en) Gradient liquid feed device
JP2007514149A (en) Sample preparation equipment
JP6440706B2 (en) Liquid chromatography device for rapid measurement
Kloskowski et al. Modern techniques of sample preparation for determination of organic analytes by gas chromatography
US20150047442A1 (en) Gas sample introduction device
JP2014006241A (en) Liquid chromatography apparatus, liquid chromatography analysis method and liquid chromatography analysis program
JP5542157B2 (en) Apparatus and method for the preparation of samples for gas chromatography
CN104458999A (en) Automatic organism analyzer
CN113396328A (en) Analysis device
WO2002101381A1 (en) Liquid chromatograph and analyzing system
JP6284312B2 (en) Sample introduction method and sample introduction apparatus
US20030133843A1 (en) Set comprising a pipette and a cartridge, as well as a method for applying a sample to the cartridge and an analytical method
JP2007024781A (en) Gas chromatograph device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250