JP6499513B2 - Method for producing lithium sulfide and method for producing inorganic solid electrolyte - Google Patents

Method for producing lithium sulfide and method for producing inorganic solid electrolyte Download PDF

Info

Publication number
JP6499513B2
JP6499513B2 JP2015104178A JP2015104178A JP6499513B2 JP 6499513 B2 JP6499513 B2 JP 6499513B2 JP 2015104178 A JP2015104178 A JP 2015104178A JP 2015104178 A JP2015104178 A JP 2015104178A JP 6499513 B2 JP6499513 B2 JP 6499513B2
Authority
JP
Japan
Prior art keywords
reducing agent
lithium
sulfide
lithium sulfide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015104178A
Other languages
Japanese (ja)
Other versions
JP2016216312A (en
Inventor
智真 成橋
智真 成橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2015104178A priority Critical patent/JP6499513B2/en
Publication of JP2016216312A publication Critical patent/JP2016216312A/en
Application granted granted Critical
Publication of JP6499513B2 publication Critical patent/JP6499513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Description

本発明は、硫化リチウムの製造方法に関する。また、本発明は、該硫化リチウムの製造方法により得られた硫化リチウムを用いる無機固体電解質の製造方法に関する。   The present invention relates to a method for producing lithium sulfide. The present invention also relates to a method for producing an inorganic solid electrolyte using lithium sulfide obtained by the method for producing lithium sulfide.

硫化リチウムは、リチウム二次電池の正極材や無機固体電解質の原料として有用である。   Lithium sulfide is useful as a positive electrode material for lithium secondary batteries and a raw material for inorganic solid electrolytes.

この硫化リチウムの製造方法として、例えば特許文献1には、非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを反応させて水硫化リチウムを生成させ、次いでこの反応液を脱硫化水素化して硫化リチウムを生成させる方法、或いは、非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを反応させ、直接硫化リチウムを生成させる方法が開示されている。また、特許文献2には、非プロトン性有機溶媒中で、水硫化ナトリウムと塩化リチウムを反応させて、次いで生成した水硫化リチウムを脱硫化水素化することにより硫化リチウムを生成させる方法が開示されている。   As a method for producing this lithium sulfide, for example, in Patent Document 1, lithium hydroxide and hydrogen sulfide are reacted in an aprotic organic solvent to produce lithium hydrosulfide, and then this reaction solution is dehydrosulfurized. A method for producing lithium sulfide or a method for producing lithium sulfide directly by reacting lithium hydroxide and hydrogen sulfide in an aprotic organic solvent is disclosed. Patent Document 2 discloses a method for producing lithium sulfide by reacting sodium hydrosulfide and lithium chloride in an aprotic organic solvent and then dehydrosulfiding the produced lithium hydrosulfide. ing.

特許文献1及び2の方法は、イオン伝導度の高いものが得られるが、高価な有機溶媒を使用するため、コスト高となり工業的に有利でない。   Although the method of patent document 1 and 2 can obtain a thing with high ion conductivity, since an expensive organic solvent is used, it becomes expensive and is not industrially advantageous.

一方、有機溶媒を使用しない硫化リチウムの製造方法としては、例えば、特許文献3には、金属リチウムと硫黄蒸気或いは硫化水素とを低温域で直接反応させ、その後、不活性ガスと置換して高温域で未反応の金属リチウムを、既に生成している硫化リチウムに拡散、浸透させ、このサイクルを繰り返すことにより硫化リチウムを得る方法が開示されている。
また、硫酸リチウムをカーボンブラック、糖等の還元剤により還元して硫化リチウムを製造する方法も提案されている(例えば、特許文献4〜5参照)。
On the other hand, as a method for producing lithium sulfide that does not use an organic solvent, for example, Patent Document 3 discloses that metal lithium and sulfur vapor or hydrogen sulfide are directly reacted in a low temperature range, and then replaced with an inert gas at a high temperature. A method for obtaining lithium sulfide by diffusing and infiltrating unreacted metallic lithium into already produced lithium sulfide and repeating this cycle is disclosed.
In addition, a method for producing lithium sulfide by reducing lithium sulfate with a reducing agent such as carbon black or sugar has been proposed (see, for example, Patent Documents 4 to 5).

有機溶媒を使用しない方法は、コスト的に有利ではあるが、無機固体電解質として用いたときに、イオン伝導度が低くなる傾向がある。
また、硫酸リチウムを用いる方法として、還元剤としてカーボンブラック等を用いた場合、反応自体を完結させることが難しく、また得られる硫化リチウムを用いた無機固体電解質はイオン伝導度が低くなる傾向がある。また、還元剤として糖を用いる方法は、比較的イオン伝導度が高いものが得られるが、急激に反応が進行するため焼成物が飛散し、作業性や安全面に問題がある。
A method that does not use an organic solvent is advantageous in terms of cost, but tends to have low ionic conductivity when used as an inorganic solid electrolyte.
Also, as a method using lithium sulfate, when carbon black or the like is used as a reducing agent, it is difficult to complete the reaction itself, and the resulting inorganic solid electrolyte using lithium sulfide tends to have low ionic conductivity. . In addition, a method using sugar as a reducing agent can be obtained with a relatively high ionic conductivity, but since the reaction proceeds abruptly, the fired product is scattered, which causes problems in workability and safety.

特開平7−330312号公報Japanese Patent Laid-Open No. 7-330312 特開平10−130005号公報Japanese Patent Laid-Open No. 10-130005 特開平9−110404号公報JP-A-9-110404 特開2013−227180号公報JP 2013-227180 A 特開平9−283156号公報JP-A-9-283156

従って、本発明の目的は、無機固体電解質として用いたときイオン伝導度が高い硫化リチウムを工業的に有利な方法で提供することにある。   Accordingly, an object of the present invention is to provide lithium sulfide having high ionic conductivity when used as an inorganic solid electrolyte in an industrially advantageous manner.

本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、硫酸リチウムを還元剤を含む原料混合物を焼成して硫化リチウムを製造する方法において、還元剤として複数の水酸基を有する有機化合物から選ばれる還元剤(1)と、炭素材から選ばれる還元剤(2)とを併用し、還元剤(1)と還元剤(2)の配合比を特定範囲にして反応をおこなうことにより、焼成物の飛散がなく、温和に反応が進行すること、また、このようにして得られる硫化リチウムは無機固体電解質として用いたときに、イオン伝導度が高いものになることを見出し、本発明を完成するに到った。   As a result of intensive studies in view of the above circumstances, the present inventors have selected lithium sulfate as an organic compound having a plurality of hydroxyl groups as a reducing agent in a method for producing lithium sulfide by baking a raw material mixture containing a reducing agent. By using the reducing agent (1) and the reducing agent (2) selected from carbon materials in combination, the reaction is performed with the mixing ratio of the reducing agent (1) and the reducing agent (2) within a specific range. The present invention is completed by finding that the reaction proceeds mildly without scattering, and that the lithium sulfide obtained in this way has high ionic conductivity when used as an inorganic solid electrolyte. It reached.

即ち、本発明が提供しようとする第一の発明は、硫酸リチウムと還元剤を含む原料混合物を焼成して硫化リチウムを製造する方法であって、
還元剤として複数の水酸基を有する有機化合物から選ばれる還元剤(1)と、炭素材から選ばれる還元剤(2)とを併用し、且つ還元剤(1)と還元剤(2)の質量換算の配合比(還元剤(1)/{還元剤(1)+還元剤(2)})が85〜96質量%であり、該還元剤(1)が糖類であり、且つ、該還元剤(2)が多孔質炭素材料であることを特徴とする硫化リチウムの製造方法である。
That is, the first invention to be provided by the present invention is a method for producing lithium sulfide by firing a raw material mixture containing lithium sulfate and a reducing agent,
A reducing agent (1) selected from organic compounds having a plurality of hydroxyl groups as a reducing agent and a reducing agent (2) selected from carbon materials are used in combination, and in terms of mass of the reducing agent (1) and the reducing agent (2). ratio of compounding (a reducing agent (1) / {a reducing agent (1) + reducing agent (2)}) Ri is 85-96% by mass, the reducing agent (1) is a saccharide, and, the reducing agent (2) is a method for producing lithium sulfide, which is a porous carbon material .

また、本発明が提供しようとする第二の発明は、前記の硫化リチウムの製造方法により、硫化リチウムを得、次いで、得られた硫化リチウムと、硫化リン、硫化ケイ素、硫化ゲルマニウム、硫化ホウ素、硫化アルミニウム、硫化ガリウム、リン酸リチウム、ケイ酸リチウム及びヨウ化リチウムの群から選ばれる1種又は2種以上の化合物と、を反応させることを特徴とする無機固体電解質の製造方法である。   Further, the second invention to be provided by the present invention is to obtain lithium sulfide by the above-described method for producing lithium sulfide, then lithium sulfide obtained, phosphorus sulfide, silicon sulfide, germanium sulfide, boron sulfide, An inorganic solid electrolyte production method comprising reacting one or more compounds selected from the group consisting of aluminum sulfide, gallium sulfide, lithium phosphate, lithium silicate, and lithium iodide.

本発明によれば、無機固体電解質として用いたときにイオン伝導度が高い硫化リチウムを工業的に有利な方法で提供することが出来る。   According to the present invention, lithium sulfide having high ionic conductivity when used as an inorganic solid electrolyte can be provided in an industrially advantageous manner.

実施例2の焼成工程後の坩堝の中身を示す写真。The photograph which shows the contents of the crucible after the baking process of Example 2. 比較例4の焼成工程後の坩堝の中身を示す写真(左側;坩堝、右側;坩堝の蓋)。The photograph which shows the contents of the crucible after the baking process of the comparative example 4 (left side: crucible, right side: crucible lid). 実施例2、6で得られた硫化リチウムのX線回折チャート。2 is an X-ray diffraction chart of lithium sulfide obtained in Examples 2 and 6. FIG.

以下、本発明をその好ましい実施形態に基づき説明する。
本製造方法は、硫酸リチウム及び還元剤を含む原料混合物を得る原料混合工程、該原料混合物を焼成する焼成工程を含むものである。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
This production method includes a raw material mixing step for obtaining a raw material mixture containing lithium sulfate and a reducing agent, and a firing step for firing the raw material mixture.

(1)原料混合工程;
原料混合工程に係る硫酸リチウムは、如何なる製造方法により得られたものであってもよく、市販品であってもよい。高純度の硫化リチウムを得る上で、硫酸リチウムは、不純物の含有量が少ないものほど好ましい。また、硫酸リチウムは、含水物であっても無水物であってもよい。硫酸リチウムの粒径は、特に制限されない。
(1) Raw material mixing step;
The lithium sulfate related to the raw material mixing step may be obtained by any production method or may be a commercially available product. In obtaining high-purity lithium sulfide, lithium sulfate having a lower impurity content is more preferable. Moreover, lithium sulfate may be a hydrate or an anhydride. The particle size of lithium sulfate is not particularly limited.

原料混合工程において、還元剤は、複数の水酸基を有する有機化合物から選ばれる還元剤(1)と、炭素材から選ばれる還元剤(2)とを併用して用いられる。
本製造方法において、複数の水酸基を有する有機化合物から選ばれる還元剤(1)を用いて、次工程の焼成反応を行うと、焼成容器内で急激に反応が進行することにより焼成物の飛散が起こり易いが、前記還元剤(1)と、炭素材から選ばれる還元剤(2)とを併用することで、急激な反応を抑制しながら焼成反応を行うことができ、また、このようにして得られる硫化リチウムは無機固体電解質として用いたときにイオン伝導度が高いものが得られる。
なお、以下、「還元剤(1)」及び「還元剤(2)」を総称して単に「還元剤」と言う。
In the raw material mixing step, the reducing agent is used in combination with a reducing agent (1) selected from organic compounds having a plurality of hydroxyl groups and a reducing agent (2) selected from carbon materials.
In the present production method, when a firing reaction in the next step is performed using a reducing agent (1) selected from organic compounds having a plurality of hydroxyl groups, the reaction proceeds rapidly in the firing container, and thus the fired product is scattered. Although it is likely to occur, by using the reducing agent (1) and the reducing agent (2) selected from carbon materials in combination, the firing reaction can be carried out while suppressing a rapid reaction. The obtained lithium sulfide has a high ionic conductivity when used as an inorganic solid electrolyte.
Hereinafter, “reducing agent (1)” and “reducing agent (2)” are collectively referred to simply as “reducing agent”.

還元剤(1)の複数の水酸基を有する有機化合物は、糖類、多価アルコール類が反応性に優れている観点から好ましい。   The organic compound having a plurality of hydroxyl groups of the reducing agent (1) is preferable from the viewpoint that sugars and polyhydric alcohols are excellent in reactivity.

前記糖類としては、例えば、フルクトース等の単糖類、スクロース、ラクトース等の二糖類、単糖が3〜20分子程度結合したオリゴ糖類、でんぷん、セルロース等の多糖類、キシリトール、ソルビトール等の糖アルコール類が挙げられる。   Examples of the saccharide include monosaccharides such as fructose, disaccharides such as sucrose and lactose, oligosaccharides bound with about 3 to 20 molecules of monosaccharide, polysaccharides such as starch and cellulose, and sugar alcohols such as xylitol and sorbitol. Is mentioned.

前記多価アルコール類としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等の2価のアルコール類、グリセリン、トリメチロールプロパン等の3価のアルコール類、分子中に4以上のヒドロキシル基を有する4価以上のアルコール類、ポリビニルアルコール等の多数のヒドロキシル基を有するポリマー等が挙げられる。   Examples of the polyhydric alcohols include divalent alcohols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol, trivalent alcohols such as glycerin and trimethylolpropane, and 4 in the molecule. Examples include tetravalent or higher-valent alcohols having the above hydroxyl groups, polymers having a large number of hydroxyl groups such as polyvinyl alcohol, and the like.

本製造方法において、還元剤(1)は糖類が好ましく、異相の含有量が少ない硫化リチウムを得るという効果が高まると共に、硫化リチウム中に残存する炭素の量が少なくなる点で、単糖類又は二糖類が好ましく、スクロースが特に好ましい。   In this production method, the reducing agent (1) is preferably a saccharide, and the effect of obtaining lithium sulfide with a low content of heterogeneous phase is enhanced, and the amount of carbon remaining in the lithium sulfide is reduced. Saccharides are preferred and sucrose is particularly preferred.

前記還元剤(2)に係る炭素材としては、炭素原子のみからなる材料であり、例えば、カーボンブラック、炭素繊維、黒鉛、活性炭等が挙げられる。炭素材に係るカーボンブラックは、如何なる製造方法により得られたものであるかは制限されず、例えば、ファーネス法で得られたファーネスブラック、チャンネル法で得られたチャンネルブラック、アセチレン法で得られたアセチレンブラック、サーマル法で得られたサーマルブラック等が挙げられる。炭素材に係る炭素繊維としては、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維等が挙げられる。   As a carbon material which concerns on the said reducing agent (2), it is a material which consists only of carbon atoms, for example, carbon black, carbon fiber, graphite, activated carbon, etc. are mentioned. Carbon black related to the carbon material is not limited by what production method it is obtained, for example, furnace black obtained by the furnace method, channel black obtained by the channel method, obtained by the acetylene method Examples thereof include acetylene black and thermal black obtained by a thermal method. Examples of the carbon fiber related to the carbon material include polyacrylonitrile-based carbon fiber and pitch-based carbon fiber.

本製造方法において、還元剤(2)は、多孔質炭素材料がその細孔内に硫酸リチウムと還元剤(1)を取り込んで反応場となり、焼成物の飛散を抑制する効果が高い点で好ましく、特に活性炭が、焼成物の飛散防止効果が高く、また、比表面積が高いものを安価に大量に入手できる観点から好ましい。また、用いる多孔質炭素材料のBET比表面積は、好ましくは500m2/g以上、特に好ましくは800〜3000m2/gとすることが焼成物の飛散を抑制する効果が高くなる観点から好ましい。 In the present production method, the reducing agent (2) is preferable in that the porous carbon material takes lithium sulfate and the reducing agent (1) into the pores to form a reaction field and has a high effect of suppressing the scattering of the fired product. In particular, activated carbon is preferable from the standpoint of obtaining a large amount of a product having a high specific surface area that has a high effect of preventing scattering of the fired product and has a high specific surface area. Further, the BET specific surface area of the porous carbon material to be used, preferably 500 meters 2 / g or more, particularly preferably it is preferred from the viewpoint of the effect of suppressing the scattering of the sintered product increases to 800~3000m 2 / g.

本製造方法において、前記還元剤(1)と前記還元剤(2)の質量換算の配合比(還元剤(1)/{還元剤(1)+還元剤(2)})が85〜99質量%、好ましくは88〜96質量%である。この理由は、還元剤(1)と前記還元剤(2)の配合比が85質量%より小さくなると焼成物に残存する還元剤(2)に由来する炭素が多量に残存し、この残存する炭素は、電気を通すため、得られる硫化リチウムは無機固体電解質原料として用いることが難しくなる。一方、還元剤(1)と前記還元剤(2)の配合比が99質量%より大きくなると還元剤(2)による飛散防止効果が得られなくなるからである。   In this production method, the mixing ratio (reducing agent (1) / {reducing agent (1) + reducing agent (2)}) in terms of mass of the reducing agent (1) and the reducing agent (2) is 85 to 99 masses. %, Preferably 88 to 96% by mass. This is because when the blending ratio of the reducing agent (1) and the reducing agent (2) is less than 85% by mass, a large amount of carbon derived from the reducing agent (2) remaining in the fired product remains, and this remaining carbon Since it conducts electricity, it becomes difficult to use the obtained lithium sulfide as an inorganic solid electrolyte raw material. On the other hand, when the mixing ratio of the reducing agent (1) and the reducing agent (2) is greater than 99% by mass, the scattering preventing effect by the reducing agent (2) cannot be obtained.

還元剤の配合量は、無水物換算の硫酸リチウム(Li2SO4)中のO2に対する還元剤中の炭素原子のモル比(C/O2)で、1.00〜2.10、好ましくは1.40〜2.00である。硫酸リチウム中のO2に対する還元剤中の炭素原子のモル比が上記範囲にあることにより、焼成後の硫化リチウム中の炭素の残存が少なく、また、無機固体電解質として用いたときにイオン伝導度が高くなる傾向がある。 The compounding amount of the reducing agent is 1.00 to 2.10, preferably the molar ratio (C / O 2 ) of carbon atoms in the reducing agent to O 2 in lithium sulfate (Li 2 SO 4 ) in terms of anhydride. Is 1.40 to 2.00. When the molar ratio of the carbon atom in the reducing agent to O 2 in lithium sulfate is in the above range, there is little residual carbon in the lithium sulfide after firing, and the ionic conductivity when used as an inorganic solid electrolyte Tend to be higher.

原料混合工程に係る硫酸リチウムと還元剤の混合手段は、特に制限されるものではなく、上記各原料が均一に分散した混合物となるように、湿式法或いは乾式法にて行われる。   The mixing means of the lithium sulfate and the reducing agent in the raw material mixing step is not particularly limited, and is performed by a wet method or a dry method so that a mixture in which the respective raw materials are uniformly dispersed is obtained.

湿式法は、ボールミル、ディスパーミル、ホモジナイザー、振動ミル、サンドグラインドミル、アトライター及び強力撹拌機等の装置にて行うことができる。   The wet method can be carried out by an apparatus such as a ball mill, a disper mill, a homogenizer, a vibration mill, a sand grind mill, an attritor, and a powerful stirrer.

一方、乾式法では、ハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、ヘンシェルミキサー、ナウターミキサー及びリボンブレンダー、V型混合機等の装置を用いることができる。なお、これら均一混合操作は、例示した機械的手段に限定されるものではない。また、所望によりジェットミル等で粉砕処理して粒度調整を行っても差し支えない。また、実験室レベルでは、家庭用ミキサー或いは手作業での混合でも十分である。   On the other hand, in the dry method, apparatuses such as a high speed mixer, a super mixer, a turbo sphere mixer, a Henschel mixer, a Nauter mixer, a ribbon blender, and a V-type mixer can be used. These uniform mixing operations are not limited to the illustrated mechanical means. If desired, the particle size may be adjusted by grinding with a jet mill or the like. Also, at the laboratory level, home mixing or manual mixing is sufficient.

均一混合処理された原料混合物は、焼成容器に投入し焼成工程に付される。   The uniformly mixed raw material mixture is put into a firing container and subjected to a firing step.

(2)焼成工程;
原料混合物を焼成するときの焼成温度は、750〜1000℃、好ましくは800〜950℃、特に好ましくは850〜900℃である。焼成温度が上記範囲にあることにより、異相の生成を抑えて、効率よく硫化リチウムを得ることができる。原料混合物を焼成するときの焼成時間は、未反応の硫酸リチウムが残らない範囲で、適宜選択される。原料混合物を焼成するときの焼成雰囲気は、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気又は水素ガス等の還元性ガス雰囲気である。
(2) firing step;
The firing temperature when firing the raw material mixture is 750 to 1000 ° C, preferably 800 to 950 ° C, particularly preferably 850 to 900 ° C. When the firing temperature is in the above range, generation of heterogeneous phases can be suppressed and lithium sulfide can be obtained efficiently. The firing time when firing the raw material mixture is appropriately selected as long as unreacted lithium sulfate does not remain. The firing atmosphere when firing the raw material mixture is an inert gas atmosphere such as nitrogen, argon or helium or a reducing gas atmosphere such as hydrogen gas.

焼成容器の材質は、不純物の混入が少ない容器であれば、特に制限されるものではないが、例えば金属アルミニウム、アルミナ、コージェライト、ダルマイト、ムライト、金属の表面をセラミックコートしたようなホウロウガラスからなる容器等が挙げられる。   The material of the firing container is not particularly limited as long as it is a container with little impurities mixed in, but for example, metal aluminum, alumina, cordierite, dalmitite, mullite, or from a hollow glass such as a ceramic coated metal surface. And the like.

原料混合物を焼成した後、焼成物、すなわち、生成した硫化リチウムを、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下、水素ガス等の還元性ガス雰囲気下、又は真空下で冷却し、冷却後、必要に応じて、更に、粉砕又は解砕、分級、包装等を行い、製品の硫化リチウムを得る。このとき用いる不活性ガス又は還元性ガスは、不純物の混入を防止する観点から、純度が高いほど好ましい。また、水分との接触を避ける点で、不活性ガス又は還元性ガスの露点は、−50℃以下が好ましく、−60℃以下が特に好ましい。   After firing the raw material mixture, the fired product, that is, the generated lithium sulfide is cooled in an inert gas atmosphere such as nitrogen, argon, helium, etc., in a reducing gas atmosphere such as hydrogen gas, or in a vacuum, and after cooling If necessary, further pulverization or crushing, classification, packaging, etc. are performed to obtain lithium sulfide as a product. The inert gas or reducing gas used at this time is preferably as high as possible from the viewpoint of preventing contamination of impurities. Further, in order to avoid contact with moisture, the dew point of the inert gas or reducing gas is preferably −50 ° C. or lower, and particularly preferably −60 ° C. or lower.

本発明において、焼成工程は、予め粒状セラミックを敷いた焼成容器を用いて、粒状セラミックを敷いた状態下に、前記原料混合物を焼成容器に加えて焼成を行うことが出来、このようして得られる硫化リチウムは、無機固体電解質として用いたときのイオン伝導度が更に向上したものになる。   In the present invention, the firing step can be performed by adding the raw material mixture to the firing container in a state in which the particulate ceramic is laid, using a firing container previously laid with the particulate ceramic. The lithium sulfide to be used has a further improved ionic conductivity when used as an inorganic solid electrolyte.

本製造方法に係る反応において、例えば硫酸リチウム1水塩をスクロースにより還元する反応は、主に下記反応式(1)に従って進行するものと本発明らは推測している。
3Li2SO4・H2O+C122211
→3Li2S+14H2O+12CO↑ ・・(1)
In the reaction according to this production method, for example, the present inventors speculate that the reaction of reducing lithium sulfate monohydrate with sucrose proceeds mainly according to the following reaction formula (1).
3Li 2 SO 4 · H 2 O + C 12 H 22 O 11
→ 3Li 2 S + 14H 2 O + 12CO ↑ (1)

焼成容器に粒状セラミックを敷いた状態で、焼成を行うことにより、無機固体電解質として用いたときにイオン伝導度が向上したものが得られる理由は定かではないが、本発明者らは、還元反応で副生するCO等のガス状物質を効率よく粒状セラミックが媒体となって排除しながら反応を行うことが出来るので、還元反応が完結し易くなり、このことに起因して、生成される硫化リチウムを無機固体電解質として用いると、イオン伝導度が向上するものと発明者らは推測している。   The reason why the ionic conductivity is improved when used as an inorganic solid electrolyte by firing in the state where the granular ceramic is laid on the firing container is not clear, but the present inventors have performed a reduction reaction. The reaction can be carried out while efficiently excluding gaseous substances such as CO produced as a by-product in the form of granular ceramic as a medium, so that the reduction reaction is easily completed. The inventors speculate that the use of lithium as the inorganic solid electrolyte improves the ionic conductivity.

また、焼成容器に粒状セラミックを敷いた状態下に、前記原料混合物を焼成容器に加えることにより、原料混合物は焼成容器の底に直接接触しなくなる。その結果、反応生成物である硫化リチウムが反応容器と反応し、焼成容器へ固着することを抑制し焼成容器から剥離しやすくなる。また、不純物の混入が少なくなるという利点もある。   In addition, by adding the raw material mixture to the firing container with the granular ceramic laid on the firing container, the raw material mixture does not directly contact the bottom of the firing container. As a result, the reaction product, lithium sulfide, reacts with the reaction vessel and is prevented from adhering to the firing vessel, and is easily peeled off from the firing vessel. In addition, there is an advantage that contamination with impurities is reduced.

粒状セラミックの種類は、原料混合物及び硫化リチウムに対して不活性なものであることが、高純度の硫化リチウムを得る観点から好ましい。具体的には、アルミナ、マグネシア、ジルコニア、窒化ケイ素、クロム鋼、ステンレス鋼、メノー、タングステンカーバイド等を用いることが出来、特に不活性であり、かつ安価で大量に入手しやすい観点からアルミナが好ましい。   The kind of granular ceramic is preferably inert to the raw material mixture and lithium sulfide from the viewpoint of obtaining high-purity lithium sulfide. Specifically, alumina, magnesia, zirconia, silicon nitride, chrome steel, stainless steel, menor, tungsten carbide, etc. can be used, and alumina is preferable from the viewpoint of being inactive, inexpensive and easily available in large quantities. .

粒状セラミックの形状は、特に制限はなく、球状、立方状、長方状、円錐状、板状、棒状等の形状であってもよい。   The shape of the granular ceramic is not particularly limited, and may be a spherical shape, a cubic shape, a rectangular shape, a conical shape, a plate shape, a rod shape, or the like.

粒状セラミックの大きさは、ノギスなどで直接粒子径を測定する方法等により求めた平均粒子径が0.5mm以上、好ましくは1〜10mmとすることが粒状セラミックのハンドリングの点、焼成物との分離のしやすさの点から好ましい。   The size of the granular ceramic is such that the average particle diameter determined by a method of directly measuring the particle diameter with a caliper or the like is 0.5 mm or more, preferably 1 to 10 mm in terms of handling of the granular ceramic, It is preferable from the viewpoint of ease of separation.

粒状セラミックの敷き方によって、焼成容器と焼成物との剥離性や焼成物中の不純物濃度、反応にムラが出ることから、粒状セラミックは焼成容器の底及び可能であれば壁面に沿って均一に敷くことが好ましい。   Depending on how the granular ceramic is laid, the peelability between the fired container and the fired product, the concentration of impurities in the fired product, and the reaction may vary. It is preferable to lay.

なお、粒状セラミックは、生成する焼成物の硫化リチウムに付着して焼成容器から焼成物と共に回収される場合があるが、焼成物に付着した粒状セラミックは、焼成物をそのまま粉砕又は解砕し、次いで使用した粒状セラミックの粒径より小さい目開きの篩等で分級することにより焼成物と粒状セラミックとを分離し、目的とする焼成物の硫化リチウムのみを回収することが出来る。   In addition, although the granular ceramic may be attached to the lithium sulfide of the fired product to be produced and collected together with the fired product from the fired container, the granular ceramic attached to the fired product is pulverized or crushed as it is, Subsequently, the fired product and the granular ceramic are separated by classification with a sieve having an opening smaller than the particle size of the granular ceramic used, and only the target lithium sulfide of the fired product can be recovered.

本発明の硫化リチウムの製造方法により得られる硫化リチウムの平均粒子径は、特に制限されないが、好ましくは10〜500μm、特に好ましくは30〜300μmである。硫化リチウムの平均粒子径が上記範囲にあることにより、無機固体電解質の製造に用いる場合に、その製造が容易になる。   The average particle diameter of the lithium sulfide obtained by the method for producing lithium sulfide of the present invention is not particularly limited, but is preferably 10 to 500 μm, particularly preferably 30 to 300 μm. When the average particle diameter of lithium sulfide is in the above range, the production thereof is facilitated when used for the production of an inorganic solid electrolyte.

また、本発明の硫化リチウムの製造方法では、硫酸リチウムと還元剤とを反応させているので、本発明の硫化リチウムの製造方法は、有機溶媒を用いる製造方法ではなく、且つ、硫化水素等の有毒な気体の硫黄源を用いる製造方法ではない。また、本発明の硫化リチウムの製造方法では、硫酸リチウム、還元剤(1)及び還元剤(2)とを混合し、次いで、得られる原料混合物を焼成することにより、硫化リチウムが得られるので、本発明の硫化リチウムの製造方法は、工程数が少ない製造方法である。   Further, in the method for producing lithium sulfide of the present invention, since lithium sulfate and a reducing agent are reacted, the method for producing lithium sulfide of the present invention is not a method using an organic solvent, and is not limited to hydrogen sulfide or the like. It is not a production method that uses a toxic gaseous sulfur source. In the method for producing lithium sulfide of the present invention, lithium sulfide is obtained by mixing lithium sulfate, the reducing agent (1) and the reducing agent (2), and then firing the resulting raw material mixture. The method for producing lithium sulfide of the present invention is a production method having a small number of steps.

本発明の硫化リチウムの製造方法により得られる硫化リチウムは、無機固体電解質の原料として好適に用いられる。   The lithium sulfide obtained by the method for producing lithium sulfide of the present invention is suitably used as a raw material for the inorganic solid electrolyte.

本発明の無機固体電解質の製造方法は、本発明の硫化リチウムの製造方法により硫化リチウムを得、次いで、得られた硫化リチウムと、硫化リン、硫化ケイ素、硫化ゲルマニウム、硫化ホウ素、硫化アルミニウム、硫化ガリウム、リン酸リチウム、ケイ酸リチウム及びヨウ化リチウムの群から選ばれる1種又は2種以上の化合物とを反応させることを特徴とする無機固体電解質の製造方法である。なお、以下、本発明の無機固体電解質の製造方法において、硫化リチウムと反応させる化合物を、硫化リチウムと区別するために化合物(A)と記載する。   The method for producing an inorganic solid electrolyte of the present invention is obtained by obtaining lithium sulfide by the method for producing lithium sulfide of the present invention, and then the obtained lithium sulfide, phosphorus sulfide, silicon sulfide, germanium sulfide, boron sulfide, aluminum sulfide, sulfide A method for producing an inorganic solid electrolyte, comprising reacting one or more compounds selected from the group consisting of gallium, lithium phosphate, lithium silicate and lithium iodide. Hereinafter, in the method for producing an inorganic solid electrolyte of the present invention, a compound to be reacted with lithium sulfide is referred to as a compound (A) in order to distinguish it from lithium sulfide.

本発明の無機固体電解質の製造方法により得られる無機固体電解質は、Li2S−P25、Li2S−SiS2、Li2S−GeS2、Li2S−Ga23、Li2S−B23、Li2S−Al23、Li4SiO4−Li2S−SiS2、Li3PO4−Li2S−SiS2、LiI−Li2S−P25等が挙げられる。 The inorganic solid electrolyte obtained by the method for producing an inorganic solid electrolyte of the present invention includes Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—Ga 2 S 3 , Li 2 S—B 2 S 3 , Li 2 S—Al 2 S 3 , Li 4 SiO 4 —Li 2 S—SiS 2 , Li 3 PO 4 —Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 etc. are mentioned.

本発明の無機固体電解質の製造方法に用いられる化合物(A)の物性等は、特に制限されないが、硫化リチウムとの均一混合が容易になる点で、化合物(A)の平均粒子径は、20μm以下が好ましく、1〜10μmが特に好ましい。   The physical properties and the like of the compound (A) used in the method for producing an inorganic solid electrolyte of the present invention are not particularly limited, but the average particle size of the compound (A) is 20 μm in that uniform mixing with lithium sulfide is easy. The following is preferable, and 1 to 10 μm is particularly preferable.

本発明の無機固体電解質の製造方法において、硫化リチウムと化合物(A)とを反応させる方法としては、例えば、(i)硫化リチウムと、化合物(A)とをメカニカルミリングによりガラス化する方法、(ii)硫化リチウムと化合物(A)とを混合し、得られる混合物を不活性ガス雰囲気中で、加熱して溶融させた後、急冷する方法等が挙げられる。また、(i)や(ii)で得られたガラス化物をガラス転移以上の温度で加熱処理する加熱処理工程を行うことにより、イオン伝導率を向上させる方法が挙げられる。   In the method for producing an inorganic solid electrolyte of the present invention, as a method of reacting lithium sulfide and compound (A), for example, (i) a method of vitrifying lithium sulfide and compound (A) by mechanical milling, ( ii) A method in which lithium sulfide and the compound (A) are mixed, and the resulting mixture is heated and melted in an inert gas atmosphere and then rapidly cooled. Moreover, the method of improving ion conductivity is mentioned by performing the heat processing process which heat-processes the vitrified material obtained by (i) and (ii) at the temperature more than a glass transition.

前記(i)及び(ii)の方法において、目的とする無機固体電解質の組成に合わせて、硫化リチウムと化合物(A)との配合割合を適宜選択する。例えば、無機固体電解質として、硫化リチウムと五硫化リンからLi2S−P25の組成のものを得る場合には、硫化リチウム1モルに対する五硫化リンの配合量は、0.1〜0.7モル、好ましくは0.25〜0.5モルである。 In the methods (i) and (ii), the mixing ratio of lithium sulfide and the compound (A) is appropriately selected according to the composition of the target inorganic solid electrolyte. For example, when an inorganic solid electrolyte having a composition of Li 2 S—P 2 S 5 is obtained from lithium sulfide and phosphorus pentasulfide, the compounding amount of phosphorus pentasulfide with respect to 1 mol of lithium sulfide is 0.1 to 0. 0.7 mol, preferably 0.25 to 0.5 mol.

また、(i)及び(ii)の方法において、硫化リチウムと化合物(A)以外に、組成調整を目的として、必要により硫黄を配合してもよい。   Further, in the methods (i) and (ii), in addition to lithium sulfide and the compound (A), sulfur may be blended as necessary for the purpose of adjusting the composition.

(i)の方法に係るガラス化工程は、所定量の硫化リチウムと、所定量の化合物(A)とを、遊星ボールミル等の機械的手段を用いて、窒素ガス、アルゴンガス等の不活性ガス雰囲気下でメカニカルミリングする。メカニカルミリングを行う機器としては、例えば、ビーズミル、遊星型ボールミル、振動ミル等の粉砕機器、つまり、混合対象である粉体中に粒状媒体を存在させて、それらを高速で流動させる機器が挙げられる。そして、それらを高速で流動させることで、粒状媒体により、混合対象である粉体に、機械的エネルギーが加えられる。メカニカルミリングの回転速度及び回転時間をコントロールすることで、より微細で均質なガラス粉末を調製することができるが、装置の種類や原料の種類或いは使用用途に応じて適切な条件を適宜選択してメカニカルミリングを行うことが好ましい。なお、回転速度が速いほどがガラスの生成速度は速くなり、回転時間が長いほどガラスへの転化率は高くなる傾向にある。   In the vitrification step according to the method (i), a predetermined amount of lithium sulfide and a predetermined amount of compound (A) are mixed with an inert gas such as nitrogen gas or argon gas using mechanical means such as a planetary ball mill. Perform mechanical milling in an atmosphere. Examples of the equipment for performing mechanical milling include pulverizing equipment such as a bead mill, a planetary ball mill, and a vibration mill, that is, equipment in which a granular medium is present in powder to be mixed and fluidized at high speed. . And by making them flow at high speed, mechanical energy is added to the powder to be mixed by the granular medium. By controlling the rotation speed and rotation time of mechanical milling, finer and more homogeneous glass powder can be prepared, but appropriate conditions can be selected appropriately according to the type of equipment, the type of raw material, and the intended use. It is preferable to perform mechanical milling. In addition, there exists a tendency for the conversion rate to glass to become high, so that the production | generation speed | rate of glass becomes quick, so that rotation speed is fast, and rotation time is long.

(ii)の方法は、硫化リチウムと化合物(A)とを混合し、得られる混合物を不活性ガス雰囲気中で、加熱して溶融させる溶融工程と、溶融物を急冷する急冷工程と、を有する。   The method (ii) has a melting step of mixing lithium sulfide and the compound (A) and heating and melting the resulting mixture in an inert gas atmosphere, and a quenching step of quenching the melt. .

(ii)の方法に係る溶融工程は、所定量の硫化リチウムと、所定量の化合物(A)とを、機械的手段を用いて、窒素ガス、アルゴンガス等の不活性ガス雰囲気下で混合を行って均一混合物を得る。用いることができる混合装置としては、均一混合ができるものであれば特に制限はなく、例えば、ビーズミル、ボールミル、ペイントシェイカー、アトライター、サンドミルが挙げられる。次いで、原料の混合物を、窒素ガス、アルゴンガス等の不活性ガス雰囲気中で、加熱して混合物を溶融させる。加熱温度は、溶融させる混合物の組成により異なるが、Li2S−P25の組成のものを得る場合には、加熱温度は700〜1000℃、好ましくは800〜950℃であり、加熱時間は1時間以上、好ましくは3〜6時間である。 In the melting step according to the method (ii), a predetermined amount of lithium sulfide and a predetermined amount of the compound (A) are mixed using a mechanical means in an inert gas atmosphere such as nitrogen gas or argon gas. To obtain a homogeneous mixture. The mixing apparatus that can be used is not particularly limited as long as uniform mixing can be performed, and examples thereof include a bead mill, a ball mill, a paint shaker, an attritor, and a sand mill. Next, the mixture of raw materials is heated in an inert gas atmosphere such as nitrogen gas or argon gas to melt the mixture. The heating temperature varies depending on the composition of the mixture to be melted. However, when a Li 2 S—P 2 S 5 composition is obtained, the heating temperature is 700 to 1000 ° C., preferably 800 to 950 ° C., and the heating time Is 1 hour or more, preferably 3 to 6 hours.

(ii)の方法に係る急冷工程では、溶融工程で得た溶融物を急冷して無機固体電解質を得る。急冷工程では、急冷により溶融物を、10℃以下、好ましくは0℃以下まで冷却する。また、そのときの冷却速度は、1〜1000℃/秒、好ましくは100〜1000℃/秒である。急冷する方法としては、例えば、水冷、液体窒素による急冷、双ローラー急冷、スプラット急冷方法等の常用の方法が挙げられる。   In the rapid cooling process according to the method (ii), the melt obtained in the melting process is rapidly cooled to obtain an inorganic solid electrolyte. In the rapid cooling step, the melt is cooled to 10 ° C. or lower, preferably 0 ° C. or lower by rapid cooling. Moreover, the cooling rate at that time is 1-1000 degreeC / second, Preferably it is 100-1000 degreeC / second. Examples of the rapid cooling method include conventional methods such as water cooling, rapid cooling with liquid nitrogen, twin-roller rapid cooling, and splat rapid cooling method.

(i)又は(ii)の方法で得られたガラス化物を、更に加熱処理する方法では、得られたガラス化物を、更にそのガラス転移温度以上の温度で追加加熱して、加熱処理することにより加熱処理工程を行う。この加熱処理工程により、ガラス化工程のみを行ったものに比べて、リチウムイオン伝導性を向上させることができる。加熱処理工程での加熱温度は、用いる原料の種類や配合量により異なるが、例えば、Li2S−P25の組成の無機固体電解質を得る場合は、200℃以上、好ましくは250〜400℃である。また、加熱時間は、1時間以上、好ましくは3〜12時間である。また、無機固体電解質の酸化による、リチウムイオン伝導性の低下を抑制する観点から、不活性ガス雰囲気又は真空下で加熱を行うことが好ましい。 In the method of further heat-treating the vitrified product obtained by the method (i) or (ii), the obtained vitrified product is further heated at a temperature equal to or higher than the glass transition temperature, and heat-treated. A heat treatment process is performed. By this heat treatment step, lithium ion conductivity can be improved as compared with the case where only the vitrification step is performed. The heating temperature in the heat treatment step varies depending on the type and blending amount of raw materials used. For example, when obtaining an inorganic solid electrolyte having a composition of Li 2 S—P 2 S 5 , it is 200 ° C. or higher, preferably 250 to 400. ° C. The heating time is 1 hour or longer, preferably 3 to 12 hours. Moreover, it is preferable to perform heating in an inert gas atmosphere or under vacuum from the viewpoint of suppressing a decrease in lithium ion conductivity due to oxidation of the inorganic solid electrolyte.

本発明の無機固体電解質の製造方法により無機固体電解質を得た後、必要により、無機固体電解質を粉砕して、或いはシート状に成形し、例えば、少なくとも正極と負極と無機固体電解質から構成される全固体リチウム電池の無機固体電解質、あるいは、正極、負極、セパレータ、及びリチウム塩を含有する非水の有機電解液からなるリチウム二次電池において、正極材或いは負極に使用するリチウム金属又はリチウム合金の被覆材として使用する。   After obtaining the inorganic solid electrolyte by the method for producing an inorganic solid electrolyte of the present invention, if necessary, the inorganic solid electrolyte is pulverized or formed into a sheet shape, for example, composed of at least a positive electrode, a negative electrode, and an inorganic solid electrolyte In a lithium secondary battery composed of an inorganic solid electrolyte of an all-solid-state lithium battery or a non-aqueous organic electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt, lithium metal or lithium alloy used for the positive electrode material or the negative electrode Used as a covering material.

以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
(1)X線回折測定
装置名:D8 ADVANCE、メーカー:Bruker AXSを用いて、測定条件:ターゲットCu−Kα、管電圧40kV、管電流40mA、走査速度0.1°/sec、により、X線回折測定を行った。
また、以下により、硫化リチウム結晶中の異相のLi2CO3の存在度を求めた。なお、回折ピーク強度比は、回折ピークの面積比である。
<Li2CO3の存在度>
回折ピークの強度比(d/a)=(a)硫化リチウムに由来する2θ=27°付近(111面)の回折ピーク強度/(d)炭酸リチウムに由来する2θ=21°付近(110面)の回折ピーク強度
(2)イオン伝導度測定
無機固体電解質の両面を電極(95重量%のNiと、5重量%のSnで構成される)0.30gで挟んだのち、20MPaで5分間保持することにより3層構造の成型体を作成した。当該成型体を測定サンプルとして、交流インピーダンス測定装置(ソーラトロン社製)を用いることにより、イオン伝導度を測定した。
(3)坩堝中の焼成物の飛散の状態の評価
焼成後に坩堝の中身を目視で観察し、
坩堝の底面以外の内壁に焼成物の付着が全体的にあるものを「×」、
坩堝の底面以外の内壁に焼成物の付着がところどころあるものを「△」、
坩堝の底面以外の内壁に焼成物の付着がほとんどないものを「○」、
として評価した。
(4)焼成物の坩堝への固着状態の評価
坩堝を逆さまにすることにより、焼成物を回収した後、坩堝の内壁の底面部の状況を目視で観察し、
坩堝の内壁の底面部に焼成物の固着が全体的に認められるものを「×」、
坩堝の内壁の底面部に焼成物の固着がところどころあるものを「△」、
坩堝の内壁の底面部に焼成物の固着がほとんどないものを「○」、
としてとして評価した。
(5)焼成物の炭素残存状態の評価
得られた焼成物の色を観察した。焼成物の色が黒いものは、残存する炭素が「有」、焼成物の色が灰色のものは残存する炭素が「無」として評価した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
(1) X-ray diffraction measurement Device name: D8 ADVANCE, manufacturer: Bruker AXS, measurement conditions: target Cu-Kα, tube voltage 40 kV, tube current 40 mA, scanning speed 0.1 ° / sec, X-ray Diffraction measurement was performed.
Further, the abundance of heterogeneous Li 2 CO 3 in the lithium sulfide crystal was determined as follows. The diffraction peak intensity ratio is the area ratio of diffraction peaks.
<Abundance of Li 2 CO 3 >
Intensity ratio of diffraction peaks (d / a) = (a) diffraction peak intensity around 2θ = 27 ° (111 plane) derived from lithium sulfide / (d) around 2θ = 21 ° (110 plane) derived from lithium carbonate (2) Ionic conductivity measurement of the inorganic solid electrolyte The both sides of the inorganic solid electrolyte were sandwiched between 0.30 g of electrodes (composed of 95 wt% Ni and 5 wt% Sn) and then held at 20 MPa for 5 minutes. Thus, a molded body having a three-layer structure was prepared. The ion conductivity was measured by using an AC impedance measuring device (manufactured by Solartron) using the molded body as a measurement sample.
(3) Evaluation of the state of scattering of the fired product in the crucible The contents of the crucible were visually observed after firing,
“×” indicates that the fired material is entirely adhered to the inner wall other than the bottom surface of the crucible,
“△” indicates that the fired material is attached to the inner wall other than the bottom of the crucible.
“○” indicates that there is almost no adhesion of the fired product on the inner wall other than the bottom of the crucible.
As evaluated.
(4) Evaluation of the state of fixation of the fired product to the crucible After recovering the fired product by turning the crucible upside down, the state of the bottom surface of the inner wall of the crucible was visually observed,
“×” indicates that the fixed part of the fired product is generally observed on the bottom of the inner wall of the crucible,
“△” indicates that the bottom of the inner wall of the crucible is fixed to the fired product.
“○” indicates that the bottom of the inner wall of the crucible has almost no sticking of the fired product,
As evaluated.
(5) Evaluation of carbon residual state of fired product The color of the obtained fired product was observed. When the color of the fired product was black, the remaining carbon was evaluated as “present”, and when the color of the fired product was gray, the remaining carbon was evaluated as “not present”.

{実施例1〜2及び比較例1〜4}
(1)原料混合工程;
硫酸リチウム一水和物(Li2SO4・H2O、平均粒子径30μm)、スクロース(C122211)及び活性炭(日本エンバイロンケミカルズ社製;白鷹A、BET比表面積1000m2/g)とを表1の配合割合となるように秤量し、乾式コーヒーミルで30秒間混合し原料混合物を得た。
(2)焼成工程;
アルミナ製坩堝(サイズ;50mmφ)に原料混合物を投入し、焼成炉中、窒素ガス雰囲気下、5℃/分 で900℃まで昇温し、900℃で6時間焼成を行った。
焼成終了後、120℃まで冷却し、焼成物の入った坩堝をグローブボックスへ速やかに移動した。
次いで、焼成物から坩堝を逆さまにすることにより、もしくは坩堝に付着したものを薬さじ等で掻き落とすことにより、焼成物を回収し、乳鉢で粉砕し、目開き200μmの篩を通して硫化リチウムを得た。
また、焼成物の飛散の状態及び焼成物の坩堝への固着の状態、焼成物の炭素残存状態を観察した。実施例2及び比較例2の焼成工程後の坩堝の内部の写真を図1及び図2にそれぞれ示した。
また、得られた硫化リチウムをXRD分析を行い、Li2CO3の存在度を評価し、その結果を表2に示した。
また、実施例2で得られた硫化リチウムのX線回折チャートを図3に示す。
{Examples 1-2 and Comparative Examples 1-4}
(1) Raw material mixing step;
Lithium sulfate monohydrate (Li 2 SO 4 .H 2 O, average particle size 30 μm), sucrose (C 12 H 22 O 11 ) and activated carbon (manufactured by Nippon Environ Chemicals; Shirataka A, BET specific surface area 1000 m 2 / g) were weighed so as to have the blending ratio shown in Table 1, and mixed in a dry coffee mill for 30 seconds to obtain a raw material mixture.
(2) firing step;
The raw material mixture was charged into an alumina crucible (size: 50 mmφ), heated to 900 ° C. at 5 ° C./min in a firing furnace in a nitrogen gas atmosphere, and fired at 900 ° C. for 6 hours.
After the completion of firing, the product was cooled to 120 ° C., and the crucible containing the fired product was quickly moved to the glove box.
Next, the fired product is recovered by turning the crucible upside down from the fired product, or scraping off the material adhering to the crucible with a spoon, etc., pulverized in a mortar, and obtained lithium sulfide through a sieve having an opening of 200 μm. It was.
Moreover, the state of scattering of the fired product, the state of fixing of the fired product to the crucible, and the carbon remaining state of the fired product were observed. Photos of the inside of the crucible after the firing step of Example 2 and Comparative Example 2 are shown in FIGS. 1 and 2, respectively.
The obtained lithium sulfide was subjected to XRD analysis to evaluate the abundance of Li 2 CO 3 , and the results are shown in Table 2.
Further, an X-ray diffraction chart of the lithium sulfide obtained in Example 2 is shown in FIG.

表中の「還元剤(1)の配合割合(wt%)」は、還元剤(1)/{(還元剤(1)+還元剤(2)}として表した。また、還元剤の添加量は、無水物換算の硫酸リチウムのO2と還元剤(還元剤(1)+還元剤(2))中のC原子のモル比(C/O2)で表した。 The “mixing ratio (wt%) of reducing agent (1)” in the table is expressed as reducing agent (1) / {(reducing agent (1) + reducing agent (2)}. Is represented by the molar ratio (C / O 2 ) of O 2 of lithium sulfate in terms of anhydride and the C atom in the reducing agent (reducing agent (1) + reducing agent (2)).

図1、図2及び表2の結果より、比較例3及び比較例4では、焼成物の飛散があったのに対して、実施例1及び実施例2では、焼成物の飛散もなく、温和に反応が行われたことが分かる。また、比較例1〜2の硫化リチウムには、明らかに炭素が残存しており、この残存する炭素は電気を通してしまい、無機固体電解質の原料としては不適当なものである。 From the results of FIGS. 1, 2 and Table 2, in Comparative Example 3 and Comparative Example 4, there was scattering of the fired product, while in Example 1 and Example 2, there was no scattering of the fired product and mild. It can be seen that the reaction took place. Moreover, carbon remains clearly in the lithium sulfides of Comparative Examples 1 and 2, and the remaining carbon conducts electricity, which is inappropriate as a raw material for the inorganic solid electrolyte.

{実施例3〜6}
(1)原料混合工程;
硫酸リチウム一水和物(Li2SO4・H2O、平均粒子径30μm)、スクロース(C122211)と活性炭(日本エンバイロンケミカルズ社製;白鷹A、BET比表面積1000m2/g)とを表3の配合割合となるように秤量し、乾式コーヒーミルで30秒間混合し原料混合物を得た。
(2)焼成工程;
予めアルミナビーズ(直径:3mmφ)10gを敷いたアルミナ製坩堝(サイズ;50mmφ)に原料混合物を投入し、焼成炉中、窒素ガス雰囲気下、表4に示す焼成温度で焼成反応を行った。
焼成終了後、120℃まで冷却し、焼成物の入った坩堝をグローブボックスへ速やかに移動した。
次いで、焼成物から坩堝を逆さまにすることにより、ビーズごと焼成物を回収し、軽く乳鉢で粉砕した後、目開き2mmの篩を通してビーズと焼成物とを分離した。次いで、分離した焼成物を再度乳鉢で粉砕し、目開き200μmの篩を通して硫化リチウムを得た。
また、焼成物の飛散の状態及び焼成物の坩堝への固着の状態、焼成物の炭素残存状態を観察した。
また、得られた硫化リチウムをXRD分析を行い、Li2CO3の存在度を評価し、その結果を表4に示した。
また、実施例6で得られた硫化リチウムのX線回折チャートを図3に示す。
{Examples 3 to 6}
(1) Raw material mixing step;
Lithium sulfate monohydrate (Li 2 SO 4 .H 2 O, average particle size 30 μm), sucrose (C 12 H 22 O 11 ) and activated carbon (manufactured by Nippon Environ Chemicals; Shirataka A, BET specific surface area 1000 m 2 / g) were weighed so as to have the blending ratio shown in Table 3, and mixed for 30 seconds in a dry coffee mill to obtain a raw material mixture.
(2) firing step;
The raw material mixture was put into an alumina crucible (size: 50 mmφ) on which 10 g of alumina beads (diameter: 3 mmφ) had been laid in advance, and a calcination reaction was performed at a calcination temperature shown in Table 4 in a nitrogen gas atmosphere in a calcination furnace.
After the completion of firing, the product was cooled to 120 ° C., and the crucible containing the fired product was quickly moved to the glove box.
Then, the crucible was turned upside down from the fired product, and the fired product was collected together with the beads. After lightly pulverizing with a mortar, the beads and the fired product were separated through a sieve having an opening of 2 mm. Next, the separated fired product was ground again in a mortar, and lithium sulfide was obtained through a sieve having an opening of 200 μm.
Moreover, the state of scattering of the fired product, the state of fixing of the fired product to the crucible, and the carbon remaining state of the fired product were observed.
The obtained lithium sulfide was subjected to XRD analysis to evaluate the abundance of Li 2 CO 3 , and the results are shown in Table 4.
Further, an X-ray diffraction chart of the lithium sulfide obtained in Example 6 is shown in FIG.

表中の「還元剤(1)の配合割合(wt%)」は、還元剤(1)/{(還元剤(1)+還元剤(2)}として表した。また、還元剤の添加量は、無水物換算の硫酸リチウム中のO2と還元剤(還元剤(1)+還元剤(2))中のC原子のモル比(C/O2)で表した。 The “mixing ratio (wt%) of reducing agent (1)” in the table is expressed as reducing agent (1) / {(reducing agent (1) + reducing agent (2)}. It is expressed as O 2 and a reducing agent in the lithium sulfate in dry solid basis (the reducing agent (1) + reducing agent (2)) molar ratio of C atoms in the (C / O 2).

表4の結果より、粒状セラミックを敷いた焼成容器を用いることにより、焼成物の焼成容器への固着も抑制されることが分かる。 From the results in Table 4, it can be seen that the use of a firing container with a granular ceramic also suppresses sticking of the fired product to the firing container.

(実施例7〜12)
実施例で得られた硫化リチウム0.383g(75モル%)と、五二硫化リン(Aldrich社製)0.617g(25モル%)を秤量し、それらを、遊星ミルにて、400回転で20時間処理して、無機固体電解質を得た。得られた無機固体電解質のイオン伝導度を測定した。その結果を表5に示す。
(Examples 7 to 12)
0.383 g (75 mol%) of lithium sulfide obtained in the examples and 0.617 g (25 mol%) of phosphorus pentasulfide (manufactured by Aldrich) were weighed, and they were measured at 400 revolutions on a planetary mill. Treatment for 20 hours gave an inorganic solid electrolyte. The ionic conductivity of the obtained inorganic solid electrolyte was measured. The results are shown in Table 5.

表5の結果、実施例8と実施例12を比較して明らかなように、粒状セラミックを敷いた焼成容器を用いることにより、無機固体電解質のイオン伝導度も向上することが分かる。 As is apparent from the results of Table 5, comparing Example 8 and Example 12, it can be seen that the ionic conductivity of the inorganic solid electrolyte is also improved by using a fired container laid with granular ceramic.

Claims (6)

硫酸リチウムと還元剤を含む原料混合物を焼成して硫化リチウムを製造する方法であって、
還元剤として複数の水酸基を有する有機化合物から選ばれる還元剤(1)と、炭素材から選ばれる還元剤(2)とを併用し、且つ還元剤(1)と還元剤(2)の質量換算の配合比(還元剤(1)/{還元剤(1)+還元剤(2)})が85〜96質量%であり、該還元剤(1)が糖類であり、且つ、該還元剤(2)が多孔質炭素材料であることを特徴とする硫化リチウムの製造方法。
A method for producing lithium sulfide by firing a raw material mixture containing lithium sulfate and a reducing agent,
A reducing agent (1) selected from organic compounds having a plurality of hydroxyl groups as a reducing agent and a reducing agent (2) selected from carbon materials are used in combination, and in terms of mass of the reducing agent (1) and the reducing agent (2). ratio of compounding (a reducing agent (1) / {a reducing agent (1) + reducing agent (2)}) Ri is 85-96% by mass, the reducing agent (1) is a saccharide, and, the reducing agent (2) is a porous carbon material, The manufacturing method of lithium sulfide characterized by the above-mentioned.
還元剤の配合量が、無水物換算の硫酸リチウム中のOに対する還元剤中の炭素原子のモル比(C/O)で、1.00〜2.10であることを特徴とする請求項1記載の硫化リチウムの製造方法。 The compounding amount of the reducing agent is 1.00 to 2.10 in terms of a molar ratio (C / O 2 ) of carbon atoms in the reducing agent to O 2 in lithium sulfate in terms of anhydride. Item 2. A method for producing lithium sulfide according to Item 1. 前記糖類が、スクロースであることを特徴とする請求項1又は2の何れか1項に記載の硫化リチウムの製造方法。 The method for producing lithium sulfide according to claim 1, wherein the saccharide is sucrose. 前記多孔質炭素材料が、活性炭であることを特徴とする請求項1乃至3の何れか1項に記載の硫化リチウムの製造方法。 The method for producing lithium sulfide according to any one of claims 1 to 3, wherein the porous carbon material is activated carbon. 焼成は、予め粒状セラミックを敷いた焼成容器中で行うことを特徴とする請求項1乃至の何れか1項に記載の硫化リチウムの製造方法。 The method for producing lithium sulfide according to any one of claims 1 to 4 , wherein the firing is performed in a firing container in which granular ceramic is previously laid. 請求項1〜の何れか1項に記載の硫化リチウムの製造方法により、硫化リチウムを得、次いで、得られた硫化リチウムと、硫化リン、硫化ケイ素、硫化ゲルマニウム、硫化ホウ素、硫化アルミニウム、硫化ガリウム、リン酸リチウム、ケイ酸リチウム及びヨウ化リチウムの群から選ばれる1種又は2種以上の化合物と、を反応させることを特徴とする無機固体電解質の製造方法。 Lithium sulfide is obtained by the method for producing lithium sulfide according to any one of claims 1 to 5 , and then the obtained lithium sulfide, phosphorus sulfide, silicon sulfide, germanium sulfide, boron sulfide, aluminum sulfide, sulfide A method for producing an inorganic solid electrolyte, comprising reacting one or more compounds selected from the group consisting of gallium, lithium phosphate, lithium silicate and lithium iodide.
JP2015104178A 2015-05-22 2015-05-22 Method for producing lithium sulfide and method for producing inorganic solid electrolyte Active JP6499513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015104178A JP6499513B2 (en) 2015-05-22 2015-05-22 Method for producing lithium sulfide and method for producing inorganic solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015104178A JP6499513B2 (en) 2015-05-22 2015-05-22 Method for producing lithium sulfide and method for producing inorganic solid electrolyte

Publications (2)

Publication Number Publication Date
JP2016216312A JP2016216312A (en) 2016-12-22
JP6499513B2 true JP6499513B2 (en) 2019-04-10

Family

ID=57580123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015104178A Active JP6499513B2 (en) 2015-05-22 2015-05-22 Method for producing lithium sulfide and method for producing inorganic solid electrolyte

Country Status (1)

Country Link
JP (1) JP6499513B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191417A1 (en) * 2022-03-31 2023-10-05 주식회사 솔리비스 Method for producing high-purity alkali metal sulfide

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147251A (en) * 2020-03-17 2021-09-27 三菱マテリアル株式会社 Method for producing lithium sulfide
JPWO2022009810A1 (en) * 2020-07-09 2022-01-13
KR102597513B1 (en) * 2020-12-21 2023-11-01 주식회사 포스코 Methode for manufacturing of lithium sulfide
JP7484737B2 (en) 2021-01-19 2024-05-16 トヨタ自動車株式会社 Sulfide solid electrolyte, precursor, all-solid-state battery, and method for producing sulfide solid electrolyte
JP2022135690A (en) * 2021-03-05 2022-09-15 三菱マテリアル株式会社 Method for producing lithium sulfide
WO2023090282A1 (en) * 2021-11-22 2023-05-25 三井金属鉱業株式会社 Lithium sulfide and method for producing same, and method for producing sulfide solid electrolyte

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510420B2 (en) * 1996-04-16 2004-03-29 松下電器産業株式会社 Lithium ion conductive solid electrolyte and method for producing the same
GB2464455B (en) * 2008-10-14 2010-09-15 Iti Scotland Ltd Lithium-containing transition metal sulfide compounds
JP5770675B2 (en) * 2012-04-26 2015-08-26 古河機械金属株式会社 Method for producing lithium sulfide
JP6162981B2 (en) * 2013-03-01 2017-07-12 日本化学工業株式会社 Method for producing lithium sulfide and method for producing inorganic solid electrolyte
JP2014169196A (en) * 2013-03-01 2014-09-18 Nippon Chem Ind Co Ltd Method of producing lithium sulfide and method of producing inorganic solid electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191417A1 (en) * 2022-03-31 2023-10-05 주식회사 솔리비스 Method for producing high-purity alkali metal sulfide

Also Published As

Publication number Publication date
JP2016216312A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6602258B2 (en) Method for producing lithium sulfide and method for producing inorganic solid electrolyte
JP6499513B2 (en) Method for producing lithium sulfide and method for producing inorganic solid electrolyte
JP6935495B2 (en) Carbon-coated silicon particles for lithium-ion batteries
CN102458720B (en) Low energy milling method, low crystallinity alloy, and negative electrode composition
JP2013075816A (en) Lithium sulfide, method for producing the lithium sulfide, and method for producing inorganic solid electrolyte
JP2014169196A (en) Method of producing lithium sulfide and method of producing inorganic solid electrolyte
JP2015196621A (en) Method for producing lithium sulfide and method for producing inorganic solid electrolyte
JP6935041B1 (en) Sulfide solid electrolyte
WO2011162348A1 (en) Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell
WO2016068040A1 (en) Lithium-containing garnet crystal and all-solid-state lithium ion secondary battery
KR102369763B1 (en) solid electrolyte
JP6594202B2 (en) Method for producing high purity and high crystalline lithium titanate and high purity and high crystalline lithium titanate using the same
TW202204263A (en) Solid electrolyte, electrode mixture and battery
WO2012133584A1 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
CN107710464A (en) Porous silicon grain and the method for producing silicon grain
WO2022009810A1 (en) Method for producing lithium sulfide
JP2023168411A (en) Method for producing sulfide-based inorganic solid electrolyte material
JP2014028717A (en) Solid electrolyte
KR20220143093A (en) Method of making carbon-coated silicon particles
JP6162981B2 (en) Method for producing lithium sulfide and method for producing inorganic solid electrolyte
Arianpour et al. Characterization and Properties of Sodium Hexa-Fluorosilicate and its Potential Application in the Production of Sodium Fluoride
JP6877648B2 (en) Method for manufacturing solid electrolyte
Honma et al. Spinel-type crystals based on LiFeSiO4 with high electrical conductivity for lithium ion battery formed by melt-quenching method
KR20220123021A (en) Solid state lithium ion conductor material, powder made of solid state ion conductor material, and method for preparing same
CN113772703B (en) Silicon/aluminum oxide nano composite material prepared based on pyrophyllite and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190315

R150 Certificate of patent or registration of utility model

Ref document number: 6499513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250