JP6499091B2 - レンズアンテナ、レンズアンテナシステム及び送信装置 - Google Patents

レンズアンテナ、レンズアンテナシステム及び送信装置 Download PDF

Info

Publication number
JP6499091B2
JP6499091B2 JP2016001282A JP2016001282A JP6499091B2 JP 6499091 B2 JP6499091 B2 JP 6499091B2 JP 2016001282 A JP2016001282 A JP 2016001282A JP 2016001282 A JP2016001282 A JP 2016001282A JP 6499091 B2 JP6499091 B2 JP 6499091B2
Authority
JP
Japan
Prior art keywords
lens
electromagnetic wave
dielectric constant
relative dielectric
lens antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016001282A
Other languages
English (en)
Other versions
JP2017123546A (ja
Inventor
貴寛 土屋
貴寛 土屋
守 秋元
守 秋元
清水 達也
達也 清水
秀幸 坪井
秀幸 坪井
正孝 飯塚
正孝 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016001282A priority Critical patent/JP6499091B2/ja
Publication of JP2017123546A publication Critical patent/JP2017123546A/ja
Application granted granted Critical
Publication of JP6499091B2 publication Critical patent/JP6499091B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

本発明は、レンズアンテナ、レンズアンテナシステム及び送信装置に関する。
近年、伝送帯域の広帯域化が可能な30GHz以上のミリ波による高速大容量の無線通信に関する研究が行われている。ミリ波を用いることで高速大容量な無線通信が期待できる反面、伝送時の電磁波の損失や降雨等による電磁波の減衰が大きいため、電磁波の伝送距離が制限される。これに対し、鋭い指向性を伴う高利得化が実現できるレンズアンテナの適用が注目されている(例えば、非特許文献1参照)。
また、OAM(orbital angular momentum:軌道角運動量)伝送技術は、複数の電磁波に異なる値のOAMを与え、各々の電磁波を直交独立した電磁波とすることで見通し環境でも多重伝送可能な大容量化技術である。そのため、最近注目されている(例えば、非特許文献2、3参照)。ここで、OAMのモードは通常Lで表され、整数値をとる。例えば、L=Nであれば電磁波の進行方向に垂直な面内で2πNの位相を変化させる必要があり、Nが正であれば左回りに、負であれば右回りに位相が変化することを意味する。2πの位相変化を与えるために、非特許文献2では、オフセットパラボラアンテナの反射鏡を、中心から放射方向に切断し、螺旋状に高さを0〜λ/2で変化させる(図7参照)。また、非特許文献3では、螺旋状に電磁波を透過させる誘電体プレートの厚みを0〜λ/nで変化させている(図8参照)。
川村一代、外4名、「ミリ波帯マルチビーム誘電体レンズアンテナの検討」、信学技報、MW2012−173 (2013年3月)、p.75−80. Fabrizio Tamburini、Elettra Mari、Anna Sponselli、Bo Thide、Antonio Bianchini and Filippo Romanato、「Encoding many channelso on the same frequency through radio vorticity: first experimental test」New Journal of Physics 14(2012)033001(17pp)、1 March 2012. Fariborz Eslampanahi Mahmouli、Stuart Walker「Orbital Angular Momentum Generation in a 60GHz Wireless Radio Channel」、20th Telecommunications forum TELFOR 2012、Serbia、Belgrade、November 20−22、2012.
しかしながら、上述した従来のレンズアンテナでは、電磁波の位相を進行方向に垂直な面内で同位相になるようにレンズの曲面を設計しているため、OAMのモードがゼロの通常の電磁波しか生成できない。
本発明は、これらの事情を鑑みてなされたものであり、その目的は、OAMのモードがゼロ以外の値を有する電磁波を生成することができるレンズアンテナ、レンズアンテナシステム及び送信装置を提供することである。
本発明の一態様は、焦点から放射された電磁波がレンズと空気との境界面で複数回屈折して所定の放射方向に対して平行となり、前記レンズの前方に設定された所定の基準面において同位相となるように前記レンズの面の形状が決定されたレンズアンテナであって、レンズを備え、前記レンズの比誘電率は、前記基準面における基準の位相から中心角φだけ離れた電磁波の位相差δが、以下の式(実施形態における式(11))を満足するように設定されるレンズアンテナである。
また、本発明の一態様は、上述のレンズアンテナであって、前記レンズは、前記レンズ内の前記電磁波の進行方向に略沿った複数の曲面で半径方向に分割された複数の円環状の誘電部を備え、前記各誘電部は、誘電チューナビリティ材料から構成され、前記曲面からなる両側面上に対して中心角から半径方向にのびる複数の平面で分割された領域毎に、当該領域内の材料の比誘電率を変化させる調整部を備え、前記分割された各領域は、それぞれ異なる比誘電率が設定される。
また、本発明の一態様は、上述のレンズアンテナと、請求項2に記載のレンズアンテナと、前記電磁波を前記レンズに入射させる一次放射器と、前記一次放射器から入射された電磁波を所定の放射特性で放射するように前記調整部を制御することで前記レンズの比誘電率を制御する比誘電率制御部と、を備え、前記比誘電率制御部は、前記レンズアンテナから放射する電磁波の軌道角運動量、又は前記電磁波の周波数に応じて、前記レンズの比誘電率を設定するレンズアンテナシステムである。
また、本発明の一態様は、上述のレンズアンテナシステムであって、入力された信号を所定の無線周波数帯の電磁波に変換し、前記一次放射器に送信するとともに、送信タイムスロット毎に前記電磁波の周波数、又は軌道角運動量の値を示す制御信号を前記比誘電率制御部に送信する送信部と、を備え、前記比誘電率制御部は、前記送信部から送信された前記制御信号に応じて前記レンズの比誘電率を調整することで各電磁波に軌道角運動量を割り当てる送信装置である。
以上説明したように、本発明によれば、OAMのモードがゼロ以外の値を有する電磁波を生成することができる。
本実施形態における送信装置3の概略構成の一例を示す図である。 本実施形態におけるレンズ42の断面図を示す図であり、且つレイトレーシング法における設計原理を示す図である。 本実施形態における、OAMのモードがゼロ以外の値を有する電磁波を生成するための比誘電率εの決定方法について説明する図である。 本実施形態におけるOAMのモードがゼロ以外の値を有する電磁波を生成するためのレンズアンテナ40の比誘電率配置の一例を示す図である。 本実施形態におけるレンズアンテナ40の比誘電率の変化の一例を示す図である。 本実施形態における送信装置3の変形例の概略構成の一例を示す図である。 従来の各電磁波に対して軌道角運動量を与える第1の方法を示す図である。 従来の各電磁波に対して軌道角運動量を与える第2の方法を示す図である。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、図面において、同一又は類似の部分には同一の符号を付して、重複する説明を省く場合がある。
本実施形態におけるレンズアンテナは、焦点から放射された電磁波がレンズと空気との境界面で複数回屈折して所定の放射方向に対して平行となり、そのレンズの前方に設定された所定の基準面において同位相となるようにレンズの面の形状が決定されたレンズアンテナである。このレンズアンテナは、レンズを備え、そのレンズの比誘電率は、前記基準面における基準の位相から中心角φだけ離れた電磁波の位相差δが、後述する式(11)を満足するように設定される。
図1は、本実施形態における送信装置3の概略構成の一例を示す図である。
図1に示すように、送信装置3は、レンズアンテナシステム10及び送信部30を備える。
レンズアンテナシステム10は、レンズアンテナ40及び比誘電率制御部50を備える。レンズアンテナ40は、一次放射器41及びレンズ42を備える。
レンズアンテナ40において、焦点Fから放射された電磁波は、レンズ42と空気との境界面で2回屈折してZ軸方向に対して平行となる。レンズ42の比誘電率εが一様として、レンズ42と空気との境界面で2回屈折した各電磁波がレンズ42の前方に設定された所定の基準面11において同位相となるように、レンズ42の面の形状が決定される。
一次放射器41は、送信部30から送信された電磁波をレンズ42に入射させる。すなわち、一次放射器41は、送信部30から送信された電磁波をレンズ42の焦点Fからレンズ42に入射させる。
レンズ42は、印加する電圧や温度などによって比誘電率が制御可能な誘電チューナビリティ材料などで構成されている。レンズ42は、比誘電率が所定値に設定されることで、一次放射器41から入射された電磁波を所定の放射特性に変換し、その変換した電磁波を空中に放射する。レンズ42の面の形状は、例えば、レイトレーシング法により決定される。以下に、本実施形態におけるレイトレーシング法によるレンズ42の面の形状の決定方法について、説明する。
(レイトレーシング法によるレンズ42の面の形状の決定方法)
図2は、レンズ42の断面図を示す図であり、且つレイトレーシング法における設計原理を示す図である。
図2に示すように、レンズアンテナ40におけるレンズ42の曲面をQQ´、焦点をFとする。焦点Fより放射された電磁波は原点O、点P、点Q等を通り、Z軸方向に距離d離れた面11に到達する。レンズアンテナ40のレンズ42の曲面は、各点(原点O、点P、点Q)を通ってきた電磁波が面11で同位相となるように決定される。そのため、原点O、点P、点Qそれぞれを通る3の光学長は同一となる。したがって、式(1)の関係が成り立つ。
Figure 0006499091
なお、A、B及びCは、以下の式で表される。
Figure 0006499091
ここで、式(1)において、媒質1に対する媒質2の屈折率であり、媒質1を真空と仮定すると、n12はレンズ42の比誘電率εの平方根で与えられるとともに、θ、θを用いて式(3)のスネルの法則が成り立つ。
Figure 0006499091
式(1)、式(3)より、レンズ42の面の形状は式(4)で表される。
Figure 0006499091
これにより、レンズ42の曲面は、この式(4)に基づいて決定される。
(比誘電率の算出方法)
次に、本実施形態におけるレンズ42の比誘電率εの決定方法について、説明する。
本実施形態の特徴としては、レンズ42の比誘電率εは、基準位相から中心角φ[deg]離れた位相差δ[rad]が、δ=φ/180・N・π(Nは整数)を満足するように決定される点である。これにより、レンズアンテナ40は、OAM(orbital angular momentum:軌道角運動量)のモードがゼロ以外の値を有する電磁波を生成可能となる。
図3は、本実施形態における、OAMのモードがゼロ以外の値を有する電磁波を生成するための比誘電率εの決定方法について説明する図である。OAMのモードがゼロ以外の値を有する電磁波を生成するには、Z軸に垂直な面内(例えば、面11)において、方位角とともに電磁波の位相を変化させる必要がある。
面11でZ軸を対称軸として等距離r´離れた点D、点Dのそれぞれに電磁波が到達する光学長を考える。ここで、焦点Fから点Pを通り点Dに到達する第1光路におけるレンズ42内の比誘電率は基準となる比誘電率εr0、焦点Fから点Pを通り点Dに到達する第2光路におけるレンズ42内の比誘電率は比誘電率εrnとする。面11において第1光路と第2光路との光路差が位相差δ[rad]となるように比誘電率が与えられればよいので、レンズ42の比誘電率εrnは、式(5)を満たすように設定される。
Figure 0006499091
なお、添え字において、基準となる比誘電率をr0とし、算出する比誘電率をrnとする。ただし、λは電磁波の波長であり、h及びr´は、以下の式で表される。
Figure 0006499091
したがって、式(5)は、式(6)を用いて以下の式で表される。
Figure 0006499091
ここで、式(2)より比誘電率εrnは、以下の式で表される。
Figure 0006499091
したがって、式(7)に式(8)を代入すると、式(9)で表されるように、rinの方程式が得られる。
Figure 0006499091
ただし、r´は、以下の式で表される。
Figure 0006499091
以上のように、ri0およびr´を任意に設定して方程式を解けば、式(8)より比誘電率εrnが一意に求まる。なお、比誘電率εrnは、あらかじめ設定されたものであっても、制御により設定できるものであってもよい。前者は比誘電率εrnを決めた上で製造し、後から変更はできないレンズアンテナ40であり、後者は制御により比誘電率εrnを変更可能なレンズアンテナ40である。
(比誘電率の配置)
以下に、本実施形態におけるレンズアンテナ40の比誘電率の配置について、説明する。図4は、本実施形態におけるOAMのモードがゼロ以外の値を有する電磁波を生成するためのレンズアンテナ40の比誘電率配置の一例を示す図である。図4(A)は、本実施形態におけるレンズのZ方向から見た平面図である。また、図4(B)は、本実施形態におけるレンズの側面図である。図5は、本実施形態におけるレンズアンテナ40の比誘電率の変化の一例を示す図である。図5(A)は、本実施形態におけるレンズアンテナ40のr方向の比誘電率の変化の一例を示す図である。図5(B)は、本実施形態におけるレンズアンテナ40のφ方向の比誘電率の変化の一例を示す図である。
位相差δ[rad]が方位角方向(φ方向)に変化するならば、OAMのモードがL=Nの場合、位相差δ[rad]は、以下の式で表される。
Figure 0006499091
したがって、式(9)は、以下の式で表される。
Figure 0006499091
図4に示すように、本実施形態におけるレンズ42は、Z軸方向からの平面上において、方位角方向(φ方向)に45度ずつ扇形に分割されている。すなわち、中心角45度毎に半径方向にのびる複数の平面で分割された領域毎に分割されている。また、レンズ42は、側面から見た平面上で半径方向(r方向)に10個に分割し、異なる比誘電率ε(φ、ri0)が与えられる。ただし、φ=0,45,90,…,330[deg]であり、ri0=(2m−1)R/20であり、m=1,2,3,…,10である。本実施形態では、比誘電率ε(φ、ri0)は、各ri0において、基準となる比誘電率εr0=ε(0、ri0)から位相差がπ/4ずつ変化し、φ=330[deg]で位相差が7π/4となるよう設定される。したがって、レンズアンテナ40は、OAMのモードがL=1を有する電磁波を生成可能である。なお、本実施形態において、レンズ42の比誘電率が方位角(又は中心角)方向および半径方向に離散的に設定されるが、比誘電率の変化は離散的であっても連続的であってもよい。また、比誘電率は方位角方向に増加しているが、方位角方向に減少してもよい。さらに、焦点Fには一次放射器41としてレンズ42への焦点距離やビーム幅に対する放射特性を考慮したホーンアンテナを用いてもよいが、これに限定されない。
このように、レンズ42は、側面から見た場合のレンズ42内の電磁波の進行方向に略沿った複数の曲面を備え、半径方向(r方向)に分割された複数の円環状の誘電部から構成されている。各誘電部は、誘電チューナビリティ材料からなり、曲面からなる両側面上に、レンズ42の正面前方から見た場合の方位角方向(φ方向)に沿った複数の平面で分割された領域毎(すなわち、中心角から半径方向にのびる複数の平面で分割された領域毎)に、当該領域内の材料の比誘電率ε(レンズ42の比誘電率ε)を個別に変化させる手段として調整部(透明電極、透明ガラスヒータ等)を備える。したがって、レンズ42は、透明電極に印加される電圧値やガラスヒータにより制御される温度によって比誘電率εが制御される。なお、本実施形態では、図4(B)に示すように、太点線上と中心軸周り、レンズ42の底面円周上に隙間を設け、その隙間に電圧制御では透明電極、温度制御では透明ガラスヒータが備えられるが、これに限定されない。なお、本実施形態におけるレンズ42は、各誘電部の比誘電率を電圧(電界)によって制御される場合に、隣接する領域間に配置される透明電極の数に限定されなく、各領域に所定の電界が印加される構成を有していればよい。また、本実施形態におけるレンズ42は、各誘電部の比誘電率を温度によって制御する場合には、1つの透明ガラスヒータから発生した熱が目的の領域のみを加熱し、目的以外の領域の温度に影響を与えないようにするために、例えば、各領域間に断熱材を有してもよい。
比誘電率制御部50は、一次放射器41から入射された電磁波を所定の放射特性でレンズ42から放射するようにレンズ42の比誘電率εを制御する。すなわち、比誘電率制御部50は、一次放射器41から入射された電磁波を所定の放射特性でレンズ42から放射するようにレンズ42の比誘電率εを式(8)で算出した比誘電率に制御する。
送信部30は外部から入力されるデータ信号を所定の無線周波数帯の電磁波に変換し、一次放射器41に出力する。例えば、送信部30は外部から入力されるデータ信号に対し変調、周波数変換、帯域制限、電力増幅等の無線周波数への信号変換を行うことで送信周波数帯の電磁波に変換して一次放射器41に出力する。
上述したように、本実施形態のレンズアンテナ40は、基準面11における基準の位相から中心角φだけ離れた電磁波の位相差δが、式(11)を満足するようにレンズ42の比誘電率εが設定される。したがって、レンズアンテナ40は、OAMのモードがゼロ以外の値を有する電磁波を生成可能である。
また、本実施形態において、レンズ42は、レンズ42内の電磁波の進行方向に略沿った複数の曲面で半径方向に分割された複数の円環状の誘電部を備えている。各誘電部は、誘電チューナビリティ材料から構成され、曲面からなる両側面上に対して中心角から半径方向にのびる複数の平面で分割された領域毎に、当該領域内の材料の比誘電率を変化させる調整部を備える。そして、その分割された各領域は、それぞれ異なる比誘電率が設定される。これにより、レンズアンテナ40は、調整部により比誘電率を変化させることで、OAMのモードがゼロ以外の値を有する電磁波を生成することができる。
また、上述したように、本実施形態のレンズアンテナシステム10は、レンズアンテナ40と、一次放射器41から入射された電磁波を所定の放射特性で放射するようにレンズ42の比誘電率εを制御する比誘電率制御部50とを備える。比誘電率制御部50は、レンズアンテナ40から放射する電磁波の軌道角運動量、又は電磁波の周波数に応じて、レンズ42の比誘電率を設定する。これにより、レンズアンテナシステム10は、OAMのモードがゼロ以外の値を有する電磁波を生成することができる。
(変形例)
図6は、本実施形態における変形例の一例を示す図である。この変形例では、比誘電率制御部50は送信部30から供給される制御信号に基づいてレンズ42の比誘電率εを制御する。すなわち、本変形例では、送信部30の制御によりレンズ42の比誘電率εが変更可能である。例えば、本変形例の送信部30は、送信タイムスロット毎に送信周波数(チャネル)や軌道角運動量の値を設定するような制御信号を比誘電率制御部50に出力する。これにより、変形例の送信部30は、各電磁波に軌道角運動量を割り当てることができる。なお、この軌道角運動量は、多重しない場合には、任意の値(整数)に設定され、多重伝送の場合には、それぞれ異なる値に設定される。
なお、本実施形態における他の変形例として、レンズ42内に空間を設けることで焦点から放射された電磁波がレンズと空気との境界面で3回以上屈折して所定の放射方向に対して平行となるようにしてもよい。
なお、上述した実施形態において、レンズアンテナ40は、一次放射器41を含める構成としたが、これに限定されない。例えば、レンズアンテナ40は、一次放射器41を含めない構成としてもよい。その場合、レンズアンテナシステム10は、レンズアンテナ40、一次放射器41及び比誘電率制御部50を備える。
上述した実施形態における比誘電率制御部50をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
11 Z軸に垂直な面
30 送信部
40 レンズアンテナ
41 一次放射器
42 レンズ
50 比誘電率制御部

Claims (4)

  1. 焦点から放射された電磁波がレンズと空気との境界面で複数回屈折して所定の放射方向に対して平行となり、前記レンズの前方に設定された所定の基準面において同位相となるように前記レンズの面の形状が決定されたレンズアンテナであって、
    レンズを備え、
    前記レンズの比誘電率は、前記基準面における基準の位相から中心角φだけ離れた電磁波の位相差δが、以下の式を満足するように設定されるレンズアンテナ。
    δ=φ/180・N・π(Nは整数) ・・・(1)
  2. 前記レンズは、
    前記レンズ内の前記電磁波の進行方向に略沿った複数の曲面で半径方向に分割された複数の円環状の誘電部を備え、
    前記各誘電部は、誘電チューナビリティ材料から構成され、前記曲面からなる両側面上に対して中心角から半径方向にのびる複数の平面で分割された領域毎に、当該領域内の材料の比誘電率を変化させる調整部を備え、
    前記分割された各領域は、それぞれ異なる比誘電率が設定される請求項1に記載のレンズアンテナ。
  3. 請求項2に記載のレンズアンテナと、
    前記電磁波を前記レンズに入射させる一次放射器と、
    前記一次放射器から入射された電磁波を所定の放射特性で放射するように前記調整部を制御することで前記レンズの比誘電率を制御する比誘電率制御部と、
    を備え、
    前記比誘電率制御部は、前記レンズアンテナから放射する電磁波の軌道角運動量、又は前記電磁波の周波数に応じて、前記レンズの比誘電率を設定するレンズアンテナシステム。
  4. 請求項3に記載のレンズアンテナシステムと、
    入力された信号を所定の無線周波数帯の電磁波に変換し、前記一次放射器に送信するとともに、送信タイムスロット毎に前記電磁波の周波数、又は軌道角運動量の値を示す制御信号を前記比誘電率制御部に送信する送信部と、
    を備え、
    前記比誘電率制御部は、前記送信部から送信された前記制御信号に応じて前記レンズの比誘電率を調整することで各電磁波に軌道角運動量を割り当てる送信装置。
JP2016001282A 2016-01-06 2016-01-06 レンズアンテナ、レンズアンテナシステム及び送信装置 Active JP6499091B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016001282A JP6499091B2 (ja) 2016-01-06 2016-01-06 レンズアンテナ、レンズアンテナシステム及び送信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016001282A JP6499091B2 (ja) 2016-01-06 2016-01-06 レンズアンテナ、レンズアンテナシステム及び送信装置

Publications (2)

Publication Number Publication Date
JP2017123546A JP2017123546A (ja) 2017-07-13
JP6499091B2 true JP6499091B2 (ja) 2019-04-10

Family

ID=59305779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016001282A Active JP6499091B2 (ja) 2016-01-06 2016-01-06 レンズアンテナ、レンズアンテナシステム及び送信装置

Country Status (1)

Country Link
JP (1) JP6499091B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300486A (ja) * 2008-06-10 2009-12-24 Ricoh Co Ltd 光学機器及び光学装置
KR101915139B1 (ko) * 2012-05-08 2018-11-05 한국전자통신연구원 양성자 빔 발생장치
ITAR20130023A1 (it) * 2013-07-01 2015-01-02 Marco Matteoni Sistema per la generazione e la gestione di momento angolare orbitale nella radiazione elettromagnetica mediante l'utilizzo di lenti speciali - system for generation and management of orbital angular momentum in an electromagnetic radiation by means
JP6194676B2 (ja) * 2013-07-29 2017-09-13 富士通株式会社 アンテナ装置

Also Published As

Publication number Publication date
JP2017123546A (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
US9722316B2 (en) Horn lens antenna
Fuchs et al. Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves
Zhong et al. Wideband quasi-nondiffraction beam with accurately controllable propagating angle and depth-of-field
US10530054B2 (en) Aperture efficiency enhancements using holographic and quasi-optical beam shaping lenses
US9570811B2 (en) Device to reflect and transmit electromagnetic wave and antenna device
Cheng et al. Frequency scanning non-diffraction beam by metasurface
Nair et al. Graded dielectric inhomogeneous streamlined radome for airborne applications
Liu et al. 3D‐printed cylindrical Luneburg lens antenna for millimeter‐wave applications
JP2019165409A (ja) アンテナ装置
Jain et al. Flat-base broadband multibeam Luneburg lens for wide-angle scan
Dai et al. Compact Rotman lens structure configurations to support millimeter wave devices
Han et al. Broadband gradient refractive index planar lens based on a compound liquid medium
Allen et al. Experimental evaluation of 3D printed spiral phase plates for enabling an orbital angular momentum multiplexed radio system
Wang et al. W band axially displaced monopulse dual‐reflector antenna for inter‐satellite communications
Shao et al. Perforated extensible 3-D hyperbolic secant lens antenna for directive antenna applications using additive manufacturing
Ratni et al. Modeling and design of metasurfaces for beam scanning
JP6499091B2 (ja) レンズアンテナ、レンズアンテナシステム及び送信装置
Zhang 3D printed dielectric Fresnel lens
Hua et al. Bidirectional radiation high-gain antenna based on phase gradient metasurface
Vinisha et al. Multi‐layered graded porous radome design for dual‐band airborne radar applications
Hassan et al. Reducing the divergence of vortex waves with a lens tailored to the utilized circular antenna array
JP6530321B2 (ja) レンズアンテナシステム及び送信装置
RU2583869C2 (ru) Планарная линейная фазированная антенная решетка с расширенным сканированием луча
CN110854540B (zh) 介质透镜、透镜天线和电子设备
Abdo et al. A 300ghz dielectric lens antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190314

R150 Certificate of patent or registration of utility model

Ref document number: 6499091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150