JP6498651B2 - Manufacturing method of hollow container - Google Patents

Manufacturing method of hollow container Download PDF

Info

Publication number
JP6498651B2
JP6498651B2 JP2016211861A JP2016211861A JP6498651B2 JP 6498651 B2 JP6498651 B2 JP 6498651B2 JP 2016211861 A JP2016211861 A JP 2016211861A JP 2016211861 A JP2016211861 A JP 2016211861A JP 6498651 B2 JP6498651 B2 JP 6498651B2
Authority
JP
Japan
Prior art keywords
metal member
welding process
friction welding
welding
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016211861A
Other languages
Japanese (ja)
Other versions
JP2017064792A (en
Inventor
諒 吉田
諒 吉田
堀 久司
久司 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2016211861A priority Critical patent/JP6498651B2/en
Publication of JP2017064792A publication Critical patent/JP2017064792A/en
Application granted granted Critical
Publication of JP6498651B2 publication Critical patent/JP6498651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、中空容器の製造方法に関する。 The present invention relates to a method for manufacturing a hollow container .

摩擦圧接は、ワークの歪みが小さく、また、加工速度が速いという利点がある。しかしながら、摩擦圧接は、固相接合ではあるが動的なプロセスを伴うため、接合部における水密性及び気密性が不安定になりやすく、接合部にバリが発生するという問題があった。例えば、特許文献1では、外バリに対して切削刃を自動的に位置決めできるように改良した、摩擦圧接機用の外バリ切削装置が提案されている。   Friction welding has the advantage that the distortion of the workpiece is small and the machining speed is high. However, although friction welding is a solid phase bonding, it involves a dynamic process, so that there is a problem that water tightness and air tightness at the joint are likely to be unstable, and burrs are generated at the joint. For example, Patent Document 1 proposes an outer burr cutting device for a friction welding machine that is improved so that a cutting blade can be automatically positioned with respect to the outer burr.

特開平07−51902号公報Japanese Patent Laid-Open No. 07-51902 特開2005−251595号公報JP 2005-251595 A 特開平08−215863号公報Japanese Patent Laid-Open No. 08-215863

また、特許文献2では、切削加工によるバリ除去に先立って、バリの全体を高周波誘導加熱により適温に高周波誘導加熱し、その後のバリの切削除去の容易化や効率化を可能にする高周波誘導加熱コイル装置が提案されている。   Further, in Patent Document 2, high-frequency induction heating is performed that facilitates high-frequency induction heating of the entire burr by high-frequency induction heating prior to burr removal by cutting, thereby facilitating and improving the efficiency of subsequent burr cutting removal. Coil devices have been proposed.

さらに、摩擦圧接時に発生するバリの切除を不要にするための方法も提唱されている。例えば、特許文献3では、対向して把持された一対の母材を互いに相対回転させながら接触させて発熱させ、母材接触端部溶融後さらに母材同士を押し付けて接合する摩擦圧接方法において、母材同士を押し付けた際に母材接合部に生じるバリを、バリ発生方向に対向して力を加えて押圧成形する工程を含む摩擦圧接方法が提案されている。   Furthermore, a method for eliminating the need to remove burrs generated during friction welding has been proposed. For example, in Patent Document 3, in a friction welding method in which a pair of base materials gripped opposite to each other are brought into contact with each other while being rotated relative to each other to generate heat, and after the base material contact end portion is melted, the base materials are further pressed to join each other. There has been proposed a friction welding method including a step of pressing and forming a burr generated at a base material joint when the base materials are pressed against each other in a direction in which the burrs are generated.

しかしながら、これらの方法では、その方法を実現する装置の機構が複雑となり、さらに工程が一つ増すことによりコストアップの要因となっていた。   However, in these methods, the mechanism of the apparatus for realizing the method is complicated, and the number of steps is increased by one, which increases the cost.

このような観点から、本発明は、摩擦圧接で発生したバリを除去しつつ、同時に接合品質の向上を図ることができる中空容器の製造方法を提供することを課題とする。 From such a point of view, an object of the present invention is to provide a method for manufacturing a hollow container capable of improving the bonding quality while removing burrs generated by friction welding.

このような課題を解決するために本発明は、第一金属部材と第二金属部材とを摩擦圧接する摩擦圧接工程と、前記第一金属部材及び前記第二金属部材の少なくとも一方の外側面に発生したバリを溶加材として前記外側面同士のみをレーザー溶接する溶接工程と、を含み、前記第一金属部材及び前記第二金属部材は、アルミニウム合金で形成されており、前記第一金属部材及び前記第二金属部材の対向面のそれぞれに凹部が形成されており、前記摩擦圧接工程では、前記第一金属部材と前記第二金属部材との平坦な端面同士を互いに近接する方向に押圧した状態で、前記第一金属部材及び前記第二金属部材を相対的かつ直線的に往復移動させることを特徴とする中空容器の製造方法である In order to solve such a problem, the present invention provides a friction welding process of friction welding the first metal member and the second metal member, and at least one outer surface of the first metal member and the second metal member. A welding step in which only the outer surfaces are laser welded using the generated burr as a filler material, and the first metal member and the second metal member are formed of an aluminum alloy, and the first metal member And a concave portion is formed on each of the opposing surfaces of the second metal member, and in the friction welding process, the flat end surfaces of the first metal member and the second metal member are pressed toward each other. state, a method for producing a hollow container, characterized in that to relatively and move linearly reciprocate the first metal member and the second metal member.

かかる中空容器の製造方法によれば、第一金属部材と第二金属部材とで構成される製品の水密性及び気密性を向上させることができる。また、レーザー溶接を行うことで容易に溶接することができ、仕上がり面もきれいにすることができる。また、仮に、摩擦圧接工程で接合欠陥が発生した場合であっても、溶接工程でその接合欠陥を補修することができる。 According to this method for manufacturing a hollow container, the water tightness and air tightness of a product composed of the first metal member and the second metal member can be improved. Moreover, it can weld easily by performing laser welding, and a finished surface can also be made beautiful. Even if a joint defect occurs in the friction welding process, the joint defect can be repaired in the welding process.

本発明に係る中空容器の製造方法によれば、摩擦圧接で発生したバリを除去しつつ、同時に接合品質の向上を図ることができる。 According to the method for manufacturing a hollow container according to the present invention, it is possible to improve bonding quality while removing burrs generated by friction welding.

本実施形態に係る第一金属部材及び第二金属部材の斜視図である。It is a perspective view of the 1st metal member and the 2nd metal member concerning this embodiment. (a)は本実施形態に係る摩擦圧接工程を示す断面図であり、(b)は本実施形態に係る溶接工程を示す断面図である。(A) is sectional drawing which shows the friction welding process which concerns on this embodiment, (b) is sectional drawing which shows the welding process which concerns on this embodiment. 実施例に係る試験体A,Bを示す図であって、(a)は平面図、(b)は(a)のI−I断面図である。It is a figure which shows the test bodies A and B which concern on an Example, (a) is a top view, (b) is II sectional drawing of (a). 実施例に係る試験体C〜Fを示す図であって、(a)は平面図、(b)は(a)のII−II断面図である。It is a figure which shows the test bodies C-F which concern on an Example, (a) is a top view, (b) is II-II sectional drawing of (a). (a)は試験体A,Bの溶接条件を示し、(b)は試験体C,Dの溶接条件を示し、(c)は試験体E,Fの溶接条件を示す。(A) shows the welding conditions of the test bodies A and B, (b) shows the welding conditions of the test bodies C and D, and (c) shows the welding conditions of the test bodies E and F. (a)は試験体Aの摩擦圧接工程後における健全な部分の模式断面図である。(b)は試験体Aの摩擦圧接工程後における接合欠陥を含む部分の模式断面図である。(c)は試験体Aの溶接工程後における模式断面図である。(A) is a schematic cross-sectional view of a healthy part after the friction welding process of the specimen A. (B) is a schematic cross-sectional view of a portion including a bonding defect after the friction welding process of the specimen A. (C) is a schematic cross-sectional view after the welding process of the specimen A. 実施例の条件及び圧力低下率を示す表である。It is a table | surface which shows the conditions and pressure reduction rate of an Example.

本発明の実施形態に係る接合方法について、図面を参照して詳細に説明する。図1に示すように、本実施形態に係る接合方法では内部に中空部を有する金属製の中空容器1を製造する場合を例示する。まずは、接合する第一金属部材2及び第二金属部材3について説明する。以下の説明における「上」、「下」は、図1,2の状態を基準にしているが、便宜的なものであり、摩擦圧接や溶接時の向きを限定するものではない。   A joining method according to an embodiment of the present invention will be described in detail with reference to the drawings. As illustrated in FIG. 1, the joining method according to the present embodiment exemplifies a case where a metal hollow container 1 having a hollow portion therein is manufactured. First, the first metal member 2 and the second metal member 3 to be joined will be described. “Upper” and “Lower” in the following description are based on the states of FIGS. 1 and 2 for convenience, and do not limit the direction during friction welding or welding.

図1に示すように、第一金属部材2は、底部11と、底部11に垂直に立設する側壁部12とで構成されている。側壁部12は、平面視矩形枠状を呈し、その上面が平坦になっている。側壁部12の壁厚みTの寸法は各壁とも同等になっている。第一金属部材2のうち、第二金属部材3と対向する対向面の中央には凹部13が形成されている。凹部13は、本実施形態では、直方体を呈する中空部となっている。   As shown in FIG. 1, the first metal member 2 is composed of a bottom portion 11 and a side wall portion 12 erected perpendicularly to the bottom portion 11. The side wall portion 12 has a rectangular frame shape in plan view, and its upper surface is flat. The dimension of the wall thickness T of the side wall portion 12 is the same for each wall. A recess 13 is formed in the center of the opposing surface of the first metal member 2 that faces the second metal member 3. In the present embodiment, the concave portion 13 is a hollow portion having a rectangular parallelepiped shape.

第二金属部材3は、底部21と、底部21に垂直に立設する側壁部22とで構成されている。第二金属部材3は、第一金属部材2と同じ形状になっている。側壁部22は、平面視矩形枠状を呈し、その下面が平坦になっている。側壁部22の壁厚みTの寸法は各壁とも同等になっている。第二金属部材3のうち、第一金属部材2と対向する対向面の中央には凹部23が形成されている。凹部23は、本実施形態では、直方体を呈する中空部となっている。第一金属部材2及び第二金属部材3は、アルミニウム、アルミニウム合金、銅等摩擦圧接可能な材料であれば特に制限されないが、本実施形態ではいずれもアルミニウム合金で形成されている。   The second metal member 3 includes a bottom portion 21 and a side wall portion 22 that stands vertically to the bottom portion 21. The second metal member 3 has the same shape as the first metal member 2. The side wall portion 22 has a rectangular frame shape in plan view, and its lower surface is flat. The dimension of the wall thickness T of the side wall 22 is the same for each wall. A recess 23 is formed in the center of the opposing surface of the second metal member 3 that faces the first metal member 2. In the present embodiment, the concave portion 23 is a hollow portion having a rectangular parallelepiped shape. Although the 1st metal member 2 and the 2nd metal member 3 will not be restrict | limited especially if it is a material which can be friction-welded, such as aluminum, an aluminum alloy, and copper, in this embodiment, all are formed with the aluminum alloy.

次に、本実施形態に係る接合方法について説明する。本実施形態に係る接合方法では、突合工程と、摩擦圧接工程と、溶接工程とを行う。   Next, the joining method according to this embodiment will be described. In the joining method according to the present embodiment, a butt process, a friction welding process, and a welding process are performed.

突合工程では、図1に示すように、第一金属部材2の凹部13と、第二金属部材3の凹部23とを対向させつつ、第一金属部材2と第二金属部材3とを突き合わせる。具体的には、第一金属部材2の側壁部12の上面と、第二金属部材3の側壁部22の下面とを面接触させる。これにより、各部材の接触部分には平面視枠状の突合部Jが形成される(図2の(a)参照)。   In the abutting step, as shown in FIG. 1, the first metal member 2 and the second metal member 3 are abutted while the concave portion 13 of the first metal member 2 and the concave portion 23 of the second metal member 3 are opposed to each other. . Specifically, the upper surface of the side wall portion 12 of the first metal member 2 and the lower surface of the side wall portion 22 of the second metal member 3 are brought into surface contact. As a result, an abutting portion J having a frame shape in plan view is formed at the contact portion of each member (see FIG. 2A).

摩擦圧接工程では、摩擦工程と圧接工程とを行う。摩擦工程では、第一金属部材2と第二金属部材3とを互いに近接する方向に押圧した状態で、第一金属部材2及び第二金属部材3を相対的に往復移動させる。移動方向は、特に制限されないが、本実施形態では、側壁部12の長辺部と平行な方向に沿って直線的に移動させる。また、本実施形態では、第一金属部材2は移動させず、第二金属部材3のみを直線的に往復移動させている。   In the friction welding process, a friction process and a pressure welding process are performed. In the friction process, the first metal member 2 and the second metal member 3 are relatively reciprocally moved in a state where the first metal member 2 and the second metal member 3 are pressed in directions close to each other. The moving direction is not particularly limited, but in the present embodiment, the moving direction is linearly moved along a direction parallel to the long side portion of the side wall portion 12. In the present embodiment, the first metal member 2 is not moved, but only the second metal member 3 is linearly reciprocated.

摩擦工程における条件は適宜設定すればよいが、例えば、周波数100〜260Hz、振幅1.0〜2.0mm、摩擦圧力20〜60MPa、に設定する。摩擦工程の時間は5〜10秒程度に設定する。   Conditions in the friction process may be set as appropriate. For example, the frequency is set to 100 to 260 Hz, the amplitude is set to 1.0 to 2.0 mm, and the friction pressure is set to 20 to 60 MPa. The time for the friction process is set to about 5 to 10 seconds.

圧接工程では、摩擦工程が終わった後に、第一金属部材2及び第二金属部材3を相対移動させずに互いに近接する方向に押圧する。圧接工程における条件は適宜設定すればよいが、例えば、圧力を60〜80MPaに設定する。圧接工程の時間は3〜5秒程度に設定する。摩擦圧接工程によって、側壁部12の外側面12a及び側壁部22の外側面22aには外周全体又は外周の一部にバリPが発生する。   In the press-contacting process, after the friction process is finished, the first metal member 2 and the second metal member 3 are pressed toward each other without being relatively moved. The conditions in the pressure welding process may be set as appropriate, but for example, the pressure is set to 60 to 80 MPa. The time of the pressure contact process is set to about 3 to 5 seconds. Due to the friction welding process, burrs P are generated on the entire outer periphery or a part of the outer periphery on the outer surface 12 a of the side wall portion 12 and the outer surface 22 a of the side wall portion 22.

溶接工程では、図2の(b)に示すように、側壁部12及び側壁部22の外周全体に亘って、バリP,Pを溶加材として外側面12a,22aを溶接する。溶接の種類は特に制限されないが、本実施形態ではレーザー溶接を行う。溶接工程後には、外側面12a,22aに溶接金属Qが形成される。以上により内部に中空部を備えた中空容器1が製造される。   In the welding process, as shown in FIG. 2B, the outer surfaces 12a and 22a are welded over the entire outer periphery of the side wall 12 and the side wall 22 using burrs P and P as filler materials. The type of welding is not particularly limited, but laser welding is performed in this embodiment. After the welding process, the weld metal Q is formed on the outer surfaces 12a and 22a. As described above, the hollow container 1 having a hollow portion therein is manufactured.

以上説明した本実施形態に係る接合方法によれば、摩擦圧接工程によって不可避的に発生するバリP,Pを溶加材として外側面12a,22a同士を溶接することにより、バリPを除去しつつ接合品質を向上させることができる。また、本実施形態のように、内部に中空部を有する中空容器1を製造する場合には、摩擦圧接工程に加えて溶接工程を行うことで中空容器1の水密性及び気密性を向上させることができる。   According to the joining method according to the present embodiment described above, the burrs P are removed by welding the outer surfaces 12a and 22a to each other by using the burrs P and P inevitably generated in the friction welding process as a filler material. Bonding quality can be improved. Moreover, when manufacturing the hollow container 1 which has a hollow part inside like this embodiment, improving the water-tightness and airtightness of the hollow container 1 by performing a welding process in addition to a friction welding process. Can do.

また、本実施形態によれば、従来行っていたバリの切除工程を省略することができる。また、溶接工程でレーザー溶接を行うことで容易に溶接することができ、仕上がり面もきれいにすることができる。また、仮に、摩擦圧接工程で接合欠陥が発生した場合であっても、溶接工程でその接合欠陥を補修することができる。   Moreover, according to this embodiment, the burr cutting process which has been conventionally performed can be omitted. Further, laser welding can be performed easily in the welding process, and the finished surface can be made clean. Even if a joint defect occurs in the friction welding process, the joint defect can be repaired in the welding process.

摩擦圧接は、固相接合ではあるが動的なプロセスを伴うため、接合部における水密性及び気密性が不安定になりやすく、接合部にバリが発生するという問題があるものの、その接合品質は、被接合材内部の鋳巣、突合せ面における隙間、酸化皮膜、汚れ等の影響を受けにくいという利点がある。   Friction welding is a solid-phase welding, but involves a dynamic process, so the water-tightness and air-tightness at the joint are likely to be unstable, and there is a problem that burrs are generated at the joint, but the quality of the joint is There is an advantage that it is hardly affected by a cast hole inside the material to be joined, a gap at the butt surface, an oxide film, dirt, and the like.

一方、溶接は、アークやレーザーなどの熱源による溶加材、被接合材表面の溶融を伴うため、その接合品質は、被接合材内部の鋳巣、突合せ面における隙間、酸化皮膜、汚れ等の影響を受けやすいという問題があるものの、水密性及び気密性が良好になるとともに、接合面が比較的滑らかであるという利点がある。 On the other hand, since welding involves melting of the surface of the material to be joined and the material to be joined by a heat source such as an arc or laser, the joining quality is such as a cast hole inside the material to be joined, a gap in the butt surface, an oxide film, dirt, etc. Although there is a problem of being easily affected, there are advantages that the water tightness and air tightness are improved and the joint surface is relatively smooth.

本願発明のように、先に摩擦圧接を行うことで、接合強度が高く、接合品質の比較的良好な接合部が得られる。次に、この接合部の外側面に対して溶接を行うことで、外側面に発生したバリを溶加材として溶接を行うことができ、水密性及び気密性がさらに良好になるとともに、外側面が比較的滑らかになる。   As in the present invention, by performing the friction welding first, it is possible to obtain a bonded portion having high bonding strength and relatively good bonding quality. Next, by welding to the outer surface of the joint portion, the burrs generated on the outer surface can be welded as a filler material, and the water-tightness and air-tightness are further improved, and the outer surface Becomes relatively smooth.

仮に、摩擦圧接前において、被接合材の内部に鋳巣が存在したり、突合せ面において隙間、酸化皮膜、汚れ等が存在したとしても、これらの欠陥等は、摩擦圧接による材料攪拌によって圧壊され、或いは細かく均一に分散される。このため、溶接工程においてブローホール等の溶接欠陥の発生を抑制することができる。また、溶接工程における溶け込みが十分でなくとも、水密性及び気密性がさらに良好になる。 Even if there is a cast hole inside the material to be joined or a gap, oxide film, dirt, etc. on the butt surface before friction welding, these defects etc. are crushed by material agitation by friction welding. Or finely and uniformly dispersed. For this reason, generation | occurrence | production of welding defects, such as a blowhole, can be suppressed in a welding process. Moreover, even if the penetration in the welding process is not sufficient, the water tightness and the air tightness are further improved.

また、特にレーザー溶接の場合、ワークの歪みが小さく、また、加工速度が速いという摩擦圧接と共通する利点がある。つまり、本発明では、摩擦圧接工程及び溶接工程の相互の利点を生かしつつ、相互の技術課題を相互に補填し合うことで、より高品質な水密性及び気密性を備えた中空容器を製造することができる。   In particular, in the case of laser welding, there are advantages in common with friction welding, in which the distortion of the workpiece is small and the processing speed is high. In other words, in the present invention, a hollow container having higher quality water tightness and air tightness is manufactured by making mutual use of the mutual advantages of the friction welding process and the welding process while mutually complementing each other. be able to.

以上本発明の実施形態について説明したが、前記した接合方法に限定されるものではない。例えば、本実施形態では、側壁部12の外側面12a及び側壁部22の外側面22aの両方のバリPを利用して溶接工程を行ったが、外側面12a及び外側面22aの一方にしかバリPが発生しなかった場合は、そのバリPを利用して溶接工程を行ってもよい。   Although the embodiment of the present invention has been described above, it is not limited to the above-described joining method. For example, in this embodiment, the welding process is performed using the burrs P on both the outer side surface 12a of the side wall portion 12 and the outer side surface 22a of the side wall portion 22, but the burrs are applied only to one of the outer side surface 12a and the outer side surface 22a. When P does not occur, a welding process may be performed using the burr P.

また、本実施形態では、第一金属部材2及び第二金属部材3にそれぞれ凹部13,23がある形態を例示したが、いずれか一方に凹部を備える形態であってもよい。具体的には、例えば、第一金属部材2と金属板とを摩擦圧接して蓋付中空容器を製造する場合に本発明を適用してもよい。また、凹部13,23の形状は直方体に限らず他の形状であってもよい。   Moreover, although the form which has the recessed parts 13 and 23 in the 1st metal member 2 and the 2nd metal member 3, respectively was illustrated in this embodiment, the form provided with a recessed part in any one may be sufficient. Specifically, for example, the present invention may be applied when a hollow container with a lid is manufactured by friction welding the first metal member 2 and a metal plate. Moreover, the shape of the recessed parts 13 and 23 is not restricted to a rectangular parallelepiped, and may be other shapes.

また、凹部を備えていない金属部材同士を接合して、中空部の無い製品を製造する場合に本発明を適用してもよい。また、摩擦圧接工程における振幅方向は、本実施形態では、側壁部12,22の長辺部と平行になるように設定したが、短辺部と平行になるように設定してもよいし、長辺部に対して斜めに設定してもよい。また、本実施形態では摩擦圧接工程における移動方向を直線状に設定したが、例えば、円柱状又は円筒状の金属部材同士を接合する場合等には金属部材同士を回転させて摩擦圧接工程を行ってもよい。   In addition, the present invention may be applied to the case where metal members that do not have a concave portion are joined together to produce a product that does not have a hollow portion. Further, in this embodiment, the amplitude direction in the friction welding process is set to be parallel to the long side portions of the side wall portions 12 and 22, but may be set to be parallel to the short side portion. You may set diagonally with respect to a long side part. In the present embodiment, the moving direction in the friction welding process is set to be linear. However, for example, when joining cylindrical or cylindrical metal members, the metal members are rotated to perform the friction welding process. May be.

次に、本発明の実施例について説明する。実施例では、第一金属部材2及び第二金属部材3の試験体を各6体用意して、試験体の大きさ、材質、溶接条件等を変えて、それぞれの試験体について前記した接合方法を行った。また、それぞれの試験体について溶接工程を行う前と後の圧力低下率を計測し対比した。なお、試験体Fは、摩擦圧接工程は行わずに溶接工程のみを行い、圧力低下率を計測した。   Next, examples of the present invention will be described. In the embodiment, six test bodies for the first metal member 2 and the second metal member 3 were prepared, and the joining method described above for each test body was performed by changing the size, material, welding conditions, etc. of the test body. Went. Moreover, the pressure drop rate before and after performing a welding process about each test body was measured and compared. The specimen F was subjected to only the welding process without performing the friction welding process, and the pressure drop rate was measured.

試験体A,Bは、図3に示すように、長さの短い金属部材同士(第一金属部材2、第二金属部材3)を接合した。試験体D〜Fは、図4に示すように、試験体A,Bよりも長さが長い金属部材同士(第一金属部材2、第二金属部材3)を接合した。寸法線の単位はmmである。   As shown in FIG. 3, the test bodies A and B were obtained by joining metal members having a short length (first metal member 2 and second metal member 3). As shown in FIG. 4, the test bodies D to F were formed by joining metal members (first metal member 2 and second metal member 3) that are longer than the test bodies A and B. The unit of the dimension line is mm.

図7に示すように、試験体Aの第一金属部材2の材質は、JIS:A6063(Si;0.20〜0.60%、Fe;0.35%以下、Cu;0.10%以下、Mn;0.10%以下、Mg;0.45〜0.90%、Cr;0.10%以下、Zn;0.10%以下、Ti;0.10%以下、Al;残部)である。   As shown in FIG. 7, the material of the first metal member 2 of the specimen A is JIS: A6063 (Si; 0.20 to 0.60%, Fe; 0.35% or less, Cu; 0.10% or less). Mn: 0.10% or less, Mg: 0.45 to 0.90%, Cr: 0.10% or less, Zn: 0.10% or less, Ti: 0.10% or less, Al; balance) .

試験体B〜Fの第一金属部材2の材質は、JIS:A1050(Si;0.25%以下、Fe;0.40%以下、Cu;0.05%以下、Mn;0.05%以下、Mg;0.05%以下、Zn;0.05%以下、V;0.05%以下、Ti;0.03%以下、Al;99.50%以上)である。   The material of the first metal member 2 of the test bodies B to F is JIS: A1050 (Si; 0.25% or less, Fe; 0.40% or less, Cu; 0.05% or less, Mn; 0.05% or less. Mg: 0.05% or less, Zn: 0.05% or less, V: 0.05% or less, Ti; 0.03% or less, Al; 99.50% or more).

試験体A〜Fの第二金属部材3の材質は、JIS:ADC12(Cu;1.5〜3.5%、Si;9.6〜12.0%、Mg;0.3%以下、Zn;1.0%以下、Fe;1.3%以下、Mn;0.5%以下、Ni;0.5%以下、Ti;0.3%以下、Pb;0.2%以下、Sn;0.2%以下、Al;残部)である。   The material of the second metal member 3 of the test bodies A to F is JIS: ADC12 (Cu; 1.5 to 3.5%, Si; 9.6 to 12.0%, Mg; 0.3% or less, Zn 1.0% or less, Fe; 1.3% or less, Mn; 0.5% or less, Ni; 0.5% or less, Ti; 0.3% or less, Pb; 0.2% or less, Sn; 0 2% or less, Al; balance).

試験体Cと試験体Dの摩擦圧接工程に係る摩擦工程では、試験体Cよりも試験体Dの方の摩擦荷重を大きくするとともに摩擦時間を長くして試験を行った。   In the friction process related to the friction welding process of the test body C and the test body D, the test was performed with the friction load of the test body D larger than that of the test body C and with a longer friction time.

試験体A,Bに係る溶接工程では、低出力YAGレーザー溶接装置を用いて図5の(a)の条件で溶接を行った。試験体C,Dに係る溶接工程では、ファイバーレーザー溶接装置を用いて図5の(b)の条件で溶接を行った。試験体E,Fに係る溶接工程では、高出力YAGレーザー溶接装置を用いて図5の(c)の条件で溶接を行った。   In the welding process according to the test bodies A and B, welding was performed using the low-power YAG laser welding apparatus under the conditions shown in FIG. In the welding process concerning the test bodies C and D, welding was performed using the fiber laser welding apparatus under the conditions of FIG. In the welding process according to the specimens E and F, welding was performed using the high-power YAG laser welding apparatus under the conditions shown in FIG.

圧力低下率とは、中空容器の一部に穿設した孔からエアーを供給し、エアーを遮断した段階からの減圧速度を意味するものである。本実施例では、中空容器の一部に孔を開け、その孔から500kPaでエアーを供給し、エアーの供給を遮断したときから中空容器の内圧が100kPaになるまでの時間を計測した。計測時間は最大60秒までとし、60秒を超えても内圧が100kPaに到達しない場合は、60秒経過時の内圧を計測した。   The pressure drop rate means the pressure reduction rate from the stage where air is supplied from a hole drilled in a part of the hollow container and the air is shut off. In this example, a hole was made in a part of the hollow container, air was supplied from the hole at 500 kPa, and the time from when the supply of air was shut off until the internal pressure of the hollow container reached 100 kPa was measured. The measurement time was up to 60 seconds, and when the internal pressure did not reach 100 kPa even after exceeding 60 seconds, the internal pressure when 60 seconds elapsed was measured.

圧力低下率(kPa/sec)は以下の式1で示される。
圧力低下率=(P0−Pmin)/T (式1)
0 :初期圧力(500kPa)
min:最低圧力
T :圧力供給遮断から最低圧力に達するまでの時間
要するに、圧力低下率が低い値であるほど、水密性及び気密性は高いことになる。
The pressure drop rate (kPa / sec) is expressed by the following formula 1.
Pressure drop rate = (P 0 −P min ) / T (Formula 1)
P 0 : Initial pressure (500 kPa)
P min : Minimum pressure T: Time from pressure supply shut-off until reaching the minimum pressure In short, the lower the pressure drop rate, the higher the water tightness and air tightness.

図6の(a)は試験体Aの摩擦圧接工程後における健全な部分の模式断面図である。一方、図6の(b)は試験体Aの摩擦圧接工程後における接合欠陥を含む部分の模式断面図である。図6の(a)、(b)ともに、側壁部12の内側面及び外側面にバリPが発生している。図6の(a)では、突合部Jがきれいに接合しているが、図6の(b)では、突合部Jに接合欠陥Rが発生していることがわかる。なお、試験体Aでは、第一金属部材2よりも第二金属部材3の方が硬質であるため、第一金属部材2のみからバリPが発生していると考えられる。   FIG. 6A is a schematic cross-sectional view of a healthy part after the friction welding process of the specimen A. On the other hand, FIG. 6B is a schematic cross-sectional view of a portion including a bonding defect after the friction welding process of the specimen A. In both (a) and (b) of FIG. 6, burrs P are generated on the inner surface and the outer surface of the side wall portion 12. In FIG. 6A, the abutting portion J is cleanly joined, but in FIG. 6B, it can be seen that a joining defect R has occurred in the abutting portion J. In the specimen A, since the second metal member 3 is harder than the first metal member 2, it is considered that the burrs P are generated only from the first metal member 2.

図6の(c)は、試験体Aの溶接工程後における模式断面図である。図6の(c)では、溶接工程によって形成された溶接金属Qが突合部J付近の外側面12a,22aを覆っている。また、側壁部12の外側のバリPが消失している。また、接合欠陥Rも補修されている。   FIG. 6C is a schematic cross-sectional view after the welding process of the specimen A. In FIG. 6C, the weld metal Q formed by the welding process covers the outer surfaces 12a and 22a in the vicinity of the abutting portion J. Moreover, the burr | flash P of the outer side of the side wall part 12 has disappeared. Further, the bonding defect R is also repaired.

図7に示すように、試験体A〜試験体Eとも溶接工程を行う前に比べて、溶接工程を行った後の方が、圧力低下率がかなり低くなることが確認できた。つまり、摩擦圧接工程に加えて溶接工程を行った方が、中空容器の水密性及び気密性を大幅に向上させることができる。また、試験体Fと他の試験体の圧力低下率を比較すると、溶接工程のみを行う場合よりも、摩擦圧接工程及び溶接工程を行った方が水密性及び気密性を向上させることができる。   As shown in FIG. 7, it was confirmed that the pressure drop rate was considerably lower after performing the welding process than before performing the welding process for both of the test bodies A to E. That is, the watertightness and airtightness of the hollow container can be greatly improved by performing the welding process in addition to the friction welding process. Further, when the pressure drop rates of the test body F and other test bodies are compared, the water tightness and the air tightness can be improved by performing the friction welding process and the welding process rather than performing only the welding process.

1 中空容器
2 第一金属部材
3 第二金属部材
11 底部
12 側壁部
12a 外側面
21 底部
22 側壁部
22a 外側面
J 突合部
P バリ
Q 溶接金属
T 壁厚み
DESCRIPTION OF SYMBOLS 1 Hollow container 2 1st metal member 3 2nd metal member 11 Bottom part 12 Side wall part 12a Outer side surface 21 Bottom part 22 Side wall part 22a Outer side surface J Butt part P Burr Q Weld metal T Wall thickness

Claims (1)

第一金属部材と第二金属部材とを摩擦圧接する摩擦圧接工程と、
前記第一金属部材及び前記第二金属部材の少なくとも一方の外側面に発生したバリを溶加材として前記外側面同士のみをレーザー溶接する溶接工程と、を含み、
前記第一金属部材及び前記第二金属部材は、アルミニウム合金で形成されており、
前記第一金属部材及び前記第二金属部材の対向面のそれぞれに凹部が形成されており、
前記摩擦圧接工程では、前記第一金属部材と前記第二金属部材との平坦な端面同士を互いに近接する方向に押圧した状態で、前記第一金属部材及び前記第二金属部材を相対的かつ直線的に往復移動させることを特徴とする中空容器の製造方法。
A friction welding process of friction welding the first metal member and the second metal member;
A welding step in which only the outer surfaces are laser welded with a burr generated on at least one outer surface of the first metal member and the second metal member as a filler material,
The first metal member and the second metal member are formed of an aluminum alloy,
A recess is formed in each of the opposing surfaces of the first metal member and the second metal member,
In the friction welding process, the first metal member and the second metal member are relatively straightened in a state in which the flat end surfaces of the first metal member and the second metal member are pressed in directions close to each other. The hollow container is manufactured by reciprocally moving.
JP2016211861A 2016-10-28 2016-10-28 Manufacturing method of hollow container Active JP6498651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016211861A JP6498651B2 (en) 2016-10-28 2016-10-28 Manufacturing method of hollow container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016211861A JP6498651B2 (en) 2016-10-28 2016-10-28 Manufacturing method of hollow container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015143204A Division JP6351553B2 (en) 2015-07-17 2015-07-17 Manufacturing method of hollow container

Publications (2)

Publication Number Publication Date
JP2017064792A JP2017064792A (en) 2017-04-06
JP6498651B2 true JP6498651B2 (en) 2019-04-10

Family

ID=58491156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016211861A Active JP6498651B2 (en) 2016-10-28 2016-10-28 Manufacturing method of hollow container

Country Status (1)

Country Link
JP (1) JP6498651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463228B2 (en) 2020-08-14 2024-04-08 株式会社日立製作所 Train control system and train control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123545A (en) * 1974-03-18 1975-09-29
JPH0890259A (en) * 1994-09-27 1996-04-09 Nippon Kayaku Co Ltd Reforming method of press-contact burr and reformed gas generator
JPH11354660A (en) * 1998-06-04 1999-12-24 Daishinku:Kk Package for electronic part and hermetic sealing method therefor
JP2003126968A (en) * 2001-10-19 2003-05-08 Ishikawajima Harima Heavy Ind Co Ltd Method and device for direct acting friction welding
JP2004154826A (en) * 2002-11-07 2004-06-03 Denso Corp Joining method for container
US7614539B2 (en) * 2004-09-13 2009-11-10 The Boeing Company Method to improve properties of aluminum alloys processed by solid state joining

Also Published As

Publication number Publication date
JP2017064792A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6203297B2 (en) Laser lap welding method
CN106914700B (en) A kind of ultrasonic wave added laser soldering device and method for different metal materials
WO2009081731A1 (en) Joining method
JP2009148811A (en) Joining method
CN108788432B (en) Aviation homogeneous IC10 single crystal high-temperature alloy welding method
KR20150028511A (en) Electron Beam Welding Technique Using Backing Sheet
US8770464B2 (en) Method for producing overlapping weld joints and overlapping weld joint
WO2013058086A1 (en) Method for manufacturing lidded container and joining method
JP6498651B2 (en) Manufacturing method of hollow container
JP6351553B2 (en) Manufacturing method of hollow container
JP5870875B2 (en) Joining method, method for producing hollow container, and method for producing hollow container with lid
CN104907657B (en) A kind of TiAl/TC4 electron beam melt-brazing methods for adding alloy interlayer
JP5630480B2 (en) Method for manufacturing container with lid
JP4957588B2 (en) Joining method
KR100543160B1 (en) Improvement in probe friction butt welding method
JP2012236205A (en) Method for repairing mold
KR20180111480A (en) Method for producing work using friction stir welding and work product
JP2018065164A (en) Method of manufacturing hollow vessel
KR20130000293U (en) Tab piece for welding
CN114682869B (en) Composite welding method for eliminating incomplete welding of TC17 butt joint plates with substrate plates
JP2015211975A (en) Welding equipment, welding method, and welding component processing apparatus
TWI523719B (en) Method for manufacturing the attached container, the joining method, the method of manufacturing the hollow container, and the method of manufacturing the hollow container
JP6487623B2 (en) Joining method
US8481883B2 (en) Welding method and apparatus
JP2011101890A (en) Joining method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180416

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R150 Certificate of patent or registration of utility model

Ref document number: 6498651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350