JP6494684B2 - Interior lighting structure and interior lighting method - Google Patents
Interior lighting structure and interior lighting method Download PDFInfo
- Publication number
- JP6494684B2 JP6494684B2 JP2017087970A JP2017087970A JP6494684B2 JP 6494684 B2 JP6494684 B2 JP 6494684B2 JP 2017087970 A JP2017087970 A JP 2017087970A JP 2017087970 A JP2017087970 A JP 2017087970A JP 6494684 B2 JP6494684 B2 JP 6494684B2
- Authority
- JP
- Japan
- Prior art keywords
- vertical wall
- light transmitting
- illumination
- light
- transmitting plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 9
- 238000005286 illumination Methods 0.000 claims description 125
- 230000005540 biological transmission Effects 0.000 claims description 75
- 238000005457 optimization Methods 0.000 description 87
- 238000010586 diagram Methods 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Planar Illumination Modules (AREA)
Description
本発明は、医用室の室内の照明を行うための室内照明技術に関し、特に、医用室の室内照明の均一性を高める室内照明技術に関する。 The present invention relates to room lighting technology for performing room lighting in a medical room, and more particularly to room lighting technology for enhancing the uniformity of room lighting in a medical room.
手術室や解剖室などの医用室に於いては、室内の床上に設置された手術台、解剖台等の作業台を中心として室内照明が行われる。医用室に於ける室内照明技術としては、例えば、特許文献1〜3に記載のものが公知である。特許文献1に記載の空調・照明システムは、格子状に区画されたシステム天井(グリッド天井)の各区画を構成するシステム天井モジュールの各々に照明器具、人感センサ、調光制御装置を設けて、調光制御装置によって照明器具の制御を行うようにしたものである(特許文献1の図2,図4,図8参照)。特許文献2に記載のグリッド天井用照明装置は、システム天井(グリッド天井)の所定間隔のグリッドのグリッド内に2つの照明器具(蛍光灯)を並列配設したものである(特許文献2の図1,図7参照)。特許文献3に記載のグリッド天井用照明装置は、2つのグリッドに跨るようにして照明器具を配置したものである。 In a medical room such as an operating room or an anatomic room, room lighting is performed centering on a working table such as an operating table or an anatomical table installed on the floor of the room. As a room lighting technique in a medical room, for example, those described in Patent Documents 1 to 3 are known. In the air conditioning and lighting system described in Patent Document 1, a lighting fixture, a human detection sensor, and a dimming control device are provided in each of system ceiling modules that constitute each section of a system ceiling (grid ceiling) partitioned in a grid shape. The light control apparatus is configured to control the lighting apparatus (refer to FIGS. 2, 4 and 8 of Patent Document 1). The lighting device for the grid ceiling described in Patent Document 2 is a system in which two lighting fixtures (fluorescent lamps) are arranged in parallel in a grid grid of a predetermined distance from the system ceiling (grid ceiling) (see the patent document 2) 1, see Figure 7). The lighting device for grid ceilings described in Patent Document 3 is a device in which lighting devices are arranged so as to straddle two grids.
一方、医用室においては、室内の空気を清浄に保つため、室内の気流を調整する目的で矩形枠状の垂壁を天井に設置することが行われている(例えば、特許文献4〜7参照)。垂壁は、通常、手術台などの作業台の上方の天井面に、作業台を囲むように設置され(例えば、特許文献7の図1参照)、垂壁の枠内から下方に向けて清浄空気を吹き出し、部屋の周囲の壁面の床近傍又は天井近傍から空気を吸引排出することによって(例えば、特許文献5の図1,図4参照)、室内の空気を清浄に保つことが行われる。 On the other hand, in the medical room, in order to keep the air in the room clean, a rectangular frame-like hanging wall is installed on the ceiling for the purpose of adjusting the air flow in the room (see, for example, Patent Documents 4 to 7). ). The vertical wall is usually installed on the ceiling surface above the work bench such as the operating table so as to surround the work bench (see, for example, FIG. 1 of Patent Document 7), and is cleaned downward from within the frame of the vertical wall. Keeping the room air clean is performed by blowing out the air and sucking and discharging the air from near the floor or near the ceiling of the wall surface around the room (for example, see FIGS. 1 and 4 of Patent Document 5).
手術室や解剖室などの医用室では、上述した垂壁を用いて室内の気流を調整することが行われるが、一般に、垂壁の枠内の天井には、空調設備の他、各種医療設備やモニタなどが吊り下げて配置されることが一般に行われる(例えば、特許文献7の図1参照)。このような場合、垂壁枠内に照明器具を広く設けることは困難であり、畢竟、室内照明は、垂壁の周囲の天井に垂壁を囲繞するように配置される。 In a medical room such as an operating room or an anatomic room, the air flow in the room is adjusted using the above-mentioned vertical wall, but generally, in the ceiling of the vertical wall, various medical facilities as well as air conditioning equipment It is generally performed that a monitor or the like is suspended and disposed (see, for example, FIG. 1 of Patent Document 7). In such a case, it is difficult to widely arrange the luminaire in the hanging wall frame, and the indoor light is disposed so as to surround the hanging wall in the ceiling around the hanging wall.
しかしながら、室内照明を、垂壁を囲繞するように配置した場合、必然的に垂壁の中央部分の照度が周囲に比べて低くなる。そのため、室内の照度均斉度が大きくなり、視覚状、室内の明暗が大きく感じられてしまうという問題がある。これは、特に、医用室に於いては、作業者に室内の明暗が大きく感知されることは、細かい作業を行う際の障害となるため、出来る限り照度の均一性を保つことが求められる。 However, when the room lighting is arranged to surround the vertical wall, the illuminance at the central portion of the vertical wall necessarily becomes lower than the surrounding. Therefore, the illuminance uniformity in the room becomes large, and there is a problem that the visual condition and the bright and dark in the room are felt large. This is particularly important in the medical room where the operator's large perception of light and dark in the room is an obstacle for performing detailed work, and therefore it is required to maintain the uniformity of the illuminance as much as possible.
そこで、本発明の目的は、天井に矩形枠状の空調用垂壁を備えた医用室において、室内の照度の高い均一性を確保することが可能な室内照明構造及び室内照明方法を提供することにある。 Therefore, it is an object of the present invention to provide an indoor illumination structure and an indoor illumination method capable of securing high uniformity of the illuminance in the room in a medical room provided with a rectangular frame-shaped vertical wall for air conditioning on the ceiling. It is in.
本発明に係る室内照明構造の第1の構成は、医用室の室内の照明を行う室内照明構造であって、
天井面から垂直に垂下して設置され、光が透過する透光板を矩形枠状に配置形成された透光板垂壁と、
前記天井面に、前記透光板垂壁の周囲全体を取り囲み、前記透光板垂壁の矩形枠と同心の四角形の辺に沿って設置されたベース照明と、
前記天井面と前記透光板垂壁との間に、前記透光板垂壁の上端面に沿って線状に配置され、前記透光板垂壁の上端面から前記透光板垂壁の内部に向けて照光する垂壁照明と、を備えたことを特徴とする。
A first configuration of the indoor illumination structure according to the present invention is an indoor illumination structure for illuminating the interior of a medical room,
A translucent plate vertical wall which is vertically suspended from a ceiling surface and disposed in a rectangular frame shape and is a translucent plate through which light is transmitted;
Base illumination installed on the ceiling surface along the side of a quadrangle concentric with the rectangular frame of the light transmission plate vertical wall, surrounding the entire periphery of the light transmission plate vertical wall;
Between the ceiling surface and the light transmitting plate vertical wall, the light transmitting plate vertical wall is linearly arranged along the upper end surface of the light transmitting plate vertical wall, and from the upper end surface of the light transmitting plate vertical wall And a vertical wall light which is illuminated toward the inside.
この構成によれば、垂壁照明から発せられた光は、主に透光板垂壁の内部を通して透光板垂壁の下端から放射され、透光板垂壁の矩形枠内の補助照明として機能し、透光板垂壁の矩形枠内の照度均斉度を低下させることができる。これにより、室内の照度の高い均一性を確保することが可能となる。 According to this configuration, the light emitted from the vertical wall illumination is emitted mainly from the lower end of the light transmission vertical wall through the inside of the light vertical wall, and as auxiliary illumination in the rectangular frame of the light vertical wall. It is possible to reduce the illuminance uniformity within the rectangular frame of the translucent plate vertical wall. This makes it possible to ensure high uniformity of the illuminance in the room.
本発明に係る室内照明構造の第2の構成は、前記第1の構成において、前記透光板垂壁の上端部に、前記透光板垂壁の上端部の側面を覆うとともに、前記透光板垂壁を天井面に固定するソケットを備え、前記ソケットは、内側面が鏡面であることを特徴とする。 The 2nd structure of the interior lighting structure which concerns on this invention is the said 1st structure, covering the side surface of the upper end part of the said light transmission board vertical wall in the upper end part of the said light transmission board vertical wall, and the said light transmission It has a socket which fixes a board hanging wall to a ceiling surface, and the socket is characterized in that an inner side is a mirror surface.
この構成によれば、ソケットの内側面を鏡面とすることにより、透光板垂壁の上端面と垂壁照明の照光面との間に隙間を設けた場合であっても、光学的には透光板垂壁の上端面と垂壁照明の照光面とを密着して配置した場合とほぼ等価となる。これにより、前記隙間があっても垂壁照明の見かけ上の指向性は低くなり、最適化均斉度及び最適化変動係数を低く抑えることが出来る。また、透光板垂壁の上端面と垂壁照明の照光面との間に隙間を設けることで、この隙間空間を利用して垂壁照明の冷却を行うことも可能となり、放熱性を確保でき、垂壁照明の熱による劣化を防止することも可能となる。 According to this configuration, by forming the inner side surface of the socket as a mirror surface, even when a gap is provided between the upper end surface of the light transmitting plate vertical wall and the illumination surface of the vertical wall illumination, optically It is substantially equivalent to the case where the upper end surface of the light transmitting plate vertical wall and the illumination surface of the vertical wall illumination are disposed in close contact with each other. As a result, the apparent directivity of the vertical wall illumination becomes low even with the gap, and the optimization uniformity and the optimization variation coefficient can be suppressed to a low level. In addition, by providing a gap between the upper end surface of the light transmitting plate vertical wall and the illumination surface of the vertical wall illumination, cooling of the vertical wall illumination can be performed using this gap space, and heat dissipation is ensured. It is also possible to prevent the heat deterioration of the vertical wall illumination.
本発明に係る室内照明構造の第3の構成は、前記第1又は2の構成において、前記透光板垂壁は、複数の平板状の透光板を矩形枠状に配置して形成されており、
前記透光板垂壁を構成する前記各透光板の左右両端面は傾斜面に形成され、且つ該傾斜面が前記透光板垂壁の枠の外側を向くように形成されていることを特徴とする。
In a third configuration of the indoor lighting structure according to the present invention, in the first or second configuration, the light transmitting plate vertical wall is formed by arranging a plurality of flat light transmitting plates in a rectangular frame shape Yes,
The left and right end surfaces of each of the light transmitting plates constituting the light transmitting plate vertical wall are formed as inclined surfaces, and the inclined surfaces are formed to face the outside of the frame of the light transmitting plate vertical wall. It features.
この構成により、透光板垂壁の矩形枠内の照度均斉度をさらに低下させることができ、室内の照度の均一性さらに高めることが可能となる。 With this configuration, it is possible to further reduce the illuminance uniformity in the rectangular frame of the light transmitting plate vertical wall, and it is possible to further enhance the uniformity of the illuminance in the room.
本発明に係る室内照明構造の第4の構成は、前記第1乃至3の何れか一の構成において、前記透光板垂壁は、その下端面が傾斜平面、又は曲面、若しくは中折れ折面に形成されていることを特徴とする。 In a fourth configuration of the indoor lighting structure according to the present invention, in the configuration according to any one of the first to third embodiments, the lower surface of the light transmitting plate vertical wall has an inclined plane, a curved surface, or a center bending surface It is characterized in that it is formed in
この構成により、透光板垂壁の矩形枠内の照度均斉度をさらに低下させることができ、室内の照度の均一性さらに高めることが可能となる。 With this configuration, it is possible to further reduce the illuminance uniformity in the rectangular frame of the light transmitting plate vertical wall, and it is possible to further enhance the uniformity of the illuminance in the room.
本発明に係る室内照明方法は、医用室の室内の照明を行う室内照明方法であって、
光が透過する透光板を矩形枠状に配置形成された透光板垂壁を、天井面から垂直に垂下して設置し、
前記天井面に、前記透光板垂壁の周囲全体を取り囲む前記透光板垂壁の矩形枠と同心の四角形の辺に沿ってベース照明を設置し、
前記透光板垂壁の上端面から前記透光板垂壁の内部に向けて照光する垂壁照明を、前記天井面と前記透光板垂壁との間に、前記透光板垂壁の上端面に沿って線状に配置し、
前記天井面上の前記ベース照明を包含ずる凸包内の真下の空間の、床面から0m乃至1.5mの間の所定の高さにおける水平面内の照度の均斉度が最小となるように、前記ベース照明の照度と前記垂壁照明の照度の照度比を調整することを特徴とする。
An indoor illumination method according to the present invention is an indoor illumination method for illuminating a room of a medical room,
A translucent plate vertical wall in which a translucent plate through which light passes is arranged and formed in a rectangular frame shape is vertically suspended from a ceiling surface,
Base illumination is installed on the ceiling surface along a side of a quadrangle concentric with the rectangular frame of the light transmitting plate vertical wall surrounding the entire periphery of the light transmitting plate vertical wall,
Vertical wall illumination for illuminating light from the upper end surface of the transparent plate vertical wall to the inside of the transparent plate vertical wall, between the ceiling surface and the transparent plate vertical wall, of the transparent plate vertical wall Arranged linearly along the upper end face,
The uniformity of the illuminance in the horizontal plane at a predetermined height between 0 m and 1.5 m from the floor surface of the space directly below the convex hull including the base illumination on the ceiling surface is minimized. The illumination ratio of the illumination of the base illumination and the illumination of the vertical wall illumination may be adjusted.
以上のように、本発明によれば、天井面と透光板垂壁との間に、透光板垂壁の上端面から透光板垂壁の内部に向けて照光する垂壁照明を設けることにより、垂壁照明から発せられた光は、主に透光板垂壁の内部を通して透光板垂壁の下端から放射され、透光板垂壁の矩形枠内の補助照明として機能し、透光板垂壁の矩形枠内の照度均斉度を低下させることができる。これにより、室内の照度の高い均一性を確保することが可能となる。 As described above, according to the present invention, vertical wall illumination is provided between the ceiling surface and the vertical wall of the transparent plate from the upper end surface of the vertical wall of the transparent plate toward the inside of the vertical wall of the transparent plate. Thus, the light emitted from the vertical wall light is emitted mainly from the lower end of the transparent plate vertical wall through the inside of the transparent plate vertical wall, and functions as auxiliary illumination in the rectangular frame of the transparent plate vertical wall, The illuminance uniformity in the rectangular frame of the light transmitting plate vertical wall can be reduced. This makes it possible to ensure high uniformity of the illuminance in the room.
また、透光板垂壁上端のソケットの内側面を鏡面とすることにより、透光板垂壁の上端面と垂壁照明の照光面との間に隙間を設けた場合であっても、光学的には透光板垂壁の上端面と垂壁照明の照光面とを密着して配置した場合とほぼ等価となる。これにより、前記隙間があっても垂壁照明の見かけ上の指向性は低くなり、最適化均斉度及び最適化変動係数を低く抑えることが出来る。また、透光板垂壁の上端面と垂壁照明の照光面との間に隙間を設けることで、この隙間空間を利用して垂壁照明の冷却を行うことも可能となり、放熱性を確保でき、垂壁照明の熱による劣化を防止することも可能となる。 In addition, by making the inner surface of the socket at the upper end of the light transmitting plate vertical wall a mirror surface, even when a gap is provided between the upper end surface of the light transmitting plate vertical wall and the illumination surface of the vertical wall illumination, This is substantially equivalent to the case where the upper end surface of the light transmitting plate vertical wall and the illumination surface of the vertical wall illumination are disposed in close contact with each other. As a result, the apparent directivity of the vertical wall illumination becomes low even with the gap, and the optimization uniformity and the optimization variation coefficient can be suppressed to a low level. In addition, by providing a gap between the upper end surface of the light transmitting plate vertical wall and the illumination surface of the vertical wall illumination, cooling of the vertical wall illumination can be performed using this gap space, and heat dissipation is ensured. It is also possible to prevent the heat deterioration of the vertical wall illumination.
以下、本発明を実施するための形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の実施例1に係る室内照明構造の全体構成を表す図である。図1(a)は、室内側から見上げて視た斜視図、図1(b)は天井面から外した透光板垂壁の斜視図、図1(c)は側面図、図1(d)は平面図を表す。図1において、照明の対象となる部屋は、手術室や解剖室等の医用室であり、天井面1、部屋壁面2、及び床面3を備えている。尚、図1(a)では、図示の都合上、部屋壁面2の一部を省略し、床面3の一部を破断して示している。本発明に係る室内照明構造は、透光板垂壁4、ソケット5、ベース照明6、及び垂壁照明7を備えている。透光板垂壁4は、天井面1から垂直に垂下して設置され、複数の光が透過する透光板4aを矩形枠状に配置形成された垂壁である。透光板4aは、ガラスやアクリル板のような光の透過率の高い透明素材のものが用いられる。ソケット5は、透光板垂壁4の上端全体に亘って設けられた固定金具であり、透光板垂壁4を天井面1に固定するものである。ソケット7の両側面は透光板4aの両側面と平行に形成されている。ソケット5の内側面は光を反射する鏡面加工が施され、又は鏡面シールが貼着されている。ベース照明6は、天井面1に、透光板垂壁4の周囲全体を取り囲み、透光板垂壁4の矩形枠と同心の四角形の辺に沿って設置された照明である。ベース照明6は、天井照明として通常用いられる、蛍光灯やLED照明等の、配光特性分布が全方位方向に略均一に広がったような照明が使用される。垂壁照明7は、図1(b)に示すように、透光板垂壁4の上端面に沿って線状に配置され、透光板垂壁4の上端面から透光板垂壁4の内部に向けて照光する照明である。垂壁照明7としては、高輝度LEDを線状に配列したLEDラインアレイ等が用いられる。垂壁照明7を構成するLED等の各照明素子は、ビーム中心軸方向が下向き(即ち、透光板垂壁4の上端面に向かう向き)となるように配置される。 FIG. 1 is a diagram showing an entire configuration of an indoor lighting structure according to a first embodiment of the present invention. 1 (a) is a perspective view looking up from the indoor side, FIG. 1 (b) is a perspective view of a light transmitting plate vertical wall removed from a ceiling surface, FIG. 1 (c) is a side view, FIG. ) Represents a plan view. In FIG. 1, a room to be illuminated is a medical room such as an operating room or an anatomic room, and includes a ceiling surface 1, a room wall surface 2, and a floor surface 3. In addition, in FIG. 1 (a), a part of room wall surface 2 is abbreviate | omitted on account of illustration, and a part of floor surface 3 is broken and shown. The indoor lighting structure according to the present invention includes the light transmitting plate vertical wall 4, the socket 5, the base lighting 6, and the vertical wall lighting 7. The light transmitting plate vertical wall 4 is a vertical wall vertically hanging from the ceiling surface 1 and formed by arranging a light transmitting plate 4 a transmitting a plurality of lights in a rectangular frame shape. The light-transmissive plate 4a is made of a transparent material having a high light transmittance, such as a glass or an acrylic plate. The socket 5 is a fixing fitting provided over the entire upper end of the light transmitting plate vertical wall 4, and fixes the light transmitting plate vertical wall 4 to the ceiling surface 1. Both side surfaces of the socket 7 are formed in parallel with both side surfaces of the light transmitting plate 4a. The inner surface of the socket 5 is mirror-finished to reflect light, or a mirror seal is attached. The base lighting 6 is lighting installed on the ceiling surface 1 so as to surround the entire periphery of the light transmitting plate vertical wall 4 and to be installed along the side of a square concentric with the rectangular frame of the light transmitting plate vertical wall 4. The base illumination 6 is an illumination usually used as a ceiling illumination, such as a fluorescent lamp or an LED illumination, in which the light distribution characteristic distribution is substantially uniformly spread in all directions. The vertical wall illumination 7 is linearly arranged along the upper end surface of the light transmission plate vertical wall 4 as shown in FIG. 1 (b). A light that illuminates the interior of the house. As the vertical wall illumination 7, an LED line array or the like in which high brightness LEDs are linearly arranged is used. Each lighting element such as an LED constituting the vertical wall illumination 7 is arranged such that the beam central axis direction is downward (that is, the direction toward the upper end surface of the light transmitting plate vertical wall 4).
以下の説明に於いて、照明を行う室内の横方向をx方向、縦方向をy方向、鉛直方向をz方向とする。また、図1(c),(d)に示すように、照明を行う室内の幅をwmx,wmy、床面3から天井面1までの高さをhm、ベース照明6を配列した矩形枠の幅をwcx,wcy、ベース照明6の幅をw1、透光板垂壁4の枠の幅をw2x,w2y、透光板垂壁4の高さをh2、透光板垂壁4を構成する各透光板4aの厚さをtと記す。標準的な医用室では、床面3から天井面1までの高さをhmは3m程度に設定される。 In the following description, the horizontal direction of the room to be illuminated is x direction, the vertical direction is y direction, and the vertical direction is z direction. Also, as shown in FIGS. 1 (c) and 1 (d), the width of the room to be illuminated is w mx , w my , the height from floor 3 to ceiling 1 is h m , and base illumination 6 is arranged. The width of the rectangular frame is w cx , w cy , the width of the base illumination 6 is w 1 , the width of the frame of the light transmitting plate vertical wall 4 is w 2x , w 2 y , the height of the light transmitting plate vertical wall 4 h 2 , The thickness of each light transmitting plate 4 a constituting the light transmitting plate vertical wall 4 is denoted by t. In a standard medical room, the height from the floor 3 to the ceiling 1 is set to about 3 m .
図2は、実施例1の透光板垂壁4を構成する各透光板4aの構成を表す図である。図2(a)は全体斜視図、図2(b)は正面図、図2(c)は側面図である。本実施例では、透光板4aは、全体が矩形状の平面板とする。透光板4aは、上端面及び下端面が水平平面若しくは傾斜平面に形成されている。以下の説明に於いて、透光板4aの上端面の水平面に対する傾斜角をθtと記し、傾斜角θtは、図2(c)に示すように、透光板垂壁4の矩形枠体の内側から外側に向かって上方に向かって傾斜する方向を正方向とする。また、透光板4aの下端面の水平面に対する傾斜角をθbと記し、傾斜角θbは、図2(c)に示すように、透光板垂壁4の矩形枠体の内側から外側に向かって上方に向かって傾斜する方向を正方向とする。また、透光板4aの幅はwp、高さはh2、厚みはtと記す。図1(d)より、L1x=3wp、L1y=4wpである。 FIG. 2 is a view showing the configuration of each light transmitting plate 4 a constituting the light transmitting plate vertical wall 4 of the first embodiment. Fig.2 (a) is a whole perspective view, FIG.2 (b) is a front view, FIG.2 (c) is a side view. In the present embodiment, the light transmitting plate 4a is a flat plate having a rectangular shape as a whole. The upper end surface and the lower end surface of the light transmitting plate 4a are formed in a horizontal plane or an inclined plane. In the following description, the inclination angle denoted as theta t with respect to the horizontal plane of the upper end face of the transparent plate 4a, the inclination angle theta t, as shown in FIG. 2 (c), the rectangular frame of the light-transmitting plate vertical wall 4 The direction inclined upward from inside to outside of the body is taken as the positive direction. Also, noted an inclination angle with respect to the horizontal plane of the lower end surface of the transparent plate 4a and theta b, the inclination angle theta b, as shown in FIG. 2 (c), the outside from the inside of the rectangular frame of the light-transmitting plate vertical wall 4 The positive direction is the direction that inclines upward towards. Further, the width of the light transmitting plate 4a is w p , the height is h 2 , and the thickness is t. From FIG. 1D, L 1x = 3w p and L 1y = 4w p .
以上のように構成された本実施例に係る室内照明構造において、以下、それを用いた室内照明方法について説明する。 In the indoor illumination structure according to the present embodiment configured as described above, an indoor illumination method using the same will be described below.
透光板垂壁4の枠体の下方の室内の床面3上には、手術台や解剖台等の作業台(図示せず)が設置される。この状態に於いて、ベース照明6及び垂壁照明7を点灯して、作業台周辺の室内照明を行う。通常、手術台等の作業台の床面3からの高さは600〜1000mmである。従って、この高さの範囲内若しくは部屋の利用目的に応じて0〜1.5mの範囲内に照度基準面を仮想的に設け、照度基準面において、作業台周辺の照度の均斉度が最小となるようにベース照明6及び垂壁照明7の照度を調節する。ここで、「均斉度(uniformity)」とは、JIS−z−9110−2011(照明基準総則)では、ある面における平均照度に対する最小照度の比と定義されている。また、別の定義として、ある面における平均照度に対する最大照度と最小照度の差の比と定義する場合もある。ベース照明6及び垂壁照明7の照度を調節する場合、何れの定義による均斉度を用いてもよいが、本明細書においては後者の定義を用いることとする。即ち、次式によって均斉度Uを定義する。 A work table (not shown) such as an operating table or a dissection table is installed on the floor 3 in the room below the frame of the light transmitting plate vertical wall 4. In this state, the base illumination 6 and the vertical wall illumination 7 are turned on to perform indoor illumination around the workbench. Usually, the height from the floor 3 of a work table such as an operating table is 600 to 1000 mm. Therefore, the illuminance reference plane is virtually provided within the range of this height or within the range of 0 to 1.5 m according to the purpose of use of the room, and in the illuminance reference plane, the uniformity of the illuminance around the work bench is minimum. The illuminations of the base illumination 6 and the vertical wall illumination 7 are adjusted to be Here, “uniformity” is defined in JIS-z-9110-2011 (Lighting General Rule) as the ratio of the minimum illuminance to the average illuminance on a certain surface. As another definition, it may be defined as the ratio of the difference between the maximum illumination and the minimum illumination to the average illumination on a certain surface. When adjusting the illuminance of the base illumination 6 and the vertical illumination 7, although the uniformity according to any definition may be used, the latter definition will be used in the present specification. That is, the uniformity ratio U is defined by the following equation.
ここで、I(P)は照度基準面上の点Pの照度、Aは照度測定領域(照度基準面上の領域)、maxP∈A(I(P))は領域Aにおける照度I(P)の最大値、minP∈A(I(P))は領域Aにおける照度I(P)の最小値、aveP∈A(I(P))は領域Aにおける照度I(P)の平均値である。均斉度は、室内照度の局所的な濃淡を表す指標であるが、後の説明に於いて、室内照度の全体的な濃淡を表す指標として、照度の変動係数RSDを用いる。変動係数RSDは、次式によって定義する。 Here, I (P) is the illuminance of the point P on the illuminance reference plane, A is the illuminance measurement area (area on the illuminance reference plane), and max P ∈ A (I (P)) is the illuminance I (P ), Min P ∈ A (I (P)) is the minimum value of illuminance I (P) in region A, ave P ∈ A (I (P)) is the average value of illuminance I (P) in region A It is. The uniformity is an index that represents local shading of the room illuminance, but in the following description, the illuminance variation coefficient RSD is used as an index that represents the overall shading of the room illuminance. The coefficient of variation RSD is defined by the following equation.
このように、透光板垂壁4の上端面から、透光板垂壁4を通して垂壁照明7により照明を行うことによって、透光板垂壁4の枠内の照度を、枠周囲の照度と均一化することが可能となる。 As described above, illumination is performed by the vertical wall illumination 7 from the upper end surface of the transparent plate vertical wall 4 through the transparent plate vertical wall 4 so that the illuminance in the frame of the transparent plate vertical wall 4 is the illuminance around the frame It becomes possible to equalize the
次に、実際に図1,図2の透光板垂壁4を通して垂壁照明7により照明を行うことによって、室内の照度がどの程度均一化されるのかについての評価を行った結果について説明する。評価方法としては、まず、ベース照明6のみによる照度分布の評価及び垂壁照明7のみによる照度分布の評価を行い、次に、両者を重ね合わせた場合についての均斉度及び変動係数の改善度合いを評価する。照度の評価は、レイトレーシング法による数値計算により行った。 Next, the result of the evaluation of how much the illuminance in the room is made uniform by actually illuminating with the vertical wall illumination 7 through the light transmitting plate vertical wall 4 of FIGS. 1 and 2 will be described. . As an evaluation method, first, evaluation of the illuminance distribution by only the base illumination 6 and evaluation of the illuminance distribution by only the vertical wall illumination 7 are performed, and then, the improvement degree of uniformity and variation coefficient in the case of overlapping both evaluate. The evaluation of the illuminance was performed by numerical calculation by the ray tracing method.
(1)ベース照明6による照度分布の評価
照度計算にあたっては、標準的な医用室のサイズを想定して、図1のサイズパラメータとして、照明を行う室内の幅をwmx×wmy=6.5×8m、床面3から天井面1までの高さをhm=3m、ベース照明6を配列した矩形枠の幅をwcx×wcy=4.79×5.24m、ベース照明6の幅をw1=0.3m、透光板垂壁4の枠の幅をw2x×w2y=1.6×2.4m、透光板垂壁4の高さをh2=0.3m、透光板垂壁4を構成する各透光板4aの厚さをt=10mmとした。ベース照明6の配光分布曲線は、使用する照明器具によって異なるが、ここでは、標準的なモデルとして、ベース照明6を理想的な面光源とし、配向曲線をIs(θ)=Is0cosθとした。ここで、θはベース照明6の法線ベクトル(垂直下方を向くベクトル)に対する角度を表す。照度基準面として、床面からの高さ70cmの水平面(透光板垂壁4の下端面からの距離2mの水平面)を照度基準面とした。また、部屋の周壁面や床面による反射は、壁面や床面を構成する素材によって様々に相違するため、今回の評価に当たっては周壁面や床面による反射は考慮しないこととした。
(1) Evaluation of illuminance distribution by base lighting 6 In calculating the illuminance, assuming the size of a standard medical room, the width of the room to be illuminated is set to w mx × w my = 6 as the size parameter of FIG. 5 x 8 m, height from floor surface 3 to ceiling surface 1 h m = 3 m, width of rectangular frame on which base lighting 6 is arranged w cx x w cy = 4.79 x 5. 24 m, base lighting 6 The width is w 1 = 0.3 m, the width of the frame of the translucent plate vertical wall 4 is w 2 x × w 2 y = 1.6 x 2.4 m, the height of the translucent plate vertical wall 4 h 2 = 0.3 m The thickness of each light transmitting plate 4 a constituting the light transmitting plate vertical wall 4 was set to t = 10 mm. Light distribution curve of the base lighting 6 varies depending luminaires to be used, here, as a standard model, the base illumination 6 is an ideal surface light source, the orientation curve I s (θ) = I s0 cosθ And Here, θ represents an angle with respect to a normal vector (vector directed downward in the vertical direction) of the base illumination 6. As the illuminance reference surface, a horizontal surface 70 cm in height from the floor surface (horizontal surface at a distance of 2 m from the lower end surface of the light transmitting plate vertical wall 4) was used as the illuminance reference surface. In addition, since the reflection by the peripheral wall surface and the floor surface of the room is variously different depending on the material constituting the wall surface and the floor surface, the reflection by the peripheral wall surface and the floor surface is not considered in this evaluation.
図3は、ベース照明6のみによる照度分布の計算結果を示す図である。図3に於いて、黒線で示した枠線は、外側の枠線が天井面のベース照明6の位置を表し、内側の長方形の枠線が透光板垂壁4の位置を示している(図1(d)参照)。図3より、ベース照明のみによる照明を行った場合、透光板垂壁4の枠内に暗部が生じることが分かる。このとき、ベース照明6の枠内(ベース照明6の枠の全ての外側辺を包含する凸包内)の領域A(図3において一点鎖線で囲まれた領域)の均斉度U(A)及び変動係数RSD(A)は、U(A)=0.619, RSD(A)=0.163であった。 FIG. 3 is a view showing the calculation result of the illuminance distribution by only the base illumination 6. In FIG. 3, in the frame line indicated by a black line, the outer frame line indicates the position of the base illumination 6 on the ceiling surface, and the inner rectangular frame line indicates the position of the light transmission plate vertical wall 4 (See FIG. 1 (d)). It can be seen from FIG. 3 that when illumination is performed only by the base illumination, a dark portion is generated in the frame of the light transmitting plate vertical wall 4. At this time, the uniformity U (A) of the area A (the area surrounded by the alternate long and short dash line in FIG. 3) within the frame of the base illumination 6 (within the convex hull including all the outer sides of the frame of the base illumination 6) and The variation coefficient RSD (A) was U (A) = 0.619 and RSD (A) = 0.163.
(2)透光板4a単体による照度分布についての評価
次に、透光板4a単体による照度分布についての評価を行った結果を説明する。図4は、透光板4a単体の評価モデルを表す図である。透光板4aの形状は、図2と同様であり、透光板4aの上端面の上方に、距離dsの間隔を開けて、透光板4aと同じ幅の面光源を配置する。ここでは、面光源の配光分布曲線は、全方向で一定値(等方光源)とした。また、面光源と透光板の上端面との間には、ソケット5の代わりとして遮蔽板を設定した。照度基準面は、透光板4aの下端からの距離hmが2mの位置にある水平面とした。この照度基準面上に、図4(b)に示すような、透光板4aの中央点の真下の位置の点を原点とし、透光板4aの幅方向と垂直な方向をx軸、垂直方向をz軸とする座標軸を設定し、x軸に沿って照度の計算を行った。尚、透光板4aの上端面の傾斜角θtは0度とした。
(2) Evaluation of illuminance distribution by the light transmitting plate 4a alone Next, a result of evaluating the illuminance distribution by the light transmitting plate 4a alone will be described. FIG. 4 is a diagram showing an evaluation model of the light transmitting plate 4a alone. The shape of the transparent plate 4a is the same as FIG. 2, above the upper end surface of the transparent plate 4a, an interval of distance d s, placing a surface light source having the same width as the transparent plate 4a. Here, the light distribution curve of the surface light source has a constant value (isotropic light source) in all directions. Further, a shielding plate was set as a substitute for the socket 5 between the surface light source and the upper end surface of the light transmitting plate. The illuminance reference surface was a horizontal surface at a position at which the distance h m from the lower end of the light transmission plate 4a is 2 m . As shown in FIG. 4B, on this illuminance reference surface, a point immediately below the center point of the light transmission plate 4a is taken as the origin, and a direction perpendicular to the width direction of the light transmission plate 4a is the x axis A coordinate axis with a direction of z-axis was set, and the calculation of illuminance was performed along the x-axis. In addition, inclination-angle (theta) t of the upper end surface of the light transmission board 4a was 0 degree.
図5は、透光板4a上端面と面光源の間隔dsを0.1t,t,2t,5tとした場合の、各下端面傾斜角θbに対する測定線上の照度分布の計算結果を表す図である。図5より、透光板4a上端面と面光源の間隔dsが大きくなるに従って、照度値のピークは、透光板4aの真下の位置(x=0)よりも内側(x<0)へシフトしていくことが分かる。また、透光板の外側(x>0)では、照度値の振動が大きい傾向が見られる。この理由は、次のように考えられる。 Figure 5 is a diagram showing a transparent plate 4a upper surface and 0.1t spacing d s of the surface light source, in the case of t, 2t, and 5t, the calculation result of the illuminance distribution measuring line for each lower end face inclination angle theta b It is. According to FIG. 5, as the distance d s between the upper end surface of the light transmission plate 4 a and the surface light source becomes larger, the peak of the illuminance value is inward (x <0) than the position (x = 0) directly below the light transmission plate 4 a. It is understood that it shifts. Moreover, in the outer side (x> 0) of a light transmission board, the tendency for the vibration of an illumination value to be large is seen. The reason is considered as follows.
図6は、透光板の上端面から透光板内へ入射される光路を示す図である。面光源から透光板の上端に入射される光線のうち入射角が最大となるのは、図6(a)に示すように、面光源の端部から透光板上端面の反対側の端部へ入射する場合であり、このときの入射角をθs0とする。図6(a)より、θs0=arctan(t/ds)である。この光線が透光板内に入射されると、光路は屈折され、透過角はθsとなる。透光板の屈折率をn1とすると、透過角θsは次式で表される。 FIG. 6 is a view showing an optical path which enters the light transmitting plate from the upper end surface of the light transmitting plate. As shown in FIG. 6A, of the light beams incident on the upper end of the light transmission plate from the surface light source, the end of the surface light source is the end opposite to the upper end surface of the light transmission plate as shown in FIG. In this case, the incident angle is θ s0 . From FIG. 6A , θ s0 = arctan (t / d s ). When this light beam is incident into the light transmission plate, the light path is refracted and the transmission angle becomes θ s . Assuming that the refractive index of the light transmitting plate is n 1 , the transmission angle θ s is expressed by the following equation.
ここで、θc=asin(1/n1)は臨界角である。この光線が透光板内に侵入した後に、透光板の内側面に入射される。このときの入射角(以下「最小側面入射角」という。)をθ1とすると、図6(a)より、θ1=π/2−θsである。臨界角θcがπ/4よりも小さければ、常にθ1>θcとなり、全ての光路は透光板の内側面で全反射される。故に、光線が透光板の上端面から下端面に至るまでに、透光板の内側面に於いて反射される最大反射回数Nは、次式となる。 Here, θ c = asin (1 / n 1 ) is a critical angle. After the light ray intrudes into the light transmission plate, it is incident on the inner surface of the light transmission plate. Assuming that the incident angle at this time (hereinafter referred to as “minimum side incident angle”) is θ 1 , θ 1 = π / 2−θ s from FIG. 6A. If the critical angle θ c is smaller than π / 4, then θ 1 > θ c always holds, and all the optical paths are totally reflected by the inner surface of the light transmission plate. Therefore, the maximum number N of reflections of light reflected from the upper end face to the lower end face of the light transmission plate at the inner side surface of the light transmission plate is expressed by the following equation.
特に、ds=0のときには、θs=θcとなり、最小側面入射角はθ1=π/2−θcとなる。式(3),(4)より、dsが増加するとθsは減少し、最小側面入射角θ1は増加し、最大反射回数Nは減少する。これは、dsが増加すると、入射光線の見かけ上の光源の指向性が高くなることを意味している。従って、透光板内での反射による光路の分散が小さくなるため、透光板内部のジグザグ反射による影響が減少し、より真下に向かう光路の影響のみが残るものと考えられる。鉛直下方向に進む光路の場合、図6(b)に示したように、透光板の下端面に於いて内向き(図6(b)においては左向き)に屈折した後、床に向かって照射される。このとき、透光板の下端面が内側(図6(b)の左側)から外側(図6(b)の右側)に向けて上に傾斜している場合(θb>0の場合)には、光線は内側方向に屈折する。従って、dsが増加して指向性が高まり、鉛直下方向近傍に進む光路の影響が大きくなると、図5のように、照度のピークは内側にシフトする。また、dsが増加するほど、側面反射角度の小さいジグザグ光路が減少し、側面反射角度が大きい限られたジグザグ光路のみが残るため、dsが増加するほど、照度分布における振動が大きくなると考えられる。 In particular, when d s = 0, θ s = θ c , and the minimum side incident angle is θ 1 = π / 2−θ c . From equations (3) and (4), as d s increases, θ s decreases, the minimum side incident angle θ 1 increases, and the maximum number of reflections N decreases. This means that as d s increases, the apparent light source directionality of the incident beam will be higher. Accordingly, since the dispersion of the optical path due to the reflection in the light transmitting plate is reduced, the influence of the zig-zag reflection in the light transmitting plate is reduced, and it is considered that only the influence of the light path heading further downward remains. In the case of an optical path traveling downward in the vertical direction, as shown in FIG. 6 (b), the light is refracted inward (leftward in FIG. 6 (b)) at the lower end face of the light transmitting plate and then toward the floor. It is irradiated. At this time, in the case where the lower end face of the light transmitting plate is inclined upward from the inside (left side in FIG. 6B) to the outside (right side in FIG. 6B) (when θ b > 0) The light is refracted inward. Therefore, when d s increases and directivity is enhanced, and the influence of the optical path traveling in the vicinity of the vertically downward direction becomes large, the peak of the illuminance shifts inward as shown in FIG. Also, as the d s increases, the zig-zag light path with a small side reflection angle decreases and only the limited zig-zag light path with a large side reflection angle remains, so it is thought that the vibration in the illuminance distribution increases as the d s increases. Be
図7は、透光板4aの屈折率n1を1.5, 1.6, 1.7, 1.8とした場合の、各下端面傾斜角θbに対する測定線上の照度分布の計算結果を表す図である。図7より、透光板4aの屈折率が大きくなるに従って、照度値のピークは、透光板4aの真下の位置(x=0)よりも内側(x<0)へシフトしていくことが分かる。また、透光板の外側(x>0)では、照度値の振動が大きい傾向が見られる。この傾向は、透光板4a上端面と面光源の間隔dsが広がるほど、大きく現れ、透光板4a下端面の傾斜角θbが大きくなるほど大きく現れる。 7, the refractive index n 1 of 1.5 transparent plate 4a, 1.6, 1.7, in the case of 1.8, a diagram representing the calculation result of the illuminance distribution measuring line for each lower end face inclination angle theta b. According to FIG. 7, as the refractive index of the light transmitting plate 4a increases, the peak of the illuminance value may be shifted inward (x <0) with respect to the position (x = 0) directly below the light transmitting plate 4a. I understand. Moreover, in the outer side (x> 0) of a light transmission board, the tendency for the vibration of an illumination value to be large is seen. This tendency is more widened distance d s of the transparent plate 4a upper surface and the surface light source appears large, it appears larger as the inclination angle theta b of the transparent plate 4a bottom surface increases.
(3)透光板垂壁4全体による照度分布の評価
(3.1)透光板の上端面及び下端面の傾斜の影響についての評価
次に、透光板4aの形状が透光板垂壁4全体による照度分布に及ぼす影響について説明する。図8は、図1及び図2の透光板垂壁4において透光板4aの上端面傾斜角θt及び下端面傾斜角θbを変化させたときの照度分布の変化を表す図である。図8の表内の各照度分布図は、図3と同様のサイズで示している。尚、図8において、透光板4aの屈折率n1は1.5、透光板4a上端面と面光源の間隔dsは0.1tとしている。また、照度基準面として、床面からの高さ70cmの水平面(透光板垂壁4の下端面からの距離2mの水平面)を照度基準面としている。上端面傾斜角θt及び下端面傾斜角θbは、透光板垂壁4の枠内から枠外へ向かって上に傾斜する方向を正、下に傾斜する方向を負とする(図2(c)参照)。また、垂壁照明7の配光分布曲線は、LED照明を想定して、照射軸方向からの角度θs0の方向に対して照度がガウシアン曲線(I(θs0)=I0・exp(-αθs0 2))となるように設定した。図8より、透光板4aの上端面傾斜角θt及び下端面傾斜角θbを変化させることにより、照度基準面上での照度分布を制御することが出来ることが分かる。
(3) Evaluation of illuminance distribution by the entire light transmitting plate vertical wall 4 (3.1) Evaluation of the influence of the inclination of the upper end surface and the lower end surface of the light transmitting plate The influence of the entire wall 4 on the illuminance distribution will be described. Figure 8 is a graph showing a change in the illuminance distribution when changing the upper end face inclination angle theta t and the lower end face inclination angle theta b of the transparent plate 4a in the translucent plate vertical wall 4 of FIG. 1 and FIG. 2 . Each illuminance distribution map in the table of FIG. 8 is shown in the same size as FIG. In FIG. 8, the refractive index n 1 of the transparent plate 4a is 1.5, distance d s of the transparent plate 4a upper surface and the surface light source is set to 0.1 t. Further, as the illuminance reference surface, a horizontal surface 70 cm in height from the floor surface (horizontal surface at a distance of 2 m from the lower end surface of the light transmitting plate vertical wall 4) is used as the illuminance reference surface. In the upper end face inclination angle θ t and the lower end face inclination angle θ b , the direction inclining upward from the inside of the frame of the light transmitting plate vertical wall 4 toward the outside of the frame is positive and the direction inclined downward is negative (FIG. c) see In addition, assuming that the light distribution distribution curve of the vertical wall illumination 7 is LED illumination, the illuminance is a Gaussian curve (I (θ s0 ) = I 0 · exp (−) with respect to the direction of the angle θ s0 from the illumination axis direction. It was set to be αθ s0 2 )). From FIG. 8, by changing the upper end face inclination angle theta t and the lower end face inclination angle theta b of the transparent plate 4a, it can be seen that it is possible to control the illuminance distribution on the illumination reference plane.
次に、透光板垂壁4を通した垂壁照明7による照明(以下「補助照明」という。)と、ベース照明6の照明とを重ね合わせて均斉度を最小化することを考える。いま、照度基準面上の点P(x,y)におけるベース照明の照度をI0(P)、補助照明の照度をI1(P)とする。ベース照明と補助照明とを同時に点灯した場合、両照明による光の干渉は無視できる程度に小さいとして、線形の重ね合わせが成り立つとする。このとき、点P(x,y)における合計照度I(P)は、次式で表される。 Next, it is considered to minimize the uniformity by superposing the illumination by the vertical wall illumination 7 through the light transmitting plate vertical wall 4 (hereinafter referred to as “auxiliary illumination”) and the illumination of the base illumination 6. Now, it is assumed that the illuminance of the base illumination at a point P (x, y) on the illuminance reference plane is I 0 (P), and the illuminance of the auxiliary illumination is I 1 (P). When the base illumination and the auxiliary illumination are turned on at the same time, it is assumed that the linear superposition is established on the assumption that the light interference due to both illuminations is negligible. At this time, the total illuminance I (P) at the point P (x, y) is expressed by the following equation.
ここで、w0,w1は重み係数である。照度基準面上の照度の均一性を測る指標として、式(1)の均斉度U、及び式(2)の変動係数RSDを用いる。均斉度U及び変動係数RSDを測る領域Aとしては、部屋壁面付近の影響を排除するため、図3の一点鎖線枠で示したような、ベース照明6の枠内(ベース照明6の枠の全ての外側辺を包含する凸包内)の領域とする。また、簡単のため、w0=1とし、重み係数w1を変化させて、領域A内の照度の均斉度U又は変動係数RSDが最小となる重み係数w1,minを求め、そのときの均斉度U(w1,min)又は変動係数RSD(w1,min)を求める。均斉度U(w1,min)を「最適化均斉度」、変動係数RSD(w1,min)を「最適化変動係数」と呼ぶ。 Here, w 0 and w 1 are weighting factors. The uniformity factor U of equation (1) and the coefficient of variation RSD of equation (2) are used as indices for measuring the uniformity of the illuminance on the illuminance reference surface. As the area A for measuring the uniformity U and the variation coefficient RSD, in the frame of the base illumination 6 (all of the frames of the base illumination 6 as shown by the one-dot chain line frame in FIG. 3) In the convex hull including the outer side of Further, for simplicity, w 0 = 1 and the weighting coefficient w 1 is changed to obtain the weighting coefficient w 1, min which minimizes the uniformity factor U of the illuminance in the region A or the variation coefficient RSD. The uniformity U (w1 , min ) or the variation coefficient RSD (w1 , min ) is determined. The uniformity ratio U (w1 , min ) is called "optimization uniformity", and the variation coefficient RSD (w1 , min ) is called "optimization variation coefficient".
図9は、透光板4aの上端面及び下端面の傾斜角θt,θbの変化に対する最適化均斉度及び最適化変動係数の変化を表す図である。図9では、透光板4aの屈折率n1は1.5、透光板4a上端面と面光源の間隔dsは0.1tとしている。図9より、θt=−10〜30度の範囲に於いて、θb=0〜−40度の範囲とすることにより、最適化均斉度U及び最適化変動係数RSDを低く抑えることが出来る。尚、ベース光源のみの場合の均斉度は0.619、変動係数は0.163であるので、図9より、補助光源を用いることで均斉度をおよそ60%程度、変動係数をおよそ40%程度にまで抑えることができる。尚、透光板4aの下端面の傾斜角θbが−40度よりも小さくなると、最適化のための重み係数が大きくなる。これは、補助光源において高い照度が必要とされることを意味しており、あまり好ましくない。また、透光板4aの上端面の傾斜角θtが−10〜10度のときが最も安定して良好な均斉度が得られ、この場合、下端面の傾斜角θbは−40〜40度の範囲で最適化均斉度U及び最適化変動係数RSDを低く抑えることが出来る。 FIG. 9 is a diagram showing changes in the optimization uniformity and the optimization variation coefficient with respect to changes in the inclination angles θ t and θ b of the upper end surface and the lower end surface of the light transmitting plate 4a. 9, the refractive index n 1 of the transparent plate 4a is 1.5, distance d s of the transparent plate 4a upper surface and the surface light source is set to 0.1 t. From FIG. 9, it is possible to suppress the optimization uniformity factor U and the optimization variation coefficient RSD low by setting the range of θ b = 0 to -40 degrees in the range of θ t = -10 to 30 degrees. . In addition, since the uniformity in the case of only the base light source is 0.619 and the variation coefficient is 0.163, according to FIG. 9, the uniformity is about 60% and the variation coefficient is about 40% by using the auxiliary light source. Can be reduced to Incidentally, the inclination angle theta b of the lower end surface of the transparent plate 4a is smaller than -40 degrees, the weighting factor for the optimization increases. This means that high illumination is required at the auxiliary light source, which is less preferred. Further, when the inclination angle θ t of the upper end surface of the light transmitting plate 4a is -10 to 10 degrees, the most uniform and excellent uniformity can be obtained. In this case, the inclination angle θ b of the lower end surface is -40 to 40 The optimization uniformity U and the optimization variation coefficient RSD can be kept low in the range of degrees.
(3.2)透光板の上端面と面光源の間隔dsの影響についての評価
図5,図6において説明したように、透光板4aの上端面と面光源との間隔dsが大きくなると、光源(垂壁照明7)の見かけ上の指向性が高くなるため、最適化均斉度や最適化変動係数にも影響が出ると考えられる。そこで、透光板4aの上端面と面光源との間隔dsの影響についての評価を行った。図10は、透光板の上端面と面光源の間隔dsによる照度分布の変化を表す図である。図10(a)は、ds=0.1t, 1.0t(n=1.5, θt=0度)のときの照度分布の下端面傾斜角θb依存性を表し、図10(a)は、θb=θt=0度(n=1.5)のときの照度分布の間隔ds依存性を表す。図10に示すように、間隔dsが大きくなるほど、光源(垂壁照明7)の見かけ上の指向性が高くなるため、照度分布は、間隔dsが大きくなるほど透光板垂壁4の形状をより強く反映したものとなる。図11は、透光板の上端面と面光源の間隔dsによる最適化均斉度及び最適化変動係数の変化を表す図である。図11(a),(b)は、ds=0.1t, 1.0t(n=1.5, θt=0度)のときの最適化均斉度及び最適化変動係数の下端面傾斜角θb依存性を表し、図11(c),(d)は、θb=θt=0度(n=1.5)のときの最適化均斉度及び最適化変動係数の間隔ds依存性を表す。図11から、透光板の上端面と面光源の間隔dsが大きくなるほど、最適化均斉度及び最適化変動係数は大きくなり、照度の均一性が低下することが分かる。
(3.2) Evaluation Figure 5 Effect of distance d s of the upper end surface and the surface light source of the transparent plate, as described in FIG. 6, the distance d s between the upper surface and the surface light source of the transparent plate 4a If it becomes larger, the apparent directivity of the light source (perpendicular wall light 7) will be higher, so it is considered that the optimization uniformity and the optimization variation coefficient will also be affected. Therefore, the influence of the distance d s between the upper end surface of the light transmitting plate 4a and the surface light source was evaluated. FIG. 10 is a diagram showing a change in illuminance distribution according to the distance d s between the upper end surface of the light transmitting plate and the surface light source. FIG. 10 (a) shows the lower end inclination angle θ b dependency of the illuminance distribution when d s = 0.1 t, 1.0 t (n = 1.5, θ t = 0 degrees), and FIG. 10 (a) is This shows the interval d s dependency of the illuminance distribution when θ b = θ t = 0 degrees (n = 1.5). As shown in FIG. 10, the greater the distance d s, since the apparent directional light sources (vertical wall lighting 7) is increased, the illuminance distribution, the shape of the spacing d s is larger the light-transmitting plate vertical wall 4 Is more strongly reflected. FIG. 11 is a diagram showing changes in the optimization uniformity and the optimization variation coefficient according to the distance d s between the upper end face of the light transmission plate and the surface light source. 11 (a) and 11 (b) show optimization uniformity and optimization variation coefficient lower end inclination angle θ b dependency at d s = 0.1 t, 1.0 t (n = 1.5, θ t = 0 degrees) 11 (c) and (d) show the dependence ds on the optimization uniformity and the optimization variation coefficient when θ b = θ t = 0 degrees (n = 1.5). It can be seen from FIG. 11 that as the distance d s between the upper end surface of the light transmitting plate and the surface light source becomes larger, the optimization uniformity and the optimization variation coefficient become larger, and the uniformity of the illuminance decreases.
以上の結果から、照度の均一性を高めるためには、垂壁照明7の照射面を透光板4aの上端面に密着させて配置すればよい。然し乍ら、実際の垂壁照明7は、十分な輝度を得るため、多数の高輝度LEDを線状に配列したLEDアレイが使用される。従って、垂壁照明7を透光板4aの上端面に密着させて配置すると、放熱性が悪くなり、垂壁照明7の劣化を招く恐れがある。また、LEDアレイは、高輝度LEDが一定の間隔を開けて配列されており、理想的な連続面光源とは異なり、離散的な光源である。 From the above results, in order to improve the uniformity of the illuminance, the irradiation surface of the vertical wall illumination 7 may be disposed in close contact with the upper end surface of the light transmitting plate 4a. However, in the actual vertical wall illumination 7, in order to obtain sufficient brightness, an LED array in which a large number of high brightness LEDs are linearly arranged is used. Therefore, if the vertical wall light 7 is disposed in close contact with the upper end surface of the light transmitting plate 4 a, the heat dissipation property may be deteriorated, and the vertical wall light 7 may be deteriorated. Also, in the LED array, high brightness LEDs are arranged at regular intervals, and unlike an ideal continuous surface light source, it is a discrete light source.
そこで、本発明に於いては、図12に示したように、透光板垂壁4の上端部の側面を覆うとともに透光板垂壁4を天井面に固定するソケット7の内側面を鏡面とする。これによって、透光板4aの上端面と面光源との間隔dsが大きくなったとしても、垂壁照明7の照射面を透光板4aの上端面に密着させた状態と、光学的には実質的に同じ状態となる。従って、光源(垂壁照明7)の見かけ上の指向性は低くなり、最適化均斉度及び最適化変動係数を低く抑えることが出来る。また、垂壁照明7の照射面を透光板4aの上端面から離すことで、垂壁照明7の照射面を透光板4aの上端面との間の空間が通風可能となるので、この空間を利用して垂壁照明7の冷却を行うことも可能となる。更に、垂壁照明7が、LEDアレイのように離散的な光源であっても、垂壁照明7の照射面を透光板4aの上端面から一定距離、離すことで、理想的な連続面光源に近づけることが可能となる。図13に、ソケット7の内側面を無反射面とした場合と鏡面とした場合の、透光板4a上端面と面光源の間隔dsを変化させたときの照度分布の変化を示す。図13より、ソケット7の内側面を鏡面とすることで、透光板4a上端面と面光源の間隔dsが大きい場合であっても、垂壁照明7の照射面を透光板4aの上端面に密着させて配置した場合に近づけることが出来ることが分かる。 Therefore, in the present invention, as shown in FIG. 12, the inner side surface of the socket 7 which covers the side surface of the upper end portion of the light transmitting plate vertical wall 4 and fixes the light transmitting plate vertical wall 4 to the ceiling surface I assume. As a result, even if the distance d s between the upper end surface of the light transmitting plate 4a and the surface light source is increased, the state where the irradiation surface of the vertical wall illumination 7 is in close contact with the upper end surface of the light transmitting plate 4a Are substantially the same. Therefore, the apparent directivity of the light source (vertical wall illumination 7) is low, and the optimization uniformity and the optimization variation coefficient can be suppressed low. Further, by separating the irradiation surface of the vertical wall light 7 from the upper end surface of the light transmission plate 4a, the space between the light irradiation surface of the vertical wall light 7 and the upper end surface of the light transmission plate 4a can be ventilated. It is also possible to cool the vertical wall illumination 7 utilizing space. Furthermore, even if the vertical wall illumination 7 is a discrete light source such as an LED array, it is an ideal continuous surface by separating the irradiation surface of the vertical wall illumination 7 from the upper end surface of the light transmission plate 4a by a fixed distance. It becomes possible to bring it closer to the light source. FIG. 13 shows a change in illuminance distribution when the distance d s between the upper end surface of the light transmitting plate 4a and the surface light source is changed when the inner side surface of the socket 7 is a non-reflecting surface and when it is a mirror surface. According to FIG. 13, by making the inner side surface of the socket 7 a mirror surface, even if the distance d s between the upper end surface of the light transmission plate 4 a and the surface light source is large, the irradiation surface of the vertical wall illumination 7 is made of the light transmission plate 4 a. It can be seen that it can be brought close when arranged in close contact with the upper end face.
(3.3)透光板の屈折率n1の影響についての評価
最後に、透光板4aの屈折率n1が照度分布に及ぼす影響について説明する。図7で説明したように、透光板4aの下端面が傾斜しているときは、透光板4aの屈折率n1が大きくなると、傾斜面の向きと反対側に向かって照度が最大となるピークがシフトする。従って、透光板4aを矩形状の枠体として透光板垂壁4を構成した場合には、透光板4aの下端面が枠体の外方向に上向きに傾斜させた場合には、透光板4aの屈折率n1が大きくなると、光はより枠体の中央側に集光されると考えられる。図14に、透光板の屈折率n1=1.5, 1.6, 1.7, 1.8に対する、下端面傾斜角θbを変化させたときの照度分布の変化を示す。図15に、透光板の屈折率n1=1.5, 1.6, 1.7, 1.8に対する、下端面傾斜角θbを変化させたときの最適化均斉度及び最適化変動係数の変化を示す。最適化均斉度及び最適化変動係数においては、下端面傾斜角θbが小さい−30°≦θb≦30°の範囲では屈折率による違いは大きくは現れないが、下端面傾斜角の絶対値|θb|が30°を超えると、屈折率による違いが顕著に現れる。これは、|θb|が一定の大きさを超えると、透光板4a内を下方に進む光が透光板4aの下端内面で全反射され、透光板4aの下端近傍の側面を透過して外に放射されるようになるからであると考えられる。透光板4a内を鉛直下方に進む光が透光板4aの下端内面で全反射される条件は、|θb|≧θc=arcsin(1/n1)である。ここで、θcは透光板4cの臨界角である。n1=1.5,1.6,1.7,1.8のときの臨界角θcは、それぞれ、41.81°,38.68°,36.03°,33.74°である。従って、図15より、θbが負の側(透光板垂壁4の内側から外側に向かって下向きに傾斜する場合)においては、最適化均斉度及び最適化変動係数が急激に大きくなり始める角度は、ほぼ臨界角θc付近となっていることが分かる。故に、0≧θb>−θcとなるように透光板4cの下端面の傾斜角を設定すればよいことが分かる。一方、θb>0の側は多少複雑である。簡単のため、透光板4c内を鉛直下方に進む光を考えると、臨界角θcが45°よりも大きいとすると、θb<45°のときは、透光板4c内を下方に進む光は透光板4cの下端面で反射・屈折されて、透過光は透光板4cの下端面から放射され、透光板垂壁4の内側に向かう(図6(b)参照)。このとき、反射光は水平乃至上方に向かうため、照度基準面上の照度分布には関係しない。45°≦θb<θcの場合、反射光も透光板4cの下端近傍の内側面で屈折された後、透光板垂壁4の内側へ向かうので、屈折された後の角度によっては照度基準面上の照度分布には関係する可能性がある。θc≦θbの場合に於いては、透光板4c内を鉛直下方に進む光は透光板4cの下端内面で全反射され、透光板4cの下端近傍の内側面で屈折された後、透光板垂壁4の内側へ向かう。このとき、透光板4cの下端内面で反射された光が透光板4cの内側面で屈折されるときの入射角θ1はθ1=90°−θb、屈折角θ2はθ2=arcsin(n1cosθb)となる。そして、tanθ2<hb/w(hbは透光板4aの下端から照度基準面までの高さ,wは透光板垂壁4の枠の横幅又は縦幅)のときは、透過光は放射元の透光板と対向する透光板の位置を超えて反対側の枠外へ分散され、tanθ2>hb/wのときは、透過光は透光板垂壁4の枠内へ集光される。すなわち、透光板4c内を鉛直下方に進む光のみを考えると、下端面傾斜角θbが
(3.3) to evaluate the end of the influence of refractive index n 1 of the transparent plate, a refractive index n 1 of the transparent plate 4a will be described influence on the illuminance distribution. As described in FIG. 7, when the lower end surface of the light transmission plate 4 a is inclined, when the refractive index n 1 of the light transmission plate 4 a is increased, the illuminance is maximized in the direction opposite to the direction of the inclined surface. Peak shifts. Therefore, when the light transmitting plate vertical wall 4 is configured with the light transmitting plate 4a as a rectangular frame, when the lower end surface of the light transmitting plate 4a is inclined upward in the outer direction of the frame, If the refractive index n 1 of the optical plate 4a becomes larger, considered light is focused more toward the center of the frame. 14, the refractive index n 1 = 1.5 of the transparent plate, 1.6, 1.7, for 1.8 shows the change in the illuminance distribution when changing the lower end face inclination angle theta b. 15, the refractive index n 1 = 1.5 of the transparent plate, 1.6, 1.7, for 1.8 shows the change in the optimization uniformity and optimization variation coefficient with respect to a change in the lower end face inclination angle theta b. In the optimization uniformity and the optimization variation coefficient, the difference due to the refractive index does not appear much when the lower end surface inclination angle θ b is small in the range of −30 ° ≦ θ b ≦ 30 °, but the absolute value of the lower end surface inclination angle When | θ b | exceeds 30 °, the difference due to the refractive index is remarkable. This is because, when | θ b | exceeds a certain size, the light traveling downward in the light transmission plate 4 a is totally reflected by the lower end inner surface of the light transmission plate 4 a and transmitted through the side surface near the lower end of the light transmission plate 4 a It is thought that this is because it is emitted outside. The condition in which light traveling vertically downward in the light transmitting plate 4a is totally reflected by the lower end inner surface of the light transmitting plate 4a is | θ b | | θ c = arcsin (1 / n 1 ). Here, θ c is a critical angle of the light transmitting plate 4 c . The critical angles θ c at n 1 = 1.5, 1.6, 1.7, 1.8 are 41.81 °, 38.68 °, 36.03 °, 33.74 °, respectively. Thus, from FIG. 15, in the theta b negative side (when inclined from the inside of the transparent plate vertical wall 4 downwards towards the outside), optimizing uniformity and optimization variation coefficient starts rapidly increases It can be seen that the angle is approximately near the critical angle θ c . Therefore, it is understood that the inclination angle of the lower end face of the light transmitting plate 4c may be set so as to satisfy 0 bθ b > −θ c . On the other hand, the side of θ b > 0 is somewhat complicated. Considering the light traveling vertically downward in the light transmission plate 4c for simplicity, assuming that the critical angle θ c is larger than 45 °, when θ b <45 °, the light travels downward in the light transmission plate 4c The light is reflected and refracted at the lower end surface of the light transmitting plate 4c, and the transmitted light is emitted from the lower end surface of the light transmitting plate 4c and travels to the inside of the light transmitting plate vertical wall 4 (see FIG. 6B). At this time, since the reflected light is directed from the horizontal to the upper side, it is not related to the illuminance distribution on the illuminance reference surface. In the case of 45 ° ≦ θ b <θ c , the reflected light is also refracted by the inner surface near the lower end of the light transmitting plate 4 c and then directed to the inside of the light transmitting plate vertical wall 4. It may be related to the illuminance distribution on the illuminance reference surface. In the case of θ c ≦ θ b , the light traveling vertically downward in the light transmission plate 4 c is totally reflected by the lower end inner surface of the light transmission plate 4 c and is refracted by the inner side surface near the lower end of the light transmission plate 4 c Afterward, it goes to the inside of the light transmitting plate vertical wall 4. At this time, the incident angle theta 1 is θ 1 = 90 ° -θ b, the refraction angle theta 2 when the light reflected by the lower end inner surface of the transparent plate 4c is refracted at the inner surface of the transparent plate. 4c theta 2 = Arcsin (n 1 cos θ b ). Then, tanθ 2 <h b / w (h b of the lower end of the transparent plate 4a to illuminance reference plane height, w is the width or height of the frame of the light-transmitting plate vertical wall 4) When the transmitted light Is dispersed to the outside of the frame on the opposite side beyond the position of the light transmitting plate opposite to the light transmitting plate of the radiation source, and when tan θ 2 > h b / w, the transmitted light is in the frame of the light transmitting plate vertical wall 4 It is collected. That is, considering only light traveling vertically downward in the light transmission plate 4c, the lower end surface inclination angle θ b is
図16は、本発明の実施例2に係る室内照明構造における透光板垂壁及び透光板垂壁を構成する各透光板を表す図である。図16(a)は透光板垂壁4の全体斜視図、図16(b)は透光板垂壁4の平面図、図16(c)は透光板4aの平面図である。尚、図16において、説明の都合上、ソケット5及び垂壁照明7は図示を省略している。また、室内照明構造の全体構成は、図1と同様であるものとする。本実施例の室内照明構造における透光板垂壁4は、複数の平板状の透光板4aを矩形枠状に配置して形成されている。各透光板4aの左右両端面は、傾斜面に形成され、且つ該傾斜面(以下「サイドエッジ傾斜面」という。)が透光板垂壁4の矩形枠の外側を向くように配置形成されている。図16(b),(c)に示したように、透光板4aの広面(表面及び裏面)の垂線に対しサイドエッジ傾斜面がなす角をθsと記し、サイドエッジ傾斜面の傾斜角と呼ぶ。以下、サイドエッジ傾斜面の傾斜角θsが最適化均斉度及び最適化変動係数に及ぼす影響について説明する。 FIG. 16 is a view showing each light transmitting plate constituting the light transmitting plate vertical wall and the light transmitting plate vertical wall in the indoor lighting structure according to the second embodiment of the present invention. 16 (a) is a whole perspective view of the light transmitting plate vertical wall 4, FIG. 16 (b) is a plan view of the light transmitting plate vertical wall 4, and FIG. 16 (c) is a plan view of the light transmitting plate 4a. In FIG. 16, the socket 5 and the vertical wall illumination 7 are not shown for the convenience of description. Moreover, the whole structure of the interior lighting structure shall be the same as that of FIG. The light transmission board vertical wall 4 in the interior lighting structure of a present Example arrange | positions several flat light transmission board 4a in rectangular frame shape, and is formed. The left and right end surfaces of each light transmission plate 4a are formed into inclined surfaces, and the inclined surfaces (hereinafter referred to as "side edge inclined surfaces") are arranged and directed to the outside of the rectangular frame of the light transmission plate vertical wall 4. It is done. As shown in FIGS. 16 (b) and 16 (c), the angle formed by the side edge inclined surface with respect to the vertical line of the wide surface (front and back surface) of the light transmitting plate 4a is denoted as θ s. Call it Hereinafter, the influence of the inclination angle θ s of the side edge inclined surface on the optimization uniformity and the optimization variation coefficient will be described.
図17は、図16の透光板垂壁4における、θt=θb=0°,n1=1.5のときのサイドエッジ傾斜面の傾斜角θsの変化に対する照度分布の変化を表す図である。また、図18は、θt=θb=0°,n1=1.5のときのサイドエッジ傾斜面の傾斜角θsの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図17より、サイドエッジ傾斜面の傾斜角θsが55度のときに、最も中央部に照度が集中している。全体の照度分布は、中央を中心にブロードに広がった状態が維持される。最適化均斉度及び最適化変動係数は、図18に示した通り、傾斜角θsが52度〜57度において、最適化均斉度及び最適化変動係数が極小となる。これは、透光板4aの内部を透光板4aの幅方向に斜めに進む光が、透光板4aのサイドエッジ傾斜面で全反射され、透光板垂壁4の矩形枠内へ方向が変えられるためである。 FIG. 17 shows the change of the illuminance distribution with respect to the change of the inclination angle θ s of the side edge inclined surface at θ t = θ b = 0 ° and n 1 = 1.5 in the light transmitting plate vertical wall 4 of FIG. FIG. Further, FIG. 18 shows (a) optimization uniformity and (b) optimization variation with respect to the change of the inclination angle θ s of the side edge inclined surface when θ t = θ b = 0 ° and n 1 = 1.5. It is a figure showing the change of a coefficient. From FIG. 17, when the inclination angle θ s of the side edge inclined surface is 55 degrees, the illuminance is concentrated most at the center. The overall illuminance distribution is maintained in a broad spread state around the center. Optimization uniformity and optimization coefficients of variation, as shown in FIG. 18, the inclination angle theta s is at 52 degrees to 57 degrees, optimizing uniformity and optimization coefficient of variation is minimized. This is because light traveling obliquely inside the light transmitting plate 4 a in the width direction of the light transmitting plate 4 a is totally reflected by the side edge sloped surface of the light transmitting plate 4 a and directed into the rectangular frame of the light transmitting plate vertical wall 4 Is changed.
以上のように、透光板垂壁4を構成する各透光板4aの左右両端面を傾斜面(サイドエッジ傾斜面)に形成し、サイドエッジ傾斜面が透光板垂壁4の矩形枠の外側を向くように配置形成し、ベース照明6と垂壁照明7を光源とする補助照明とを組合わせて室内照明を行うことによって、室内の照度均斉度をさらに低下させ照明の均一性を高めることが可能となる。尚、本実施例では、透光板垂壁4を構成する透光板4aの数は、2×3枚としたが、透光板4aの数はこれに限られない。透光板垂壁4を構成する透光板4aの数を増加させることで、サイドエッジ傾斜面の集光効果を高め、室内照明の均一性をより高めることが可能となる。 As described above, the left and right end surfaces of each light transmitting plate 4a constituting the light transmitting plate vertical wall 4 are formed as inclined surfaces (side edge inclined surfaces), and the side edge inclined surface is a rectangular frame of the light transmission plate vertical wall 4 The indoor illumination is performed by combining the base illumination 6 and the auxiliary illumination using the vertical illumination 7 as a light source, thereby further reducing the illumination uniformity of the room and achieving the illumination uniformity. It is possible to enhance. In the present embodiment, the number of light transmitting plates 4a constituting the light transmitting plate vertical wall 4 is 2 × 3. However, the number of light transmitting plates 4a is not limited to this. By increasing the number of light transmitting plates 4a constituting the light transmitting plate vertical wall 4, it is possible to enhance the light collecting effect of the side edge sloped surface and to further improve the uniformity of the indoor lighting.
図19は、本発明の実施例3に係る室内照明構造における透光板垂壁及び透光板垂壁を構成する各透光板を表す図である。図19(a)は透光板垂壁4全体の斜視図、図19(b)は透光板垂壁4を構成する各透光板4aの斜視図、図19(c)は透光板4aの下端部分の断面図である。尚、図19において、説明の都合上、ソケット5及び垂壁照明7は図示を省略している。また、室内照明構造の全体構成は、図1と同様であるものとする。本実施例では、透光板4aの下端部分を断面が傾斜円弧状となるように形成している。図19(c)に示すように、透光板4aの最下端における傾斜円弧の接線の角度を傾斜角としθbと記す。傾斜円弧の上端部分の接線は、透光板4aの側面に平行であるとする。また、透光板4aの下端の傾斜円弧面が透光板垂壁4の枠外を向くように各透光板4aを配置した場合、傾斜角θbを正値で表し、透光板4aの下端の傾斜円弧面が透光板垂壁4の枠内を向くように各透光板4aを配置した場合、傾斜角θbを負値で表すこととする。以下、透光板4a下端の傾斜円弧面の傾斜角θbが最適化均斉度及び最適化変動係数に及ぼす影響について説明する。 FIG. 19 is a view showing each light transmitting plate constituting the light transmitting plate vertical wall and the light transmitting plate vertical wall in the indoor lighting structure according to the third embodiment of the present invention. 19 (a) is a perspective view of the entire light transmitting plate vertical wall 4, FIG. 19 (b) is a perspective view of each light transmitting plate 4a constituting the light transmitting plate vertical wall 4, and FIG. 19 (c) is a light transmitting plate It is sectional drawing of the lower end part of 4a. In FIG. 19, the socket 5 and the vertical wall illumination 7 are not shown for convenience of explanation. Moreover, the whole structure of the interior lighting structure shall be the same as that of FIG. In the present embodiment, the lower end portion of the light transmitting plate 4a is formed to have an inclined arc shape in cross section. As shown in FIG. 19 (c), referred to as the tangent of the angle of the inclined circular arc in the lowermost end of the transparent plate 4a and the inclined angle theta b. The tangent of the upper end portion of the inclined arc is assumed to be parallel to the side surface of the light transmission plate 4a. Also, if the inclined arc surface of the lower end of the transparent plate 4a is arranged KakuToruhikariban 4a to face outside the frame of the light-transmitting plate vertical wall 4, it represents the inclination angle theta b a positive value, the transparent plate 4a If inclined arcuate surface of the lower end is arranged KakuToruhikariban 4a to face the frame of the light-transmitting plate vertical wall 4, and represent the tilt angle theta b negative value. Hereinafter, the inclination angle theta b of the inclined arc surface of the transparent plate 4a bottom to describe the effect on the optimization uniformity and optimization coefficient of variation.
図20は、図19の透光板垂壁4における、θt=0°,n1=1.5のときの傾斜円弧面の傾斜角θbの変化に対する照度分布の変化を表す図である。図21は、θt=0°,n1=1.5のときの傾斜円弧状下端面の傾斜角θbの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図21において、「outer arc」のデータは、傾斜円弧面が透光板垂壁4の枠外を向くように各透光板4aを配置した場合のデータ、「inner arc」のデータは、傾斜円弧面が透光板垂壁4の枠内を向くように各透光板4aを配置した場合のデータである。「inclined plane」のデータは、透光板4aを図2の傾斜面状とした場合のデータであり、比較参考のために掲載したものである。図21より、透光板4aの下端面を傾斜円弧面とすることによっても、最適化均斉度及び最適化変動係数を低下させ、照度の均一性をさらに改善することが出来ることが分かる。特に、傾斜円弧面が透光板垂壁4の枠外を向くように各透光板4aを配置し、傾斜円弧面の傾斜角θbを30〜40°とすることで、最適化均斉度及び最適化変動係数を最も低下させることができ、照度の均一性が最も改善される。 Figure 20 is a graph showing a change in the illuminance distribution on the light-transmitting plate vertical wall 4, for θ t = 0 °, the change of the inclination angle theta b of the inclined arcuate surface when the n 1 = 1.5 in FIG. 19 . FIG. 21 shows changes in (a) optimization uniformity and (b) optimization variation coefficient with respect to the change in the inclination angle θ b of the inclined arc lower end face when θ t = 0 ° and n 1 = 1.5. FIG. In FIG. 21, the data of “outer arc” is the data when each light transmitting plate 4 a is arranged such that the inclined arc surface faces the outside of the frame of the light transmitting plate vertical wall 4, and the data of “inner arc” is the inclined arc It is data when each light transmission board 4a is arrange | positioned so that a surface may face in the frame of the light transmission board vertical wall 4. FIG. The data of "inclined plane" is data in the case where the light transmitting plate 4a is in the shape of the inclined surface of FIG. 2 and is provided for comparison and reference. It can be understood from FIG. 21 that the optimization uniformity and the optimization variation coefficient can be reduced and the uniformity of the illuminance can be further improved by setting the lower end surface of the light transmitting plate 4a as the inclined arc surface. In particular, by arranging each light transmission plate 4 a so that the inclined arc surface faces out of the frame of the light transmission plate vertical wall 4 and setting the inclination angle θ b of the inclined arc surface to 30 to 40 °, the optimization uniformity and The optimization variation coefficient can be reduced the most, and the uniformity of the illumination is most improved.
図22は、本発明の実施例4に係る室内照明構造における透光板垂壁4を構成する各透光板4aの下端部分の断面図である。尚、下端部分の構造に関しては、図1,図2と同様とする。本実施例では、下端面を水平な円弧状に形成している。図22において、下端の水平円弧面Eb1Eb0Eb2の曲率半径をrbと記す。rbがとり得る範囲はrb∈[0.5t, ∞)である。rb=∞のとき、透光板4aの下端面は水平面となり、rb=0.5tのとき透光板4aの下端面は半円弧面となる。また、水平円弧面Eb1Eb0Eb2の曲率1/rbに透光板4aの厚さtを掛けた値t/rbを「相対曲率」と呼びκbと記す。相対曲率κbが採り得る範囲はκb∈[0,2]であり、κb=0のとき透光板4aの下端面は水平面となり、κb=2のとき透光板4aの下端面は半円弧面となる。図23は、θt=0°,n1=1.5のときの水平円弧状下端面の相対曲率κbの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図23より、下端面を水平円弧状とした場合には、相対曲率κbを2程度、即ち、半円形状とすることによって、最適化均斉度及び最適化変動係数を低下させ、照度の均一性をさらに改善することが出来ることが分かる。 FIG. 22 is a cross-sectional view of the lower end portion of each light transmitting plate 4a constituting the light transmitting plate vertical wall 4 in the indoor lighting structure according to the fourth embodiment of the present invention. The structure of the lower end portion is the same as in FIGS. In the present embodiment, the lower end surface is formed in a horizontal arc shape. In FIG. 22, the radius of curvature of the lower horizontal arc surface E b1 E b0 E b2 is denoted as r b . r b can take range is r b ∈ [0.5t, ∞) . When r b = ∞, the lower end surface of the light transmitting plate 4 a is a horizontal surface, and when r b = 0.5 t, the lower end surface of the light transmitting plate 4 a is a semicircular arc surface. Further, a horizontal arcuate surface E b1 E b0 value t / r b multiplied by the thickness t of the transparent plate 4a to the curvature 1 / r b of E b2 referred to as referred to as kappa b "relative curvature". The range that the relative curvature b b can take is κ b ∈ [0, 2]. When κ b = 0, the lower end face of the light transmitting plate 4 a is a horizontal surface, and when b b = 2, the lower end face of the light transmitting plate 4 a Is a semicircular surface. FIG. 23 shows the change in (a) optimization uniformity and (b) optimization variation coefficient with respect to the change in relative curvature b b of the horizontal arc lower end face when θ t = 0 ° and n 1 = 1.5. FIG. According to FIG. 23, when the lower end face is formed into a horizontal arc, the optimization uniformity and the optimization variation coefficient are reduced by setting the relative curvature b b to about 2, that is, a semicircular shape, and the illuminance is uniformed. It can be seen that the sex can be further improved.
図24は、本発明の実施例5に係る室内照明構造における透光板垂壁4を構成する各透光板4aの下端部分の断面図である。尚、下端部分の構造に関しては、図1,図2と同様とする。本実施例では、下端面を、透光板4aの幅方向に平行な折れ線を中心として中折りした折面状に形成している。下端折面の形状は、上に凸又は下に凸の何れであってもよいものとする。図24においてx<0の側(左側)を透光板垂壁4の枠内側(内側)、x>0の側(右側)を透光板垂壁4の枠外側(外側)とする。下端折面をなす2つの片傾斜面のうち、内側の片傾斜面Eb0Eb1の水平面に対する傾斜角をθb1、外側の片傾斜面Eb0Eb2の水平面に対する傾斜角をθb2と記す。傾斜角θb1,θb2は、図24に示すように上向き方向を正方向、下向きを負方向とする。また、内側の片傾斜面Eb0Eb1の水平幅をx1、外側の片傾斜面Eb0Eb2の水平幅をx2と記す。 FIG. 24: is sectional drawing of the lower end part of each light transmission board 4a which comprises the light transmission board vertical wall 4 in the interior lighting structure which concerns on Example 5 of this invention. The structure of the lower end portion is the same as in FIGS. In the present embodiment, the lower end surface is formed in a folded surface shape center-folded around a broken line parallel to the width direction of the light transmitting plate 4a. The shape of the lower end folded surface may be either convex upward or convex downward. In FIG. 24, let the side of x <0 (left side) be the frame inside (inner side) of the light transmitting plate vertical wall 4 and the side of x> 0 (right side) be the frame outside (outside) of the light transmitting plate vertical wall 4. Referred the two single slope surface forming a lower refracting surface, b1 inclination angle with respect to the horizontal plane theta inner piece inclined surface E b0 E b1, and the inclination angle with respect to the horizontal plane of the outer single slope surface E b0 E b2 θ b2 . In the inclination angles θ b1 and θ b2 , as shown in FIG. 24, the upward direction is positive and the downward direction is negative. Further, the horizontal width of the inner one-side inclined surface E b0 E b1 is denoted as x 1 , and the horizontal width of the outer one-side inclined surface E b0 E b2 is denoted as x 2 .
図25は、図24の透光板4aの折面状下端面の外側傾斜角θ2の変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図25においては、透光板4aの上端面は水平面とし、屈折率n1は1.5としている。θb1=θb2=0のときは下端面が水平平面であり、θb1=θb2のときは下端面が実施例1の傾斜平面となる。図25より、内側傾斜角θb1を0度より大きく30度以下の範囲とすることで、全体的に最適化均斉度及び最適化変動係数を低下させることができることが分かる。また、下端面が水平平面の場合と比較すると、外側傾斜角θb2を0度より小さく−40度よりも大きくすることにより、最適化均斉度及び最適化変動係数を低下させることができる。また、内側傾斜角θb1を20度以下とし、外側傾斜角θb2を60°≦θb2≦72°の範囲とした場合にも、最適化均斉度及び最適化変動係数を大きく低下させることができる。この場合、外側片傾斜面Eb0Eb2は全反射面となり、透光板4a内を下に向かって進む光は、大部分が外側片傾斜面Eb0Eb2で全反射され内側片傾斜面Eb0Eb1に向かい、内側片傾斜面Eb0Eb1で反射・屈折され、内側片傾斜面Eb0Eb1を透過した光が透光板4a外へ放射されて、透光板垂壁4の枠内に集光されると考えられる。図26は、55°≦θb2≦77.5°の範囲における(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図26より、内側傾斜角θb1の範囲としては−20°≦θb1≦20°の範囲が適当であり、特に、0°≦θb1≦20°の範囲が最適であることが分かる。 FIG. 25 is a diagram showing changes in (a) optimization uniformity and (b) optimization variation coefficient with respect to changes in the outer side inclination angle θ 2 of the lower surface of the light-transmissive plate 4 a of FIG. In Figure 25, the upper end face of the transparent plate 4a is a horizontal surface, the refractive index n 1 is set to 1.5. When θ b1 = θ b2 = 0, the lower end surface is a horizontal plane, and when θ b1 = θ b2 , the lower end surface is the inclined plane of the first embodiment. From FIG. 25, it can be seen that the optimization uniformity and the optimization variation coefficient can be reduced as a whole by setting the inside inclination angle θ b1 to be in the range of more than 0 ° and 30 ° or less. In addition, the optimization uniformity and the optimization variation coefficient can be reduced by setting the outside inclination angle θ b2 to be smaller than 0 degree and larger than -40 degrees, as compared to the case where the lower end surface is a horizontal plane. Also, even when the inner inclination angle θ b1 is 20 degrees or less and the outer inclination angle θ b2 is in the range of 60 ° ≦ θ b2 ≦ 72 °, the optimization uniformity and the optimization variation coefficient are greatly reduced. it can. In this case, the outer side inclined surface E b 0 E b 2 is a total reflection surface, and the light traveling downward in the light transmitting plate 4 a is mostly totally reflected by the outer side inclined surface E b 0 E b 2 and the inner side inclined surface E b0 towards the E b1, is reflected and refracted by the inside piece inclined surface E b0 E b1, the light transmitted through the inner piece inclined surface E b0 E b1 is radiated to the outside of the transparent plate 4a, the transparent plate vertical wall 4 It is considered to be collected in the frame of FIG. 26 is a diagram showing changes in (a) optimization uniformity and (b) optimization variation coefficient in the range of 55 ° ≦ θ b2 ≦ 77.5 °. It is understood from FIG. 26 that the range of −20 ° ≦ θ b1 ≦ 20 ° is appropriate as the range of the inner inclination angle θ b1 , and in particular, the range of 0 ° ≦ θ b1 ≦ 20 ° is optimal.
次に、内側の片傾斜面Eb0Eb1の水平幅x1と外側の片傾斜面Eb0Eb2の水平幅x2の影響について説明する。図27は、図24の透光板4aの、各水平幅x1に対する、折面状下端面の外側傾斜角θ2の変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。tは透光板4aの板厚である。図27より、x1=0.4t〜0.5tとした場合が最適化均斉度が最も改善されており、水平幅x1をこの範囲内に於いて設定するのが最適であることが分かる。 It will be described effects of the horizontal width x 2 of the horizontal width x 1 and the outer piece inclined surface E b0 E b2 of the inner piece inclined surface E b0 E b1. FIG. 27 shows (a) optimization uniformity and (b) optimization variation coefficient with respect to the change of the outer side inclination angle θ 2 of the lower end of the folded surface with respect to each horizontal width x 1 of the light transmitting plate 4 a of FIG. It is a figure showing change. t is the thickness of the light transmitting plate 4a. From FIG. 27, the optimization uniformity is most improved when x 1 = 0.4t to 0.5t, and it can be seen that setting the horizontal width x 1 within this range is optimum. .
最後に、透光板4aの屈折率n1の影響について説明する。図28は、透光板4aの屈折率n1を1.4〜1.8とした場合の、折面状下端面の外側傾斜角θ2の変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図28より、透光板4aの屈折率n1が大きくなるほど透光板4aの臨界角θcは小さくなるため、最適化均斉度が極小となる位置は外側傾斜角θ2が小さい側にシフトする。また、透光板4aの屈折率n1が大きくなるほど、最適化均斉度が低い角度領域の幅が広がる。尚、屈折率n1が1/sin(45°)(=1.4142°)以下では、臨界角θcは45°以下となるため、透光板4aの内部で光が全反射する最小角度が45°以上となる。従って、この場合、θb2が45°以下で外側片傾斜面Eb0Eb2で全反射が生じ、反射された光は上方向に向かうため、この領域の屈折率n1を使用するのは不適当であると考えられる。以上の結果から、透光板4aの屈折率n1は1.5以上とすることが好ましく、実際にある各種材料の屈折率を考慮すると、n1=1.5〜1.7程度の素材を選択することが好適であると考えられる。 Finally, a description will be given of the influence of refractive index n 1 of the transparent plate 4a. FIG. 28 shows (a) optimization uniformity and (b) with respect to the change of the outside inclination angle θ 2 of the lower end face of the bent surface when the refractive index n 1 of the light transmitting plate 4 a is 1.4 to 1.8. 2.) It is a figure showing change of optimization variation coefficient. From FIG. 28, the critical angle θ c of the light transmitting plate 4 a decreases as the refractive index n 1 of the light transmitting plate 4 a increases. Therefore, the position where the optimization uniformity becomes minimum shifts to the side where the outside inclination angle θ 2 decreases. Do. Also, the larger the refractive index n 1 of the transparent plate 4a, the spread width of the low angle region optimize uniformity. In the refractive index n 1 is 1 / sin (45 °) ( = 1.4142 °) or less, since the critical angle theta c becomes 45 ° or less, the minimum angle at which total reflection of light inside the transparent plate 4a 45 It becomes more than °. Therefore, in this case, total reflection occurs on the outer side inclined surface E b0 E b2 when θ b2 is 45 ° or less, and the reflected light is directed upward, so it is not possible to use the refractive index n 1 of this region It is considered appropriate. These results, it is preferable that the refractive index n 1 of the transparent plate 4a is to be 1.5 or more, in consideration of the refractive index of the various materials in practice, approximately n 1 = 1.5 to 1.7 of the material It is considered preferable to select
1 天井面
2 部屋壁面
3 床面
4 透光板垂壁
4a 透光板
5 ソケット
6 ベース照明
7 垂壁照明
1 ceiling surface 2 room wall surface 3 floor surface 4 light transmitting plate vertical wall 4a light transmitting plate 5 socket 6 base lighting 7 vertical wall lighting
Claims (5)
天井面から垂直に垂下して設置され、光が透過する透光板を矩形枠状に配置形成された透光板垂壁と、
前記天井面に、前記透光板垂壁の周囲全体を取り囲み、前記透光板垂壁の矩形枠と同心の四角形の辺に沿って設置されたベース照明と、
前記透光板垂壁の上端面に沿って線状に配置され、前記透光板垂壁の上端面から前記透光板垂壁の内部に向けて照光する垂壁照明と、を備えたことを特徴とする室内照明構造。 An indoor illumination structure for illuminating the room of a medical room
A translucent plate vertical wall which is vertically suspended from a ceiling surface and disposed in a rectangular frame shape and is a translucent plate through which light is transmitted;
Base illumination installed on the ceiling surface along the side of a quadrangle concentric with the rectangular frame of the light transmission plate vertical wall, surrounding the entire periphery of the light transmission plate vertical wall;
Vertical wall illumination is disposed linearly along the upper end surface of the light transmitting plate vertical wall, and illuminates from the upper end surface of the light transmitting plate vertical wall toward the inside of the light transmitting plate vertical wall. Interior lighting structure characterized by
前記ソケットは、内側面が鏡面であることを特徴とする請求項1記載の室内照明構造。 The upper end portion of the light transmitting plate vertical wall is provided with a socket for covering the side surface of the upper end portion of the light transmitting plate vertical wall and fixing the light transmitting plate vertical wall to a ceiling surface,
The room lighting structure according to claim 1, wherein the socket has a mirror surface on the inner side.
前記透光板垂壁を構成する前記各透光板の左右両端面は傾斜面に形成され、且つ該傾斜面が前記透光板垂壁の枠の外側を向くように形成されていることを特徴とする請求項1又は2記載の室内照明構造。 The light transmitting plate vertical wall is formed by arranging a plurality of flat light transmitting plates in a rectangular frame shape,
The left and right end surfaces of each of the light transmitting plates constituting the light transmitting plate vertical wall are formed as inclined surfaces, and the inclined surfaces are formed to face the outside of the frame of the light transmitting plate vertical wall. The indoor lighting structure according to claim 1 or 2, characterized in that:
光が透過する透光板を矩形枠状に配置形成された透光板垂壁を、天井面から垂直に垂下して設置し、
前記天井面に、前記透光板垂壁の周囲全体を取り囲む前記透光板垂壁の矩形枠と同心の四角形の辺に沿ってベース照明を設置し、
前記透光板垂壁の上端面から前記透光板垂壁の内部に向けて照光する垂壁照明を、前記天井面と前記透光板垂壁との間に、前記透光板垂壁の上端面に沿って線状に配置し、
前記天井面上の前記ベース照明を包含ずる凸包内の真下の空間の、床面から0m乃至1.5mの間の所定の高さにおける水平面内の照度の均斉度が最小となるように、前記ベース照明の照度と前記垂壁照明の照度の照度比を調整することを特徴とする室内照明方法。 An indoor lighting method for lighting a room of a medical room, comprising:
A translucent plate vertical wall in which a translucent plate through which light passes is arranged and formed in a rectangular frame shape is vertically suspended from a ceiling surface,
Base illumination is installed on the ceiling surface along a side of a quadrangle concentric with the rectangular frame of the light transmitting plate vertical wall surrounding the entire periphery of the light transmitting plate vertical wall,
Vertical wall illumination for illuminating light from the upper end surface of the transparent plate vertical wall to the inside of the transparent plate vertical wall, between the ceiling surface and the transparent plate vertical wall, of the transparent plate vertical wall Arranged linearly along the upper end face,
The uniformity of the illuminance in the horizontal plane at a predetermined height between 0 m and 1.5 m from the floor surface of the space directly below the convex hull including the base illumination on the ceiling surface is minimized. An indoor illumination method comprising adjusting an illumination ratio of the illumination of the base illumination and the illumination of the vertical wall illumination.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017087970A JP6494684B2 (en) | 2017-04-27 | 2017-04-27 | Interior lighting structure and interior lighting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017087970A JP6494684B2 (en) | 2017-04-27 | 2017-04-27 | Interior lighting structure and interior lighting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018186022A JP2018186022A (en) | 2018-11-22 |
JP6494684B2 true JP6494684B2 (en) | 2019-04-03 |
Family
ID=64357064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017087970A Active JP6494684B2 (en) | 2017-04-27 | 2017-04-27 | Interior lighting structure and interior lighting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6494684B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56124428U (en) * | 1980-02-15 | 1981-09-22 | ||
JPH032273Y2 (en) * | 1986-08-18 | 1991-01-22 | ||
JPH08284301A (en) * | 1995-04-14 | 1996-10-29 | Hazama Gumi Ltd | Ceiling apparatus unit |
JP2001061909A (en) * | 1999-08-31 | 2001-03-13 | Tokyo Giken:Kk | Anatomy stand and anatomy device using the same |
JP2003281902A (en) * | 2002-03-26 | 2003-10-03 | Matsushita Electric Works Ltd | Luminaire |
JP2014135118A (en) * | 2011-04-28 | 2014-07-24 | Sharp Corp | Lighting device |
JP6073741B2 (en) * | 2013-05-10 | 2017-02-01 | 山田医療照明株式会社 | Medical lighting system and lighting method |
JP6279890B2 (en) * | 2013-11-26 | 2018-02-14 | ダイダン株式会社 | Air supply unit, operating room air conditioning system, and operating room air conditioning method |
-
2017
- 2017-04-27 JP JP2017087970A patent/JP6494684B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018186022A (en) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3090107B1 (en) | Light-emitting acoustic panel and lighting system comprising a set of such panels | |
KR200479892Y1 (en) | Illumination device with maximized condensing effect | |
US9594204B2 (en) | Lighting device for vacuum cleaner | |
JP5951626B2 (en) | Expandable icicle type light adjustment lens for LED light diffusion | |
KR101444019B1 (en) | Edge-lit backlight module | |
JP4030431B2 (en) | lighting equipment | |
JP6073718B2 (en) | Optical lens | |
US20140185136A1 (en) | Multi directional illumination for a microscope and microscope | |
US20100277888A1 (en) | Task light | |
US3483366A (en) | Luminaire lens | |
JP6494684B2 (en) | Interior lighting structure and interior lighting method | |
JP6518893B2 (en) | Light distribution and dispersion control type LED lighting device | |
JP4452725B2 (en) | Surface lighting device | |
TWI705239B (en) | Detection light source module and detection device | |
JP5623846B2 (en) | Lighting system for apartment houses | |
JP5277939B2 (en) | lighting equipment | |
WO2014147883A1 (en) | Lighting cover, and lighting apparatus using same | |
JP2013201101A (en) | Luminaire | |
JP6820768B2 (en) | Surface light source device and display device | |
JP2010140769A (en) | Lens for illumination, light emitting device, surface light source, and liquid crystal display device | |
KR20110049082A (en) | Lighting device | |
JP7187857B2 (en) | lighting fixtures and lenses | |
JP6694419B2 (en) | Lens plate for lighting equipment and lighting equipment | |
KR101263808B1 (en) | Illuminating member for reducing unified glare rating comprising air gap | |
JP5592693B2 (en) | Lighting apparatus and lighting system using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190118 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190118 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190305 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6494684 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |