JP2018186022A - Indoor illumination structure and indoor illumination method - Google Patents

Indoor illumination structure and indoor illumination method Download PDF

Info

Publication number
JP2018186022A
JP2018186022A JP2017087970A JP2017087970A JP2018186022A JP 2018186022 A JP2018186022 A JP 2018186022A JP 2017087970 A JP2017087970 A JP 2017087970A JP 2017087970 A JP2017087970 A JP 2017087970A JP 2018186022 A JP2018186022 A JP 2018186022A
Authority
JP
Japan
Prior art keywords
hanging wall
translucent plate
light
illumination
translucent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017087970A
Other languages
Japanese (ja)
Other versions
JP6494684B2 (en
Inventor
河村将之
Masayuki Kawamura
小柳康児
Koji Koyanagi
高橋正泰
Masayasu Takahashi
河越健一
Kenichi Kawagoe
吉村太誌
Taishi Yoshimura
中町勝之
Katsuyuki Nakamachi
筒井孝徳
Takanori Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Sekkei Inc
Central Uni Co Ltd
Original Assignee
Nihon Sekkei Inc
Central Uni Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Sekkei Inc, Central Uni Co Ltd filed Critical Nihon Sekkei Inc
Priority to JP2017087970A priority Critical patent/JP6494684B2/en
Publication of JP2018186022A publication Critical patent/JP2018186022A/en
Application granted granted Critical
Publication of JP6494684B2 publication Critical patent/JP6494684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure high homogeneity of indoor illuminance, in a medical office comprising a rectangular frame-shaped air conditioning vertical wall on its ceiling.SOLUTION: An indoor illumination structure for illuminating a medical office includes: a light-transmissive plate vertical wall 4 arranged so as to vertically suspend from a ceiling surface 1, and where a light-transmissive plate 4a capable of transmitting light is arranged and formed into a rectangular-frame shape; a base illumination 6 installed on the ceiling surface 1 along sides of a square concentric to the rectangular frame of the light-transmissive plate vertical wall 4 so as to surround the entire periphery of the light-transmissive plate vertical wall 4; and vertical wall illumination 7 arranged linearly along an upper end surface of the light-transmissive plate vertical wall 4 between the ceiling surface 1 and the light-transmissive plate vertical wall 4, and configured to radiate light from the upper end surface of the light-transmissive plate vertical wall 4 toward the inside of the light-transmissive plate vertical wall 4.SELECTED DRAWING: Figure 1

Description

本発明は、医用室の室内の照明を行うための室内照明技術に関し、特に、医用室の室内照明の均一性を高める室内照明技術に関する。   The present invention relates to an indoor lighting technique for illuminating a room in a medical room, and more particularly to an indoor lighting technique for improving the uniformity of the indoor lighting in a medical room.

手術室や解剖室などの医用室に於いては、室内の床上に設置された手術台、解剖台等の作業台を中心として室内照明が行われる。医用室に於ける室内照明技術としては、例えば、特許文献1〜3に記載のものが公知である。特許文献1に記載の空調・照明システムは、格子状に区画されたシステム天井(グリッド天井)の各区画を構成するシステム天井モジュールの各々に照明器具、人感センサ、調光制御装置を設けて、調光制御装置によって照明器具の制御を行うようにしたものである(特許文献1の図2,図4,図8参照)。特許文献2に記載のグリッド天井用照明装置は、システム天井(グリッド天井)の所定間隔のグリッドのグリッド内に2つの照明器具(蛍光灯)を並列配設したものである(特許文献2の図1,図7参照)。特許文献3に記載のグリッド天井用照明装置は、2つのグリッドに跨るようにして照明器具を配置したものである。   In a medical room such as an operating room or an anatomical room, room lighting is performed around a work table such as an operating table or an anatomical table installed on the floor in the room. As an indoor lighting technique in a medical room, for example, those described in Patent Documents 1 to 3 are known. The air conditioning / lighting system described in Patent Literature 1 includes a lighting fixture, a human sensor, and a light control device in each of the system ceiling modules that constitute each section of a system ceiling (grid ceiling) partitioned in a grid pattern. The lighting fixture is controlled by the light control device (see FIGS. 2, 4, and 8 of Patent Document 1). The lighting device for grid ceiling described in Patent Literature 2 has two lighting fixtures (fluorescent lamps) arranged in parallel in a grid of grids with a predetermined interval on the system ceiling (grid ceiling) (see FIG. 2 of Patent Literature 2). 1, see FIG. 7). The lighting device for a grid ceiling described in Patent Document 3 has a lighting fixture arranged so as to straddle two grids.

一方、医用室においては、室内の空気を清浄に保つため、室内の気流を調整する目的で矩形枠状の垂壁を天井に設置することが行われている(例えば、特許文献4〜7参照)。垂壁は、通常、手術台などの作業台の上方の天井面に、作業台を囲むように設置され(例えば、特許文献7の図1参照)、垂壁の枠内から下方に向けて清浄空気を吹き出し、部屋の周囲の壁面の床近傍又は天井近傍から空気を吸引排出することによって(例えば、特許文献5の図1,図4参照)、室内の空気を清浄に保つことが行われる。   On the other hand, in a medical room, in order to keep indoor air clean, a rectangular frame-shaped hanging wall is installed on the ceiling for the purpose of adjusting the airflow in the room (see, for example, Patent Documents 4 to 7). ). The hanging wall is usually installed on the ceiling surface above the working table such as an operating table so as to surround the working table (for example, see FIG. 1 of Patent Document 7), and is cleaned downward from the frame of the hanging wall. By blowing out air and sucking and discharging air from the vicinity of the floor or ceiling of the wall around the room (see, for example, FIGS. 1 and 4 of Patent Document 5), the indoor air is kept clean.

特開2006−125727号公報JP 2006-125727 A 特開2003−173715号公報JP 2003-173715 A 特開2003−7119号公報JP 2003-7119 A 実公昭62−6428号公報Japanese Utility Model Publication No. 62-6428 実開昭63−32525号明細書Japanese Utility Model Publication No. 63-32525 実公平3−2273号公報No. 3-2273 実開昭62−14261号明細書Japanese Utility Model Publication No. 62-14261 実開昭56−124428号明細書Japanese Utility Model Publication No. 56-124428

手術室や解剖室などの医用室では、上述した垂壁を用いて室内の気流を調整することが行われるが、一般に、垂壁の枠内の天井には、空調設備の他、各種医療設備やモニタなどが吊り下げて配置されることが一般に行われる(例えば、特許文献7の図1参照)。このような場合、垂壁枠内に照明器具を広く設けることは困難であり、畢竟、室内照明は、垂壁の周囲の天井に垂壁を囲繞するように配置される。   In a medical room such as an operating room or a dissection room, the airflow in the room is adjusted by using the above-described hanging wall. Generally, in addition to air conditioning equipment, various medical equipment is installed on the ceiling in the frame of the hanging wall. In general, a monitor or the like is suspended and arranged (see, for example, FIG. 1 of Patent Document 7). In such a case, it is difficult to widely provide a lighting fixture in the vertical wall frame, and the awning and indoor lighting are arranged so as to surround the vertical wall on the ceiling around the vertical wall.

しかしながら、室内照明を、垂壁を囲繞するように配置した場合、必然的に垂壁の中央部分の照度が周囲に比べて低くなる。そのため、室内の照度均斉度が大きくなり、視覚状、室内の明暗が大きく感じられてしまうという問題がある。これは、特に、医用室に於いては、作業者に室内の明暗が大きく感知されることは、細かい作業を行う際の障害となるため、出来る限り照度の均一性を保つことが求められる。   However, when the room lighting is arranged so as to surround the hanging wall, the illuminance at the central portion of the hanging wall inevitably becomes lower than the surroundings. For this reason, there is a problem in that the degree of illuminance uniformity in the room is increased, and the visual appearance and the brightness of the room are felt greatly. In particular, in a medical room, it is required to maintain the uniformity of illuminance as much as possible, because it is an obstacle to perform detailed work if the operator senses the brightness of the room greatly.

そこで、本発明の目的は、天井に矩形枠状の空調用垂壁を備えた医用室において、室内の照度の高い均一性を確保することが可能な室内照明構造及び室内照明方法を提供することにある。   Accordingly, an object of the present invention is to provide an indoor lighting structure and an indoor lighting method capable of ensuring high uniformity of indoor illuminance in a medical room having a rectangular frame-shaped air-conditioning vertical wall on the ceiling. It is in.

本発明に係る室内照明構造の第1の構成は、医用室の室内の照明を行う室内照明構造であって、
天井面から垂直に垂下して設置され、光が透過する透光板を矩形枠状に配置形成された透光板垂壁と、
前記天井面に、前記透光板垂壁の周囲全体を取り囲み、前記透光板垂壁の矩形枠と同心の四角形の辺に沿って設置されたベース照明と、
前記天井面と前記透光板垂壁との間に、前記透光板垂壁の上端面に沿って線状に配置され、前記透光板垂壁の上端面から前記透光板垂壁の内部に向けて照光する垂壁照明と、を備えたことを特徴とする。
A first configuration of an indoor lighting structure according to the present invention is an indoor lighting structure that performs indoor lighting in a medical room,
A light-transmitting plate hanging wall that is vertically suspended from the ceiling surface and has a light-transmitting light-transmitting plate arranged in a rectangular frame shape;
A base illumination that surrounds the entire periphery of the translucent plate hanging wall on the ceiling surface, and is installed along a rectangular side concentric with the rectangular frame of the translucent plate hanging wall,
Between the ceiling surface and the translucent plate hanging wall, it is arranged linearly along the upper end surface of the translucent plate hanging wall, and from the upper end surface of the translucent plate hanging wall, the translucent plate hanging wall And vertical wall illumination that illuminates inward.

この構成によれば、垂壁照明から発せられた光は、主に透光板垂壁の内部を通して透光板垂壁の下端から放射され、透光板垂壁の矩形枠内の補助照明として機能し、透光板垂壁の矩形枠内の照度均斉度を低下させることができる。これにより、室内の照度の高い均一性を確保することが可能となる。   According to this configuration, light emitted from the hanging wall illumination is mainly emitted from the lower end of the light transmitting plate hanging wall through the inside of the light transmitting plate hanging wall, and serves as auxiliary lighting in the rectangular frame of the light transmitting plate hanging wall. It functions, and can reduce the illuminance uniformity within the rectangular frame of the translucent plate hanging wall. Thereby, it becomes possible to ensure the high uniformity of the illuminance in the room.

本発明に係る室内照明構造の第2の構成は、前記第1の構成において、前記透光板垂壁の上端部に、前記透光板垂壁の上端部の側面を覆うとともに、前記透光板垂壁を天井面に固定するソケットを備え、前記ソケットは、内側面が鏡面であることを特徴とする。   According to a second configuration of the indoor lighting structure of the present invention, in the first configuration, the upper end portion of the translucent plate hanging wall covers a side surface of the upper end portion of the translucent plate hanging wall, and the translucent light is transmitted. A socket for fixing the plate wall to the ceiling surface is provided, and the inner surface of the socket is a mirror surface.

この構成によれば、ソケットの内側面を鏡面とすることにより、透光板垂壁の上端面と垂壁照明の照光面との間に隙間を設けた場合であっても、光学的には透光板垂壁の上端面と垂壁照明の照光面とを密着して配置した場合とほぼ等価となる。これにより、前記隙間があっても垂壁照明の見かけ上の指向性は低くなり、最適化均斉度及び最適化変動係数を低く抑えることが出来る。また、透光板垂壁の上端面と垂壁照明の照光面との間に隙間を設けることで、この隙間空間を利用して垂壁照明の冷却を行うことも可能となり、放熱性を確保でき、垂壁照明の熱による劣化を防止することも可能となる。   According to this configuration, even if a gap is provided between the upper end surface of the translucent plate hanging wall and the illumination surface of the hanging wall illumination by using the inner surface of the socket as a mirror surface, optically This is almost equivalent to the case where the upper end surface of the translucent plate hanging wall and the illumination surface of the hanging wall illumination are arranged in close contact with each other. Thereby, even if there is the gap, the apparent directivity of the hanging wall illumination is lowered, and the optimization uniformity and the optimization variation coefficient can be kept low. In addition, by providing a gap between the upper end surface of the translucent plate hanging wall and the illumination surface of the hanging wall illumination, it is possible to cool the hanging wall illumination using this gap space, ensuring heat dissipation. It is also possible to prevent deterioration of the hanging wall illumination due to heat.

本発明に係る室内照明構造の第3の構成は、前記第1又は2の構成において、前記透光板垂壁は、複数の平板状の透光板を矩形枠状に配置して形成されており、
前記透光板垂壁を構成する前記各透光板の左右両端面は傾斜面に形成され、且つ該傾斜面が前記透光板垂壁の枠の外側を向くように形成されていることを特徴とする。
In a third configuration of the indoor lighting structure according to the present invention, in the first or second configuration, the translucent plate hanging wall is formed by arranging a plurality of flat translucent plates in a rectangular frame shape. And
The left and right end surfaces of each light transmissive plate constituting the light transmissive plate hanging wall are formed as inclined surfaces, and the inclined surface is formed so as to face the outside of the frame of the light transmissive plate hanging wall. Features.

この構成により、透光板垂壁の矩形枠内の照度均斉度をさらに低下させることができ、室内の照度の均一性さらに高めることが可能となる。   With this configuration, the illuminance uniformity within the rectangular frame of the translucent plate hanging wall can be further reduced, and the uniformity of the illuminance in the room can be further improved.

本発明に係る室内照明構造の第4の構成は、前記第1乃至3の何れか一の構成において、前記透光板垂壁は、その下端面が傾斜平面、又は曲面、若しくは中折れ折面に形成されていることを特徴とする。   According to a fourth configuration of the indoor lighting structure of the present invention, in any one of the first to third configurations, the translucent plate hanging wall has an inclined flat surface, a curved surface, or a folded folded surface. It is characterized by being formed.

この構成により、透光板垂壁の矩形枠内の照度均斉度をさらに低下させることができ、室内の照度の均一性さらに高めることが可能となる。   With this configuration, the illuminance uniformity within the rectangular frame of the translucent plate hanging wall can be further reduced, and the uniformity of the illuminance in the room can be further improved.

本発明に係る室内照明方法は、医用室の室内の照明を行う室内照明方法であって、
光が透過する透光板を矩形枠状に配置形成された透光板垂壁を、天井面から垂直に垂下して設置し、
前記天井面に、前記透光板垂壁の周囲全体を取り囲む前記透光板垂壁の矩形枠と同心の四角形の辺に沿ってベース照明を設置し、
前記透光板垂壁の上端面から前記透光板垂壁の内部に向けて照光する垂壁照明を、前記天井面と前記透光板垂壁との間に、前記透光板垂壁の上端面に沿って線状に配置し、
前記天井面上の前記ベース照明を包含ずる凸包内の真下の空間の、床面から0m乃至1.5mの間の所定の高さにおける水平面内の照度の均斉度が最小となるように、前記ベース照明の照度と前記垂壁照明の照度の照度比を調整することを特徴とする。
An interior illumination method according to the present invention is an interior illumination method for performing interior illumination of a medical room,
A translucent plate hanging wall in which a translucent plate that transmits light is arranged in a rectangular frame shape is vertically suspended from the ceiling surface,
On the ceiling surface, a base illumination is installed along a rectangular side concentric with the rectangular frame of the translucent plate hanging wall surrounding the entire periphery of the translucent plate hanging wall,
A hanging wall illumination that illuminates from the upper end surface of the light transmitting plate hanging wall toward the inside of the light transmitting plate hanging wall is provided between the ceiling surface and the light transmitting plate hanging wall. Arrange along the top edge,
The uniformity of the illuminance in the horizontal plane at a predetermined height between 0 m and 1.5 m from the floor surface of the space directly under the convex hull that includes the base illumination on the ceiling surface is minimized. An illuminance ratio between the illuminance of the base illumination and the illuminance of the hanging wall illumination is adjusted.

以上のように、本発明によれば、天井面と透光板垂壁との間に、透光板垂壁の上端面から透光板垂壁の内部に向けて照光する垂壁照明を設けることにより、垂壁照明から発せられた光は、主に透光板垂壁の内部を通して透光板垂壁の下端から放射され、透光板垂壁の矩形枠内の補助照明として機能し、透光板垂壁の矩形枠内の照度均斉度を低下させることができる。これにより、室内の照度の高い均一性を確保することが可能となる。   As described above, according to the present invention, the vertical wall illumination that illuminates from the upper end surface of the transparent plate vertical wall toward the inside of the transparent plate vertical wall is provided between the ceiling surface and the transparent plate vertical wall. Thus, the light emitted from the hanging wall illumination is mainly emitted from the lower end of the light transmitting plate hanging wall through the inside of the light transmitting plate hanging wall, and functions as auxiliary lighting in the rectangular frame of the light transmitting plate hanging wall, It is possible to reduce the illuminance uniformity within the rectangular frame of the translucent plate hanging wall. Thereby, it becomes possible to ensure the high uniformity of the illuminance in the room.

また、透光板垂壁上端のソケットの内側面を鏡面とすることにより、透光板垂壁の上端面と垂壁照明の照光面との間に隙間を設けた場合であっても、光学的には透光板垂壁の上端面と垂壁照明の照光面とを密着して配置した場合とほぼ等価となる。これにより、前記隙間があっても垂壁照明の見かけ上の指向性は低くなり、最適化均斉度及び最適化変動係数を低く抑えることが出来る。また、透光板垂壁の上端面と垂壁照明の照光面との間に隙間を設けることで、この隙間空間を利用して垂壁照明の冷却を行うことも可能となり、放熱性を確保でき、垂壁照明の熱による劣化を防止することも可能となる。   Moreover, even if a gap is provided between the upper end surface of the translucent plate vertical wall and the illumination surface of the vertical wall illumination by making the inner surface of the socket at the upper end of the translucent plate vertical wall as a mirror surface Specifically, this is almost equivalent to the case where the upper end surface of the translucent plate hanging wall and the illumination surface of the hanging wall illumination are arranged in close contact with each other. Thereby, even if there is the gap, the apparent directivity of the hanging wall illumination is lowered, and the optimization uniformity and the optimization variation coefficient can be kept low. In addition, by providing a gap between the upper end surface of the translucent plate hanging wall and the illumination surface of the hanging wall illumination, it is possible to cool the hanging wall illumination using this gap space, ensuring heat dissipation. It is also possible to prevent deterioration of the hanging wall illumination due to heat.

本発明の実施例1に係る室内照明構造の全体構成を表す図である。It is a figure showing the whole indoor lighting structure concerning Example 1 of the present invention. 実施例1の透光板垂壁4を構成する各透光板4aの構成を表す図である。It is a figure showing the structure of each translucent board 4a which comprises the translucent board hanging wall 4 of Example 1. FIG. ベース照明6のみによる照度分布の計算結果を示す図である。It is a figure which shows the calculation result of the illumination distribution by only the base illumination. 透光板4a単体の評価モデルを表す図である。It is a figure showing the evaluation model of the translucent board 4a single-piece | unit. 透光板4a上端面と面光源の間隔dを0.1t,t,2t,5tとした場合の、各下端面傾斜角θに対する測定線上の照度分布の計算結果を表す図である。It is a figure showing the calculation result of the illumination distribution on the measurement line with respect to each lower end surface inclination | tilt angle (theta) b when the space | interval ds of the translucent plate 4a and a surface light source is 0.1t, t, 2t, 5t. 透光板の上端面から透光板内へ入射される光路を示す図である。It is a figure which shows the optical path entered into a translucent board from the upper end surface of a translucent board. 透光板4aの屈折率nを1.5, 1.6, 1.7, 1.8とした場合の、各下端面傾斜角θに対する測定線上の照度分布の計算結果を表す図である。Refractive index n 1 of 1.5 transparent plate 4a, 1.6, 1.7, in the case of 1.8, a diagram representing the calculation result of the illuminance distribution measuring line for each lower end face inclination angle theta b. 図1及び図2の透光板垂壁4において上端面傾斜角θ及び下端面傾斜角θを変化させたときの照度分布の変化を表す図である。It is a figure showing the change of illumination distribution when changing the upper end surface inclination | tilt angle (theta) t and the lower end surface inclination | tilt angle (theta) b in the translucent plate vertical wall 4 of FIG.1 and FIG.2. 透光板の上端面及び下端面の傾斜角θ,θの変化に対する最適化均斉度及び最適化変動係数の変化を表す図である。It is a figure showing the change of the optimization uniformity degree and the optimization variation coefficient with respect to the change of inclination-angle (theta) t , (theta) b of the upper end surface of a translucent board, and a lower end surface. 透光板の上端面と面光源の間隔dによる照度分布の変化を表す図である。It is a graph showing a change in illuminance distribution by distance d s of the upper end surface and the surface light source of the transparent plate. 透光板の上端面と面光源の間隔dによる最適化均斉度及び最適化変動係数の変化を表す図である。It is a graph showing a change in the optimization uniformity and optimization variation coefficient by the distance d s of the upper end surface and the surface light source of the transparent plate. ソケット7の内側面を鏡面とした構成を表す図である。It is a figure showing the structure which made the inner surface of the socket 7 the mirror surface. ソケット7の内側面を無反射面とした場合と鏡面とした場合の、透光板4a上端面と面光源の間隔dを変化させたときの照度分布の変化を表す図である。In the case of the case and the mirror surface of the inner surface of the socket 7 and the non-reflecting surface is a graph showing a change in the illuminance distribution when changing the distance d s of the transparent plate 4a upper surface and the surface light source. 透光板の屈折率n1=1.5, 1.6, 1.7, 1.8に対する、下端面傾斜角θを変化させたときの照度分布の変化を表す図である。Refractive index n 1 = 1.5 of the transparent plate, 1.6, 1.7, for 1.8 is a graph showing a change in the illuminance distribution when changing the lower end face inclination angle theta b. 透光板の屈折率n1=1.5, 1.6, 1.7, 1.8に対する、下端面傾斜角θを変化させたときの最適化均斉度及び最適化変動係数の変化を表す図である。Refractive index n 1 = 1.5 of the transparent plate, 1.6, 1.7, which is a diagram showing for 1.8, a change in the optimization uniformity and optimization variation coefficient with respect to a change in the lower end face inclination angle theta b. 本発明の実施例2に係る室内照明構造における透光板垂壁及び透光板垂壁を構成する各透光板を表す図である。It is a figure showing each translucent board which comprises the translucent board vertical wall and translucent board vertical wall in the indoor lighting structure which concerns on Example 2 of this invention. 図16の透光板垂壁4における、θ=θ=0°,n=1.5のときのサイドエッジ傾斜面の傾斜角θの変化に対する照度分布の変化を表す図である。FIG. 17 is a diagram illustrating a change in illuminance distribution with respect to a change in the inclination angle θ s of the side edge inclined surface when θ t = θ b = 0 ° and n 1 = 1.5 in the light transmitting plate hanging wall 4 in FIG. 16. . θ=θ=0°,n=1.5のときのサイドエッジ傾斜面の傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。 θ t = θ b = 0 ° , graph showing a change in the side edge of the inclined surface with respect to the change of the inclination angle θ s (a) optimizing uniformity and (b) optimizing the variation coefficient in the case of n 1 = 1.5 It is. 本発明の実施例3に係る室内照明構造における透光板垂壁及び透光板垂壁を構成する各透光板を表す図である。It is a figure showing each translucent board which comprises the translucent board vertical wall and translucent board vertical wall in the indoor lighting structure which concerns on Example 3 of this invention. 図19の透光板垂壁4における、θ=0°,n=1.5のときの傾斜円弧面の傾斜角θの変化に対する照度分布の変化を表す図である。In the translucent plate vertical wall 4 of FIG. 19, θ t = 0 °, is a graph showing a change in the illuminance distribution with respect to the change of the inclination angle theta b of the inclined arcuate surface when the n 1 = 1.5. θ=0°,n=1.5のときの傾斜円弧状下端面の傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。θ t = 0 °, is a diagram showing changes in (a) optimizing uniformity and (b) optimizing the variation coefficient with respect to a change in the inclination angle theta b inclined arcuate bottom surface when the n 1 = 1.5 . 本発明の実施例4に係る室内照明構造における透光板垂壁4を構成する各透光板4aの下端部分の断面図である。It is sectional drawing of the lower end part of each translucent board 4a which comprises the translucent board vertical wall 4 in the indoor lighting structure which concerns on Example 4 of this invention. θ=0°,n=1.5のときの水平円弧状下端面の相対曲率κの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。θ t = 0 °, it is a diagram showing changes in (a) optimizing uniformity and (b) optimizing the variation coefficient with respect to a change in the relative curvature kappa b in the horizontal arc-shaped lower end face of the case of n 1 = 1.5 . 本発明の実施例5に係る室内照明構造における透光板垂壁4を構成する各透光板4aの下端部分の断面図である。It is sectional drawing of the lower end part of each translucent board 4a which comprises the translucent board vertical wall 4 in the indoor lighting structure which concerns on Example 5 of this invention. 図24の透光板4aの折面状下端面の外側傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。It is a figure showing the change of (a) optimization uniformity degree and (b) optimization variation coefficient with respect to the change of the outer side inclination | tilt angle (theta) 2 of the folding surface lower end surface of the translucent plate 4a of FIG. 55°≦θb2≦77.5°の範囲における(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。It is a figure showing the change of (a) optimization uniformity and (b) optimization variation coefficient in the range of 55 ° ≦ θ b2 ≦ 77.5 °. 図24の透光板4aの、各水平幅xに対する、折面状下端面の外側傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。The transparent plate 4a of Figure 24, a diagram for each horizontal width x 1, represents the change in (a) optimizing uniformity and (b) optimizing the variation coefficient with respect to a change in outer inclined angle theta 2 of the folding planar bottom surface It is. 透光板の屈折率nを1.4〜1.8とした場合の、折面状下端面の外側傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。(A) Optimized uniformity and (b) Optimized variation coefficient with respect to the change of the outer inclination angle θ 2 of the folded lower end surface when the refractive index n 1 of the light transmitting plate is 1.4 to 1.8 FIG.

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の実施例1に係る室内照明構造の全体構成を表す図である。図1(a)は、室内側から見上げて視た斜視図、図1(b)は天井面から外した透光板垂壁の斜視図、図1(c)は側面図、図1(d)は平面図を表す。図1において、照明の対象となる部屋は、手術室や解剖室等の医用室であり、天井面1、部屋壁面2、及び床面3を備えている。尚、図1(a)では、図示の都合上、部屋壁面2の一部を省略し、床面3の一部を破断して示している。本発明に係る室内照明構造は、透光板垂壁4、ソケット5、ベース照明6、及び垂壁照明7を備えている。透光板垂壁4は、天井面1から垂直に垂下して設置され、複数の光が透過する透光板4aを矩形枠状に配置形成された垂壁である。透光板4aは、ガラスやアクリル板のような光の透過率の高い透明素材のものが用いられる。ソケット5は、透光板垂壁4の上端全体に亘って設けられた固定金具であり、透光板垂壁4を天井面1に固定するものである。ソケット7の両側面は透光板4aの両側面と平行に形成されている。ソケット5の内側面は光を反射する鏡面加工が施され、又は鏡面シールが貼着されている。ベース照明6は、天井面1に、透光板垂壁4の周囲全体を取り囲み、透光板垂壁4の矩形枠と同心の四角形の辺に沿って設置された照明である。ベース照明6は、天井照明として通常用いられる、蛍光灯やLED照明等の、配光特性分布が全方位方向に略均一に広がったような照明が使用される。垂壁照明7は、図1(b)に示すように、透光板垂壁4の上端面に沿って線状に配置され、透光板垂壁4の上端面から透光板垂壁4の内部に向けて照光する照明である。垂壁照明7としては、高輝度LEDを線状に配列したLEDラインアレイ等が用いられる。垂壁照明7を構成するLED等の各照明素子は、ビーム中心軸方向が下向き(即ち、透光板垂壁4の上端面に向かう向き)となるように配置される。   FIG. 1 is a diagram illustrating an overall configuration of an indoor lighting structure according to Embodiment 1 of the present invention. 1A is a perspective view looking up from the indoor side, FIG. 1B is a perspective view of a translucent plate hanging wall removed from the ceiling surface, FIG. 1C is a side view, and FIG. ) Represents a plan view. In FIG. 1, a room to be illuminated is a medical room such as an operating room or a dissection room, and includes a ceiling surface 1, a room wall surface 2, and a floor surface 3. In FIG. 1A, for convenience of illustration, a part of the room wall surface 2 is omitted, and a part of the floor surface 3 is shown broken away. The indoor lighting structure according to the present invention includes a translucent plate hanging wall 4, a socket 5, a base lighting 6, and a hanging wall lighting 7. The translucent plate hanging wall 4 is a hanging wall that is vertically hung from the ceiling surface 1 and has a translucent plate 4a through which a plurality of lights are transmitted arranged in a rectangular frame shape. The transparent plate 4a is made of a transparent material having a high light transmittance such as glass or an acrylic plate. The socket 5 is a fixing bracket provided over the entire upper end of the translucent plate hanging wall 4, and fixes the translucent plate hanging wall 4 to the ceiling surface 1. Both side surfaces of the socket 7 are formed in parallel with both side surfaces of the translucent plate 4a. The inner surface of the socket 5 is mirror-finished to reflect light, or a mirror seal is attached. The base illumination 6 is illumination installed on the ceiling surface 1 so as to surround the entire periphery of the translucent plate hanging wall 4 and along a rectangular side concentric with the rectangular frame of the translucent plate hanging wall 4. As the base illumination 6, illumination such as a fluorescent lamp or LED illumination, which is normally used as ceiling illumination, is used in which the light distribution characteristic distribution is spread almost uniformly in all directions. As shown in FIG. 1B, the hanging wall illumination 7 is arranged linearly along the upper end surface of the translucent plate hanging wall 4, and the translucent plate hanging wall 4 from the upper end surface of the translucent plate hanging wall 4. It is the illumination which shines toward the inside. As the hanging wall illumination 7, an LED line array or the like in which high-intensity LEDs are arranged in a line is used. Each illumination element such as an LED constituting the hanging wall illumination 7 is arranged such that the beam center axis direction is downward (that is, the direction toward the upper end surface of the translucent plate hanging wall 4).

以下の説明に於いて、照明を行う室内の横方向をx方向、縦方向をy方向、鉛直方向をz方向とする。また、図1(c),(d)に示すように、照明を行う室内の幅をwmx,wmy、床面3から天井面1までの高さをh、ベース照明6を配列した矩形枠の幅をwcx,wcy、ベース照明6の幅をw、透光板垂壁4の枠の幅をw2x,w2y、透光板垂壁4の高さをh、透光板垂壁4を構成する各透光板4aの厚さをtと記す。標準的な医用室では、床面3から天井面1までの高さをhは3m程度に設定される。 In the following description, it is assumed that the horizontal direction of the room where illumination is performed is the x direction, the vertical direction is the y direction, and the vertical direction is the z direction. Further, as shown in FIGS. 1C and 1D, the width of the room to be illuminated is w mx , w my , the height from the floor surface 3 to the ceiling surface 1 is h m , and the base illumination 6 is arranged. The width of the rectangular frame is w cx , w cy , the width of the base illumination 6 is w 1 , the width of the translucent plate hanging wall 4 is w 2x , w 2y , and the height of the translucent plate hanging wall 4 is h 2 , The thickness of each translucent plate 4a constituting the translucent plate hanging wall 4 is denoted by t. In a standard medical room, the height from the floor surface 3 to the ceiling surface 1 is set to about 3 m .

図2は、実施例1の透光板垂壁4を構成する各透光板4aの構成を表す図である。図2(a)は全体斜視図、図2(b)は正面図、図2(c)は側面図である。本実施例では、透光板4aは、全体が矩形状の平面板とする。透光板4aは、上端面及び下端面が水平平面若しくは傾斜平面に形成されている。以下の説明に於いて、透光板4aの上端面の水平面に対する傾斜角をθと記し、傾斜角θは、図2(c)に示すように、透光板垂壁4の矩形枠体の内側から外側に向かって上方に向かって傾斜する方向を正方向とする。また、透光板4aの下端面の水平面に対する傾斜角をθと記し、傾斜角θは、図2(c)に示すように、透光板垂壁4の矩形枠体の内側から外側に向かって上方に向かって傾斜する方向を正方向とする。また、透光板4aの幅はw、高さはh、厚みはtと記す。図1(d)より、L1x=3w、L1y=4wである。 FIG. 2 is a diagram illustrating the configuration of each light-transmitting plate 4 a configuring the light-transmitting plate hanging wall 4 according to the first embodiment. 2A is an overall perspective view, FIG. 2B is a front view, and FIG. 2C is a side view. In this embodiment, the translucent plate 4a is a flat plate having a rectangular shape as a whole. The translucent plate 4a has an upper end surface and a lower end surface formed in a horizontal plane or an inclined plane. In the following description, the inclination angle denoted as theta t with respect to the horizontal plane of the upper end face of the transparent plate 4a, the inclination angle theta t, as shown in FIG. 2 (c), the rectangular frame of the light-transmitting plate vertical wall 4 A direction inclined upward from the inside of the body to the outside is defined as a positive direction. Also, noted an inclination angle with respect to the horizontal plane of the lower end surface of the transparent plate 4a and theta b, the inclination angle theta b, as shown in FIG. 2 (c), the outside from the inside of the rectangular frame of the light-transmitting plate vertical wall 4 The direction inclined upward toward the top is defined as the positive direction. The width of the transparent plate 4a is w p, the height h 2, the thickness is referred to as t. From FIG. 1D, L 1x = 3w p and L 1y = 4w p .

以上のように構成された本実施例に係る室内照明構造において、以下、それを用いた室内照明方法について説明する。   In the indoor lighting structure according to the present embodiment configured as described above, an indoor lighting method using the same will be described below.

透光板垂壁4の枠体の下方の室内の床面3上には、手術台や解剖台等の作業台(図示せず)が設置される。この状態に於いて、ベース照明6及び垂壁照明7を点灯して、作業台周辺の室内照明を行う。通常、手術台等の作業台の床面3からの高さは600〜1000mmである。従って、この高さの範囲内若しくは部屋の利用目的に応じて0〜1.5mの範囲内に照度基準面を仮想的に設け、照度基準面において、作業台周辺の照度の均斉度が最小となるようにベース照明6及び垂壁照明7の照度を調節する。ここで、「均斉度(uniformity)」とは、JIS−z−9110−2011(照明基準総則)では、ある面における平均照度に対する最小照度の比と定義されている。また、別の定義として、ある面における平均照度に対する最大照度と最小照度の差の比と定義する場合もある。ベース照明6及び垂壁照明7の照度を調節する場合、何れの定義による均斉度を用いてもよいが、本明細書においては後者の定義を用いることとする。即ち、次式によって均斉度Uを定義する。   A work table (not shown) such as an operating table or a dissection table is installed on the floor 3 in the room below the frame of the translucent plate hanging wall 4. In this state, the base illumination 6 and the hanging wall illumination 7 are turned on to perform indoor illumination around the work table. Usually, the height from the floor surface 3 of a work table such as an operating table is 600 to 1000 mm. Therefore, an illuminance reference plane is virtually provided within this height range or within a range of 0 to 1.5 m depending on the purpose of use of the room, and the illuminance uniformity around the workbench is minimized on the illuminance reference plane. The illuminance of the base illumination 6 and the hanging wall illumination 7 is adjusted so that Here, “uniformity” is defined in JIS-z-9110-2011 (illumination standard general rule) as the ratio of the minimum illuminance to the average illuminance on a certain surface. Another definition may be defined as the ratio of the difference between the maximum illuminance and the minimum illuminance with respect to the average illuminance on a certain surface. When adjusting the illuminance of the base illumination 6 and the hanging wall illumination 7, the uniformity according to any definition may be used, but the latter definition is used in this specification. That is, the uniformity degree U is defined by the following equation.

ここで、I(P)は照度基準面上の点Pの照度、Aは照度測定領域(照度基準面上の領域)、maxP∈A(I(P))は領域Aにおける照度I(P)の最大値、minP∈A(I(P))は領域Aにおける照度I(P)の最小値、aveP∈A(I(P))は領域Aにおける照度I(P)の平均値である。均斉度は、室内照度の局所的な濃淡を表す指標であるが、後の説明に於いて、室内照度の全体的な濃淡を表す指標として、照度の変動係数RSDを用いる。変動係数RSDは、次式によって定義する。 Here, I (P) is the illuminance at point P on the illuminance reference plane, A is the illuminance measurement area (area on the illuminance reference plane), and max P∈A (I (P)) is the illuminance I (P in area A ), Min P∈A (I (P)) is the minimum value of illuminance I (P) in area A, and ave P∈A (I (P)) is the average value of illuminance I (P) in area A It is. The homogeneity is an index representing the local shading of the room illuminance. In the following explanation, the illuminance variation coefficient RSD is used as an index representing the overall shading of the room illuminance. The coefficient of variation RSD is defined by the following equation.

このように、透光板垂壁4の上端面から、透光板垂壁4を通して垂壁照明7により照明を行うことによって、透光板垂壁4の枠内の照度を、枠周囲の照度と均一化することが可能となる。   In this way, by illuminating from the upper end surface of the translucent plate hanging wall 4 with the hanging wall illumination 7 through the translucent plate hanging wall 4, the illuminance in the frame of the translucent plate hanging wall 4 is changed to the illuminance around the frame. And uniform.

次に、実際に図1,図2の透光板垂壁4を通して垂壁照明7により照明を行うことによって、室内の照度がどの程度均一化されるのかについての評価を行った結果について説明する。評価方法としては、まず、ベース照明6のみによる照度分布の評価及び垂壁照明7のみによる照度分布の評価を行い、次に、両者を重ね合わせた場合についての均斉度及び変動係数の改善度合いを評価する。照度の評価は、レイトレーシング法による数値計算により行った。   Next, the results of evaluating how much the illuminance in the room is equalized by actually illuminating with the hanging wall illumination 7 through the translucent plate hanging wall 4 of FIGS. 1 and 2 will be described. . As an evaluation method, first, the evaluation of the illuminance distribution using only the base illumination 6 and the evaluation of the illuminance distribution using only the vertical wall illumination 7 are performed. evaluate. The illuminance was evaluated by numerical calculation by the ray tracing method.

(1)ベース照明6による照度分布の評価
照度計算にあたっては、標準的な医用室のサイズを想定して、図1のサイズパラメータとして、照明を行う室内の幅をwmx×wmy=6.5×8m、床面3から天井面1までの高さをh=3m、ベース照明6を配列した矩形枠の幅をwcx×wcy=4.79×5.24m、ベース照明6の幅をw=0.3m、透光板垂壁4の枠の幅をw2x×w2y=1.6×2.4m、透光板垂壁4の高さをh=0.3m、透光板垂壁4を構成する各透光板4aの厚さをt=10mmとした。ベース照明6の配光分布曲線は、使用する照明器具によって異なるが、ここでは、標準的なモデルとして、ベース照明6を理想的な面光源とし、配向曲線をIs(θ)=Is0cosθとした。ここで、θはベース照明6の法線ベクトル(垂直下方を向くベクトル)に対する角度を表す。照度基準面として、床面からの高さ70cmの水平面(透光板垂壁4の下端面からの距離2mの水平面)を照度基準面とした。また、部屋の周壁面や床面による反射は、壁面や床面を構成する素材によって様々に相違するため、今回の評価に当たっては周壁面や床面による反射は考慮しないこととした。
(1) Evaluation of illuminance distribution by base illumination 6 In calculating illuminance, assuming the size of a standard medical room, the size of the room to be illuminated is set as w mx × w my = 6. 5 × 8 m, the height from the floor surface 3 to the ceiling surface 1 is h m = 3 m, the width of the rectangular frame in which the base lighting 6 is arranged is w cx × w cy = 4.79 × 5.24 m, The width is w 1 = 0.3 m, the width of the frame of the translucent plate hanging wall 4 is w 2x × w 2y = 1.6 × 2.4 m, and the height of the translucent plate hanging wall 4 is h 2 = 0.3 m. The thickness of each translucent plate 4a constituting the translucent plate hanging wall 4 was t = 10 mm. The light distribution distribution curve of the base illumination 6 varies depending on the luminaire to be used. Here, as a standard model, the base illumination 6 is an ideal surface light source, and the orientation curve is I s (θ) = I s0 cos θ. It was. Here, θ represents an angle with respect to a normal vector (a vector pointing vertically downward) of the base illumination 6. As the illuminance reference plane, a horizontal plane with a height of 70 cm from the floor surface (horizontal plane with a distance of 2 m from the lower end surface of the translucent plate hanging wall 4) was used as the illuminance reference plane. In addition, the reflection by the peripheral wall surface and floor surface of the room varies depending on the material constituting the wall surface and floor surface, so that the reflection by the peripheral wall surface and floor surface is not considered in this evaluation.

図3は、ベース照明6のみによる照度分布の計算結果を示す図である。図3に於いて、黒線で示した枠線は、外側の枠線が天井面のベース照明6の位置を表し、内側の長方形の枠線が透光板垂壁4の位置を示している(図1(d)参照)。図3より、ベース照明のみによる照明を行った場合、透光板垂壁4の枠内に暗部が生じることが分かる。このとき、ベース照明6の枠内(ベース照明6の枠の全ての外側辺を包含する凸包内)の領域A(図3において一点鎖線で囲まれた領域)の均斉度U(A)及び変動係数RSD(A)は、U(A)=0.619, RSD(A)=0.163であった。   FIG. 3 is a diagram showing a calculation result of the illuminance distribution by only the base illumination 6. In FIG. 3, in the frame lines indicated by black lines, the outer frame line indicates the position of the base illumination 6 on the ceiling surface, and the inner rectangular frame line indicates the position of the translucent plate hanging wall 4. (See FIG. 1 (d)). From FIG. 3, it can be seen that when the illumination is performed only by the base illumination, a dark portion is generated in the frame of the translucent plate hanging wall 4. At this time, the degree of uniformity U (A) in the region A (the region surrounded by the alternate long and short dash line in FIG. 3) within the frame of the base illumination 6 (within the convex hull including all outer sides of the frame of the base illumination 6) and The coefficient of variation RSD (A) was U (A) = 0.619, RSD (A) = 0.163.

(2)透光板4a単体による照度分布についての評価
次に、透光板4a単体による照度分布についての評価を行った結果を説明する。図4は、透光板4a単体の評価モデルを表す図である。透光板4aの形状は、図2と同様であり、透光板4aの上端面の上方に、距離dの間隔を開けて、透光板4aと同じ幅の面光源を配置する。ここでは、面光源の配光分布曲線は、全方向で一定値(等方光源)とした。また、面光源と透光板の上端面との間には、ソケット5の代わりとして遮蔽板を設定した。照度基準面は、透光板4aの下端からの距離hが2mの位置にある水平面とした。この照度基準面上に、図4(b)に示すような、透光板4aの中央点の真下の位置の点を原点とし、透光板4aの幅方向と垂直な方向をx軸、垂直方向をz軸とする座標軸を設定し、x軸に沿って照度の計算を行った。尚、透光板4aの上端面の傾斜角θは0度とした。
(2) Evaluation about illuminance distribution by single translucent plate 4a Next, the result of evaluating the illuminance distribution by the single translucent plate 4a will be described. FIG. 4 is a diagram illustrating an evaluation model of a single translucent plate 4a. The shape of the transparent plate 4a is the same as FIG. 2, above the upper end surface of the transparent plate 4a, an interval of distance d s, placing a surface light source having the same width as the transparent plate 4a. Here, the light distribution curve of the surface light source is a constant value (isotropic light source) in all directions. Further, a shielding plate was set instead of the socket 5 between the surface light source and the upper end surface of the translucent plate. The illuminance reference plane was a horizontal plane where the distance hm from the lower end of the translucent plate 4a was 2 m . On this illuminance reference plane, as shown in FIG. 4B, the origin is a point just below the center point of the translucent plate 4a, and the direction perpendicular to the width direction of the translucent plate 4a is the x-axis and vertical. A coordinate axis with the direction as the z-axis was set, and the illuminance was calculated along the x-axis. The inclination angle theta t of the upper end surface of the transparent plate 4a is set to 0 degrees.

図5は、透光板4a上端面と面光源の間隔dを0.1t,t,2t,5tとした場合の、各下端面傾斜角θに対する測定線上の照度分布の計算結果を表す図である。図5より、透光板4a上端面と面光源の間隔dが大きくなるに従って、照度値のピークは、透光板4aの真下の位置(x=0)よりも内側(x<0)へシフトしていくことが分かる。また、透光板の外側(x>0)では、照度値の振動が大きい傾向が見られる。この理由は、次のように考えられる。 FIG. 5 is a diagram showing the calculation result of the illuminance distribution on the measurement line with respect to each lower end surface inclination angle θ b when the distance d s between the upper end surface of the translucent plate 4a and the surface light source is 0.1t, t, 2t, 5t. It is. As shown in FIG. 5, as the distance d s between the upper end surface of the translucent plate 4a and the surface light source increases, the peak of the illuminance value moves to the inner side (x <0) from the position directly below the translucent plate 4a (x = 0). You can see the shift. In addition, on the outside of the light transmitting plate (x> 0), there is a tendency that the vibration of the illuminance value is large. The reason is considered as follows.

図6は、透光板の上端面から透光板内へ入射される光路を示す図である。面光源から透光板の上端に入射される光線のうち入射角が最大となるのは、図6(a)に示すように、面光源の端部から透光板上端面の反対側の端部へ入射する場合であり、このときの入射角をθs0とする。図6(a)より、θs0=arctan(t/ds)である。この光線が透光板内に入射されると、光路は屈折され、透過角はθとなる。透光板の屈折率をnとすると、透過角θは次式で表される。 FIG. 6 is a diagram illustrating an optical path that enters the translucent plate from the upper end surface of the translucent plate. As shown in FIG. 6A, the incident angle of the light incident on the upper end of the translucent plate from the surface light source is maximized, as shown in FIG. 6A, at the end opposite to the upper end surface of the translucent plate. The incident angle at this time is θ s0 . From FIG. 6A , θ s0 = arctan (t / d s ). When this light ray enters the light transmitting plate, the optical path is refracted and the transmission angle becomes θ s . When the refractive index of the transparent plate and n 1, transmission angle theta s is expressed by the following equation.

ここで、θc=asin(1/n1)は臨界角である。この光線が透光板内に侵入した後に、透光板の内側面に入射される。このときの入射角(以下「最小側面入射角」という。)をθとすると、図6(a)より、θ=π/2−θである。臨界角θcがπ/4よりも小さければ、常にθ>θとなり、全ての光路は透光板の内側面で全反射される。故に、光線が透光板の上端面から下端面に至るまでに、透光板の内側面に於いて反射される最大反射回数Nは、次式となる。 Here, θ c = asin (1 / n 1 ) is a critical angle. After this light ray penetrates into the translucent plate, it enters the inner surface of the translucent plate. Assuming that the incident angle (hereinafter referred to as “minimum side surface incident angle”) at this time is θ 1 , θ 1 = π / 2−θ s from FIG. If the critical angle θ c is smaller than π / 4, θ 1 > θ c is always established, and all the optical paths are totally reflected by the inner surface of the light transmitting plate. Therefore, the maximum number of reflections N that is reflected on the inner surface of the light transmissive plate from the upper end surface to the lower end surface of the light transmissive plate is expressed by the following equation.

特に、d=0のときには、θ=θとなり、最小側面入射角はθ=π/2−θとなる。式(3),(4)より、dが増加するとθは減少し、最小側面入射角θは増加し、最大反射回数Nは減少する。これは、dが増加すると、入射光線の見かけ上の光源の指向性が高くなることを意味している。従って、透光板内での反射による光路の分散が小さくなるため、透光板内部のジグザグ反射による影響が減少し、より真下に向かう光路の影響のみが残るものと考えられる。鉛直下方向に進む光路の場合、図6(b)に示したように、透光板の下端面に於いて内向き(図6(b)においては左向き)に屈折した後、床に向かって照射される。このとき、透光板の下端面が内側(図6(b)の左側)から外側(図6(b)の右側)に向けて上に傾斜している場合(θ>0の場合)には、光線は内側方向に屈折する。従って、dが増加して指向性が高まり、鉛直下方向近傍に進む光路の影響が大きくなると、図5のように、照度のピークは内側にシフトする。また、dが増加するほど、側面反射角度の小さいジグザグ光路が減少し、側面反射角度が大きい限られたジグザグ光路のみが残るため、dが増加するほど、照度分布における振動が大きくなると考えられる。 In particular, when d s = 0, θ s = θ c and the minimum side surface incident angle is θ 1 = π / 2−θ c . From equations (3) and (4), when d s increases, θ s decreases, the minimum side surface incident angle θ 1 increases, and the maximum number of reflections N decreases. This means that as d s increases, the directivity of the apparent light source of incident light increases. Therefore, since the dispersion of the optical path due to reflection in the light transmissive plate is reduced, the influence due to the zigzag reflection inside the light transmissive plate is reduced, and it is considered that only the influence of the light path directed downward is left. In the case of a light path traveling vertically downward, as shown in FIG. 6 (b), the light is refracted inward (leftward in FIG. 6 (b)) at the lower end surface of the light-transmitting plate and then toward the floor. Irradiated. At this time, when the lower end surface of the translucent plate is inclined upward (in the case of θ b > 0) from the inner side (left side of FIG. 6B) toward the outer side (right side of FIG. 6B). The light rays are refracted in the inward direction. Accordingly, when d s increases and directivity increases, and the influence of the optical path traveling in the vicinity of the vertically downward direction increases, the illuminance peak shifts inward as shown in FIG. Further, as d s increases, the zigzag optical path with a small side reflection angle decreases, and only a limited zigzag optical path with a large side reflection angle remains. Therefore, the vibration in the illuminance distribution increases as d s increases. It is done.

図7は、透光板4aの屈折率nを1.5, 1.6, 1.7, 1.8とした場合の、各下端面傾斜角θに対する測定線上の照度分布の計算結果を表す図である。図7より、透光板4aの屈折率が大きくなるに従って、照度値のピークは、透光板4aの真下の位置(x=0)よりも内側(x<0)へシフトしていくことが分かる。また、透光板の外側(x>0)では、照度値の振動が大きい傾向が見られる。この傾向は、透光板4a上端面と面光源の間隔dが広がるほど、大きく現れ、透光板4a下端面の傾斜角θが大きくなるほど大きく現れる。 7, the refractive index n 1 of 1.5 transparent plate 4a, 1.6, 1.7, in the case of 1.8, a diagram representing the calculation result of the illuminance distribution measuring line for each lower end face inclination angle theta b. From FIG. 7, as the refractive index of the light transmissive plate 4a increases, the peak of the illuminance value may shift to the inside (x <0) from the position directly below the light transmissive plate 4a (x = 0). I understand. In addition, on the outside of the light transmitting plate (x> 0), there is a tendency that the vibration of the illuminance value is large. This tendency is more widened distance d s of the transparent plate 4a upper surface and the surface light source appears large, it appears larger as the inclination angle theta b of the transparent plate 4a bottom surface increases.

(3)透光板垂壁4全体による照度分布の評価
(3.1)透光板の上端面及び下端面の傾斜の影響についての評価
次に、透光板4aの形状が透光板垂壁4全体による照度分布に及ぼす影響について説明する。図8は、図1及び図2の透光板垂壁4において透光板4aの上端面傾斜角θ及び下端面傾斜角θを変化させたときの照度分布の変化を表す図である。図8の表内の各照度分布図は、図3と同様のサイズで示している。尚、図8において、透光板4aの屈折率nは1.5、透光板4a上端面と面光源の間隔dは0.1tとしている。また、照度基準面として、床面からの高さ70cmの水平面(透光板垂壁4の下端面からの距離2mの水平面)を照度基準面としている。上端面傾斜角θ及び下端面傾斜角θは、透光板垂壁4の枠内から枠外へ向かって上に傾斜する方向を正、下に傾斜する方向を負とする(図2(c)参照)。また、垂壁照明7の配光分布曲線は、LED照明を想定して、照射軸方向からの角度θs0の方向に対して照度がガウシアン曲線(I(θs0)=I0・exp(-αθs0 2))となるように設定した。図8より、透光板4aの上端面傾斜角θ及び下端面傾斜角θを変化させることにより、照度基準面上での照度分布を制御することが出来ることが分かる。
(3) Evaluation of illuminance distribution by entire translucent plate hanging wall 4 (3.1) Evaluation of influence of inclination of upper end surface and lower end surface of translucent plate Next, the shape of the translucent plate 4a is the translucent plate droop. The influence on the illuminance distribution by the entire wall 4 will be described. Figure 8 is a graph showing a change in the illuminance distribution when changing the upper end face inclination angle theta t and the lower end face inclination angle theta b of the transparent plate 4a in the translucent plate vertical wall 4 of FIG. 1 and FIG. 2 . Each illuminance distribution chart in the table of FIG. 8 is shown in the same size as FIG. In FIG. 8, the refractive index n 1 of the translucent plate 4a is 1.5, and the distance d s between the upper end surface of the translucent plate 4a and the surface light source is 0.1t. Further, as the illuminance reference plane, a horizontal plane having a height of 70 cm from the floor surface (horizontal plane having a distance of 2 m from the lower end surface of the translucent plate hanging wall 4) is used as the illuminance reference plane. The upper end face inclination angle theta t and the lower end face inclination angle theta b is a direction inclined upward positive and negative direction which is inclined down towards the outside the frame from the frame of the transparent plate vertical wall 4 (FIG. 2 ( c)). Further, the light distribution distribution curve of the vertical wall illumination 7 is assumed to be LED illumination, and the illuminance is Gaussian curve (I (θ s0 ) = I 0 · exp (−) with respect to the direction of the angle θ s0 from the irradiation axis direction. αθ s0 2 )). From FIG. 8, by changing the upper end face inclination angle theta t and the lower end face inclination angle theta b of the transparent plate 4a, it can be seen that it is possible to control the illuminance distribution on the illumination reference plane.

次に、透光板垂壁4を通した垂壁照明7による照明(以下「補助照明」という。)と、ベース照明6の照明とを重ね合わせて均斉度を最小化することを考える。いま、照度基準面上の点P(x,y)におけるベース照明の照度をI0(P)、補助照明の照度をI1(P)とする。ベース照明と補助照明とを同時に点灯した場合、両照明による光の干渉は無視できる程度に小さいとして、線形の重ね合わせが成り立つとする。このとき、点P(x,y)における合計照度I(P)は、次式で表される。 Next, it is considered to minimize the uniformity by superimposing the illumination by the vertical wall illumination 7 (hereinafter referred to as “auxiliary illumination”) through the translucent plate vertical wall 4 and the illumination of the base illumination 6. Now, assume that the illuminance of the base illumination at the point P (x, y) on the illuminance reference plane is I 0 (P), and the illuminance of the auxiliary illumination is I 1 (P). When the base illumination and the auxiliary illumination are turned on at the same time, it is assumed that the linear overlap is established, assuming that the interference of light due to both illuminations is small enough to be ignored. At this time, the total illuminance I (P) at the point P (x, y) is expressed by the following equation.

ここで、w,wは重み係数である。照度基準面上の照度の均一性を測る指標として、式(1)の均斉度U、及び式(2)の変動係数RSDを用いる。均斉度U及び変動係数RSDを測る領域Aとしては、部屋壁面付近の影響を排除するため、図3の一点鎖線枠で示したような、ベース照明6の枠内(ベース照明6の枠の全ての外側辺を包含する凸包内)の領域とする。また、簡単のため、w0=1とし、重み係数w1を変化させて、領域A内の照度の均斉度U又は変動係数RSDが最小となる重み係数w1,minを求め、そのときの均斉度U(w1,min)又は変動係数RSD(w1,min)を求める。均斉度U(w1,min)を「最適化均斉度」、変動係数RSD(w1,min)を「最適化変動係数」と呼ぶ。 Here, w 0 and w 1 are weighting factors. As an index for measuring the uniformity of illuminance on the illuminance reference plane, the uniformity U in Expression (1) and the variation coefficient RSD in Expression (2) are used. As the area A for measuring the uniformity U and the coefficient of variation RSD, in order to eliminate the influence of the vicinity of the room wall, within the frame of the base illumination 6 as shown by the one-dot chain line frame in FIG. The convex hull including the outer side of the region. For simplicity, w 0 = 1 and the weight coefficient w 1 is changed to obtain the weight coefficient w 1, min that minimizes the illuminance uniformity U or the variation coefficient RSD in the area A. The uniformity U (w 1, min ) or coefficient of variation RSD (w 1, min ) is obtained. The uniformity U (w 1, min ) is called “optimized uniformity”, and the coefficient of variation RSD (w 1, min ) is called “optimized variation coefficient”.

図9は、透光板4aの上端面及び下端面の傾斜角θ,θの変化に対する最適化均斉度及び最適化変動係数の変化を表す図である。図9では、透光板4aの屈折率nは1.5、透光板4a上端面と面光源の間隔dは0.1tとしている。図9より、θ=−10〜30度の範囲に於いて、θ=0〜−40度の範囲とすることにより、最適化均斉度U及び最適化変動係数RSDを低く抑えることが出来る。尚、ベース光源のみの場合の均斉度は0.619、変動係数は0.163であるので、図9より、補助光源を用いることで均斉度をおよそ60%程度、変動係数をおよそ40%程度にまで抑えることができる。尚、透光板4aの下端面の傾斜角θが−40度よりも小さくなると、最適化のための重み係数が大きくなる。これは、補助光源において高い照度が必要とされることを意味しており、あまり好ましくない。また、透光板4aの上端面の傾斜角θが−10〜10度のときが最も安定して良好な均斉度が得られ、この場合、下端面の傾斜角θは−40〜40度の範囲で最適化均斉度U及び最適化変動係数RSDを低く抑えることが出来る。 FIG. 9 is a diagram illustrating changes in the optimization uniformity degree and the optimization variation coefficient with respect to changes in the inclination angles θ t and θ b of the upper end surface and the lower end surface of the translucent plate 4a. 9, the refractive index n 1 of the transparent plate 4a is 1.5, distance d s of the transparent plate 4a upper surface and the surface light source is set to 0.1 t. From FIG. 9, the optimization uniformity U and the optimization variation coefficient RSD can be kept low by setting θ b = 0 to −40 degrees in the range of θ t = −10 to 30 degrees. . In the case of using only the base light source, the homogeneity is 0.619 and the variation coefficient is 0.163. Therefore, from FIG. 9, by using the auxiliary light source, the uniformity is approximately 60% and the variation coefficient is approximately 40%. It can be suppressed to. Incidentally, the inclination angle theta b of the lower end surface of the transparent plate 4a is smaller than -40 degrees, the weighting factor for the optimization increases. This means that high illuminance is required in the auxiliary light source, which is not preferable. In addition, when the inclination angle θ t of the upper end surface of the light transmitting plate 4a is −10 to 10 degrees, the most stable and good uniformity can be obtained. In this case, the inclination angle θ b of the lower end surface is −40 to 40 In the range of degrees, the optimized uniformity U and the optimized variation coefficient RSD can be kept low.

(3.2)透光板の上端面と面光源の間隔dの影響についての評価
図5,図6において説明したように、透光板4aの上端面と面光源との間隔dが大きくなると、光源(垂壁照明7)の見かけ上の指向性が高くなるため、最適化均斉度や最適化変動係数にも影響が出ると考えられる。そこで、透光板4aの上端面と面光源との間隔dの影響についての評価を行った。図10は、透光板の上端面と面光源の間隔dによる照度分布の変化を表す図である。図10(a)は、ds=0.1t, 1.0t(n=1.5, θt=0度)のときの照度分布の下端面傾斜角θ依存性を表し、図10(a)は、θt=0度(n=1.5)のときの照度分布の間隔d依存性を表す。図10に示すように、間隔dが大きくなるほど、光源(垂壁照明7)の見かけ上の指向性が高くなるため、照度分布は、間隔dが大きくなるほど透光板垂壁4の形状をより強く反映したものとなる。図11は、透光板の上端面と面光源の間隔dによる最適化均斉度及び最適化変動係数の変化を表す図である。図11(a),(b)は、ds=0.1t, 1.0t(n=1.5, θt=0度)のときの最適化均斉度及び最適化変動係数の下端面傾斜角θ依存性を表し、図11(c),(d)は、θt=0度(n=1.5)のときの最適化均斉度及び最適化変動係数の間隔d依存性を表す。図11から、透光板の上端面と面光源の間隔dが大きくなるほど、最適化均斉度及び最適化変動係数は大きくなり、照度の均一性が低下することが分かる。
(3.2) Evaluation of influence of distance d s between upper end surface of translucent plate and surface light source As described in FIGS. 5 and 6, the distance d s between the upper end surface of translucent plate 4a and the surface light source is If it becomes larger, the apparent directivity of the light source (the hanging wall illumination 7) becomes higher, so that it is considered that the optimized uniformity and the optimized variation coefficient are also affected. Therefore, the influence of the distance d s between the upper end surface of the translucent plate 4a and the surface light source was evaluated. FIG. 10 is a diagram illustrating the change in the illuminance distribution depending on the distance d s between the upper end surface of the translucent plate and the surface light source. FIG. 10A shows the dependence of the illuminance distribution on the lower end surface inclination angle θ b when d s = 0.1 t, 1.0 t (n = 1.5, θ t = 0 degree), and FIG. It represents the interval d s dependence of the illuminance distribution when θ b = θ t = 0 degrees (n = 1.5). As shown in FIG. 10, as the distance d s increases, the apparent directivity of the light source (the hanging wall illumination 7) increases. Therefore, the illuminance distribution has a shape of the translucent plate hanging wall 4 as the distance d s increases. Is more strongly reflected. FIG. 11 is a diagram illustrating changes in the optimized uniformity and the optimized variation coefficient depending on the distance d s between the upper end surface of the translucent plate and the surface light source. 11 (a) and 11 (b) show the dependence of the optimization uniformity and the optimization coefficient of variation when d s = 0.1t, 1.0t (n = 1.5, θ t = 0 °) on the lower end surface inclination angle θ b. 11C and 11D show the dependence of the optimization uniformity and the optimization variation coefficient on the interval d s when θ b = θ t = 0 degree (n = 1.5). From FIG. 11, it can be seen that as the distance d s between the upper end surface of the light-transmitting plate and the surface light source increases, the optimized uniformity and the optimized variation coefficient increase, and the illuminance uniformity decreases.

以上の結果から、照度の均一性を高めるためには、垂壁照明7の照射面を透光板4aの上端面に密着させて配置すればよい。然し乍ら、実際の垂壁照明7は、十分な輝度を得るため、多数の高輝度LEDを線状に配列したLEDアレイが使用される。従って、垂壁照明7を透光板4aの上端面に密着させて配置すると、放熱性が悪くなり、垂壁照明7の劣化を招く恐れがある。また、LEDアレイは、高輝度LEDが一定の間隔を開けて配列されており、理想的な連続面光源とは異なり、離散的な光源である。   From the above results, in order to increase the uniformity of illuminance, the irradiation surface of the hanging wall illumination 7 may be disposed in close contact with the upper end surface of the translucent plate 4a. However, in order to obtain sufficient luminance, the actual vertical wall illumination 7 uses an LED array in which a large number of high-brightness LEDs are arranged in a line. Therefore, if the vertical wall illumination 7 is disposed in close contact with the upper end surface of the translucent plate 4a, the heat dissipation is deteriorated, and the vertical wall illumination 7 may be deteriorated. The LED array is a discrete light source unlike an ideal continuous surface light source, in which high-brightness LEDs are arranged at regular intervals.

そこで、本発明に於いては、図12に示したように、透光板垂壁4の上端部の側面を覆うとともに透光板垂壁4を天井面に固定するソケット7の内側面を鏡面とする。これによって、透光板4aの上端面と面光源との間隔dが大きくなったとしても、垂壁照明7の照射面を透光板4aの上端面に密着させた状態と、光学的には実質的に同じ状態となる。従って、光源(垂壁照明7)の見かけ上の指向性は低くなり、最適化均斉度及び最適化変動係数を低く抑えることが出来る。また、垂壁照明7の照射面を透光板4aの上端面から離すことで、垂壁照明7の照射面を透光板4aの上端面との間の空間が通風可能となるので、この空間を利用して垂壁照明7の冷却を行うことも可能となる。更に、垂壁照明7が、LEDアレイのように離散的な光源であっても、垂壁照明7の照射面を透光板4aの上端面から一定距離、離すことで、理想的な連続面光源に近づけることが可能となる。図13に、ソケット7の内側面を無反射面とした場合と鏡面とした場合の、透光板4a上端面と面光源の間隔dを変化させたときの照度分布の変化を示す。図13より、ソケット7の内側面を鏡面とすることで、透光板4a上端面と面光源の間隔dが大きい場合であっても、垂壁照明7の照射面を透光板4aの上端面に密着させて配置した場合に近づけることが出来ることが分かる。 Therefore, in the present invention, as shown in FIG. 12, the inner side surface of the socket 7 that covers the upper side surface of the translucent plate hanging wall 4 and fixes the translucent plate hanging wall 4 to the ceiling surface is mirror-finished. And As a result, even if the distance d s between the upper end surface of the translucent plate 4a and the surface light source is increased, the irradiation surface of the vertical wall illumination 7 is in close contact with the upper end surface of the translucent plate 4a, and optically. Are substantially the same. Therefore, the apparent directivity of the light source (the hanging wall illumination 7) is lowered, and the optimization uniformity and the optimization variation coefficient can be kept low. Further, by separating the irradiation surface of the vertical wall illumination 7 from the upper end surface of the translucent plate 4a, the space between the irradiation surface of the vertical wall illumination 7 and the upper end surface of the translucent plate 4a can be ventilated. It is also possible to cool the hanging wall illumination 7 using the space. Furthermore, even if the vertical wall illumination 7 is a discrete light source such as an LED array, an ideal continuous surface can be obtained by separating the irradiation surface of the vertical wall illumination 7 from the upper end surface of the translucent plate 4a by a certain distance. It is possible to approach the light source. FIG. 13 shows a change in illuminance distribution when the distance d s between the upper end surface of the translucent plate 4a and the surface light source is changed when the inner surface of the socket 7 is a non-reflective surface and a mirror surface. From FIG. 13, by making the inner surface of the socket 7 a mirror surface, even if the distance d s between the upper end surface of the translucent plate 4a and the surface light source is large, the irradiation surface of the vertical wall illumination 7 is made to be the same as that of the translucent plate 4a. It can be seen that it can be approached when placed in close contact with the upper end surface.

(3.3)透光板の屈折率nの影響についての評価
最後に、透光板4aの屈折率nが照度分布に及ぼす影響について説明する。図7で説明したように、透光板4aの下端面が傾斜しているときは、透光板4aの屈折率nが大きくなると、傾斜面の向きと反対側に向かって照度が最大となるピークがシフトする。従って、透光板4aを矩形状の枠体として透光板垂壁4を構成した場合には、透光板4aの下端面が枠体の外方向に上向きに傾斜させた場合には、透光板4aの屈折率nが大きくなると、光はより枠体の中央側に集光されると考えられる。図14に、透光板の屈折率n1=1.5, 1.6, 1.7, 1.8に対する、下端面傾斜角θを変化させたときの照度分布の変化を示す。図15に、透光板の屈折率n1=1.5, 1.6, 1.7, 1.8に対する、下端面傾斜角θを変化させたときの最適化均斉度及び最適化変動係数の変化を示す。最適化均斉度及び最適化変動係数においては、下端面傾斜角θが小さい−30°≦θ≦30°の範囲では屈折率による違いは大きくは現れないが、下端面傾斜角の絶対値|θ|が30°を超えると、屈折率による違いが顕著に現れる。これは、|θ|が一定の大きさを超えると、透光板4a内を下方に進む光が透光板4aの下端内面で全反射され、透光板4aの下端近傍の側面を透過して外に放射されるようになるからであると考えられる。透光板4a内を鉛直下方に進む光が透光板4aの下端内面で全反射される条件は、|θ|≧θ=arcsin(1/n1)である。ここで、θは透光板4cの臨界角である。n=1.5,1.6,1.7,1.8のときの臨界角θは、それぞれ、41.81°,38.68°,36.03°,33.74°である。従って、図15より、θが負の側(透光板垂壁4の内側から外側に向かって下向きに傾斜する場合)においては、最適化均斉度及び最適化変動係数が急激に大きくなり始める角度は、ほぼ臨界角θ付近となっていることが分かる。故に、0≧θ>−θとなるように透光板4cの下端面の傾斜角を設定すればよいことが分かる。一方、θ>0の側は多少複雑である。簡単のため、透光板4c内を鉛直下方に進む光を考えると、臨界角θが45°よりも大きいとすると、θ<45°のときは、透光板4c内を下方に進む光は透光板4cの下端面で反射・屈折されて、透過光は透光板4cの下端面から放射され、透光板垂壁4の内側に向かう(図6(b)参照)。このとき、反射光は水平乃至上方に向かうため、照度基準面上の照度分布には関係しない。45°≦θ<θの場合、反射光も透光板4cの下端近傍の内側面で屈折された後、透光板垂壁4の内側へ向かうので、屈折された後の角度によっては照度基準面上の照度分布には関係する可能性がある。θ≦θの場合に於いては、透光板4c内を鉛直下方に進む光は透光板4cの下端内面で全反射され、透光板4cの下端近傍の内側面で屈折された後、透光板垂壁4の内側へ向かう。このとき、透光板4cの下端内面で反射された光が透光板4cの内側面で屈折されるときの入射角θはθ=90°−θ、屈折角θはθ=arcsin(ncosθ)となる。そして、tanθ<h/w(hは透光板4aの下端から照度基準面までの高さ,wは透光板垂壁4の枠の横幅又は縦幅)のときは、透過光は放射元の透光板と対向する透光板の位置を超えて反対側の枠外へ分散され、tanθ>h/wのときは、透過光は透光板垂壁4の枠内へ集光される。すなわち、透光板4c内を鉛直下方に進む光のみを考えると、下端面傾斜角θ
(3.3) to evaluate the end of the influence of refractive index n 1 of the transparent plate, a refractive index n 1 of the transparent plate 4a will be described influence on the illuminance distribution. As described in FIG. 7, when the lower end face of the transparent plate 4a is inclined, the refractive index n 1 of the transparent plate 4a increases, illuminance toward the direction opposite to the inclined surface and the maximum The peak that shifts. Therefore, in the case where the translucent plate hanging wall 4 is configured by using the translucent plate 4a as a rectangular frame, when the lower end surface of the translucent plate 4a is inclined upward in the outward direction of the frame, the translucent plate 4a is formed. If the refractive index n 1 of the optical plate 4a becomes larger, considered light is focused more toward the center of the frame. 14, the refractive index n 1 = 1.5 of the transparent plate, 1.6, 1.7, for 1.8 shows the change in the illuminance distribution when changing the lower end face inclination angle theta b. 15, the refractive index n 1 = 1.5 of the transparent plate, 1.6, 1.7, for 1.8 shows the change in the optimization uniformity and optimization variation coefficient with respect to a change in the lower end face inclination angle theta b. Optimization in uniformity and optimization coefficient of variation, but does not appear significantly difference due to a refractive index in the range of the lower end surface inclination angle theta b is smaller -30 ° ≦ θ b ≦ 30 ° , the absolute value of the lower end surface inclination angle When | θ b | exceeds 30 °, the difference due to the refractive index becomes remarkable. When | θ b | exceeds a certain size, the light traveling downward in the translucent plate 4a is totally reflected by the inner surface of the lower end of the translucent plate 4a and transmitted through the side surface near the lower end of the translucent plate 4a. It is thought that this is because it will be emitted outside. The condition under which light traveling vertically downward in the translucent plate 4a is totally reflected by the inner surface at the lower end of the translucent plate 4a is | θ b | ≧ θ c = arcsin (1 / n 1 ). Here, [theta] c is a critical angle of the translucent plate 4c. The critical angles θ c when n 1 = 1.5, 1.6, 1.7, and 1.8 are 41.81 °, 38.68 °, 36.03 °, and 33.74 °, respectively. Therefore, as shown in FIG. 15, on the negative side of θ b (when tilting downward from the inner side to the outer side of the translucent plate wall 4), the optimized uniformity and the optimized variation coefficient start to increase rapidly. angle, it is understood that the vicinity of approximately the critical angle theta c. Therefore, it can be seen that the inclination angle of the lower end surface of the translucent plate 4c may be set so that 0 ≧ θ b > −θ c . On the other hand, the side of θ b > 0 is somewhat complicated. For simplicity, given the light traveling transparent plate within 4c vertically downward, when the critical angle theta c is greater than 45 °, the theta b <45 when °, proceeds transparent plate within 4c downwardly The light is reflected and refracted by the lower end surface of the translucent plate 4c, and the transmitted light is emitted from the lower end surface of the translucent plate 4c and travels toward the inner side of the translucent plate hanging wall 4 (see FIG. 6B). At this time, since the reflected light travels horizontally or upward, it is not related to the illuminance distribution on the illuminance reference plane. In the case of 45 ° ≦ θ bc , the reflected light is also refracted on the inner surface near the lower end of the light transmitting plate 4c and then goes to the inner side of the light transmitting plate hanging wall 4, so depending on the angle after being refracted The illuminance distribution on the illuminance reference plane may be related. In the case of θ c ≦ θ b , the light traveling vertically downward in the translucent plate 4c is totally reflected by the inner surface at the lower end of the translucent plate 4c and refracted by the inner surface near the lower end of the translucent plate 4c. Then, it goes to the inside of the translucent plate hanging wall 4. At this time, the incident angle θ 1 when the light reflected by the inner surface of the lower end of the translucent plate 4 c is refracted by the inner surface of the translucent plate 4 c is θ 1 = 90 ° −θ b , and the refraction angle θ 2 is θ 2. = Arcsin (n 1 cosθ b ). And, if tanθ 2 <h b / w (h b is the height from the lower end of the translucent plate 4a to the illuminance reference plane, and w is the horizontal or vertical width of the frame of the translucent plate 4), the transmitted light Is dispersed out of the opposite frame beyond the position of the translucent plate facing the radiation source translucent plate, and when tan θ 2 > h b / w, the transmitted light enters the frame of the translucent plate hanging wall 4. Focused. That is, considering only the light traveling transparent plate within 4c vertically downward, the lower end face inclination angle theta b

の範囲では光は透光板垂壁4の枠外へ分散され、下端面傾斜角θ In the range of the light is distributed to the outside the frame of the transparent plate vertical wall 4, the lower end face inclination angle theta b

の範囲では光は透光板垂壁4の枠内へ向かって集光される。実際には、透光板内の上端面から下端面へ進む光の鉛直下向き方向ベクトルに対する角度θは、−θ≦θ≦θの範囲内で分布する(ここで、θは式(3)により定まる。)ので、透光板垂壁4の枠外へ分散される範囲と透光板垂壁4の枠内へ集光される範囲は、角度θの広がりの分だけシフトする。その結果、図15に示したように、最適化均斉度及び最適化変動係数は、θ=θの近傍で屈折率nに依存して複雑な変化を示す。図9及び図15より、透光板4cの屈折率nによらず、下端面傾斜角θがθ<0のときは、透光板4cの下端面が水平の場合に比べて、最適化均斉度及び最適化変動係数は小さくなる。従って、以上の検討から、図2の形状の透光板4cを用いる場合には、透光板4cの下端面の傾斜角θは、−θ=arcsin(1/n1)<θ<0の範囲とするのが好適であると考えられる。 In this range, the light is collected toward the inside of the translucent plate hanging wall 4. Actually, the angle θ o with respect to the vertical downward direction vector of the light traveling from the upper end surface to the lower end surface in the translucent plate is distributed within a range of −θ s ≦ θ o ≦ θ s (where θ s is Therefore, the range dispersed outside the frame of the translucent plate hanging wall 4 and the range condensed into the frame of the translucent plate hanging wall 4 are shifted by the extent of the angle θ o. To do. As a result, as shown in FIG. 15, the optimized uniformity and the optimized variation coefficient show complex changes depending on the refractive index n 1 in the vicinity of θ b = θ c . 9 and 15, regardless of the refractive index n 1 of the translucent plate 4 c, when the lower end surface inclination angle θ b is θ b <0, compared to the case where the lower end surface of the translucent plate 4 c is horizontal, The optimization uniformity and the optimization coefficient of variation become smaller. Therefore, from the above examination, when the light transmitting plate 4c having the shape of FIG. 2 is used, the inclination angle θ b of the lower end surface of the light transmitting plate 4c is −θ c = arcsin (1 / n 1 ) <θ b A range of <0 is considered suitable.

図16は、本発明の実施例2に係る室内照明構造における透光板垂壁及び透光板垂壁を構成する各透光板を表す図である。図16(a)は透光板垂壁4の全体斜視図、図16(b)は透光板垂壁4の平面図、図16(c)は透光板4aの平面図である。尚、図16において、説明の都合上、ソケット5及び垂壁照明7は図示を省略している。また、室内照明構造の全体構成は、図1と同様であるものとする。本実施例の室内照明構造における透光板垂壁4は、複数の平板状の透光板4aを矩形枠状に配置して形成されている。各透光板4aの左右両端面は、傾斜面に形成され、且つ該傾斜面(以下「サイドエッジ傾斜面」という。)が透光板垂壁4の矩形枠の外側を向くように配置形成されている。図16(b),(c)に示したように、透光板4aの広面(表面及び裏面)の垂線に対しサイドエッジ傾斜面がなす角をθと記し、サイドエッジ傾斜面の傾斜角と呼ぶ。以下、サイドエッジ傾斜面の傾斜角θが最適化均斉度及び最適化変動係数に及ぼす影響について説明する。 FIG. 16 is a diagram illustrating the translucent plate hanging wall and the translucent plates constituting the translucent plate hanging wall in the indoor lighting structure according to the second embodiment of the present invention. 16A is an overall perspective view of the translucent plate hanging wall 4, FIG. 16B is a plan view of the translucent plate hanging wall 4, and FIG. 16C is a plan view of the translucent plate 4a. In FIG. 16, for convenience of explanation, the socket 5 and the hanging wall illumination 7 are not shown. Moreover, the whole structure of an indoor lighting structure shall be the same as that of FIG. The translucent plate hanging wall 4 in the indoor lighting structure of the present embodiment is formed by arranging a plurality of flat translucent plates 4a in a rectangular frame shape. The left and right end surfaces of each translucent plate 4a are formed as inclined surfaces, and the inclined surfaces (hereinafter referred to as "side edge inclined surfaces") are arranged and formed so as to face the outside of the rectangular frame of the translucent plate hanging wall 4. Has been. As shown in FIGS. 16B and 16C, the angle formed by the side edge inclined surface with respect to the normal of the wide surface (front surface and back surface) of the translucent plate 4a is denoted as θ s, and the inclination angle of the side edge inclined surface Call it. Hereinafter, the influence of the inclination angle θ s of the side edge inclined surface on the optimized uniformity and the optimized variation coefficient will be described.

図17は、図16の透光板垂壁4における、θ=θ=0°,n=1.5のときのサイドエッジ傾斜面の傾斜角θの変化に対する照度分布の変化を表す図である。また、図18は、θ=θ=0°,n=1.5のときのサイドエッジ傾斜面の傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図17より、サイドエッジ傾斜面の傾斜角θが55度のときに、最も中央部に照度が集中している。全体の照度分布は、中央を中心にブロードに広がった状態が維持される。最適化均斉度及び最適化変動係数は、図18に示した通り、傾斜角θが52度〜57度において、最適化均斉度及び最適化変動係数が極小となる。これは、透光板4aの内部を透光板4aの幅方向に斜めに進む光が、透光板4aのサイドエッジ傾斜面で全反射され、透光板垂壁4の矩形枠内へ方向が変えられるためである。 FIG. 17 shows the change in the illuminance distribution with respect to the change in the inclination angle θ s of the side edge inclined surface when θ t = θ b = 0 ° and n 1 = 1.5 in the light transmitting plate vertical wall 4 in FIG. FIG. FIG. 18 shows (a) optimized uniformity and (b) optimization variation with respect to changes in the inclination angle θ s of the side edge inclined surface when θ t = θ b = 0 ° and n 1 = 1.5. It is a figure showing the change of a coefficient. From FIG. 17, when the inclination angle θ s of the side edge inclined surface is 55 degrees, the illuminance is concentrated most in the center. The overall illuminance distribution is maintained in a state of broadening around the center. As shown in FIG. 18, the optimized uniformity and the optimized variation coefficient are minimized when the inclination angle θ s is 52 ° to 57 °. This is because light traveling diagonally in the width direction of the light transmissive plate 4 a through the inside of the light transmissive plate 4 a is totally reflected by the side edge inclined surface of the light transmissive plate 4 a and enters the rectangular frame of the light transmissive plate hanging wall 4. This is because can be changed.

以上のように、透光板垂壁4を構成する各透光板4aの左右両端面を傾斜面(サイドエッジ傾斜面)に形成し、サイドエッジ傾斜面が透光板垂壁4の矩形枠の外側を向くように配置形成し、ベース照明6と垂壁照明7を光源とする補助照明とを組合わせて室内照明を行うことによって、室内の照度均斉度をさらに低下させ照明の均一性を高めることが可能となる。尚、本実施例では、透光板垂壁4を構成する透光板4aの数は、2×3枚としたが、透光板4aの数はこれに限られない。透光板垂壁4を構成する透光板4aの数を増加させることで、サイドエッジ傾斜面の集光効果を高め、室内照明の均一性をより高めることが可能となる。   As described above, the left and right end surfaces of each light transmissive plate 4a constituting the light transmissive plate hanging wall 4 are formed as inclined surfaces (side edge inclined surfaces), and the side edge inclined surface is a rectangular frame of the light transmissive plate hanging wall 4. The interior illumination is performed by combining the base illumination 6 and the auxiliary illumination using the hanging wall illumination 7 as a light source, thereby further reducing the illuminance uniformity in the room and improving the uniformity of illumination. It becomes possible to raise. In the present embodiment, the number of translucent plates 4a constituting the translucent plate hanging wall 4 is 2 × 3, but the number of translucent plates 4a is not limited to this. By increasing the number of translucent plates 4 a constituting the translucent plate hanging wall 4, it is possible to enhance the light collection effect of the side edge inclined surface and further improve the uniformity of the interior lighting.

図19は、本発明の実施例3に係る室内照明構造における透光板垂壁及び透光板垂壁を構成する各透光板を表す図である。図19(a)は透光板垂壁4全体の斜視図、図19(b)は透光板垂壁4を構成する各透光板4aの斜視図、図19(c)は透光板4aの下端部分の断面図である。尚、図19において、説明の都合上、ソケット5及び垂壁照明7は図示を省略している。また、室内照明構造の全体構成は、図1と同様であるものとする。本実施例では、透光板4aの下端部分を断面が傾斜円弧状となるように形成している。図19(c)に示すように、透光板4aの最下端における傾斜円弧の接線の角度を傾斜角としθと記す。傾斜円弧の上端部分の接線は、透光板4aの側面に平行であるとする。また、透光板4aの下端の傾斜円弧面が透光板垂壁4の枠外を向くように各透光板4aを配置した場合、傾斜角θを正値で表し、透光板4aの下端の傾斜円弧面が透光板垂壁4の枠内を向くように各透光板4aを配置した場合、傾斜角θを負値で表すこととする。以下、透光板4a下端の傾斜円弧面の傾斜角θが最適化均斉度及び最適化変動係数に及ぼす影響について説明する。 FIG. 19 is a diagram illustrating the translucent plate hanging wall and the translucent plates constituting the translucent plate hanging wall in the indoor lighting structure according to the third embodiment of the present invention. 19A is a perspective view of the entire translucent plate hanging wall 4, FIG. 19B is a perspective view of each translucent plate 4a constituting the translucent plate hanging wall 4, and FIG. 19C is a translucent plate. It is sectional drawing of the lower end part of 4a. In FIG. 19, for convenience of explanation, the socket 5 and the hanging wall illumination 7 are not shown. Moreover, the whole structure of an indoor lighting structure shall be the same as that of FIG. In the present embodiment, the lower end portion of the translucent plate 4a is formed so that the cross section has an inclined arc shape. As shown in FIG. 19 (c), referred to as the tangent of the angle of the inclined circular arc in the lowermost end of the transparent plate 4a and the inclined angle theta b. It is assumed that the tangent of the upper end portion of the inclined arc is parallel to the side surface of the translucent plate 4a. Also, if the inclined arc surface of the lower end of the transparent plate 4a is arranged KakuToruhikariban 4a to face outside the frame of the light-transmitting plate vertical wall 4, it represents the inclination angle theta b a positive value, the transparent plate 4a If inclined arcuate surface of the lower end is arranged KakuToruhikariban 4a to face the frame of the light-transmitting plate vertical wall 4, and represent the tilt angle theta b negative value. Hereinafter, the inclination angle theta b of the inclined arc surface of the transparent plate 4a bottom to describe the effect on the optimization uniformity and optimization coefficient of variation.

図20は、図19の透光板垂壁4における、θ=0°,n=1.5のときの傾斜円弧面の傾斜角θの変化に対する照度分布の変化を表す図である。図21は、θ=0°,n=1.5のときの傾斜円弧状下端面の傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図21において、「outer arc」のデータは、傾斜円弧面が透光板垂壁4の枠外を向くように各透光板4aを配置した場合のデータ、「inner arc」のデータは、傾斜円弧面が透光板垂壁4の枠内を向くように各透光板4aを配置した場合のデータである。「inclined plane」のデータは、透光板4aを図2の傾斜面状とした場合のデータであり、比較参考のために掲載したものである。図21より、透光板4aの下端面を傾斜円弧面とすることによっても、最適化均斉度及び最適化変動係数を低下させ、照度の均一性をさらに改善することが出来ることが分かる。特に、傾斜円弧面が透光板垂壁4の枠外を向くように各透光板4aを配置し、傾斜円弧面の傾斜角θを30〜40°とすることで、最適化均斉度及び最適化変動係数を最も低下させることができ、照度の均一性が最も改善される。 Figure 20 is a graph showing a change in the illuminance distribution on the light-transmitting plate vertical wall 4, for θ t = 0 °, the change of the inclination angle theta b of the inclined arcuate surface when the n 1 = 1.5 in FIG. 19 . FIG. 21 shows changes in (a) optimized uniformity and (b) optimized variation coefficient with respect to changes in the inclination angle θ b of the inclined arcuate lower end surface when θ t = 0 ° and n 1 = 1.5. FIG. In FIG. 21, “outer arc” data is data when each light-transmitting plate 4 a is arranged so that the inclined arc surface faces out of the frame of the translucent plate hanging wall 4, and “inner arc” data is inclined arc This is data in a case where each light transmitting plate 4 a is arranged so that the surface faces the inside of the light transmitting plate hanging wall 4. The “inclined plane” data is data in the case where the translucent plate 4a has the inclined surface shape of FIG. 2 and is provided for comparison. From FIG. 21, it can be seen that even when the lower end surface of the translucent plate 4a is an inclined circular arc surface, the optimized uniformity and the optimized variation coefficient can be reduced and the illuminance uniformity can be further improved. In particular, the inclined arc surface is arranged KakuToruhikariban 4a to face outside the frame of the light-transmitting plate vertical wall 4, the inclination angle theta b of the inclined arc surface With 30 to 40 °, the optimization uniformity and The optimization coefficient of variation can be reduced most, and the uniformity of illumination is most improved.

図22は、本発明の実施例4に係る室内照明構造における透光板垂壁4を構成する各透光板4aの下端部分の断面図である。尚、下端部分の構造に関しては、図1,図2と同様とする。本実施例では、下端面を水平な円弧状に形成している。図22において、下端の水平円弧面Eb1b0b2の曲率半径をrと記す。rがとり得る範囲はr∈[0.5t, ∞)である。r=∞のとき、透光板4aの下端面は水平面となり、r=0.5tのとき透光板4aの下端面は半円弧面となる。また、水平円弧面Eb1b0b2の曲率1/rに透光板4aの厚さtを掛けた値t/rを「相対曲率」と呼びκと記す。相対曲率κが採り得る範囲はκ∈[0,2]であり、κ=0のとき透光板4aの下端面は水平面となり、κ=2のとき透光板4aの下端面は半円弧面となる。図23は、θ=0°,n=1.5のときの水平円弧状下端面の相対曲率κの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図23より、下端面を水平円弧状とした場合には、相対曲率κを2程度、即ち、半円形状とすることによって、最適化均斉度及び最適化変動係数を低下させ、照度の均一性をさらに改善することが出来ることが分かる。 FIG. 22 is a cross-sectional view of the lower end portion of each light transmissive plate 4a constituting the light transmissive plate hanging wall 4 in the indoor lighting structure according to the fourth embodiment of the present invention. The structure of the lower end portion is the same as in FIGS. In this embodiment, the lower end surface is formed in a horizontal arc shape. In Figure 22, denoted a radius of curvature of the horizontal arcuate surface E b1 E b0 E b2 of the lower end and r b. r b can take range is r b ∈ [0.5t, ∞) . When r b = ∞, the lower end surface of the translucent plate 4a is a horizontal plane, and when r b = 0.5t, the lower end surface of the translucent plate 4a is a semicircular arc surface. Further, a value t / r b obtained by multiplying the curvature 1 / r b of the horizontal circular arc surface E b1 E b0 E b2 by the thickness t of the translucent plate 4a is referred to as “relative curvature” and is denoted as κ b . The range that the relative curvature κ b can take is κ b ∈ [0, 2]. When κ b = 0, the lower end surface of the translucent plate 4a is a horizontal plane, and when κ b = 2, the lower end surface of the translucent plate 4a. Is a semicircular arc surface. FIG. 23 shows changes in (a) optimized uniformity and (b) optimized variation coefficient with respect to changes in relative curvature κ b of the horizontal arcuate lower end surface when θ t = 0 ° and n 1 = 1.5. FIG. From FIG 23, when the lower end surface horizontally arcuately, about 2 relative curvature kappa b, i.e., by a semicircular, reduces the optimized uniformity and optimization variation coefficient, uniform illuminance It can be seen that the sex can be further improved.

図24は、本発明の実施例5に係る室内照明構造における透光板垂壁4を構成する各透光板4aの下端部分の断面図である。尚、下端部分の構造に関しては、図1,図2と同様とする。本実施例では、下端面を、透光板4aの幅方向に平行な折れ線を中心として中折りした折面状に形成している。下端折面の形状は、上に凸又は下に凸の何れであってもよいものとする。図24においてx<0の側(左側)を透光板垂壁4の枠内側(内側)、x>0の側(右側)を透光板垂壁4の枠外側(外側)とする。下端折面をなす2つの片傾斜面のうち、内側の片傾斜面Eb0b1の水平面に対する傾斜角をθb1、外側の片傾斜面Eb0b2の水平面に対する傾斜角をθb2と記す。傾斜角θb1,θb2は、図24に示すように上向き方向を正方向、下向きを負方向とする。また、内側の片傾斜面Eb0b1の水平幅をx、外側の片傾斜面Eb0b2の水平幅をxと記す。 FIG. 24 is a cross-sectional view of the lower end portion of each light transmissive plate 4a constituting the light transmissive plate hanging wall 4 in the indoor lighting structure according to the fifth embodiment of the present invention. The structure of the lower end portion is the same as in FIGS. In the present embodiment, the lower end surface is formed in a folded surface shape that is folded halfway around a fold line parallel to the width direction of the light-transmitting plate 4a. The shape of the lower end folding surface may be either convex upward or convex downward. In FIG. 24, the side of x <0 (left side) is the inner side (inside) of the translucent plate hanging wall 4 and the side of x> 0 (right side) is the outer side (outside) of the translucent plate hanging wall 4. Referred the two single slope surface forming a lower refracting surface, b1 inclination angle with respect to the horizontal plane theta inner piece inclined surface E b0 E b1, and the inclination angle with respect to the horizontal plane of the outer single slope surface E b0 E b2 θ b2 . For the inclination angles θ b1 and θ b2 , the upward direction is a positive direction and the downward direction is a negative direction, as shown in FIG. Further, the horizontal width of the inner side inclined surface E b0 E b1 is denoted by x 1 , and the horizontal width of the outer side inclined surface E b0 E b2 is denoted by x 2 .

図25は、図24の透光板4aの折面状下端面の外側傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図25においては、透光板4aの上端面は水平面とし、屈折率nは1.5としている。θb1=θb2=0のときは下端面が水平平面であり、θb1=θb2のときは下端面が実施例1の傾斜平面となる。図25より、内側傾斜角θb1を0度より大きく30度以下の範囲とすることで、全体的に最適化均斉度及び最適化変動係数を低下させることができることが分かる。また、下端面が水平平面の場合と比較すると、外側傾斜角θb2を0度より小さく−40度よりも大きくすることにより、最適化均斉度及び最適化変動係数を低下させることができる。また、内側傾斜角θb1を20度以下とし、外側傾斜角θb2を60°≦θb2≦72°の範囲とした場合にも、最適化均斉度及び最適化変動係数を大きく低下させることができる。この場合、外側片傾斜面Eb0b2は全反射面となり、透光板4a内を下に向かって進む光は、大部分が外側片傾斜面Eb0b2で全反射され内側片傾斜面Eb0b1に向かい、内側片傾斜面Eb0b1で反射・屈折され、内側片傾斜面Eb0b1を透過した光が透光板4a外へ放射されて、透光板垂壁4の枠内に集光されると考えられる。図26は、55°≦θb2≦77.5°の範囲における(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図26より、内側傾斜角θb1の範囲としては−20°≦θb1≦20°の範囲が適当であり、特に、0°≦θb1≦20°の範囲が最適であることが分かる。 FIG. 25 is a diagram illustrating changes in (a) optimized uniformity and (b) optimization coefficient of variation with respect to changes in the outer inclination angle θ 2 of the folded bottom end surface of the translucent plate 4a in FIG. In Figure 25, the upper end face of the transparent plate 4a is a horizontal surface, the refractive index n 1 is set to 1.5. When θ b1 = θ b2 = 0, the lower end surface is a horizontal plane, and when θ b1 = θ b2 , the lower end surface is the inclined plane of the first embodiment. From FIG. 25, it can be seen that the optimized uniformity and the optimized variation coefficient can be reduced as a whole by setting the inner inclination angle θ b1 to a range greater than 0 degree and less than or equal to 30 degrees. Further, as compared with the case where the lower end surface is a horizontal plane, the optimization uniformity and the optimization variation coefficient can be reduced by setting the outer inclination angle θb2 to be smaller than 0 degree and larger than −40 degrees. Further, even when the inner inclination angle θ b1 is set to 20 degrees or less and the outer inclination angle θ b2 is set to a range of 60 ° ≦ θ b2 ≦ 72 °, the optimization uniformity and the optimization variation coefficient can be greatly reduced. it can. In this case, the outer side inclined surface E b0 E b2 becomes a total reflection surface, and most of the light traveling downward in the translucent plate 4a is totally reflected by the outer side inclined surface E b0 E b2 , and the inner side inclined surface. E b0 towards the E b1, is reflected and refracted by the inside piece inclined surface E b0 E b1, the light transmitted through the inner piece inclined surface E b0 E b1 is radiated to the outside of the transparent plate 4a, the transparent plate vertical wall 4 It is thought that the light is collected within the frame. FIG. 26 is a diagram illustrating changes in (a) optimized uniformity and (b) optimized variation coefficient in a range of 55 ° ≦ θ b2 ≦ 77.5 °. From FIG. 26, it is understood that the range of −20 ° ≦ θ b1 ≦ 20 ° is appropriate as the range of the inner inclination angle θ b1 , and in particular, the range of 0 ° ≦ θ b1 ≦ 20 ° is optimal.

次に、内側の片傾斜面Eb0b1の水平幅xと外側の片傾斜面Eb0b2の水平幅xの影響について説明する。図27は、図24の透光板4aの、各水平幅xに対する、折面状下端面の外側傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。tは透光板4aの板厚である。図27より、x=0.4t〜0.5tとした場合が最適化均斉度が最も改善されており、水平幅xをこの範囲内に於いて設定するのが最適であることが分かる。 It will be described effects of the horizontal width x 2 of the horizontal width x 1 and the outer piece inclined surface E b0 E b2 of the inner piece inclined surface E b0 E b1. FIG. 27 shows (a) optimized uniformity and (b) optimized variation coefficient with respect to changes in the outer inclination angle θ 2 of the folded lower end surface for each horizontal width x 1 of the translucent plate 4a of FIG. It is a figure showing a change. t is the thickness of the translucent plate 4a. From FIG. 27, it can be seen that when x 1 = 0.4 t to 0.5 t, the optimized uniformity is most improved, and it is optimal to set the horizontal width x 1 within this range. .

最後に、透光板4aの屈折率nの影響について説明する。図28は、透光板4aの屈折率nを1.4〜1.8とした場合の、折面状下端面の外側傾斜角θの変化に対する(a)最適化均斉度及び(b)最適化変動係数の変化を表す図である。図28より、透光板4aの屈折率nが大きくなるほど透光板4aの臨界角θは小さくなるため、最適化均斉度が極小となる位置は外側傾斜角θが小さい側にシフトする。また、透光板4aの屈折率nが大きくなるほど、最適化均斉度が低い角度領域の幅が広がる。尚、屈折率nが1/sin(45°)(=1.4142°)以下では、臨界角θは45°以下となるため、透光板4aの内部で光が全反射する最小角度が45°以上となる。従って、この場合、θb2が45°以下で外側片傾斜面Eb0b2で全反射が生じ、反射された光は上方向に向かうため、この領域の屈折率nを使用するのは不適当であると考えられる。以上の結果から、透光板4aの屈折率nは1.5以上とすることが好ましく、実際にある各種材料の屈折率を考慮すると、n=1.5〜1.7程度の素材を選択することが好適であると考えられる。 Finally, the influence of the refractive index n 1 of the translucent plate 4a will be described. FIG. 28 shows (a) optimized uniformity and (b) with respect to the change in the outer inclination angle θ 2 of the folded lower end surface when the refractive index n 1 of the light transmitting plate 4a is 1.4 to 1.8. FIG. 3 is a diagram illustrating a change in an optimization variation coefficient. From FIG. 28, the refractive index n 1 of the transparent plate 4a is the smaller the critical angle theta c of larger the transparent plate 4a, the optimization uniformity is minimum positions is shifted to the small side outer inclination angle theta 2 To do. Also, the larger the refractive index n 1 of the transparent plate 4a, the spread width of the low angle region optimize uniformity. When the refractive index n 1 is 1 / sin (45 °) (= 1.4142 °) or less, the critical angle θ c is 45 ° or less, and therefore the minimum angle at which light is totally reflected inside the translucent plate 4a is 45. More than °. Therefore, in this case, when θ b2 is 45 ° or less, total reflection occurs at the outer side inclined surface E b0 E b2 , and the reflected light is directed upward. Therefore, it is not possible to use the refractive index n 1 of this region. It is considered appropriate. From the above results, it is preferable that the refractive index n 1 of the light-transmitting plate 4a is 1.5 or more, and considering the refractive indexes of various actual materials, a material with n 1 = 1.5 to 1.7 It is considered preferable to select.

1 天井面
2 部屋壁面
3 床面
4 透光板垂壁
4a 透光板
5 ソケット
6 ベース照明
7 垂壁照明
DESCRIPTION OF SYMBOLS 1 Ceiling surface 2 Room wall surface 3 Floor surface 4 Translucent board vertical wall 4a Translucent board 5 Socket 6 Base illumination 7 Vertical wall illumination

Claims (5)

医用室の室内の照明を行う室内照明構造であって、
天井面から垂直に垂下して設置され、光が透過する透光板を矩形枠状に配置形成された透光板垂壁と、
前記天井面に、前記透光板垂壁の周囲全体を取り囲み、前記透光板垂壁の矩形枠と同心の四角形の辺に沿って設置されたベース照明と、
前記透光板垂壁の上端面に沿って線状に配置され、前記透光板垂壁の上端面から前記透光板垂壁の内部に向けて照光する垂壁照明と、を備えたことを特徴とする室内照明構造。
An indoor lighting structure for illuminating the interior of a medical room,
A light-transmitting plate hanging wall that is vertically suspended from the ceiling surface and has a light-transmitting light-transmitting plate arranged in a rectangular frame shape;
A base illumination that surrounds the entire periphery of the translucent plate hanging wall on the ceiling surface, and is installed along a rectangular side concentric with the rectangular frame of the translucent plate hanging wall,
Vertical wall illumination that is arranged linearly along the upper end surface of the translucent plate hanging wall and illuminates from the upper end surface of the translucent plate hanging wall toward the inside of the translucent plate hanging wall. The interior lighting structure characterized by.
前記透光板垂壁の上端部に、前記透光板垂壁の上端部の側面を覆うとともに、前記透光板垂壁を天井面に固定するソケットを備え、
前記ソケットは、内側面が鏡面であることを特徴とする請求項1記載の室内照明構造。
The upper end of the translucent plate hanging wall includes a socket that covers a side surface of the upper end of the translucent plate hanging wall and fixes the translucent plate hanging wall to a ceiling surface,
The indoor lighting structure according to claim 1, wherein an inner surface of the socket is a mirror surface.
前記透光板垂壁は、複数の平板状の透光板を矩形枠状に配置して形成されており、
前記透光板垂壁を構成する前記各透光板の左右両端面は傾斜面に形成され、且つ該傾斜面が前記透光板垂壁の枠の外側を向くように形成されていることを特徴とする請求項1又は2記載の室内照明構造。
The translucent plate hanging wall is formed by arranging a plurality of flat translucent plates in a rectangular frame shape,
The left and right end surfaces of each light transmissive plate constituting the light transmissive plate hanging wall are formed as inclined surfaces, and the inclined surface is formed so as to face the outside of the frame of the light transmissive plate hanging wall. The interior lighting structure according to claim 1 or 2, characterized in that:
前記透光板垂壁は、その下端面が傾斜平面、又は曲面、若しくは中折れ折面に形成されていることを特徴とする請求項1乃至3の何れか一記載の室内照明構造。   The indoor lighting structure according to any one of claims 1 to 3, wherein a bottom surface of the translucent plate hanging wall is formed as an inclined flat surface, a curved surface, or a folded surface. 医用室の室内の照明を行う室内照明方法であって、
光が透過する透光板を矩形枠状に配置形成された透光板垂壁を、天井面から垂直に垂下して設置し、
前記天井面に、前記透光板垂壁の周囲全体を取り囲む前記透光板垂壁の矩形枠と同心の四角形の辺に沿ってベース照明を設置し、
前記透光板垂壁の上端面から前記透光板垂壁の内部に向けて照光する垂壁照明を、前記天井面と前記透光板垂壁との間に、前記透光板垂壁の上端面に沿って線状に配置し、
前記天井面上の前記ベース照明を包含ずる凸包内の真下の空間の、床面から0m乃至1.5mの間の所定の高さにおける水平面内の照度の均斉度が最小となるように、前記ベース照明の照度と前記垂壁照明の照度の照度比を調整することを特徴とする室内照明方法。
An indoor lighting method for lighting a room in a medical room,
A translucent plate hanging wall in which a translucent plate that transmits light is arranged in a rectangular frame shape is vertically suspended from the ceiling surface,
On the ceiling surface, a base illumination is installed along a rectangular side concentric with the rectangular frame of the translucent plate hanging wall surrounding the entire periphery of the translucent plate hanging wall,
A hanging wall illumination that illuminates from the upper end surface of the light transmitting plate hanging wall toward the inside of the light transmitting plate hanging wall is provided between the ceiling surface and the light transmitting plate hanging wall. Arrange along the top edge,
The uniformity of the illuminance in the horizontal plane at a predetermined height between 0 m and 1.5 m from the floor surface of the space directly under the convex hull that includes the base illumination on the ceiling surface is minimized. An indoor lighting method comprising adjusting an illuminance ratio between the illuminance of the base illumination and the illuminance of the hanging wall illumination.
JP2017087970A 2017-04-27 2017-04-27 Interior lighting structure and interior lighting method Active JP6494684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017087970A JP6494684B2 (en) 2017-04-27 2017-04-27 Interior lighting structure and interior lighting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017087970A JP6494684B2 (en) 2017-04-27 2017-04-27 Interior lighting structure and interior lighting method

Publications (2)

Publication Number Publication Date
JP2018186022A true JP2018186022A (en) 2018-11-22
JP6494684B2 JP6494684B2 (en) 2019-04-03

Family

ID=64357064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017087970A Active JP6494684B2 (en) 2017-04-27 2017-04-27 Interior lighting structure and interior lighting method

Country Status (1)

Country Link
JP (1) JP6494684B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124428U (en) * 1980-02-15 1981-09-22
JPS6332525U (en) * 1986-08-18 1988-03-02
JPH08284301A (en) * 1995-04-14 1996-10-29 Hazama Gumi Ltd Ceiling apparatus unit
JP2001061909A (en) * 1999-08-31 2001-03-13 Tokyo Giken:Kk Anatomy stand and anatomy device using the same
JP2003281902A (en) * 2002-03-26 2003-10-03 Matsushita Electric Works Ltd Luminaire
JP2014135118A (en) * 2011-04-28 2014-07-24 Sharp Corp Lighting device
JP2014220169A (en) * 2013-05-10 2014-11-20 山田医療照明株式会社 Medical illumination system and illumination method
JP2015100554A (en) * 2013-11-26 2015-06-04 ダイダン株式会社 Aeration unit and air-conditioning system of operation room, and air-conditioning method for operation room

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124428U (en) * 1980-02-15 1981-09-22
JPS6332525U (en) * 1986-08-18 1988-03-02
JPH032273Y2 (en) * 1986-08-18 1991-01-22
JPH08284301A (en) * 1995-04-14 1996-10-29 Hazama Gumi Ltd Ceiling apparatus unit
JP2001061909A (en) * 1999-08-31 2001-03-13 Tokyo Giken:Kk Anatomy stand and anatomy device using the same
JP2003281902A (en) * 2002-03-26 2003-10-03 Matsushita Electric Works Ltd Luminaire
JP2014135118A (en) * 2011-04-28 2014-07-24 Sharp Corp Lighting device
JP2014220169A (en) * 2013-05-10 2014-11-20 山田医療照明株式会社 Medical illumination system and illumination method
JP2015100554A (en) * 2013-11-26 2015-06-04 ダイダン株式会社 Aeration unit and air-conditioning system of operation room, and air-conditioning method for operation room

Also Published As

Publication number Publication date
JP6494684B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
KR200479892Y1 (en) Illumination device with maximized condensing effect
US7575344B2 (en) Lamp fixture
JP5951626B2 (en) Expandable icicle type light adjustment lens for LED light diffusion
WO2024067239A1 (en) Subtraction table lamp
JP5173792B2 (en) Lighting apparatus and lighting panel for lighting apparatus
US8201956B2 (en) Task light
JP5776015B2 (en) lighting equipment
JP6518893B2 (en) Light distribution and dispersion control type LED lighting device
JP5623846B2 (en) Lighting system for apartment houses
JP2018186022A (en) Indoor illumination structure and indoor illumination method
JP4547736B2 (en) Lighting method and lighting apparatus
WO2014147883A1 (en) Lighting cover, and lighting apparatus using same
CN212408319U (en) Light source system of lighting lamp and lighting lamp
JP5241018B2 (en) lighting equipment
JP2013201101A (en) Luminaire
KR102020984B1 (en) Led lighting apparatus with indirect lighting type
JP6820768B2 (en) Surface light source device and display device
WO2017020736A1 (en) Led illuminating lamp
CN220488960U (en) Optical diffusion lamp and lighting system
CN218819748U (en) Lighting device
JPH0581912A (en) Lighting device
CN212408320U (en) Light source system of lighting lamp and lighting lamp
CN218914708U (en) Novel anti-glare desk lamp
KR20130096524A (en) Illuminating apparatus
JP2013101782A (en) Led task light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190305

R150 Certificate of patent or registration of utility model

Ref document number: 6494684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350