JP6493144B2 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP6493144B2
JP6493144B2 JP2015203752A JP2015203752A JP6493144B2 JP 6493144 B2 JP6493144 B2 JP 6493144B2 JP 2015203752 A JP2015203752 A JP 2015203752A JP 2015203752 A JP2015203752 A JP 2015203752A JP 6493144 B2 JP6493144 B2 JP 6493144B2
Authority
JP
Japan
Prior art keywords
ribs
arrangement direction
battery cell
temperature control
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015203752A
Other languages
Japanese (ja)
Other versions
JP2017076540A5 (en
JP2017076540A (en
Inventor
拓 井上
拓 井上
加藤 崇行
崇行 加藤
浩生 植田
浩生 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2015203752A priority Critical patent/JP6493144B2/en
Priority to PCT/JP2016/072837 priority patent/WO2017064906A1/en
Publication of JP2017076540A publication Critical patent/JP2017076540A/en
Publication of JP2017076540A5 publication Critical patent/JP2017076540A5/ja
Application granted granted Critical
Publication of JP6493144B2 publication Critical patent/JP6493144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、電池モジュールに関する。   The present invention relates to a battery module.

従来の電池モジュールとして、例えば特許文献1のように、セルホルダによって保持された電池セルの配列体をエンドプレートで挟み込んで拘束荷重を付加した電池モジュールがある。また、例えば特許文献2のように、隣り合う電池セル間に放熱プレート等の温度制御部材を配置し、電池セルの温度制御を実施する電池モジュールがある。   As a conventional battery module, for example, as in Patent Document 1, there is a battery module in which an array of battery cells held by a cell holder is sandwiched between end plates and a restraining load is applied. Further, for example, as in Patent Document 2, there is a battery module in which a temperature control member such as a heat radiating plate is arranged between adjacent battery cells to control the temperature of the battery cells.

この特許文献2で用いられている温度制御部材は、例えばベースの一方面に所定の間隔をもって平行に配列された複数のリブを有している。温度制御部材は、隣接する電池セルのケースの壁面に各リブが接触するように電池セル間に配置されている。これにより、電池セル間には、ベースと、リブと、電池セルとで囲まれる空間が形成され、当該空間を温度制御媒体の流路として利用することが可能となっている。   The temperature control member used in this Patent Document 2 has, for example, a plurality of ribs arranged in parallel with a predetermined interval on one surface of the base. The temperature control member is disposed between the battery cells so that each rib contacts the wall surface of the case of the adjacent battery cell. Thereby, a space surrounded by the base, the rib, and the battery cell is formed between the battery cells, and the space can be used as a flow path of the temperature control medium.

特開2009−81056号公報JP 2009-81056 A 特開2006−278330号公報JP 2006-278330 A

上述したような電池モジュールでは、使用時における電池セルの温度制御が重要となっている。特に、配列体を配列方向から見た場合の電池セルの中央付近には、ケース内に内蔵される電極組立体が位置しており、温度制御効率の十分な確保が求められている。また、上述したような電池モジュールでは、劣化などに起因して電池モジュールが膨張することがある。電池セルの配列体に拘束荷重を付加するタイプの電池モジュールでは、電池セルに膨張が生じた段階でも拘束荷重の付加が継続する。このため、電池セルに隣接して配置された温度制御部材に付加される荷重が増加し、リブの破損や変形が生じる場合がある。リブに破損や変形が生じると、温度制御媒体による電池セルの温度制御効率が低下するおそれがある。   In the battery module as described above, temperature control of the battery cell during use is important. In particular, an electrode assembly incorporated in the case is located near the center of the battery cell when the array is viewed from the array direction, and sufficient securing of temperature control efficiency is required. Moreover, in the battery module as described above, the battery module may expand due to deterioration or the like. In a battery module of a type that applies a restraining load to an array of battery cells, the restraining load is continuously applied even when the battery cell is expanded. For this reason, the load added to the temperature control member arrange | positioned adjacent to a battery cell increases, and the failure | damage and deformation | transformation of a rib may arise. If the rib is damaged or deformed, the temperature control efficiency of the battery cell by the temperature control medium may be reduced.

本発明は、上記課題の解決のためになされたものであり、電池セルの非膨張時及び膨張時のいずれにおいても電池セルの温度制御効率を十分に確保できる電池モジュールを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a battery module that can sufficiently ensure the temperature control efficiency of the battery cell both when the battery cell is not expanded and when it is expanded. To do.

上記課題の解決のため、本発明の一側面に係る電池モジュールは、電池セルの配列体と、配列体に対して電池セルの配列方向に拘束荷重を付加する拘束部材と、を備え、配列体には、電池セルごとに温度制御部材が設けられており、温度制御部材は、板状のベースと、ベースの一方面に配列された複数のリブとを有し、電池セルの配列方向の面にリブが接するように電池セルに対して配置され、複数のリブのそれぞれにおいて、リブの配列方向の中央側を向く側面の少なくとも一部が、リブの配列方向の中央側から外側に向かって傾く傾斜面となっている。   In order to solve the above problems, a battery module according to an aspect of the present invention includes an array of battery cells, and a restraining member that applies a restraining load to the array in the battery cell array direction. The battery is provided with a temperature control member for each battery cell. The temperature control member has a plate-like base and a plurality of ribs arranged on one surface of the base, and the surface in the battery cell arrangement direction. The ribs are arranged so as to contact the battery cell, and in each of the plurality of ribs, at least a part of the side surface facing the center side of the rib arrangement direction is inclined outward from the center side of the rib arrangement direction. It is an inclined surface.

この電池モジュールでは、複数のリブのそれぞれにおいて、リブの配列方向の中央側を向く側面の少なくとも一部が、リブの配列方向の中央側から外側に向かって傾く傾斜面となっている。これにより、リブの配列方向の中央を挟むリブ間の間隔が他のリブ間の間隔よりも広くなる。したがって、電池セルの非膨張時では、温度制御媒体の流路が十分な断面積で電池セルの中央付近に形成され、電池セルの温度制御効率を十分に確保できる。また、電池セルの膨張時では、電池セル側から付加される荷重の一部が傾斜面によってリブの配列方向の中央側から外側に向かって受け流されるため、傾斜面の無い場合に比べてリブの破損や変形を抑えられる。したがって、電池セルの膨張時においても温度制御媒体の流路が維持され、電池セルの温度制御効率を十分に確保できる。   In this battery module, in each of the plurality of ribs, at least a part of a side surface facing the center side in the rib arrangement direction is an inclined surface that is inclined outward from the center side in the rib arrangement direction. Thereby, the space | interval between ribs which pinches | interposes the center of the arrangement direction of a rib becomes wider than the space | interval between other ribs. Therefore, when the battery cell is not expanded, the flow path of the temperature control medium is formed near the center of the battery cell with a sufficient cross-sectional area, and the temperature control efficiency of the battery cell can be sufficiently ensured. In addition, when the battery cell expands, a part of the load applied from the battery cell side is received by the inclined surface toward the outside from the center side in the arrangement direction of the ribs. Can prevent damage and deformation. Therefore, the flow path of the temperature control medium is maintained even when the battery cell is expanded, and the temperature control efficiency of the battery cell can be sufficiently ensured.

また、複数のリブのそれぞれにおいて、リブの配列方向の中央側を向く側面の全面が、リブの配列方向の中央側から外側に向かって傾く傾斜面となっていてもよい。この場合、電池セルの非膨張時では、温度制御媒体の流路が更に十分な断面積で電池セルの中央付近に形成される。また、電池セルの膨張時では、電池セル側から付加される荷重の一部が傾斜面によって一層確実にリブの配列方向の中央側から外側に向かって受け流される。   In each of the plurality of ribs, the entire side surface facing the center side in the rib arrangement direction may be an inclined surface that is inclined outward from the center side in the rib arrangement direction. In this case, when the battery cell is not expanded, the flow path of the temperature control medium is formed in the vicinity of the center of the battery cell with a sufficient cross-sectional area. Further, when the battery cell is expanded, a part of the load applied from the battery cell side is more reliably received from the central side in the arrangement direction of the ribs toward the outside by the inclined surface.

また、ベースに対する傾斜面の傾斜角度は、リブの配列方向の中央側に位置するリブほど大きくなっていてもよい。電池セルの膨張時には、配列方向から見て中央付近が周辺部分よりも大きく膨張する傾向にある。したがって、傾斜面の傾斜角度を電池セルの膨張の傾向に応じて設定することで、電池セルの膨張時のリブの破損や変形を好適に抑えられる。   Further, the inclination angle of the inclined surface with respect to the base may be larger as the rib is located at the center side in the arrangement direction of the ribs. When the battery cells expand, the vicinity of the center tends to expand more than the peripheral portion when viewed from the arrangement direction. Therefore, by setting the inclination angle of the inclined surface according to the tendency of expansion of the battery cell, damage and deformation of the rib during expansion of the battery cell can be suitably suppressed.

また、各電池セルの内部には、電極組立体が収容され、各電池セルは、セルホルダによって保持され、温度制御部材は、配列体の配列方向から見て電極組立体と重なる領域に複数のリブが配置されるようにセルホルダに取り付けられていてもよい。これにより、温度制御媒体の流路が一定の位置決め精度で電極組立体に近接して形成されるので、温度制御部材による温度制御効率を向上できる。   Each battery cell contains an electrode assembly, each battery cell is held by a cell holder, and the temperature control member has a plurality of ribs in a region overlapping the electrode assembly when viewed from the arrangement direction of the array. May be attached to the cell holder so as to be disposed. Thereby, since the flow path of the temperature control medium is formed close to the electrode assembly with a certain positioning accuracy, the temperature control efficiency by the temperature control member can be improved.

本発明によれば、電池セルの非膨張時及び膨張時のいずれにおいても電池セルの温度制御効率を十分に確保できる。   According to the present invention, the temperature control efficiency of the battery cell can be sufficiently secured both when the battery cell is not expanded and when it is expanded.

第1実施形態に係る電池モジュールを示す概略図である。It is the schematic which shows the battery module which concerns on 1st Embodiment. 電池セルの内部を示す断面図である。It is sectional drawing which shows the inside of a battery cell. 図2におけるIII−III線断面図である。It is the III-III sectional view taken on the line in FIG. セルホルダの斜視図である。It is a perspective view of a cell holder. 温度制御部材の要部拡大断面図である。It is a principal part expanded sectional view of a temperature control member. 電池セルに膨張が生じた場合の温度制御部材の要部拡大断面図である。It is a principal part expanded sectional view of the temperature control member when expansion | swelling arises in the battery cell. 第2実施形態に係る電池モジュールの温度制御部材の要部拡大断面図である。It is a principal part expanded sectional view of the temperature control member of the battery module which concerns on 2nd Embodiment. 電池セルに膨張が生じた場合の温度制御部材の要部拡大断面図である。It is a principal part expanded sectional view of the temperature control member when expansion | swelling arises in the battery cell. 第1実施形態の変形例に係る電池モジュールの温度制御部材の要部拡大断面図である。It is a principal part expanded sectional view of the temperature control member of the battery module which concerns on the modification of 1st Embodiment. 第2実施形態の変形例に係る電池モジュールの温度制御部材の要部拡大断面図である。It is a principal part expanded sectional view of the temperature control member of the battery module which concerns on the modification of 2nd Embodiment.

以下、図面を参照しながら、本発明の一側面に係る電池モジュールの好適な実施形態について詳細に説明する。
[第1実施形態]
Hereinafter, preferred embodiments of a battery module according to one aspect of the present invention will be described in detail with reference to the drawings.
[First Embodiment]

図1は、第1実施形態に係る電池モジュールを示す概略図である。同図に示すように、電池モジュール1は、電池セル11を配列してなる配列体2と、配列体2に対して電池セルの配列方向に拘束荷重を付加する拘束部材3と、を備えている。電池モジュール1は、例えばフォークリフトといった車両のバッテリーとして用いられる。   FIG. 1 is a schematic view showing the battery module according to the first embodiment. As shown in the figure, the battery module 1 includes an array body 2 in which battery cells 11 are arrayed, and a restraining member 3 that applies a restraining load to the array body 2 in the battery cell array direction. Yes. The battery module 1 is used as a battery of a vehicle such as a forklift.

配列体2は、複数(本実施形態では7体)の電池セル11を含んで構成されている。本実施形態では、各電池セル11は、セルホルダ31によって保持された状態で配列されている。また、配列体2には、弾性体8と、温度制御部材41とがそれぞれ含まれている。   The array body 2 includes a plurality (seven bodies in the present embodiment) of battery cells 11. In the present embodiment, the battery cells 11 are arranged in a state of being held by the cell holder 31. The array body 2 includes an elastic body 8 and a temperature control member 41.

拘束部材3は、例えば一対のエンドプレート4,4と、エンドプレート4,4同士を締結する締結部材5とを備えている。エンドプレート4は、例えば電池セル11を配列方向から見た場合の面積よりも大きい面積を有する略矩形の板状をなしており、エンドプレート4の外縁部分が電池セル11の外縁部分よりも外側に張り出した状態で、配列体2の配列方向の両端にそれぞれ配置されている。   The restraining member 3 includes, for example, a pair of end plates 4 and 4 and a fastening member 5 that fastens the end plates 4 and 4 together. The end plate 4 has, for example, a substantially rectangular plate shape having an area larger than that when the battery cell 11 is viewed from the arrangement direction, and the outer edge portion of the end plate 4 is outside the outer edge portion of the battery cell 11. Are arranged on both ends of the array body 2 in the array direction.

締結部材5は、例えば長尺のボルト6と、ボルト6に螺合されるナット7とによって構成されている。ボルト6は、例えばエンドプレート4の外縁部分において、配列体2の縁部に対応する位置でエンドプレート4に挿通されている。各ボルト6の先端にエンドプレート4の外側からナット7が螺合されることで、電池セル11、弾性体8、及び温度制御部材41が挟持されてユニット化されると共に拘束荷重が付加される。   The fastening member 5 is constituted by, for example, a long bolt 6 and a nut 7 screwed into the bolt 6. The bolt 6 is inserted through the end plate 4 at a position corresponding to the edge of the array 2 at the outer edge portion of the end plate 4, for example. When the nut 7 is screwed onto the tip of each bolt 6 from the outside of the end plate 4, the battery cell 11, the elastic body 8, and the temperature control member 41 are sandwiched and unitized and a restraining load is applied. .

弾性体8は、電池セル11に膨張が生じた場合等に、拘束荷重による電池セル11及びエンドプレート4の破損を防止する目的で用いられる部材である。弾性体8は、図1に示すように、例えばウレタン製のゴムスポンジによって矩形の板状に形成され、配列方向の一端側の電池セル11とエンドプレート4との間に配置されている。弾性体8の他の形成材料としては、例えばエチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム、シリコンゴム等が挙げられる。また、弾性体8は、ゴムに限られず、バネ材などであってもよい。   The elastic body 8 is a member used for the purpose of preventing the battery cell 11 and the end plate 4 from being damaged by a restraining load when the battery cell 11 is expanded. As shown in FIG. 1, the elastic body 8 is formed in a rectangular plate shape by, for example, urethane rubber sponge, and is disposed between the battery cell 11 and the end plate 4 on one end side in the arrangement direction. Examples of other forming materials of the elastic body 8 include ethylene propylene diene rubber (EPDM), chloroprene rubber, and silicon rubber. The elastic body 8 is not limited to rubber and may be a spring material or the like.

電池モジュール1を構成する電池セル11は、例えばリチウムイオン二次電池などの非水電解質二次電池である。電池セル11は、図2及び図3に示すように、例えば略直方体形状をなす中空のケース12と、ケース12内に収容された電極組立体13とを備えている。   The battery cell 11 which comprises the battery module 1 is a nonaqueous electrolyte secondary battery, such as a lithium ion secondary battery, for example. As shown in FIGS. 2 and 3, the battery cell 11 includes a hollow case 12 having a substantially rectangular parallelepiped shape, for example, and an electrode assembly 13 accommodated in the case 12.

ケース12は、例えばアルミニウム等の金属によって形成されている。また、ケース12の内部には、例えば有機溶媒系又は非水系の電解液が注入されている。ケース12の頂面には、図2に示すように、正極端子15と負極端子16とが互いに離間して配置されている。正極端子15は、絶縁部材17を介してケース12の頂面における幅方向の一方側に固定され、負極端子16は、絶縁部材18を介してケース12の頂面における幅方向の他方側に固定されている。   The case 12 is made of a metal such as aluminum. Further, for example, an organic solvent-based or non-aqueous electrolyte is injected into the case 12. As shown in FIG. 2, the positive terminal 15 and the negative terminal 16 are disposed on the top surface of the case 12 so as to be separated from each other. The positive electrode terminal 15 is fixed to one side in the width direction on the top surface of the case 12 via the insulating member 17, and the negative electrode terminal 16 is fixed to the other side in the width direction on the top surface of the case 12 via the insulating member 18. Has been.

電極組立体13は、図3に示すように、正極21と、負極22と、正極21と負極22との間に配置されたセパレータ23とによって構成されている。電極組立体13では、袋状のセパレータ23内に正極21が収容されており、正極21が収容された袋状のセパレータ23と負極22とが交互に積層されている。   As shown in FIG. 3, the electrode assembly 13 includes a positive electrode 21, a negative electrode 22, and a separator 23 disposed between the positive electrode 21 and the negative electrode 22. In the electrode assembly 13, the positive electrode 21 is accommodated in the bag-shaped separator 23, and the bag-shaped separator 23 and the negative electrode 22 in which the positive electrode 21 is accommodated are alternately stacked.

正極21は、例えばアルミニウム箔からなる金属箔21aと、金属箔21aの両面に形成された正極活物質層21bとを有している。正極活物質層21bは、正極活物質とバインダとを含んで形成されている。正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。また、正極21の上縁部には、正極端子15の位置に対応してタブ21cが形成されている。タブ21cは、正極21の上縁部から上方に延び、導電部材24を介して正極端子15に接続されている。   The positive electrode 21 includes a metal foil 21a made of, for example, aluminum foil, and a positive electrode active material layer 21b formed on both surfaces of the metal foil 21a. The positive electrode active material layer 21b is formed including a positive electrode active material and a binder. Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur. The composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium. A tab 21 c is formed on the upper edge portion of the positive electrode 21 corresponding to the position of the positive electrode terminal 15. The tab 21 c extends upward from the upper edge portion of the positive electrode 21 and is connected to the positive electrode terminal 15 via the conductive member 24.

一方、負極22は、例えば銅箔からなる金属箔22aと、金属箔22aの両面に形成された負極活物質層22bとを有している。負極活物質層22bは、負極活物質とバインダとを含んで形成されている。負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等が挙げられる。また、負極22の上縁部には、負極端子16の位置に対応してタブ22cが形成されている。タブ22cは、負極22の上縁部から上方に延び、導電部25を介して負極端子16に接続されている。   On the other hand, the negative electrode 22 has, for example, a metal foil 22a made of copper foil and a negative electrode active material layer 22b formed on both surfaces of the metal foil 22a. The negative electrode active material layer 22b is formed including a negative electrode active material and a binder. Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ≦ x ≦ 1.5 ) And the like, and boron-added carbon. A tab 22 c is formed at the upper edge of the negative electrode 22 in correspondence with the position of the negative electrode terminal 16. The tab 22 c extends upward from the upper edge portion of the negative electrode 22 and is connected to the negative electrode terminal 16 via the conductive portion 25.

セパレータ23は、例えば袋状に形成され、内部に正極21のみを収容している。セパレータ23の形成材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。なお、セパレータ23は、袋状に限られず、シート状のものを用いてもよい。   The separator 23 is formed in a bag shape, for example, and accommodates only the positive electrode 21 therein. Examples of the material for forming the separator 23 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a nonwoven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like. The separator 23 is not limited to a bag shape, and a sheet shape may be used.

続いて、上述したセルホルダ31及び温度制御部材41の構成について、更に詳細に説明する。   Subsequently, the configuration of the cell holder 31 and the temperature control member 41 described above will be described in more detail.

セルホルダ31は、電池セル11を保持する部材である。セルホルダ31は、例えばポリプロピレン等の樹脂材料によって形成され、図4に示すように、枠体32と、仕切部33と、端子収容部34と、ボルトガイド部35とを有している。枠体32は、底板36と、底板36の幅方向の縁部に立設された一対の側板37,37とを有している。仕切部33は、底板36と略平行に設けられた板状部材である。仕切部33は、電池セル11のケース12の高さに応じた位置で、側板37,37同士を連結している。このような構成により、セルホルダ31に電池セル11を嵌め込むと、ケース12における配列方向の側面12a(図3参照)が枠体32から露出した状態で、ケース12の底面12b及び幅方向の側面12c(図2参照)がセルホルダ31の枠体32によって保持される。   The cell holder 31 is a member that holds the battery cell 11. The cell holder 31 is formed of a resin material such as polypropylene, for example, and includes a frame body 32, a partition portion 33, a terminal accommodating portion 34, and a bolt guide portion 35 as shown in FIG. The frame 32 includes a bottom plate 36 and a pair of side plates 37 and 37 erected on the edge of the bottom plate 36 in the width direction. The partition portion 33 is a plate-like member provided substantially in parallel with the bottom plate 36. The partition 33 connects the side plates 37 and 37 at a position corresponding to the height of the case 12 of the battery cell 11. With such a configuration, when the battery cell 11 is fitted into the cell holder 31, the bottom surface 12 b of the case 12 and the side surface in the width direction are exposed with the side surface 12 a (see FIG. 3) in the arrangement direction of the case 12 exposed from the frame body 32. 12c (see FIG. 2) is held by the frame 32 of the cell holder 31.

端子収容部34は、電池セル11の正極端子15及び負極端子16を収容する部分である。端子収容部34は、仕切部33上に設けられ、枠体32に電池セル11が嵌め込まれた際に正極端子15及び負極端子16をそれぞれ包囲する。ボルトガイド部35は、拘束部材3のボルト6を挿通させる部分である。ボルトガイド部35は、仕切部33及び底板36にそれぞれ設けられている。仕切部33側のボルトガイド部35は、仕切部33上において、端子収容部34の内側に隣接して設けられている。また、底板36側のボルトガイド部35は、底板36の幅方向の端部において、底板36の底面側に設けられている。   The terminal accommodating portion 34 is a portion that accommodates the positive electrode terminal 15 and the negative electrode terminal 16 of the battery cell 11. The terminal accommodating portion 34 is provided on the partition portion 33 and surrounds the positive electrode terminal 15 and the negative electrode terminal 16 when the battery cell 11 is fitted in the frame body 32. The bolt guide portion 35 is a portion through which the bolt 6 of the restraining member 3 is inserted. The bolt guide part 35 is provided in the partition part 33 and the bottom plate 36, respectively. The bolt guide portion 35 on the partition 33 side is provided adjacent to the inside of the terminal accommodating portion 34 on the partition 33. Further, the bolt guide portion 35 on the bottom plate 36 side is provided on the bottom surface side of the bottom plate 36 at the end in the width direction of the bottom plate 36.

温度制御部材41は、電池セル11の温度制御に用いられる部材である。温度制御部材41は、図1及び図4に示すように、板状のベース42と、ベース42の一面側に配列された複数のリブ43とを有している。ベース42は、例えばポリプロピレン等の樹脂材料によって、ケース12における配列方向の側面12aと略同寸法の矩形状に形成されている。また、ベース42の厚さは、セルホルダ31の仕切部33の厚さと略同一となっている。   The temperature control member 41 is a member used for temperature control of the battery cell 11. As shown in FIGS. 1 and 4, the temperature control member 41 has a plate-like base 42 and a plurality of ribs 43 arranged on one surface side of the base 42. The base 42 is formed of a resin material such as polypropylene, for example, in a rectangular shape having substantially the same dimensions as the side surface 12 a in the arrangement direction of the case 12. Further, the thickness of the base 42 is substantially the same as the thickness of the partition portion 33 of the cell holder 31.

リブ43は、ベース42と同様にポリプロピレン等の樹脂材料によってベース42と一体に形成されている。リブ43は、例えば断面略矩形状をなし、ベース42の幅方向に一端側から他端側まで延在している。リブ43の厚さは、ベース42の厚さと同程度となっており、当該厚さ分の間隔をもってベース42の高さ方向に略平行に配列されている。   The ribs 43 are integrally formed with the base 42 by a resin material such as polypropylene as with the base 42. The rib 43 has, for example, a substantially rectangular cross section, and extends from one end side to the other end side in the width direction of the base 42. The thickness of the rib 43 is substantially the same as the thickness of the base 42, and the ribs 43 are arranged substantially parallel to the height direction of the base 42 with an interval corresponding to the thickness.

温度制御部材41は、図4に示すように、枠体32で囲まれた空間(電池セル11の保持空間)側にリブ43が向くように、予めセルホルダ31に対して内向きに取り付けられている。セルホルダ31の枠体32に電池セル11が嵌め込まれた状態では、図5に示すように、ベース42に対して略平行に設けられたリブ43の先端面43aがケース12の側面12aに接し、ケース12の側面12a、ベース42、及びリブ43,43によって囲まれる断面矩形の空間がリブ43の延在方向に沿って形成される。当該空間は、例えば冷却空気等の温度制御媒体が流通する流路Sとして用いられる。   As shown in FIG. 4, the temperature control member 41 is attached inward with respect to the cell holder 31 in advance so that the rib 43 faces the space surrounded by the frame body 32 (the holding space for the battery cells 11). Yes. In the state where the battery cell 11 is fitted in the frame body 32 of the cell holder 31, as shown in FIG. 5, the front end surface 43a of the rib 43 provided substantially parallel to the base 42 is in contact with the side surface 12a of the case 12, A rectangular space surrounded by the side surface 12 a of the case 12, the base 42, and the ribs 43, 43 is formed along the extending direction of the ribs 43. The space is used as a flow path S through which a temperature control medium such as cooling air flows.

なお、温度制御部材41のベース42及びリブ43は、セルホルダ31と一体に形成されていてもよい。また、温度制御部材41は、配列体2の配列方向から見て、電極組立体13と重なる領域にリブ43が配置されるようにセルホルダ31に取り付けられていることが好適である。より具体的には、配列体2の配列方向から見て、電極組立体13における正極活物質層21bと負極活物質層22bとの対向領域(図3参照)と重なるようにリブ43が配置されていることが好適である。   The base 42 and the rib 43 of the temperature control member 41 may be formed integrally with the cell holder 31. The temperature control member 41 is preferably attached to the cell holder 31 so that the ribs 43 are disposed in a region overlapping the electrode assembly 13 when viewed from the arrangement direction of the array 2. More specifically, the ribs 43 are arranged so as to overlap the opposing region (see FIG. 3) of the positive electrode active material layer 21b and the negative electrode active material layer 22b in the electrode assembly 13 when viewed from the arrangement direction of the array 2. It is suitable.

ここで、上述した複数のリブ43のそれぞれは、リブ43の配列方向の中央側を向く側面の少なくとも一部が、リブ43の配列方向の中央側から外側に向かって傾く傾斜面となっている。より具体的には、本実施形態では、図5に示すように、リブ43の断面形状は、略平行四辺形状となっている。リブ43の配列方向の中央側を向く側面43bは、ベース42の法線に対して傾斜角度θをもって傾斜しており、その全面がリブ43の配列方向の中央側から外側に向かって傾く傾斜面Kとなっている。   Here, each of the plurality of ribs 43 described above has an inclined surface in which at least a part of the side surface facing the center side in the arrangement direction of the ribs 43 is inclined outward from the center side in the arrangement direction of the ribs 43. . More specifically, in the present embodiment, as shown in FIG. 5, the cross-sectional shape of the rib 43 is a substantially parallelogram shape. The side surface 43b facing the center side in the arrangement direction of the ribs 43 is inclined with an inclination angle θ with respect to the normal line of the base 42, and the entire surface is inclined toward the outside from the center side in the arrangement direction of the ribs 43. K.

また、リブ43の配列方向の中央側を向く側面43cについても、側面43bと同様に、ベース42の法線に対して傾斜角度θをもって傾斜しており、その全面がリブ43の配列方向の中央側から外側に向かって傾く傾斜面となっている。本実施形態では、傾斜角度θは、例えば5°〜30°となっており、全てのリブ43の傾斜面Kの傾斜角度θが互いに等しくなっている。   Further, the side surface 43c facing the center side in the arrangement direction of the ribs 43 is also inclined with an inclination angle θ with respect to the normal line of the base 42, as in the side surface 43b, and the entire surface is centered in the arrangement direction of the ribs 43. The inclined surface is inclined from the side toward the outside. In the present embodiment, the inclination angle θ is, for example, 5 ° to 30 °, and the inclination angles θ of the inclined surfaces K of all the ribs 43 are equal to each other.

リブ43の配列方向の中央ラインLの一方側に位置するリブ43は、いずれも中央ラインL側から一方側に傾斜した状態でベース42から突出しており、リブ43の配列方向の中央ラインLの他方側に位置するリブ43は、いずれも中央ラインL側から他方側に傾斜した状態でベース42から突出している。リブ43,43間の流路S(S1)の断面形状は、リブ43の断面形状と略同形の平行四辺形状をなしている。   The ribs 43 located on one side of the central line L in the arrangement direction of the ribs 43 protrude from the base 42 in a state inclined from the central line L side to the one side, and the ribs 43 are arranged on the central line L in the arrangement direction of the ribs 43. Each of the ribs 43 located on the other side protrudes from the base 42 while being inclined from the center line L side to the other side. The cross-sectional shape of the flow path S (S1) between the ribs 43 and 43 is a parallelogram that is substantially the same as the cross-sectional shape of the rib 43.

一方、中央ラインLを挟んで隣り合うリブ43,43間の流路S(S2)の断面形状は、ベース42から電池セル11におけるケース12の側面12aに向かって裾広がりとなる等脚台形状をなしている。したがって、中央ラインLを挟んで隣り合うリブ43,43間の間隔は、他のリブ43,43間の間隔よりも広くなっており、流路S2の断面積は、流路S1の断面積よりも大きくなっている。したがって、電池セル11の非膨張時では、温度制御媒体の流路S2が十分な断面積で電池セル11の中央付近に形成され、電池セル11の温度制御効率を十分に確保できる。   On the other hand, the cross-sectional shape of the flow path S (S2) between the ribs 43 adjacent to each other across the center line L is an isosceles trapezoidal shape that extends from the base 42 toward the side surface 12a of the case 12 in the battery cell 11. I am doing. Therefore, the interval between the adjacent ribs 43, 43 across the center line L is wider than the interval between the other ribs 43, 43, and the cross-sectional area of the flow path S2 is larger than the cross-sectional area of the flow path S1. Is also getting bigger. Therefore, when the battery cell 11 is not expanded, the flow path S2 of the temperature control medium is formed in the vicinity of the center of the battery cell 11 with a sufficient cross-sectional area, and the temperature control efficiency of the battery cell 11 can be sufficiently secured.

劣化或いは過充電などによって電池セル11に膨張が生じた場合、図6に示すように、電池セル11におけるケース12の側面12aが電池セル11の配列方向に対して外側に凸となるように湾曲しながら膨張する。ケース12の側面12aの膨張量は、中央ラインLの近辺で最も大きくなり、側面12aの端部側ほど小さくなる傾向にある。電池セル11に膨張が生じた場合でも、拘束部材3による配列体2への拘束荷重の付加は継続する。このため、電池セル11に隣接して配置された温度制御部材41に付加される荷重が増加する。   When the battery cell 11 expands due to deterioration or overcharge, the side surface 12a of the case 12 in the battery cell 11 is curved so as to protrude outward with respect to the arrangement direction of the battery cell 11, as shown in FIG. While expanding. The expansion amount of the side surface 12a of the case 12 is the largest in the vicinity of the center line L, and tends to be smaller toward the end portion side of the side surface 12a. Even when the battery cell 11 is expanded, the restraint member 3 continues to apply the restraining load to the array 2. For this reason, the load added to the temperature control member 41 arrange | positioned adjacent to the battery cell 11 increases.

これに対し、電池モジュール1では、上述したように、温度制御部材41の複数のリブ43のそれぞれは、リブ43の配列方向の中央側を向く側面43bの全体が、リブ43の配列方向の中央側から外側に向かって傾く傾斜面Kとなっている。これにより、電池セル11の膨張時では、電池セル11側から付加される荷重の一部が傾斜面Kによってリブ43の配列方向の中央側から外側に向かって受け流されるため、傾斜面Kの無い場合(すなわち、リブ43が単純な断面矩形状に形成されている場合)に比べてリブ43の破損や変形を抑えられる。したがって、電池セル11の膨張時においても温度制御媒体の流路Sが維持され、電池セル11の温度制御効率を十分に確保できる。   On the other hand, in the battery module 1, as described above, each of the plurality of ribs 43 of the temperature control member 41 has the entire side surface 43 b facing the center side in the arrangement direction of the ribs 43 in the center in the arrangement direction of the ribs 43. The inclined surface K is inclined from the side toward the outside. Thereby, when the battery cell 11 is expanded, a part of the load applied from the battery cell 11 side is swept away from the center side in the arrangement direction of the ribs 43 by the inclined surface K. Breakage and deformation of the rib 43 can be suppressed as compared with the case where there is no rib (that is, the rib 43 is formed in a simple rectangular cross section). Accordingly, the flow path S of the temperature control medium is maintained even when the battery cell 11 is expanded, and the temperature control efficiency of the battery cell 11 can be sufficiently ensured.

また、仮にリブ43が荷重によって変形する場合、電池セル11側から付加される荷重の一部が傾斜面Kによってリブ43の配列方向の中央側から外側に向かって付加されるため、リブ43の配列方向の外側に向かって倒れるようにリブ43が変形する。中央ラインLを挟んで隣り合うリブ43,43は、互いに反対方向に倒れるように変形するため、電池セル11の膨張時においても、温度制御媒体の流路S2が十分な断面積で電池セル11の中央付近に形成され、電池セル11の温度制御効率を十分に確保できる。   In addition, if the rib 43 is deformed by the load, a part of the load applied from the battery cell 11 side is applied from the center side in the arrangement direction of the rib 43 to the outside by the inclined surface K. The ribs 43 are deformed so as to fall toward the outside in the arrangement direction. Since the ribs 43 and 43 adjacent to each other with the center line L interposed therebetween are deformed so as to fall in opposite directions, even when the battery cell 11 expands, the flow path S2 of the temperature control medium has a sufficient cross-sectional area. The temperature control efficiency of the battery cell 11 can be sufficiently secured.

本実施形態では、複数のリブ43のそれぞれにおいて、リブ43の配列方向の中央側を向く側面43bの全面が、リブの配列方向の中央側から外側に向かって傾く傾斜面Kとなっている。このため、電池セル11の非膨張時では、温度制御媒体の流路S2が更に十分な断面積で電池セルの中央付近に形成される。また、電池セル11の膨張時では、電池セル11側から付加される荷重の一部が傾斜面Kによって一層確実にリブ43の配列方向の中央側から外側に向かって受け流される。   In the present embodiment, in each of the plurality of ribs 43, the entire side surface 43 b facing the center side in the arrangement direction of the ribs 43 is an inclined surface K that is inclined outward from the center side in the rib arrangement direction. For this reason, when the battery cell 11 is not expanded, the flow path S2 of the temperature control medium is further formed in the vicinity of the center of the battery cell with a sufficient cross-sectional area. Further, when the battery cell 11 is expanded, a part of the load applied from the battery cell 11 side is more reliably received by the inclined surface K from the center side in the arrangement direction of the ribs 43 toward the outside.

本実施形態では、各電池セル11の内部には、電極組立体13が収容され、各電池セル11は、セルホルダ31によって保持されている。また、温度制御部材41は、配列体の配列方向から見て電極組立体13と重なる領域に複数のリブ43が配置されるようにセルホルダ31に取り付けられている。これにより、温度制御媒体の流路Sが一定の位置決め精度で電極組立体13に近接して形成されるので、温度制御部材41による温度制御効率を向上できる。
[第2実施形態]
In the present embodiment, an electrode assembly 13 is accommodated in each battery cell 11, and each battery cell 11 is held by a cell holder 31. The temperature control member 41 is attached to the cell holder 31 so that a plurality of ribs 43 are arranged in a region overlapping the electrode assembly 13 when viewed from the arrangement direction of the array. Thereby, since the flow path S of the temperature control medium is formed close to the electrode assembly 13 with a certain positioning accuracy, the temperature control efficiency by the temperature control member 41 can be improved.
[Second Embodiment]

図7は、第2実施形態に係る電池モジュールの温度制御部材の要部拡大断面図である。同図に示すように、第2実施形態に係る電池モジュール51は、リブ43の配列方向の中央側を向く側面43bの一部のみが、リブ43の配列方向の中央側から外側に向かって傾く傾斜面Kとなっている点で、第1実施形態と異なっている。   FIG. 7 is an enlarged cross-sectional view of a main part of the temperature control member of the battery module according to the second embodiment. As shown in the figure, in the battery module 51 according to the second embodiment, only a part of the side surface 43b facing the center side in the arrangement direction of the ribs 43 is inclined outward from the center side in the arrangement direction of the ribs 43. It is different from the first embodiment in that it has an inclined surface K.

より具体的には、電池モジュール51では、傾斜面Kは、リブ43の配列方向の中央側を向く側面43bの先端側のみに設けられている。ベース42の法線に対する傾斜面Kの傾斜角度θは、例えば5°〜30°となっている。側面43bの基端側及びリブ43の配列方向の外側を向く側面43cは、いずれもベース42に対して略直角となっている。   More specifically, in the battery module 51, the inclined surface K is provided only on the front end side of the side surface 43 b facing the center side in the arrangement direction of the ribs 43. The inclination angle θ of the inclined surface K with respect to the normal line of the base 42 is, for example, 5 ° to 30 °. The side surface 43 c facing the base end side of the side surface 43 b and the outside in the arrangement direction of the ribs 43 is substantially perpendicular to the base 42.

このような構成においても、第1実施形態と同様に、中央ラインLを挟んで隣り合うリブ43,43間の間隔が、他のリブ43,43間の間隔よりも広くなっており、流路S2の断面積が、流路S1の断面積よりも大きくなっている。したがって、電池セル11の非膨張時では、温度制御媒体の流路S2が十分な断面積で電池セル11の中央付近に形成され、電池セル11の温度制御効率を十分に確保できる。   Even in such a configuration, as in the first embodiment, the interval between the adjacent ribs 43 and 43 across the center line L is wider than the interval between the other ribs 43 and 43, The cross-sectional area of S2 is larger than the cross-sectional area of the flow path S1. Therefore, when the battery cell 11 is not expanded, the flow path S2 of the temperature control medium is formed in the vicinity of the center of the battery cell 11 with a sufficient cross-sectional area, and the temperature control efficiency of the battery cell 11 can be sufficiently ensured.

また、電池セル11の膨張時では、図8に示すように、電池セル11側から付加される荷重の一部が傾斜面Kによってリブ43の配列方向の中央側から外側に向かって受け流されるため、傾斜面Kの無い場合(すなわち、リブ43が単純な断面矩形状に形成されている場合)に比べてリブ43の破損や変形を抑えられる。したがって、電池セル11の膨張時においても温度制御媒体の流路Sが維持され、電池セル11の温度制御効率を十分に確保できる。中央ラインLを挟んで隣り合うリブ43,43は、互いに反対方向に倒れるように変形するため、電池セル11の膨張時においても、温度制御媒体の流路S2が十分な断面積で電池セル11の中央付近に形成され、電池セル11の温度制御効率を十分に確保できる。
[変形例]
Further, when the battery cell 11 expands, as shown in FIG. 8, a part of the load applied from the battery cell 11 side is received from the center side in the arrangement direction of the ribs 43 toward the outside by the inclined surface K. Therefore, breakage and deformation of the rib 43 can be suppressed as compared with the case where the inclined surface K is not present (that is, the rib 43 is formed in a simple rectangular cross section). Accordingly, the flow path S of the temperature control medium is maintained even when the battery cell 11 is expanded, and the temperature control efficiency of the battery cell 11 can be sufficiently ensured. Since the ribs 43 and 43 adjacent to each other with the center line L interposed therebetween are deformed so as to fall in opposite directions, even when the battery cell 11 expands, the flow path S2 of the temperature control medium has a sufficient cross-sectional area. The temperature control efficiency of the battery cell 11 can be sufficiently secured.
[Modification]

本発明は、上記実施形態に限られるものではない。例えば上述した第1実施形態では、全てのリブ43の傾斜面Kの傾斜角度θが互いに等しくなっているが、図9に示すように、ベース42の法線に対する傾斜面Kの傾斜角度θが、リブ43の配列方向の中央側に位置するリブ43ほど大きくなっていてもよい。また、図10に示すように、第2実施形態においても、ベース42の法線に対する傾斜面Kの傾斜角度θが、リブ43の配列方向の中央側に位置するリブ43ほど大きくなっていてもよい。電池セル11の膨張時には、配列方向から見て中央付近が周辺部分よりも大きく膨張する傾向にある。したがって、傾斜面Kの傾斜角度θを電池セル11の膨張の傾向に応じて設定することで、電池セル11の膨張時のリブ43の破損や変形を好適に抑えられる。   The present invention is not limited to the above embodiment. For example, in the first embodiment described above, the inclination angles θ of the inclined surfaces K of all the ribs 43 are equal to each other. However, as shown in FIG. 9, the inclination angle θ of the inclined surface K with respect to the normal of the base 42 is The rib 43 located on the center side in the arrangement direction of the ribs 43 may be larger. As shown in FIG. 10, also in the second embodiment, the inclination angle θ of the inclined surface K with respect to the normal line of the base 42 is larger as the rib 43 located on the center side in the arrangement direction of the ribs 43. Good. When the battery cell 11 expands, the vicinity of the center tends to expand more than the peripheral portion when viewed from the arrangement direction. Therefore, by setting the inclination angle θ of the inclined surface K according to the expansion tendency of the battery cell 11, breakage and deformation of the rib 43 during expansion of the battery cell 11 can be suitably suppressed.

また、第1実施形態及び第2実施形態のいずれにおいても、全てのリブ43の先端面43aがベース42に対して略平行となっているが、電池セル11の膨張時のケース12の側面12aの形状に対応して、各リブ43の先端面43aがベース42側に向かって凹となる仮想の湾曲面に沿っていてもよい。この場合、電池セル11の膨張時に各リブ43が受ける荷重を均一化でき、電池セル11の膨張時のリブ43の破損や変形を好適に抑えられる。   In both the first embodiment and the second embodiment, the tip surfaces 43a of all the ribs 43 are substantially parallel to the base 42, but the side surface 12a of the case 12 when the battery cell 11 is expanded. Corresponding to the shape, the front end surface 43a of each rib 43 may be along a virtual curved surface that becomes concave toward the base 42 side. In this case, the load received by each rib 43 when the battery cell 11 expands can be made uniform, and breakage and deformation of the rib 43 when the battery cell 11 expands can be suitably suppressed.

1,51…電池モジュール、2…配列体、3…拘束部材、11…電池セル、12a…側面、13…電極組立体、31…セルホルダ、41…温度制御部材、42…ベース、43…リブ、43b…側面、K…傾斜面、θ…傾斜角度。   DESCRIPTION OF SYMBOLS 1,51 ... Battery module, 2 ... Array, 3 ... Restraint member, 11 ... Battery cell, 12a ... Side surface, 13 ... Electrode assembly, 31 ... Cell holder, 41 ... Temperature control member, 42 ... Base, 43 ... Rib, 43b: side surface, K: inclined surface, θ: inclination angle.

Claims (5)

電池セルの配列体と、
前記配列体に対して前記電池セルの配列方向に拘束荷重を付加する拘束部材と、を備え、
前記配列体には、前記電池セルごとに温度制御部材が設けられており、
前記温度制御部材は、板状のベースと、前記ベースの一方面に配列された複数のリブとを有し、前記電池セルの配列方向の側面に前記リブが接するように前記電池セルに対して配置され、
前記複数のリブのそれぞれにおいて、前記リブの配列方向の中央側を向く側面の少なくとも一部が、前記リブの配列方向の中央側から外側に向かって傾く傾斜面となっており、
前記ベースに対する前記傾斜面の傾斜角度は、前記リブの配列方向の中央側に位置するリブほど大きくなっている電池モジュール。
An array of battery cells;
A restraining member for applying a restraining load in the arrangement direction of the battery cells to the array body,
The array is provided with a temperature control member for each battery cell,
The temperature control member has a plate-like base and a plurality of ribs arranged on one surface of the base, and the ribs are in contact with the battery cells so that the ribs are in contact with the side surfaces in the arrangement direction of the battery cells. Arranged,
In each of the plurality of ribs, at least a part of the side surface facing the center side in the arrangement direction of the ribs is an inclined surface that is inclined outward from the center side in the arrangement direction of the ribs ,
The battery module is configured such that an inclination angle of the inclined surface with respect to the base increases as the rib is located closer to the center side in the arrangement direction of the ribs .
前記複数のリブのそれぞれにおいて、前記リブの配列方向の中央側を向く側面の全面が、前記リブの配列方向の中央側から外側に向かって傾く傾斜面となっている請求項1記載の電池モジュール。   2. The battery module according to claim 1, wherein in each of the plurality of ribs, the entire side surface facing the center side in the arrangement direction of the ribs is an inclined surface inclined outward from the center side in the arrangement direction of the ribs. . 前記複数のリブのそれぞれにおいて、前記リブの配列方向の中央側を向く側面の一部のみが、前記リブの配列方向の中央側から外側に向かって傾く傾斜面となっている請求項1記載の電池モジュール。   2. In each of the plurality of ribs, only a part of a side surface facing the center side in the arrangement direction of the ribs is an inclined surface that is inclined outward from the center side in the arrangement direction of the ribs. Battery module. 前記各電池セルの内部には、電極組立体が収容され、
前記各電池セルは、セルホルダによって保持され、
前記温度制御部材は、前記配列体の配列方向から見て前記電極組立体と重なる領域に前記複数のリブが配置されるように前記セルホルダに取り付けられている請求項1〜のいずれか一項記載の電池モジュール。
Each battery cell contains an electrode assembly,
Each battery cell is held by a cell holder,
Wherein the temperature control member, any one of claim 1 to 3, wherein the plurality of ribs in a region overlapping with the electrode assembly when viewed from the arrangement direction of the array is attached to the cell holder to be arranged The battery module as described.
前記複数のリブのうち前記リブの配列方向の中央から一方側に位置する前記リブは、前記中央側から前記一方側に傾斜した状態で前記ベースから突出しており、
前記複数のリブのうち前記リブの配列方向の中央から他方側に位置する前記リブは、前記中央側から前記他方側に傾斜した状態で前記ベースから突出している請求項1〜のいずれか一項記載の電池モジュール。
Of the plurality of ribs, the rib located on one side from the center in the arrangement direction of the ribs protrudes from the base in a state inclined from the center side to the one side,
The rib is any one of claims 1-4 projecting from said base in an inclined on the other side from the center side positioned on the other side from the center of the arrangement direction of the ribs of the plurality of ribs The battery module according to item.
JP2015203752A 2015-10-15 2015-10-15 Battery module Expired - Fee Related JP6493144B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015203752A JP6493144B2 (en) 2015-10-15 2015-10-15 Battery module
PCT/JP2016/072837 WO2017064906A1 (en) 2015-10-15 2016-08-03 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203752A JP6493144B2 (en) 2015-10-15 2015-10-15 Battery module

Publications (3)

Publication Number Publication Date
JP2017076540A JP2017076540A (en) 2017-04-20
JP2017076540A5 JP2017076540A5 (en) 2018-06-21
JP6493144B2 true JP6493144B2 (en) 2019-04-03

Family

ID=58517992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203752A Expired - Fee Related JP6493144B2 (en) 2015-10-15 2015-10-15 Battery module

Country Status (2)

Country Link
JP (1) JP6493144B2 (en)
WO (1) WO2017064906A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230126173A (en) 2022-02-21 2023-08-29 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Battery, electric device, battery manufacturing method and device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321329A (en) * 1995-05-26 1996-12-03 Sanyo Electric Co Ltd Battery
KR100627335B1 (en) * 2004-06-25 2006-09-25 삼성에스디아이 주식회사 Secondary battery module and wall of secondary battery module
JP2011076967A (en) * 2009-10-01 2011-04-14 Honda Motor Co Ltd Battery pack
JP2011096465A (en) * 2009-10-28 2011-05-12 Tokyo R & D Co Ltd Cooling plate, and battery system
US9455427B2 (en) * 2009-12-23 2016-09-27 Samsung Sdi Co., Ltd. Battery with voltage-generating cells and interposed compensating plates
JP6157813B2 (en) * 2012-08-06 2017-07-05 パナソニック株式会社 Assembled battery

Also Published As

Publication number Publication date
WO2017064906A1 (en) 2017-04-20
JP2017076540A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US11450917B2 (en) Power storage device
JP6442907B2 (en) Battery module
JP2015504574A (en) Battery module with improved safety and battery pack including the same
JP6277987B2 (en) Battery module
KR101181849B1 (en) Secondary battery module and wall of secondary battery module
JP6268855B2 (en) Power storage device and power storage module
KR20170062845A (en) Battery Module Comprising Unit Module Having Simple Structure
JP2018536967A (en) Battery module and battery pack including the same
JP2017103158A (en) Battery pack
WO2017056407A1 (en) Cell module
JP6641711B2 (en) Battery module
JP6500554B2 (en) Battery module
JP6488812B2 (en) Battery module
JP6855789B2 (en) Battery module
JP6493144B2 (en) Battery module
JP6589543B2 (en) Battery module
WO2016171005A1 (en) Electrical-storage-device holder, and electrical-storage-device module
JP6350172B2 (en) Battery module
JP6500480B2 (en) Battery module
US20220320665A1 (en) Power storage device
JP6507803B2 (en) Battery module
JP6561756B2 (en) Battery pack
JP6547407B2 (en) Power storage device module
JP2017111897A (en) Battery pack
US20220320655A1 (en) Power storage device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6493144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees