WO2016171005A1 - Electrical-storage-device holder, and electrical-storage-device module - Google Patents

Electrical-storage-device holder, and electrical-storage-device module Download PDF

Info

Publication number
WO2016171005A1
WO2016171005A1 PCT/JP2016/061519 JP2016061519W WO2016171005A1 WO 2016171005 A1 WO2016171005 A1 WO 2016171005A1 JP 2016061519 W JP2016061519 W JP 2016061519W WO 2016171005 A1 WO2016171005 A1 WO 2016171005A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
flow path
storage device
power storage
wall portion
Prior art date
Application number
PCT/JP2016/061519
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 中條
加藤 崇行
浩生 植田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2016171005A1 publication Critical patent/WO2016171005A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • H01M10/652Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to a power storage device holder and a power storage device module.
  • a secondary battery module including a plurality of secondary batteries and a plurality of cell holders respectively holding the plurality of secondary batteries
  • the cell holder is configured by integrally forming a heat conductive rubber layer on one surface of a metal plate member. A surface of the thermally conductive rubber layer that comes into contact with the secondary battery is provided with a cooling medium flow path through which a cooling medium such as air for cooling the secondary battery that generates heat due to overcharging or the like flows.
  • An object of one aspect of the present invention is to provide a power storage device holder and a power storage device module that can improve heat dissipation of the power storage device.
  • a power storage device holder is a power storage device holder that holds a power storage device, and includes a bottom wall portion that faces the bottom surface of the power storage device, and a pair of side wall portions that face both side surfaces of the power storage device. And a back wall portion facing the back surface of the power storage device, the back wall portion extending in the facing direction of the pair of side wall portions and having a plurality of ribs defining a first air flow path through which air flows.
  • the bottom wall portion has a plurality of protruding portions that define a second air flow path on which the power storage device is placed and air flows.
  • the back and bottom surfaces of the power storage device are cooled by flowing air through the first air flow path and the second air flow path. That is, not only the back surface of the power storage device is cooled like the conventional power storage device holder, but also the bottom surface of the power storage device is cooled. Thereby, the heat dissipation of an electrical storage apparatus can be improved.
  • the protruding portions may be provided at both ends of the bottom wall portion, and the second air flow path may be disposed between the protruding portions provided at both ends of the bottom wall portion.
  • the second air flow path may extend in a direction orthogonal to the extending direction of the first air flow path.
  • a plurality of second air flow paths are arranged along the extending direction of the first air flow path, and the width of the second air flow path is from one side to the other in the extending direction of the first air flow path. It may become wider toward the side.
  • the temperature of the air can rise from one side in the extending direction toward the other side.
  • the width of the second air flow path becomes wider from one side of the extending direction of the first air flow path to the other side, the flow rate of the air flowing through each second air flow path is It increases from one side in the extending direction of the first air channel toward the other side. As a result, variation in heat dissipation of the power storage device in the extending direction can be suppressed.
  • first air channel and the second air channel may be communicated with each other. Thereby, since air flows through both the first air flow path and the second air flow path, the air stays in the flow path for a long time. As a result, air can be sufficiently utilized for cooling the power storage device.
  • the second air flow path may extend in the extending direction of the first air flow path.
  • the second air flow path may have a wave shape.
  • a region where the wavy second air flow path and the bottom surface of the power storage device face is wider than a region where the straight second air flow path and the bottom surface of the power storage device face. For this reason, the heat dissipation of the power storage device can be further improved.
  • a power storage device module includes a plurality of power storage devices and the plurality of power storage device holders that respectively hold the plurality of power storage devices.
  • the power storage device module includes the power storage device holder, the heat dissipation of the power storage device can be improved.
  • the heat dissipation of the power storage device can be improved.
  • FIG. 1 It is the schematic which shows the battery module as an electrical storage apparatus module which concerns on 1st Embodiment. It is a front view which shows the battery and cell holder with which the battery module shown in FIG. 1 was equipped. It is a perspective view which shows the cell holder shown in FIG. It is a side view which shows the cell holder shown in FIG. It is a perspective view which shows the cell holder with which the battery module as an electrical storage apparatus module which concerns on 2nd Embodiment was equipped. It is a perspective view which shows the modification of the cell holder shown in FIG. It is a perspective view which shows the cell holder with which the battery module as an electrical storage apparatus module which concerns on 3rd Embodiment was equipped. It is a perspective view which shows the cell holder with which the battery module as an electrical storage apparatus module which concerns on 4th Embodiment was equipped. It is a perspective view which shows the modification of the cell holder shown in FIG.
  • FIG. 1 is a schematic diagram showing a battery module as an embodiment of a power storage device module.
  • the battery module (power storage device module) 1 includes an array body 2, end plates (constraint members) 3 and 3 that apply a restraining load to the array body 2, and the array body 2 and the end. And an elastic body 4 interposed between the plate 3 and the plate 3.
  • the array body 2 includes a plurality (here, seven bodies) of batteries (power storage devices) 10 and a plurality (here, seven bodies) of cell holders (power storage device holders) 5 that respectively hold the batteries 10. .
  • the battery 10 is, for example, a lithium ion secondary battery.
  • the battery 10 includes a hollow case 11 having a substantially rectangular parallelepiped shape, for example, and an electrode assembly (not shown) housed in the case 11.
  • the case 11 is made of a metal such as aluminum.
  • the case 11 includes a pair of front surfaces 12a and a rear surface 12b that face each other in the arrangement direction of the array bodies 2 (through direction in FIG. 2), and a pair of top surfaces that face each other in the short side direction (the vertical direction in FIG. 2). 13a and a bottom surface 13b, and a pair of side surfaces 14a and 14b facing in the longitudinal direction of the back surface 12b (left and right direction in FIG. 2).
  • the positive electrode terminal 15 and the negative electrode terminal 16 are disposed so as to be separated from each other.
  • the electrode assembly includes, for example, a positive electrode, a negative electrode, and a bag-like separator disposed between the positive electrode and the negative electrode. In the electrode assembly, the positive electrode and the negative electrode are alternately stacked along the arrangement direction of the array 2 via the separator in a state where the positive electrode is accommodated in the separator.
  • the cell holder 5 is integrally formed of a resin material such as polypropylene.
  • the cell holder 5 is located around the case 11 as shown in FIG.
  • the end plate 3 applies a restraining load to the array body 2 in the array direction of the batteries 10.
  • the end plate 3 is a metal plate-like member, for example. As shown in FIG. 1, the end plate 3 has an area larger than the area when the battery 10 is viewed from the arrangement direction, for example.
  • the end plates 3 are respectively disposed at both ends of the array body 2 and the elastic body 4 in the array direction in a state where the outer edge portion projects outward from the battery 10.
  • a plurality of bolts 6 are inserted through outer edge portions of the end plates 3 and 3.
  • the nut 7 is screwed onto the tip of each bolt 6 from the outside of the end plate 3, whereby the battery 10 and the elastic body 4 are sandwiched by the end plates 3, 3 to form a unit, and the end plates 3, 3 Restraint load is added.
  • the elastic body 4 is a member used for the purpose of preventing the battery 10 and the end plate 3 from being damaged by a restraining load when the battery 10 is expanded.
  • the elastic body 4 is formed in a rectangular plate shape by, for example, urethane rubber sponge, and is disposed between the battery 10 on one end side in the arrangement direction and the end plate 3.
  • the thickness of the elastic body 4 is equal to or greater than the thickness of the end plate 3.
  • Examples of the material for forming the elastic body 4 include ethylene propylene diene rubber (EPDM), chloroprene rubber, and silicon rubber.
  • the cell holder 5 is opposed to the back wall portion 20 facing the back surface 12 b of the battery 10, the bottom wall portion 30 facing the bottom surface 13 b of the case 11, and both side surfaces 14 a and 14 b of the battery 10.
  • the back wall portion 20 includes a rectangular plate-like back plate 21, a plurality of (here, nine) first ribs (ribs) 22 having a rectangular parallelepiped shape (cross-sectional rectangular shape) extending in the longitudinal direction of the back plate 21, have.
  • the length of the first rib 22 in the extending direction is substantially the same as the length of the back plate 21 in the longitudinal direction.
  • Each first rib 22 is disposed on one surface 21 a of the back plate 21.
  • the first ribs 22 are arranged substantially in parallel with the width of the first ribs 22 along the short direction of the back plate 21.
  • the distance between one first rib 22 (lower first rib 22 in FIG. 3) where the arrangement end is located and one end portion (lower end portion in FIG. 3) in the short direction of the back plate 21 is adjacent. It is wider than the interval between the matching first ribs 22.
  • the bottom wall portion 30 includes a rectangular plate-shaped concave portion 31 in which both end portions in the longitudinal direction are bent, and a pair of rectangular parallelepiped-shaped support portions 32 and 32 that support both end portions of the concave portion 31.
  • the support portion 32 includes a protruding portion 32 a that protrudes toward the opposite side (first rib 22 side) of the recessed portion 31 and a leg portion 32 b that protrudes toward the recessed direction of the recessed portion 31. That is, the protruding portion 32 a and the leg portion 32 b are provided at both ends of the bottom wall portion 30.
  • the front end surface of the protruding portion 32a is a mounting surface 32c on which the bottom surface 13b of the case 11 is mounted.
  • the leg portion 32 b is provided with a through hole 32 d extending in the short direction of the bottom wall portion 30. The bolt 6 described above is inserted into the through hole 32d.
  • the bottom wall portion 30 is disposed at one end portion of the back plate 21 in the short direction (the lower end portion in FIG. 3).
  • the short side direction of the bottom wall portion 30 is directed in a direction orthogonal to the surface direction of the one surface 21 a of the back plate 21.
  • the bottom wall portion 30 is connected to one end portion in the short direction of the back plate 21 by one end portion in the short direction of the bottom wall portion 30.
  • the side wall portion 40 has a rectangular plate shape.
  • the length of the side wall portion 40 in the short direction is substantially the same as the length of the bottom wall portion 30 in the short direction.
  • the side wall 40 is formed with an opening 41 in which one end in the short direction of the side wall 40 is cut out in a rectangular shape.
  • the opening 41 extends along the longitudinal direction of the side wall 40.
  • Each side wall 40, 40 is disposed at each end of the back plate 21 in the longitudinal direction.
  • the short side direction of the side wall portion 40 is directed in a direction orthogonal to the surface direction of the one surface 21 a of the back plate 21.
  • Each side wall 40, 40 is connected to each end in the longitudinal direction of the back plate 21 by one end in the short direction of each side wall 40, 40.
  • Each side wall part 40, 40 is connected to each support part 32, 32 by one end part (lower end part in FIG. 3) of each side wall part 40, 40 in the longitudinal direction.
  • the openings 41 and 41 are opposed to each other in the longitudinal direction of the back plate 21.
  • the edge of the opening 41 in the extending direction is located in the vicinity of the first rib 22 located at the arrangement end.
  • the top wall portion 50 has a pair of terminal accommodating portions 51 and 51 and a pair of column portions 52 and 52.
  • the terminal accommodating portion 51 has a rectangular flat plate shape.
  • the terminal accommodating portion 51 is formed with a notched portion 51a in which one end in the short direction of the terminal accommodating portion 51 is notched in a semicircular shape.
  • the positive electrode terminal 15 and the negative electrode terminal 16 of the battery 10 are located in the notch 51a.
  • the column part 52 has a columnar shape.
  • the column portion 52 is disposed at one end portion (inner end portion) in the longitudinal direction of the terminal accommodating portion 51.
  • the column part 52 is provided with a through hole 52 a extending in the short direction of the terminal accommodating part 51.
  • the above-described bolt 6 is inserted into the through hole 52a.
  • the top wall 50 is disposed at the other end of the back plate 21 in the lateral direction (the upper end in FIG. 3).
  • the short side direction of the terminal accommodating portion 51 is orthogonal to the surface direction of the one surface 21 a of the back plate 21.
  • the top wall portion 50 is connected to the other end portion in the short direction of the back plate 21 (the upper end portion in FIG. 3) by one end portion of the top wall portion 50 in the short direction of the terminal accommodating portion 51.
  • the other end portion in the longitudinal direction of each terminal accommodating portion 51, 51 is connected to the other end portion in the longitudinal direction of each side wall portion 40, 40 (the upper end portion in FIG. 3).
  • the battery 10 is fitted into the cell holder 5.
  • the back surface 12b of the case 11 is in contact with the tip of the first rib 22 as shown in FIG.
  • the first air flow path R ⁇ b> 1 is formed by a space defined by the back surface 12 b of the case 11, the first rib 22 of the back wall portion 20, and the back plate 21.
  • the first air flow path R1 extends in the facing direction of the pair of side wall portions 40,40. Therefore, the air flowing in from one opening 41 (left opening 41 in FIG. 3) passes through each first air flow path R1 and from the other opening 41 (right opening 41 in FIG. 3). leak.
  • the first air flow path R1 is used as a flow path through which cooled air or the like flows, for example, and contributes to cooling of the battery 10.
  • 2nd air flow path R2 is arrange
  • the second air flow path R2 is used as a flow path through which cooled air or the like flows, for example, and contributes to cooling of the battery 10. Air flows into one end side of the second air flow path R2 (the back side in the paper surface direction in FIG. 2) through each opening 41. The air that has passed through the second air flow path R2 flows out from the other end side of the second air flow path R2 (the front side in the drawing in FIG. 2).
  • the back surface 12b and the bottom surface 13b of the battery 10 are cooled by flowing air through the first air flow path R1 and the second air flow path R2. That is, not only the back surface 12b of the battery 10 is cooled like a conventional cell holder, but also the bottom surface 13b of the battery 10 is cooled. Thereby, the heat dissipation of the battery 10 can be improved.
  • the protruding portions 32 a are provided at both ends of the bottom wall portion 30.
  • the second air flow path R2 is disposed between the protruding portions 32a.
  • This embodiment is different from the first embodiment in the configuration of the bottom wall portion of the cell holder 5.
  • the cell holder 5 includes a bottom wall portion 230 as shown in FIG.
  • the bottom wall 230 has a rectangular plate-like bottom plate 231 and a plurality (19 in this case) of second ribs (projecting portions) 232.
  • the second rib 232 has a rectangular parallelepiped shape (a rectangular cross section) extending in the short direction of the bottom wall portion 230.
  • the second rib 232 is disposed on the one surface 231 a of the bottom plate 231.
  • Each of the second ribs 232 is arranged substantially in parallel along the extending direction of the first air flow path R ⁇ b> 1 at intervals similar to the width of the second ribs 232.
  • a plurality of (here, 18) second air flow paths R ⁇ b> 2 are formed by the space defined by the bottom surface 13 b of the case 11, the bottom plate 231 of the bottom wall portion 230, and the second ribs 232.
  • Each second air flow path R2 extends in a direction orthogonal to the extending direction of the first air flow path R1.
  • the air that has flowed in from the openings 41 flows into one end side (the back side in the drawing in FIG. 2) of the second air flow path R2.
  • the air that has passed through the second air flow path R2 flows out from the other end side of the second air flow path R2 (the front side in the drawing in FIG. 2).
  • the heat dissipation of the battery 10 can be improved with a simple configuration.
  • a plurality of the second air flow paths R2 do not need to be arranged, and at least one or more may be arranged.
  • variety of 2nd air flow path R2 may become large as it goes to the other side from the one side of the extension direction of 1st air flow path R1, as FIG. 6 shows.
  • the width of the second air flow path R2 becomes wider from one side of the extending direction of the first air flow path R1 toward the other side.
  • the flow rate of the flowing air increases from one side in the extending direction of the first air flow path R1 toward the other side.
  • This embodiment is different from the first embodiment in the configuration of the back wall portion and the bottom wall portion of the cell holder 5.
  • the cell holder 5 includes a back wall portion 320 and a bottom wall portion 330, as shown in FIG.
  • the back wall portion 320 includes a rectangular plate-like back plate 321, a plurality (here, nine) of first ribs 322, and a plurality (here, eight) of third ribs 323.
  • the first rib 322 has a rectangular parallelepiped shape (a rectangular cross section) extending in the longitudinal direction of the back plate 321. The lengths of the first ribs 322 in the extending direction are different from each other. Each first rib 322 is disposed on one surface 321 a of the back plate 321.
  • Each first rib 322 is arranged so that the first rib 322 having a long length is positioned from the bottom wall portion 330 side toward the top wall portion 50 side.
  • the first ribs 322 are arranged substantially in parallel at intervals similar to the width of the first ribs 322.
  • One end of each first rib 322 is aligned with one end in the longitudinal direction of the back plate 321 (the left end in FIG. 7).
  • a plurality of first air flow paths R1 having different lengths are formed by the space defined by the back surface 12b of the case 11, the first rib 322 of the back wall 320, and the back plate 321.
  • the first air flow path R1 extends in the facing direction of the pair of side wall portions 40,40.
  • Each third rib 323 has a rectangular parallelepiped shape (a rectangular cross section) extending in the short direction of the back plate 321. The lengths of the third ribs 323 in the extending direction are different from each other.
  • Each third rib 323 is disposed on one surface 321 a of the back plate 321.
  • Each of the third ribs 323 is positioned such that the longer third rib 323 is positioned from the side of the one side wall 40 (the left side in FIG. 7) toward the other side wall 40 (the right side in FIG. 7). Is arranged.
  • the third ribs 323 are arranged substantially in parallel at intervals wider than the width of the third ribs 323.
  • each third rib 323 is aligned with one end of the back plate 321 in the lateral direction (the lower end in FIG. 7).
  • a plurality of third air flow paths R3 having different lengths are formed by the space defined by the back surface 12b of the case 11, the third rib 323 of the back wall 320, and the back plate 321.
  • each first rib 322 and the other end of each third rib 323 are connected. That is, the first air flow path R1 and the third air flow path R3 are in communication. Thereby, a plurality of L-shaped air flow paths are formed on the one surface 321a of the back plate 321 in plan view.
  • the bottom wall portion 330 includes a rectangular plate-like bottom plate 331 and a plurality of (here, eight) second ribs (protruding portions) 332.
  • the second rib 332 has a rectangular parallelepiped shape (a rectangular cross section) extending in the short direction of the bottom wall portion 330.
  • the second rib 332 is disposed on the one surface 331 a of the bottom plate 331.
  • the second ribs 332 are arranged substantially in parallel along the extending direction of the first air flow path R1 at an interval wider than the width of the second ribs 332.
  • a plurality of second air flow paths R ⁇ b> 2 are formed by the space defined by the bottom surface 13 b of the case 11, the bottom plate 331 of the bottom wall portion 330, and the second ribs 332.
  • Each second air flow path R2 extends in a direction orthogonal to the extending direction of the first air flow path R1.
  • each second rib 232 (end on the back side in the drawing in FIG. 7) is connected to one end of each third rib 323 (lower end in FIG. 7). That is, the second air flow path R2 and the third air flow path R3 are in communication. Thereby, 1st air flow path R1 and 2nd air flow path R2 are connected via 3rd air flow path R3.
  • This embodiment is different from the first embodiment in the configuration of the bottom wall portion and the side wall portion of the cell holder 5.
  • the cell holder 5 includes a bottom wall portion 430 and a pair of side wall portions 440 and 440.
  • the bottom wall part 430 has a rectangular plate-like bottom plate 431.
  • one second air flow path R2 extending in the extending direction of the first air flow path R1 is formed.
  • the side wall portion 440 has a rectangular plate shape.
  • An opening 441 is formed in the side wall 440.
  • the opening 441 includes a first opening portion 441a and a second opening portion 441b.
  • the first opening portion 441a is formed by cutting out one end of the side wall portion 440 in the lateral direction into a rectangular shape.
  • the first opening portion 441 a extends along the longitudinal direction of the side wall portion 440.
  • the second opening portion 441b extends from one end portion (end portion on the bottom wall portion 430 side) in the longitudinal direction of the first opening portion 441a toward the other end portion in the short side direction of the side wall portion 440.
  • the second air flow path R2 is located in a region surrounded by the peripheral edge of the second opening portion 441b when viewed from the opposing direction of the side wall portions 440 and 440. Therefore, the air flowing in from one second opening portion 441b passes through the second air flow path R2 and flows out from the other second opening portion 441b.
  • the heat dissipation of the battery 10 can be improved with a simple configuration.
  • the present invention is not limited to the above embodiment.
  • each air flow path R1, R2, R3 is shown in FIG.
  • a region where the wavy second air flow path R2 and the bottom surface 13b of the battery 10 face is wider than a region where the straight second air flow path R2 and the bottom surface 13b of the battery 10 face.
  • the heat dissipation of the battery 10 can be further improved.
  • the width of each air flow path R1, R2, R3, the width of the first ribs 22, 322, the width of the second ribs 232, 332, and the width of the third rib 323 may be appropriately changed.
  • the air flowing in from one opening 41 passes through each first air flow path R1 and the other opening 41 (the right opening in FIG. 3). 41), the air flow direction may be reversed. That is, the air that flows in from the other opening 41 may flow out from the one opening 41.
  • the arrangement of the air flow paths R1, R2, R3, the first ribs 22, 322, the second ribs 232, 332, and the third ribs 323 may be appropriately changed according to the direction in which the air flows.
  • the end plates 3 and 3 are fastened to each other with the bolt 6 and the nut 7 and a restraining load is applied to the array body 2 and the elastic body 4.
  • Etc. both ends of the restraint band may be fastened to the end plates 3 and 3 with bolts or the like, respectively, and a restraint load may be applied to the array body 2 and the elastic body 4.
  • the power storage device according to the above embodiment may be applied to a power storage device module that does not apply a restraining load to the array 2.
  • the power storage device is a secondary battery such as a lithium ion secondary battery.
  • the present invention is not particularly limited to such a secondary battery, and for example, an electrical storage such as an electric double layer capacitor or a lithium ion capacitor.
  • the present invention can also be applied to a power storage device module including the device.
  • SYMBOLS 1 Battery module (electric storage apparatus module), 5 ... Cell holder (electric storage apparatus holder), 10 ... Battery (electric storage apparatus), 20, 320 ... Back wall part, 30, 330, 430 ... Bottom wall part, 40, 440 ... Side wall Part, 22,322 ... 1st rib (rib), 32a ... projecting part, 232, 332 ... 2nd rib (projecting part), R1 ... 1st air flow path, R2 ... 2nd air flow path.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

This electrical-storage-device holder for holding an electrical storage device is provided with: a bottom wall part which faces the bottom surface of the electrical storage device; a pair of side wall parts which face the two side surfaces of the electrical storage device; and a rear wall part which faces the rear surface of the electrical storage device. The rear wall part is provided with a plurality of ribs which extend in the direction in which the pair of side wall parts face each other, and demarcate first air flow paths through which air flows. The bottom wall part is provided with a plurality of protruded sections on which the electrical storage device is placed, and which demarcate a second air flow path through which the air flows.

Description

蓄電装置ホルダ及び蓄電装置モジュールPower storage device holder and power storage device module
 本発明の一側面は、蓄電装置ホルダ及び蓄電装置モジュールに関する。 One aspect of the present invention relates to a power storage device holder and a power storage device module.
 従来の蓄電装置モジュールとして、複数の二次電池と、当該複数の二次電池をそれぞれ保持する複数のセルホルダとを備える二次電池モジュールが知られている(例えば特許文献1参照)。セルホルダは、金属製の板状部材の片面に熱伝導性ゴム層が一体成形されることで構成されている。熱伝導性ゴム層における二次電池と接する面には、過充電等によって発熱した二次電池を冷却するための空気等の冷却媒体が流れる冷却媒体流路が設けられている。 As a conventional power storage device module, a secondary battery module including a plurality of secondary batteries and a plurality of cell holders respectively holding the plurality of secondary batteries is known (see, for example, Patent Document 1). The cell holder is configured by integrally forming a heat conductive rubber layer on one surface of a metal plate member. A surface of the thermally conductive rubber layer that comes into contact with the secondary battery is provided with a cooling medium flow path through which a cooling medium such as air for cooling the secondary battery that generates heat due to overcharging or the like flows.
特開2014-10939号公報JP 2014-10939 A
 上述したようなセルホルダ(蓄電装置ホルダ)においては、電池(蓄電装置)の放熱性を向上させることが求められている。 In the cell holder (power storage device holder) as described above, it is required to improve the heat dissipation of the battery (power storage device).
 本発明の一側面は、蓄電装置の放熱性を向上させることができる蓄電装置ホルダ及び蓄電装置モジュールを提供することを目的とする。 An object of one aspect of the present invention is to provide a power storage device holder and a power storage device module that can improve heat dissipation of the power storage device.
 本発明の一側面に係る蓄電装置ホルダは、蓄電装置を保持する蓄電装置ホルダであって、蓄電装置の底面と対向する底壁部と、蓄電装置の両側面と対向する1対の側壁部と、蓄電装置の背面と対向する背壁部とを備え、背壁部は、1対の側壁部の対向方向に延在し、空気が流れる第1空気流路を画成する複数のリブを有し、底壁部は、蓄電装置が載置されると共に空気が流れる第2空気流路を画成する複数の突出部分を有する。 A power storage device holder according to one aspect of the present invention is a power storage device holder that holds a power storage device, and includes a bottom wall portion that faces the bottom surface of the power storage device, and a pair of side wall portions that face both side surfaces of the power storage device. And a back wall portion facing the back surface of the power storage device, the back wall portion extending in the facing direction of the pair of side wall portions and having a plurality of ribs defining a first air flow path through which air flows. The bottom wall portion has a plurality of protruding portions that define a second air flow path on which the power storage device is placed and air flows.
 この蓄電装置ホルダでは、第1空気流路及び第2空気流路に空気を流すことによって、蓄電装置の背面及び底面が冷却される。すなわち、従来の蓄電装置ホルダのように蓄電装置の背面が冷却されるだけでなく蓄電装置の底面も冷却される。これにより、蓄電装置の放熱性を向上させることができる。 In this power storage device holder, the back and bottom surfaces of the power storage device are cooled by flowing air through the first air flow path and the second air flow path. That is, not only the back surface of the power storage device is cooled like the conventional power storage device holder, but also the bottom surface of the power storage device is cooled. Thereby, the heat dissipation of an electrical storage apparatus can be improved.
 また、突出部分は、底壁部の両端部に設けられており、第2空気流路は、底壁部の両端部に設けられた突出部分の間に配置されていてもよい。これにより、蓄電装置の過充電等に起因して温度上昇しやすい蓄電装置の底面の中央部の放熱性を向上させることができる。 Further, the protruding portions may be provided at both ends of the bottom wall portion, and the second air flow path may be disposed between the protruding portions provided at both ends of the bottom wall portion. Thereby, the heat dissipation of the center part of the bottom face of the power storage device that easily rises in temperature due to overcharging of the power storage device can be improved.
 また、第2空気流路は、第1空気流路の延在方向と直交する方向に延在していてもよい。これにより、簡易な構成で蓄電装置の放熱性を向上させることができる。 Further, the second air flow path may extend in a direction orthogonal to the extending direction of the first air flow path. Thereby, the heat dissipation of the power storage device can be improved with a simple configuration.
 また、第2空気流路は、第1空気流路の延在方向に沿って複数配列されており、第2空気流路の幅は、第1空気流路の延在方向の一方側から他方側に向かうにつれて広くなっていてもよい。第1空気流路の延在方向の一方側から他方側に向かって空気が流れる場合、当該延在方向の一方側から他方側に向かって空気の温度は上昇し得る。しかしながら、この場合、第2空気流路の幅は、第1空気流路の延在方向の一方側から他方側に向かうにつれて広くなっているので、各第2空気流路に流れる空気の流量が第1空気流路の延在方向の一方側から他方側に向かって増える。この結果、当該延在方向における蓄電装置の放熱性のバラツキを抑制することができる。 A plurality of second air flow paths are arranged along the extending direction of the first air flow path, and the width of the second air flow path is from one side to the other in the extending direction of the first air flow path. It may become wider toward the side. When air flows from one side in the extending direction of the first air flow path toward the other side, the temperature of the air can rise from one side in the extending direction toward the other side. However, in this case, since the width of the second air flow path becomes wider from one side of the extending direction of the first air flow path to the other side, the flow rate of the air flowing through each second air flow path is It increases from one side in the extending direction of the first air channel toward the other side. As a result, variation in heat dissipation of the power storage device in the extending direction can be suppressed.
 また、第1空気流路と第2空気流路とが連通していてもよい。これにより、空気が第1空気流路及び第2空気流路の両方を流通するので、空気は流路内に長い時間留まることになる。この結果、空気を蓄電装置の冷却に十分に利用することができる。 Further, the first air channel and the second air channel may be communicated with each other. Thereby, since air flows through both the first air flow path and the second air flow path, the air stays in the flow path for a long time. As a result, air can be sufficiently utilized for cooling the power storage device.
 また、第2空気流路は、第1空気流路の延在方向に延在していてもよい。これにより、簡易な構成で蓄電装置の放熱性を向上させることができる。 Further, the second air flow path may extend in the extending direction of the first air flow path. Thereby, the heat dissipation of the power storage device can be improved with a simple configuration.
 また、第2空気流路は、波状を有していてもよい。波状の第2空気流路と蓄電装置の底面とが面する領域は、直線状の第2空気流路と蓄電装置の底面とが面する領域と比べて広くなる。このため、蓄電装置の放熱性を更に向上させることができる。 Moreover, the second air flow path may have a wave shape. A region where the wavy second air flow path and the bottom surface of the power storage device face is wider than a region where the straight second air flow path and the bottom surface of the power storage device face. For this reason, the heat dissipation of the power storage device can be further improved.
 本発明の一側面に係る蓄電装置モジュールは、複数の蓄電装置と、複数の蓄電装置をそれぞれ保持する複数の上記蓄電装置ホルダと、を備える。 A power storage device module according to one aspect of the present invention includes a plurality of power storage devices and the plurality of power storage device holders that respectively hold the plurality of power storage devices.
 この蓄電装置モジュールは、上記蓄電装置ホルダを備えているので、蓄電装置の放熱性を向上させることができる。 Since the power storage device module includes the power storage device holder, the heat dissipation of the power storage device can be improved.
 本発明の一側面によれば、蓄電装置の放熱性を向上させることができる。 According to one aspect of the present invention, the heat dissipation of the power storage device can be improved.
第1実施形態に係る蓄電装置モジュールとしての電池モジュールを示す概略図である。It is the schematic which shows the battery module as an electrical storage apparatus module which concerns on 1st Embodiment. 図1に示した電池モジュールに備えられた電池及びセルホルダを示す正面図である。It is a front view which shows the battery and cell holder with which the battery module shown in FIG. 1 was equipped. 図2に示したセルホルダを示す斜視図である。It is a perspective view which shows the cell holder shown in FIG. 図2に示したセルホルダを示す側面図である。It is a side view which shows the cell holder shown in FIG. 第2実施形態に係る蓄電装置モジュールとしての電池モジュールに備えられたセルホルダを示す斜視図である。It is a perspective view which shows the cell holder with which the battery module as an electrical storage apparatus module which concerns on 2nd Embodiment was equipped. 図5に示したセルホルダの一変形例を示す斜視図である。It is a perspective view which shows the modification of the cell holder shown in FIG. 第3実施形態に係る蓄電装置モジュールとしての電池モジュールに備えられたセルホルダを示す斜視図である。It is a perspective view which shows the cell holder with which the battery module as an electrical storage apparatus module which concerns on 3rd Embodiment was equipped. 第4実施形態に係る蓄電装置モジュールとしての電池モジュールに備えられたセルホルダを示す斜視図である。It is a perspective view which shows the cell holder with which the battery module as an electrical storage apparatus module which concerns on 4th Embodiment was equipped. 図8に示したセルホルダの一変形例を示す斜視図である。It is a perspective view which shows the modification of the cell holder shown in FIG.
 以下、図面を参照しながら、本発明の一側面の実施形態について詳細に説明する。図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。
[第1実施形態]
Hereinafter, embodiments of one aspect of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
[First Embodiment]
 図1は、蓄電装置モジュールの一実施形態として電池モジュールを示す概略図である。同図に示されるように、電池モジュール(蓄電装置モジュール)1は、配列体2と、配列体2に対して拘束荷重を付加するエンドプレート(拘束部材)3,3と、配列体2とエンドプレート3との間に介在する弾性体4と、を備えて構成されている。 FIG. 1 is a schematic diagram showing a battery module as an embodiment of a power storage device module. As shown in the figure, the battery module (power storage device module) 1 includes an array body 2, end plates (constraint members) 3 and 3 that apply a restraining load to the array body 2, and the array body 2 and the end. And an elastic body 4 interposed between the plate 3 and the plate 3.
 配列体2は、複数(ここでは7体)の電池(蓄電装置)10と、各電池10をそれぞれ保持する複数(ここでは7体)のセルホルダ(蓄電装置ホルダ)5と、を有している。 The array body 2 includes a plurality (here, seven bodies) of batteries (power storage devices) 10 and a plurality (here, seven bodies) of cell holders (power storage device holders) 5 that respectively hold the batteries 10. .
 電池10は、例えばリチウムイオン二次電池である。電池10は、図2に示されるように、例えば略直方体形状をなす中空のケース11と、ケース11内に収容された電極組立体(図示省略)と、を備えている。ケース11は、例えばアルミニウム等の金属によって形成されている。ケース11は、配列体2の配列方向(図2に紙面貫通方向)に対向する一対の正面12a及び背面12bと、背面12bの短手方向(図2の上下方向)に対向する一対の頂面13a及び底面13bと、背面12bの長手方向(図2の左右方向)に対向する一対の側面14a,14bと、を有している。 The battery 10 is, for example, a lithium ion secondary battery. As shown in FIG. 2, the battery 10 includes a hollow case 11 having a substantially rectangular parallelepiped shape, for example, and an electrode assembly (not shown) housed in the case 11. The case 11 is made of a metal such as aluminum. The case 11 includes a pair of front surfaces 12a and a rear surface 12b that face each other in the arrangement direction of the array bodies 2 (through direction in FIG. 2), and a pair of top surfaces that face each other in the short side direction (the vertical direction in FIG. 2). 13a and a bottom surface 13b, and a pair of side surfaces 14a and 14b facing in the longitudinal direction of the back surface 12b (left and right direction in FIG. 2).
 ケース11の内部には、例えば有機溶媒系又は非水系の電解液が注入されている。ケース11の頂面13aには、正極端子15と負極端子16とが互いに離間して配置されている。電極組立体は、例えば、正極と、負極と、正極と負極との間に配置された袋状のセパレータとによって構成されている。電極組立体は、セパレータ内に正極が収容された状態で、正極と負極とがセパレータを介して配列体2の配列方向に沿って交互に積層されている。 In the case 11, for example, an organic solvent-based or non-aqueous electrolyte is injected. On the top surface 13 a of the case 11, the positive electrode terminal 15 and the negative electrode terminal 16 are disposed so as to be separated from each other. The electrode assembly includes, for example, a positive electrode, a negative electrode, and a bag-like separator disposed between the positive electrode and the negative electrode. In the electrode assembly, the positive electrode and the negative electrode are alternately stacked along the arrangement direction of the array 2 via the separator in a state where the positive electrode is accommodated in the separator.
 セルホルダ5は、例えばポリプロピレンといった樹脂材料によって一体成型されている。セルホルダ5は、図2に示されるように、ケース11の周囲に位置している。 The cell holder 5 is integrally formed of a resin material such as polypropylene. The cell holder 5 is located around the case 11 as shown in FIG.
 エンドプレート3は、配列体2に対して電池10の配列方向に拘束荷重を付加する。エンドプレート3は、例えば金属製の板状部材である。エンドプレート3は、図1に示されるように、例えば電池10を配列方向から見た場合の面積よりも大きい面積を有している。エンドプレート3は、外縁部分が電池10よりも外側に張り出した状態で、配列体2及び弾性体4の配列方向の両端にそれぞれ配置されている。エンドプレート3,3の外縁部分には、複数のボルト6が挿通されている。各ボルト6の先端にエンドプレート3の外側からナット7が螺合されることで、電池10及び弾性体4がエンドプレート3,3により挟持されてユニット化されると共に、エンドプレート3,3により拘束荷重が付加される。 The end plate 3 applies a restraining load to the array body 2 in the array direction of the batteries 10. The end plate 3 is a metal plate-like member, for example. As shown in FIG. 1, the end plate 3 has an area larger than the area when the battery 10 is viewed from the arrangement direction, for example. The end plates 3 are respectively disposed at both ends of the array body 2 and the elastic body 4 in the array direction in a state where the outer edge portion projects outward from the battery 10. A plurality of bolts 6 are inserted through outer edge portions of the end plates 3 and 3. The nut 7 is screwed onto the tip of each bolt 6 from the outside of the end plate 3, whereby the battery 10 and the elastic body 4 are sandwiched by the end plates 3, 3 to form a unit, and the end plates 3, 3 Restraint load is added.
 弾性体4は、電池10に膨張が生じた場合等に、拘束荷重による電池10及びエンドプレート3の破損を防止する目的で用いられる部材である。弾性体4は、図1に示されるように、例えばウレタン製のゴムスポンジによって矩形の板状に形成され、配列方向の一端側の電池10とエンドプレート3との間に配置されている。弾性体4の厚さは、エンドプレート3の厚さと同等以上となっている。弾性体4の形成材料としては、例えばエチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム、シリコンゴム等が挙げられる。 The elastic body 4 is a member used for the purpose of preventing the battery 10 and the end plate 3 from being damaged by a restraining load when the battery 10 is expanded. As shown in FIG. 1, the elastic body 4 is formed in a rectangular plate shape by, for example, urethane rubber sponge, and is disposed between the battery 10 on one end side in the arrangement direction and the end plate 3. The thickness of the elastic body 4 is equal to or greater than the thickness of the end plate 3. Examples of the material for forming the elastic body 4 include ethylene propylene diene rubber (EPDM), chloroprene rubber, and silicon rubber.
 続いて、セルホルダ5について更に詳細に説明する。 Subsequently, the cell holder 5 will be described in more detail.
 セルホルダ5は、図3に示されるように、電池10の背面12bと対向する背壁部20と、ケース11の底面13bと対向する底壁部30と、電池10の両側面14a,14bと対向する1対の側壁部40,40と、ケース11の頂面13aと対向する頂壁部50と、を備えている。 As shown in FIG. 3, the cell holder 5 is opposed to the back wall portion 20 facing the back surface 12 b of the battery 10, the bottom wall portion 30 facing the bottom surface 13 b of the case 11, and both side surfaces 14 a and 14 b of the battery 10. A pair of side wall portions 40, 40 and a top wall portion 50 facing the top surface 13 a of the case 11.
 背壁部20は、矩形板状の背板21と、背板21の長手方向に延在する直方体形状(断面矩形状)の複数(ここでは9つ)の第1リブ(リブ)22と、を有している。第1リブ22の延在方向の長さは、背板21の長手方向の長さと略同一である。各第1リブ22は、背板21の一方面21aに配置されている。各第1リブ22は、背板21の短手方向に沿って、第1リブ22の幅と同程度の間隔で略平行に配列されている。配列端の位置する一方の第1リブ22(図3の下側の第1リブ22)と背板21の短手方向の一端部(図3の下側の端部)との間隔は、隣り合う第1リブ22間の間隔よりも広くなっている。 The back wall portion 20 includes a rectangular plate-like back plate 21, a plurality of (here, nine) first ribs (ribs) 22 having a rectangular parallelepiped shape (cross-sectional rectangular shape) extending in the longitudinal direction of the back plate 21, have. The length of the first rib 22 in the extending direction is substantially the same as the length of the back plate 21 in the longitudinal direction. Each first rib 22 is disposed on one surface 21 a of the back plate 21. The first ribs 22 are arranged substantially in parallel with the width of the first ribs 22 along the short direction of the back plate 21. The distance between one first rib 22 (lower first rib 22 in FIG. 3) where the arrangement end is located and one end portion (lower end portion in FIG. 3) in the short direction of the back plate 21 is adjacent. It is wider than the interval between the matching first ribs 22.
 底壁部30は、長手方向の両端部が折り曲げられた矩形板状の凹部31と、凹部31の両端部を支持する直方体状の1対の支持部32,32と、を有している。支持部32は、凹部31の凹み方向と反対側(第1リブ22側)に向かって突出する突出部分32aと、凹部31の凹み方向に向かって突出する脚部分32bとを有している。すなわち、突出部分32a及び脚部分32bは、底壁部30の両端部に設けられている。突出部分32aの先端面は、ケース11の底面13bが載置される載置面32cである。脚部分32bには、底壁部30の短手方向に延在する貫通孔32dが設けられている。貫通孔32dには、上述したボルト6が挿通される。 The bottom wall portion 30 includes a rectangular plate-shaped concave portion 31 in which both end portions in the longitudinal direction are bent, and a pair of rectangular parallelepiped-shaped support portions 32 and 32 that support both end portions of the concave portion 31. The support portion 32 includes a protruding portion 32 a that protrudes toward the opposite side (first rib 22 side) of the recessed portion 31 and a leg portion 32 b that protrudes toward the recessed direction of the recessed portion 31. That is, the protruding portion 32 a and the leg portion 32 b are provided at both ends of the bottom wall portion 30. The front end surface of the protruding portion 32a is a mounting surface 32c on which the bottom surface 13b of the case 11 is mounted. The leg portion 32 b is provided with a through hole 32 d extending in the short direction of the bottom wall portion 30. The bolt 6 described above is inserted into the through hole 32d.
 底壁部30は、背板21の短手方向の一端部(図3の下側の端部)に配置されている。底壁部30の短手方向は、背板21の一方面21aの面方向と直交する方向に向けられている。底壁部30は、底壁部30の短手方向の一端部によって、背板21の短手方向の一端部に接続されている。 The bottom wall portion 30 is disposed at one end portion of the back plate 21 in the short direction (the lower end portion in FIG. 3). The short side direction of the bottom wall portion 30 is directed in a direction orthogonal to the surface direction of the one surface 21 a of the back plate 21. The bottom wall portion 30 is connected to one end portion in the short direction of the back plate 21 by one end portion in the short direction of the bottom wall portion 30.
 側壁部40は、矩形板状を呈している。側壁部40の短手方向の長さは、底壁部30の短手方向の長さと略同一である。側壁部40には、側壁部40の短手方向の一端部を矩形状に切り欠いた開口部41が形成されている。開口部41は、側壁部40の長手方向に沿って延在している。 The side wall portion 40 has a rectangular plate shape. The length of the side wall portion 40 in the short direction is substantially the same as the length of the bottom wall portion 30 in the short direction. The side wall 40 is formed with an opening 41 in which one end in the short direction of the side wall 40 is cut out in a rectangular shape. The opening 41 extends along the longitudinal direction of the side wall 40.
 各側壁部40,40は、背板21の長手方向の各端部にそれぞれ配置されている。側壁部40の短手方向は、背板21の一方面21aの面方向と直交する方向に向けられている。各側壁部40,40は、各側壁部40,40の短手方向の一端部によって、背板21の長手方向の各端部にそれぞれ接続されている。各側壁部40,40は、各側壁部40,40の長手方向の一端部(図3の下側の端部)によって、各支持部32,32に接続されている。各開口部41,41は、背板21の長手方向に互いに対向している。開口部41の延在方向の縁部は、配列端に位置する第1リブ22近傍に位置している。 Each side wall 40, 40 is disposed at each end of the back plate 21 in the longitudinal direction. The short side direction of the side wall portion 40 is directed in a direction orthogonal to the surface direction of the one surface 21 a of the back plate 21. Each side wall 40, 40 is connected to each end in the longitudinal direction of the back plate 21 by one end in the short direction of each side wall 40, 40. Each side wall part 40, 40 is connected to each support part 32, 32 by one end part (lower end part in FIG. 3) of each side wall part 40, 40 in the longitudinal direction. The openings 41 and 41 are opposed to each other in the longitudinal direction of the back plate 21. The edge of the opening 41 in the extending direction is located in the vicinity of the first rib 22 located at the arrangement end.
 頂壁部50は、1対の端子収容部51,51と、1対の柱部52,52とを有している。端子収容部51は、矩形平板状を呈している。端子収容部51には、端子収容部51の短手方向の一端を半円状に切り欠いた切欠き部51aが形成されている。切欠き部51aには、電池10の正極端子15及び負極端子16が位置する。柱部52は、柱状を呈している。柱部52は、端子収容部51の長手方向の一端部(内側端部)に配置されている。柱部52には、端子収容部51の短手方向に延びる貫通孔52aが設けられている。貫通孔52aには、上述したボルト6が挿通される。 The top wall portion 50 has a pair of terminal accommodating portions 51 and 51 and a pair of column portions 52 and 52. The terminal accommodating portion 51 has a rectangular flat plate shape. The terminal accommodating portion 51 is formed with a notched portion 51a in which one end in the short direction of the terminal accommodating portion 51 is notched in a semicircular shape. The positive electrode terminal 15 and the negative electrode terminal 16 of the battery 10 are located in the notch 51a. The column part 52 has a columnar shape. The column portion 52 is disposed at one end portion (inner end portion) in the longitudinal direction of the terminal accommodating portion 51. The column part 52 is provided with a through hole 52 a extending in the short direction of the terminal accommodating part 51. The above-described bolt 6 is inserted into the through hole 52a.
 頂壁部50は、背板21の短手方向の他端部(図3の上側の端部)に配置されている。端子収容部51の短手方向は、背板21の一方面21aの面方向と直交している。頂壁部50は、端子収容部51の短手方向における頂壁部50の一端部によって、背板21の短手方向の他端部(図3の上側の端部)に接続されている。各端子収容部51,51の長手方向の他端部は、各側壁部40,40の長手方向の他端部(図3の上側の端部)にそれぞれ接続されている。 The top wall 50 is disposed at the other end of the back plate 21 in the lateral direction (the upper end in FIG. 3). The short side direction of the terminal accommodating portion 51 is orthogonal to the surface direction of the one surface 21 a of the back plate 21. The top wall portion 50 is connected to the other end portion in the short direction of the back plate 21 (the upper end portion in FIG. 3) by one end portion of the top wall portion 50 in the short direction of the terminal accommodating portion 51. The other end portion in the longitudinal direction of each terminal accommodating portion 51, 51 is connected to the other end portion in the longitudinal direction of each side wall portion 40, 40 (the upper end portion in FIG. 3).
 電池10は、セルホルダ5に対して嵌め込まれている。ケース11の背面12bは、図4に示されるように、第1リブ22の先端に接触している。このため、ケース11の背面12b、背壁部20の第1リブ22及び背板21で画成された空間によって、第1空気流路R1が形成されている。第1空気流路R1は、1対の側壁部40,40の対向方向に延在している。したがって、一方の開口部41(図3の左側の開口部41)から流入した空気は、各第1空気流路R1を通過して他方の開口部41(図3の右側の開口部41)から流出する。第1空気流路R1は、例えば冷却された空気等が流れる流路として用いられ、電池10の冷却に寄与する。 The battery 10 is fitted into the cell holder 5. The back surface 12b of the case 11 is in contact with the tip of the first rib 22 as shown in FIG. For this reason, the first air flow path R <b> 1 is formed by a space defined by the back surface 12 b of the case 11, the first rib 22 of the back wall portion 20, and the back plate 21. The first air flow path R1 extends in the facing direction of the pair of side wall portions 40,40. Therefore, the air flowing in from one opening 41 (left opening 41 in FIG. 3) passes through each first air flow path R1 and from the other opening 41 (right opening 41 in FIG. 3). leak. The first air flow path R1 is used as a flow path through which cooled air or the like flows, for example, and contributes to cooling of the battery 10.
 一方で、底壁部30の各突出部分32aの間には、図2に示されるように、第2空気流路R2が配置されている。より具体的には、ケース11の底面13bは、突出部分32aの載置面32cに載置されている。このため、ケース11の底面13b、底壁部30の凹部31及び各突出部分32a,32aで画成された空間によって、第2空気流路R2が形成されている。第2空気流路R2は、例えば冷却された空気等が流れる流路として用いられ、電池10の冷却に寄与する。空気は、各開口部41を介して、第2空気流路R2の一端側(図2の紙面方向奥側)に流入する。第2空気流路R2を通過した空気は、第2空気流路R2の他端側(図2の紙面方向手前側)から流出する。 On the other hand, between each protrusion part 32a of the bottom wall part 30, as FIG. 2 shows, 2nd air flow path R2 is arrange | positioned. More specifically, the bottom surface 13b of the case 11 is placed on the placement surface 32c of the protruding portion 32a. For this reason, the second air flow path R2 is formed by the space defined by the bottom surface 13b of the case 11, the concave portion 31 of the bottom wall portion 30, and the protruding portions 32a and 32a. The second air flow path R2 is used as a flow path through which cooled air or the like flows, for example, and contributes to cooling of the battery 10. Air flows into one end side of the second air flow path R2 (the back side in the paper surface direction in FIG. 2) through each opening 41. The air that has passed through the second air flow path R2 flows out from the other end side of the second air flow path R2 (the front side in the drawing in FIG. 2).
 以上説明したように、本実施形態では、第1空気流路R1及び第2空気流路R2に空気を流すことによって、電池10の背面12b及び底面13bが冷却される。すなわち、従来のセルホルダのように電池10の背面12bが冷却されるだけでなく、電池10の底面13bも冷却される。これにより、電池10の放熱性を向上させることができる。 As described above, in this embodiment, the back surface 12b and the bottom surface 13b of the battery 10 are cooled by flowing air through the first air flow path R1 and the second air flow path R2. That is, not only the back surface 12b of the battery 10 is cooled like a conventional cell holder, but also the bottom surface 13b of the battery 10 is cooled. Thereby, the heat dissipation of the battery 10 can be improved.
 また、本実施形態では、突出部分32aは、底壁部30の両端部に設けられている。第2空気流路R2は、突出部分32aの間に配置されている。これにより、電池10の過充電等に起因して温度上昇しやすい電池10の底面13bの中央部の放熱性を向上させることができる。
[第2実施形態]
In the present embodiment, the protruding portions 32 a are provided at both ends of the bottom wall portion 30. The second air flow path R2 is disposed between the protruding portions 32a. Thereby, the heat dissipation of the center part of the bottom face 13b of the battery 10 which is likely to rise in temperature due to overcharge of the battery 10 or the like can be improved.
[Second Embodiment]
 本実施形態は、セルホルダ5の底壁部の構成において第1実施形態と異なる。 This embodiment is different from the first embodiment in the configuration of the bottom wall portion of the cell holder 5.
 セルホルダ5は、図5に示されるように、底壁部230を備えている。底壁部230は、矩形板状の底板231と、複数(ここでは19個)の第2リブ(突出部分)232を有している。第2リブ232は、底壁部230の短手方向に延在する直方体形状(断面矩形状)を呈している。第2リブ232は、底板231の一方面231aに配置されている。各第2リブ232は、第1空気流路R1の延在方向に沿って、第2リブ232の幅と同程度の間隔で略平行に配列されている。このため、ケース11の底面13b、底壁部230の底板231及び各第2リブ232で画成された空間によって、複数(ここでは18本)の第2空気流路R2が形成されている。各第2空気流路R2は、第1空気流路R1の延在方向と直交する方向に延在している。第2空気流路R2の一端側(図2の紙面方向奥側)には、各開口部41から流入した空気が流れ込む。第2空気流路R2を通過した空気は、第2空気流路R2の他端側(図2の紙面方向手前側)から流出する。このように、本実施形態においては、簡易な構成で電池10の放熱性を向上させることができる。なお、第2空気流路R2は、複数配置されている必要はなく、少なくとも1つ以上配置されていればよい。 The cell holder 5 includes a bottom wall portion 230 as shown in FIG. The bottom wall 230 has a rectangular plate-like bottom plate 231 and a plurality (19 in this case) of second ribs (projecting portions) 232. The second rib 232 has a rectangular parallelepiped shape (a rectangular cross section) extending in the short direction of the bottom wall portion 230. The second rib 232 is disposed on the one surface 231 a of the bottom plate 231. Each of the second ribs 232 is arranged substantially in parallel along the extending direction of the first air flow path R <b> 1 at intervals similar to the width of the second ribs 232. For this reason, a plurality of (here, 18) second air flow paths R <b> 2 are formed by the space defined by the bottom surface 13 b of the case 11, the bottom plate 231 of the bottom wall portion 230, and the second ribs 232. Each second air flow path R2 extends in a direction orthogonal to the extending direction of the first air flow path R1. The air that has flowed in from the openings 41 flows into one end side (the back side in the drawing in FIG. 2) of the second air flow path R2. The air that has passed through the second air flow path R2 flows out from the other end side of the second air flow path R2 (the front side in the drawing in FIG. 2). Thus, in this embodiment, the heat dissipation of the battery 10 can be improved with a simple configuration. Note that a plurality of the second air flow paths R2 do not need to be arranged, and at least one or more may be arranged.
 また、第2空気流路R2の幅は、図6に示されるように、第1空気流路R1の延在方向の一方側から他方側に向かうにつれて広くなっていてもよい。空気が、各開口部41,41を通じて、第1空気流路R1の延在方向の一方側から他方側に向かって流れる場合、当該延在方向の一方側から他方側に向かって空気の温度は上昇し得る。しかしながら、この場合においては、第2空気流路R2の幅は、第1空気流路R1の延在方向の一方側から他方側に向かうにつれて広くなっているので、各第2空気流路R2に流れる空気の流量が第1空気流路R1の延在方向の一方側から他方側に向かって増える。この結果、当該延在方向における電池10の放熱性のバラツキを抑制することができる。
[第3実施形態]
Moreover, the width | variety of 2nd air flow path R2 may become large as it goes to the other side from the one side of the extension direction of 1st air flow path R1, as FIG. 6 shows. When air flows from one side in the extending direction of the first air flow path R1 to the other side through the openings 41 and 41, the temperature of the air from one side to the other side in the extending direction is Can rise. However, in this case, the width of the second air flow path R2 becomes wider from one side of the extending direction of the first air flow path R1 toward the other side. The flow rate of the flowing air increases from one side in the extending direction of the first air flow path R1 toward the other side. As a result, variation in heat dissipation of the battery 10 in the extending direction can be suppressed.
[Third Embodiment]
 本実施形態は、セルホルダ5の背壁部及び底壁部の構成において、第1実施形態と異なる。 This embodiment is different from the first embodiment in the configuration of the back wall portion and the bottom wall portion of the cell holder 5.
 セルホルダ5は、図7に示されるように、背壁部320と、底壁部330とを備えている。背壁部320は、矩形板状の背板321と、複数(ここでは9つ)の第1リブ322と、複数(ここでは8つ)の第3リブ323とを有している。第1リブ322は、背板321の長手方向に延在する直方体形状(断面矩形状)を呈している。各第1リブ322の延在方向の長さは、それぞれ異なっている。各第1リブ322は、背板321の一方面321aに配置されている。各第1リブ322は、底壁部330側から頂壁部50側に向かうに連れて、長さの長い第1リブ322が位置するように配列されている。各第1リブ322は、第1リブ322の幅と同程度の間隔で略平行に配列されている。各第1リブ322の一端部は、背板321の長手方向の一方側の端部(図7の左側の端部)に揃えられている。これにより、ケース11の背面12b、背壁部320の第1リブ322及び背板321で画成された空間によって、長さの異なる複数の第1空気流路R1が形成されている。第1空気流路R1は、1対の側壁部40,40の対向方向に延在している。 The cell holder 5 includes a back wall portion 320 and a bottom wall portion 330, as shown in FIG. The back wall portion 320 includes a rectangular plate-like back plate 321, a plurality (here, nine) of first ribs 322, and a plurality (here, eight) of third ribs 323. The first rib 322 has a rectangular parallelepiped shape (a rectangular cross section) extending in the longitudinal direction of the back plate 321. The lengths of the first ribs 322 in the extending direction are different from each other. Each first rib 322 is disposed on one surface 321 a of the back plate 321. Each first rib 322 is arranged so that the first rib 322 having a long length is positioned from the bottom wall portion 330 side toward the top wall portion 50 side. The first ribs 322 are arranged substantially in parallel at intervals similar to the width of the first ribs 322. One end of each first rib 322 is aligned with one end in the longitudinal direction of the back plate 321 (the left end in FIG. 7). Thus, a plurality of first air flow paths R1 having different lengths are formed by the space defined by the back surface 12b of the case 11, the first rib 322 of the back wall 320, and the back plate 321. The first air flow path R1 extends in the facing direction of the pair of side wall portions 40,40.
 各第3リブ323は、背板321の短手方向に延在する直方体形状(断面矩形状)を呈している。各第3リブ323の延在方向の長さは、それぞれ異なっている。各第3リブ323は、背板321の一方面321aに配置されている。各第3リブ323は、一方の側壁部40側(図7の左側)から他方の側壁部40側(図7の右側)に向かうに連れて、長さの長い第3リブ323が位置するように配列されている。各第3リブ323は、第3リブ323の幅よりも広い間隔で略平行に配列されている。各第3リブ323の一端部は、背板321の短手方向の一方側の端部(図7の下側の端部)に揃えられている。これにより、ケース11の背面12b、背壁部320の第3リブ323及び背板321で画成された空間によって、長さの異なる複数の第3空気流路R3が形成されている。 Each third rib 323 has a rectangular parallelepiped shape (a rectangular cross section) extending in the short direction of the back plate 321. The lengths of the third ribs 323 in the extending direction are different from each other. Each third rib 323 is disposed on one surface 321 a of the back plate 321. Each of the third ribs 323 is positioned such that the longer third rib 323 is positioned from the side of the one side wall 40 (the left side in FIG. 7) toward the other side wall 40 (the right side in FIG. 7). Is arranged. The third ribs 323 are arranged substantially in parallel at intervals wider than the width of the third ribs 323. One end of each third rib 323 is aligned with one end of the back plate 321 in the lateral direction (the lower end in FIG. 7). Thus, a plurality of third air flow paths R3 having different lengths are formed by the space defined by the back surface 12b of the case 11, the third rib 323 of the back wall 320, and the back plate 321.
 各第1リブ322の他端部と各第3リブ323の他端部とは接続されている。すなわち、第1空気流路R1と第3空気流路R3とは連通している。これにより、背板321の一方面321aには、平面視でL字状の複数の空気流路が形成されている。 The other end of each first rib 322 and the other end of each third rib 323 are connected. That is, the first air flow path R1 and the third air flow path R3 are in communication. Thereby, a plurality of L-shaped air flow paths are formed on the one surface 321a of the back plate 321 in plan view.
 底壁部330は、矩形板状の底板331と、複数(ここでは8個)の第2リブ(突出部分)332とを有している。第2リブ332は、底壁部330の短手方向に延在する直方体形状(断面矩形状)を呈している。第2リブ332は、底板331の一方面331aに配置されている。各第2リブ332は、第1空気流路R1の延在方向に沿って、第2リブ332の幅よりも広い間隔で略平行に配列されている。このため、ケース11の底面13b、底壁部330の底板331及び各第2リブ332で画成された空間によって、複数の第2空気流路R2が形成されている。各第2空気流路R2は、第1空気流路R1の延在方向と直交する方向に延在している。 The bottom wall portion 330 includes a rectangular plate-like bottom plate 331 and a plurality of (here, eight) second ribs (protruding portions) 332. The second rib 332 has a rectangular parallelepiped shape (a rectangular cross section) extending in the short direction of the bottom wall portion 330. The second rib 332 is disposed on the one surface 331 a of the bottom plate 331. The second ribs 332 are arranged substantially in parallel along the extending direction of the first air flow path R1 at an interval wider than the width of the second ribs 332. For this reason, a plurality of second air flow paths R <b> 2 are formed by the space defined by the bottom surface 13 b of the case 11, the bottom plate 331 of the bottom wall portion 330, and the second ribs 332. Each second air flow path R2 extends in a direction orthogonal to the extending direction of the first air flow path R1.
 各第2リブ232の一端部(図7の紙面方向奥側の端部)と各第3リブ323の一端部(図7の下側の端部)とは接続されている。すなわち、第2空気流路R2と第3空気流路R3とは連通している。これにより、第1空気流路R1と第2空気流路R2とは、第3空気流路R3を介して連通している。 One end of each second rib 232 (end on the back side in the drawing in FIG. 7) is connected to one end of each third rib 323 (lower end in FIG. 7). That is, the second air flow path R2 and the third air flow path R3 are in communication. Thereby, 1st air flow path R1 and 2nd air flow path R2 are connected via 3rd air flow path R3.
 本実施形態では、空気が第1空気流路R1から第2空気流路R2に至る流路を流通するので、空気は空気流路内に長い時間留まることになる。この結果、空気を電池10の冷却に十分に利用することができる。
[第4実施形態]
In this embodiment, since air flows through the flow path from the first air flow path R1 to the second air flow path R2, the air stays in the air flow path for a long time. As a result, air can be fully utilized for cooling the battery 10.
[Fourth Embodiment]
 本実施形態は、セルホルダ5の底壁部及び側壁部の構成において第1実施形態と異なる。 This embodiment is different from the first embodiment in the configuration of the bottom wall portion and the side wall portion of the cell holder 5.
 セルホルダ5は、図8に示されるように、底壁部430と、一対の側壁部440,440とを備えている。底壁部430は、矩形板状の底板431を有している。底板431には、第1空気流路R1の延在方向に延在している1本の第2空気流路R2が形成されている。 As shown in FIG. 8, the cell holder 5 includes a bottom wall portion 430 and a pair of side wall portions 440 and 440. The bottom wall part 430 has a rectangular plate-like bottom plate 431. In the bottom plate 431, one second air flow path R2 extending in the extending direction of the first air flow path R1 is formed.
 側壁部440は、矩形板状を呈している。側壁部440には、開口部441が形成されている。開口部441は、第1開口部分441aと、第2開口部分441bとから構成されている。第1開口部分441aは、側壁部440の短手方向の一端部を矩形状に切り欠いて形成されている。第1開口部分441aは、側壁部440の長手方向に沿って延在している。第2開口部分441bは、第1開口部分441aの長手方向の一端部(底壁部430側の端部)から側壁部440の短手方向の他端部に向かって延在している。第2空気流路R2は、各側壁部440,440の対向方向からみたときに、第2開口部分441bの周縁部で囲まれる領域内に位置している。したがって、一方の第2開口部分441bから流入した空気は、第2空気流路R2を通過して他方の第2開口部分441bから流出する。このように、本実施形態では、簡易な構成で電池10の放熱性を向上させることができる。 The side wall portion 440 has a rectangular plate shape. An opening 441 is formed in the side wall 440. The opening 441 includes a first opening portion 441a and a second opening portion 441b. The first opening portion 441a is formed by cutting out one end of the side wall portion 440 in the lateral direction into a rectangular shape. The first opening portion 441 a extends along the longitudinal direction of the side wall portion 440. The second opening portion 441b extends from one end portion (end portion on the bottom wall portion 430 side) in the longitudinal direction of the first opening portion 441a toward the other end portion in the short side direction of the side wall portion 440. The second air flow path R2 is located in a region surrounded by the peripheral edge of the second opening portion 441b when viewed from the opposing direction of the side wall portions 440 and 440. Therefore, the air flowing in from one second opening portion 441b passes through the second air flow path R2 and flows out from the other second opening portion 441b. Thus, in this embodiment, the heat dissipation of the battery 10 can be improved with a simple configuration.
 本発明は、上記実施形態に限られるものではない。 The present invention is not limited to the above embodiment.
 上記実施形態では、第1空気流路R1、第2空気流路R2、及び第3空気流路R3は、直線状を呈しているが、各空気流路R1,R2,R3は、図9に示された第2空気流路R2のように、例えば波状を呈してもよい。この場合、波状の第2空気流路R2と電池10の底面13bとが面する領域は、直線状の第2空気流路R2と電池10の底面13bとが面する領域と比べて広くなる。このため、電池10の放熱性を更に向上させることができる。また、各空気流路R1,R2,R3の幅、第1リブ22,322の幅、第2リブ232,332の幅、及び第3リブ323の幅を適宜変更してもよい。 In the said embodiment, although 1st air flow path R1, 2nd air flow path R2, and 3rd air flow path R3 are exhibiting linear form, each air flow path R1, R2, R3 is shown in FIG. Like the 2nd air flow path R2 shown, you may exhibit a wave shape, for example. In this case, a region where the wavy second air flow path R2 and the bottom surface 13b of the battery 10 face is wider than a region where the straight second air flow path R2 and the bottom surface 13b of the battery 10 face. For this reason, the heat dissipation of the battery 10 can be further improved. Further, the width of each air flow path R1, R2, R3, the width of the first ribs 22, 322, the width of the second ribs 232, 332, and the width of the third rib 323 may be appropriately changed.
 上記実施形態では、一方の開口部41(図3の左側の開口部41)から流入した空気は、各第1空気流路R1を通過して他方の開口部41(図3の右側の開口部41)から流出していたが、空気の流れる方向を逆向きとしてもよい。すなわち、他方の開口部41から流入した空気が、一方の開口部41から流出してもよい。また、空気の流れる方向に応じて、各空気流路R1,R2,R3、第1リブ22,322、第2リブ232,332、及び第3リブ323の配置を適宜変更してもよい。 In the above embodiment, the air flowing in from one opening 41 (the left opening 41 in FIG. 3) passes through each first air flow path R1 and the other opening 41 (the right opening in FIG. 3). 41), the air flow direction may be reversed. That is, the air that flows in from the other opening 41 may flow out from the one opening 41. Further, the arrangement of the air flow paths R1, R2, R3, the first ribs 22, 322, the second ribs 232, 332, and the third ribs 323 may be appropriately changed according to the direction in which the air flows.
 上記実施形態では、エンドプレート3,3同士をボルト6及びナット7で締結して配列体2及び弾性体4に拘束荷重を付加しているが、エンドプレート3,3同士を拘束バンド(金属プレート等)で連結し、拘束バンドの両端部をエンドプレート3,3にそれぞれボルト等で締結して配列体2及び弾性体4に拘束荷重を付加してもよい。また、配列体2に拘束荷重を付加しない蓄電装置モジュールにおいて、上記実施形態に係る蓄電装置を適用してもよい。 In the above embodiment, the end plates 3 and 3 are fastened to each other with the bolt 6 and the nut 7 and a restraining load is applied to the array body 2 and the elastic body 4. Etc.), and both ends of the restraint band may be fastened to the end plates 3 and 3 with bolts or the like, respectively, and a restraint load may be applied to the array body 2 and the elastic body 4. In addition, the power storage device according to the above embodiment may be applied to a power storage device module that does not apply a restraining load to the array 2.
 上記実施形態では、蓄電装置がリチウムイオン二次電池等の二次電池であるが、本発明は、特にそのような二次電池には限られず、例えば電気二重層キャパシタまたはリチウムイオンキャパシタ等の蓄電装置を備えた蓄電装置モジュールにも適用可能である。 In the above embodiment, the power storage device is a secondary battery such as a lithium ion secondary battery. However, the present invention is not particularly limited to such a secondary battery, and for example, an electrical storage such as an electric double layer capacitor or a lithium ion capacitor. The present invention can also be applied to a power storage device module including the device.
 蓄電装置の放熱性が向上される。 放熱 The heat dissipation of the power storage device is improved.
 1…電池モジュール(蓄電装置モジュール)、5…セルホルダ(蓄電装置ホルダ)、10…電池(蓄電装置)、20,320…背壁部、30,330,430…底壁部、40,440…側壁部、22,322…第1リブ(リブ)、32a…突出部分、232,332…第2リブ(突出部分)、R1…第1空気流路、R2…第2空気流路。 DESCRIPTION OF SYMBOLS 1 ... Battery module (electric storage apparatus module), 5 ... Cell holder (electric storage apparatus holder), 10 ... Battery (electric storage apparatus), 20, 320 ... Back wall part, 30, 330, 430 ... Bottom wall part, 40, 440 ... Side wall Part, 22,322 ... 1st rib (rib), 32a ... projecting part, 232, 332 ... 2nd rib (projecting part), R1 ... 1st air flow path, R2 ... 2nd air flow path.

Claims (8)

  1.  蓄電装置を保持する蓄電装置ホルダであって、
     前記蓄電装置の底面と対向する底壁部と、
     前記蓄電装置の両側面と対向する1対の側壁部と、
     前記蓄電装置の背面と対向する背壁部とを備え、
     前記背壁部は、前記1対の側壁部の対向方向に延在し、空気が流れる第1空気流路を画成する複数のリブを有し、
     前記底壁部は、前記蓄電装置が載置されると共に前記空気が流れる第2空気流路を画成する複数の突出部分を有する、蓄電装置ホルダ。
    A power storage device holder for holding a power storage device,
    A bottom wall portion facing the bottom surface of the power storage device;
    A pair of side wall portions facing both side surfaces of the power storage device;
    A back wall facing the back of the power storage device;
    The back wall portion has a plurality of ribs that extend in a facing direction of the pair of side wall portions and define a first air flow path through which air flows.
    The bottom wall portion is a power storage device holder having a plurality of protruding portions that define a second air flow path on which the power storage device is placed and the air flows.
  2.  前記突出部分は、前記底壁部の両端部に設けられており、
     前記第2空気流路は、前記底壁部の両端部に設けられた前記突出部分の間に配置されている、請求項1記載の蓄電装置ホルダ。
    The protruding portions are provided at both ends of the bottom wall portion,
    The power storage device holder according to claim 1, wherein the second air flow path is disposed between the protruding portions provided at both end portions of the bottom wall portion.
  3.  前記第2空気流路は、前記第1空気流路の延在方向と直交する方向に延在している、請求項1記載の蓄電装置ホルダ。 The power storage device holder according to claim 1, wherein the second air flow path extends in a direction orthogonal to an extending direction of the first air flow path.
  4.  前記第2空気流路は、前記第1空気流路の延在方向に沿って複数配列されており、
     前記第2空気流路の幅は、前記第1空気流路の延在方向の一方側から他方側に向かうにつれて広くなっている、請求項3記載の蓄電装置ホルダ。
    A plurality of the second air flow paths are arranged along the extending direction of the first air flow path,
    The power storage device holder according to claim 3, wherein a width of the second air flow path is increased from one side in the extending direction of the first air flow path toward the other side.
  5.  前記第1空気流路と前記第2空気流路とが連通している、請求項3又は4記載の蓄電装置ホルダ。 The power storage device holder according to claim 3 or 4, wherein the first air channel and the second air channel communicate with each other.
  6.  前記第2空気流路は、前記第1空気流路の延在方向に延在している、請求項1記載の蓄電装置ホルダ。 The power storage device holder according to claim 1, wherein the second air flow path extends in an extending direction of the first air flow path.
  7.  前記第2空気流路は、波状を有している、請求項1~6のいずれか一項記載の蓄電装置ホルダ。 The power storage device holder according to any one of claims 1 to 6, wherein the second air flow path has a wave shape.
  8.  複数の蓄電装置と、
     前記複数の蓄電装置をそれぞれ保持する請求項1~7のいずれか一項記載の複数の蓄電装置ホルダと、を備える蓄電装置モジュール。
    A plurality of power storage devices;
    A power storage device module comprising: the plurality of power storage device holders according to any one of claims 1 to 7 each holding the plurality of power storage devices.
PCT/JP2016/061519 2015-04-24 2016-04-08 Electrical-storage-device holder, and electrical-storage-device module WO2016171005A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-089200 2015-04-24
JP2015089200A JP6657590B2 (en) 2015-04-24 2015-04-24 Power storage device holder and power storage device module

Publications (1)

Publication Number Publication Date
WO2016171005A1 true WO2016171005A1 (en) 2016-10-27

Family

ID=57144109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061519 WO2016171005A1 (en) 2015-04-24 2016-04-08 Electrical-storage-device holder, and electrical-storage-device module

Country Status (2)

Country Link
JP (1) JP6657590B2 (en)
WO (1) WO2016171005A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785514A (en) * 2017-10-09 2018-03-09 超威电源有限公司 A kind of zinc-nickel cell assembly housing with defencive function

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547407B2 (en) * 2015-05-18 2019-07-24 株式会社豊田自動織機 Power storage device module
JP7479752B2 (en) 2020-01-23 2024-05-09 株式会社指月電機製作所 Capacitor case and capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238554A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Holder of power storage element
JP2014032932A (en) * 2012-08-06 2014-02-20 Panasonic Corp Battery pack
JP2014102915A (en) * 2012-11-16 2014-06-05 Hitachi Vehicle Energy Ltd Battery pack

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707923B2 (en) * 2002-06-17 2011-06-22 パナソニック株式会社 Assembled battery
JP2008269985A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Power storage device
JP5121395B2 (en) * 2007-10-31 2013-01-16 三洋電機株式会社 Battery pack and battery pack separator
TWI476980B (en) * 2009-05-14 2015-03-11 Gs Yuasa Int Ltd Combination battery
JP2014130780A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Battery module and battery unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238554A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Holder of power storage element
JP2014032932A (en) * 2012-08-06 2014-02-20 Panasonic Corp Battery pack
JP2014102915A (en) * 2012-11-16 2014-06-05 Hitachi Vehicle Energy Ltd Battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785514A (en) * 2017-10-09 2018-03-09 超威电源有限公司 A kind of zinc-nickel cell assembly housing with defencive function

Also Published As

Publication number Publication date
JP2016207534A (en) 2016-12-08
JP6657590B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
US10873114B2 (en) Secondary battery module
JP7223954B2 (en) Battery modules and battery packs
JP6148202B2 (en) Storage device cooling structure
JP6286679B2 (en) Battery block
JP6047234B2 (en) Battery module
US10347885B2 (en) Battery module
US20130022859A1 (en) Battery Module
KR102236799B1 (en) Electric storage apparatus and electric storage apparatus unit
JP6608653B2 (en) Battery module
US10290851B2 (en) Energy storage apparatus
US20140356664A1 (en) Battery module
KR20170062845A (en) Battery Module Comprising Unit Module Having Simple Structure
JP2017103158A (en) Battery pack
WO2016171005A1 (en) Electrical-storage-device holder, and electrical-storage-device module
JP6277987B2 (en) Battery module
KR20170060451A (en) Battery pack
JP6500554B2 (en) Battery module
JP6690452B2 (en) Battery module
JP6855789B2 (en) Battery module
JP6488889B2 (en) Power storage module
JP6589543B2 (en) Battery module
JP6544015B2 (en) Battery holder
JP6500480B2 (en) Battery module
JP6493144B2 (en) Battery module
JP2017111897A (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783026

Country of ref document: EP

Kind code of ref document: A1