JP6491010B2 - Equipment for producing sterilized water containing chlorine dioxide - Google Patents

Equipment for producing sterilized water containing chlorine dioxide Download PDF

Info

Publication number
JP6491010B2
JP6491010B2 JP2015065575A JP2015065575A JP6491010B2 JP 6491010 B2 JP6491010 B2 JP 6491010B2 JP 2015065575 A JP2015065575 A JP 2015065575A JP 2015065575 A JP2015065575 A JP 2015065575A JP 6491010 B2 JP6491010 B2 JP 6491010B2
Authority
JP
Japan
Prior art keywords
chlorine dioxide
aqueous solution
sodium chlorite
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015065575A
Other languages
Japanese (ja)
Other versions
JP2016182590A (en
Inventor
高橋 健一
健一 高橋
文隆 松川
文隆 松川
武 宮原
武 宮原
Original Assignee
セントラルフィルター工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラルフィルター工業株式会社 filed Critical セントラルフィルター工業株式会社
Priority to JP2015065575A priority Critical patent/JP6491010B2/en
Publication of JP2016182590A publication Critical patent/JP2016182590A/en
Application granted granted Critical
Publication of JP6491010B2 publication Critical patent/JP6491010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、二酸化塩素を含有し、食品加工施設やビルの給水、畜産、生鮮品、病院の殺菌水、浄水又は排水等の殺菌に用いられる殺菌水(二酸化塩素含有殺菌水)の製造に用いられる二酸化塩素含有殺菌水の生成装置に関する。   The present invention is used to produce sterilized water (chlorine dioxide-containing sterilized water) that contains chlorine dioxide and is used for sterilization of water for food processing facilities and buildings, livestock production, fresh products, hospital sterilized water, purified water, waste water, etc. The present invention relates to a chlorine dioxide-containing sterilizing water generator.

二酸化塩素を含有する水は、溶存している二酸化塩素ガスの強い酸化力を利用して、殺菌又は消臭機能を持つ殺菌剤として使用されており、野菜、海産物、食肉等の生鮮品の殺菌用、人口透析装置の逆浸透膜の殺菌用、飲料水、ビルの給水等の殺菌用、畜産の殺菌用、病院の殺菌水用と、広く殺菌に用いられている。そして、二酸化塩素の強い殺菌力から、二酸化塩素ガスは、低い濃度での使用が可能であり、殺菌用途又は殺菌対象により、濃度を調節されて使用される。   Water containing chlorine dioxide is used as a disinfectant with a sterilizing or deodorizing function by utilizing the strong oxidizing power of dissolved chlorine dioxide gas, and sterilizes fresh products such as vegetables, seafood and meat. It is widely used for sterilization, such as sterilization of reverse osmosis membranes of artificial dialysis machines, sterilization of drinking water, building water supply, etc., sterilization of livestock, and sterilization water of hospitals. And from the strong disinfection power of chlorine dioxide, chlorine dioxide gas can be used at a low concentration, and the concentration is adjusted depending on the sterilization application or the object of sterilization.

二酸化塩素を含有する水を製造する方法としては、例えば、特表2004−536761号公報(特許文献1)、特開2013−144085号公報(特許文献2)、には、亜塩素酸ナトリウムのナトリウムイオンを水素イオンでイオン交換して、亜塩素酸を生じさせ、次いで、亜塩素酸を触媒反応により酸化させて、二酸化塩素を含有する水を得る方法が開示されている。   As a method for producing water containing chlorine dioxide, for example, Japanese translations of PCT publication No. 2004-536761 (patent document 1) and JP 2013-144085 (patent document 2) include sodium chlorite sodium. A method is disclosed in which ions are ion exchanged with hydrogen ions to produce chlorous acid and then chlorite is oxidized by a catalytic reaction to obtain water containing chlorine dioxide.

特表2004−536761号公報Japanese translation of PCT publication No. 2004-536761 特開2013−144085号公報JP2013-1444085A

殺菌に用いられる二酸化塩素含有水は、二酸化塩素濃度が低いのが通常であるため、本発明者らは、水溶液中の亜塩素酸ナトリウムをイオン交換及び触媒酸化して、連続して効率的に、二酸化塩素含有水を得るために、原料として、数%濃度の亜塩素酸ナトリウム水溶液を使用し、それを、イオン交換手段に希釈水を供給する送液管に供給して、その送液管中で、希釈亜塩素酸ナトリウム水溶液を得、得られる希釈亜塩素酸ナトリウム水溶液を、イオン交換及び触媒酸化して、二酸化塩素含有水を得、次いで、得られる二酸化塩素含有水を更に希釈水で希釈することにより、二酸化塩素を含有する殺菌水を得ることを試みた。   Since chlorine dioxide-containing water used for sterilization usually has a low chlorine dioxide concentration, the present inventors have succeeded in efficiently and continuously performing sodium ionization and catalytic oxidation of sodium chlorite in an aqueous solution. In order to obtain chlorine dioxide-containing water, a sodium chlorite aqueous solution with a concentration of several percent is used as a raw material, which is supplied to a liquid feed pipe for supplying dilution water to the ion exchange means, and the liquid feed pipe A diluted sodium chlorite aqueous solution is obtained, and the resulting diluted sodium chlorite aqueous solution is subjected to ion exchange and catalytic oxidation to obtain chlorine dioxide-containing water, and the resulting chlorine dioxide-containing water is further diluted with diluted water. An attempt was made to obtain sterilized water containing chlorine dioxide by dilution.

ところが、本発明者らが検討を重ねたところ、このようにして、二酸化塩素を含有する殺菌水を得る場合には、希釈した亜塩素酸ナトリウムをイオン交換して亜塩素酸に変換するときに、亜塩素酸ナトリウム水溶液の濃度が高いと、イオン交換手段により生成した亜塩素酸水溶液のpHが低くなる。そして、イオン交換手段により得られる亜塩素酸水溶液のpHは、触媒酸化手段により得られる二酸化塩素溶解水のpHは同じになる。ここで、二酸化塩素溶解水が、二酸化塩素濃度が高く且つpHが低い状態になると、二酸化塩素溶解水に溶存している二酸化塩素ガスが水中から放出される危険性がある。また、二酸化塩素溶解水のpHが低く、強酸性の場合、希釈して使用する場合でも、希釈液は酸性液となる。   However, as a result of repeated studies by the present inventors, in this way, when obtaining sterilized water containing chlorine dioxide, the diluted sodium chlorite is ion-exchanged and converted to chlorite. When the concentration of the aqueous sodium chlorite solution is high, the pH of the aqueous chlorous acid solution generated by the ion exchange means is lowered. The pH of the aqueous chlorous acid solution obtained by the ion exchange means is the same as that of the chlorine dioxide-dissolved water obtained by the catalytic oxidation means. Here, when the chlorine dioxide-dissolved water has a high chlorine dioxide concentration and a low pH, there is a risk that chlorine dioxide gas dissolved in the chlorine dioxide-dissolved water is released from the water. Further, when the pH of chlorine dioxide-dissolved water is low and strongly acidic, the diluted solution becomes an acidic solution even when diluted and used.

従って、本発明の目的は、イオン交換後の亜塩素酸水溶液及び触媒酸化後の水溶液のpHが低くなり過ぎることなく、二酸化塩素を含有する殺菌水を製造することができる装置を提供することにある。   Accordingly, an object of the present invention is to provide an apparatus capable of producing sterilizing water containing chlorine dioxide without causing the pH of the aqueous solution of chlorous acid after ion exchange and the aqueous solution after catalytic oxidation to be too low. is there.

上記従来技術における課題は、以下に示す本発明により解決される。
すなわち、本発明は、希釈亜塩素酸ナトリウム水溶液中の亜塩素酸ナトリウムのナトリウムイオンを水素イオンにイオン交換して、亜塩素酸水溶液を得るためのイオン交換手段と、
該亜塩素酸水溶液中の亜塩素酸を酸化触媒により酸化して、二酸化塩素溶解水を得るための触媒酸化手段と、
一端側から亜塩素酸ナトリウム水溶液希釈用の希釈水が供給され、他端側が該イオン交換手段に繋がる希釈亜塩素酸ナトリウム水溶液送液管と、
一端側から高濃度亜塩素酸ナトリウム水溶液が供給され、他端側が該希釈亜塩素酸ナトリウム水溶液送液管に繋がる高濃度亜塩素酸ナトリウム水溶液送液管と、
一端側が該イオン交換手段に繋がり、他端側が該触媒酸化手段に繋がり、亜塩素酸水溶液が送液される亜塩素酸水溶液送液管と、
一端側から二酸化塩素溶解水希釈用の希釈水が供給され、他端側がユースポイントに繋がる二酸化塩素含有殺菌水送液管と、
一端側が該触媒酸化手段に繋がり、他端側が二酸化塩素含有殺菌水送液管に繋がり、二酸化塩素溶解水が送液される二酸化塩素溶解水送液管と、
該希釈亜塩素酸ナトリウム水溶液送液管から分岐し、該亜塩素酸水溶液送液管に繋がり、該希釈亜塩素酸ナトリウム水溶液送液管内の希釈亜塩素酸ナトリウム水溶液を、該亜塩素酸水溶液送液管に供給するための希釈亜塩素酸ナトリウム水溶液バイパス管と、
該高濃度亜塩素酸ナトリウム水溶液送液管に設置され、高濃度亜塩素酸ナトリウム水溶液を送液するための高濃度亜塩素酸ナトリウム水溶液送液ポンプと、
該希釈亜塩素酸ナトリウム水溶液バイパス管に設置され、該希釈亜塩素酸ナトリウム水溶液送液管内の希釈亜塩素酸ナトリウム水溶液の一部を該亜塩素酸水溶液送液管内に送液するためのバイパス管送液ポンプと、
該二酸化塩素溶解水送液管に設置され、二酸化塩素溶解水を送液するための二酸化塩素溶解水送液ポンプと、
該亜塩素酸水溶液送液管に設置され、亜塩素酸水溶液のpHを測定するためのpH測定手段と、
該二酸化塩素含有殺菌水送液管に設置され、二酸化塩素含有殺菌水中の二酸化塩素濃度を測定するための二酸化塩素濃度測定手段と、
該pH測定手段及び該バイパス管送液ポンプに電気的に繋がり、管理pH値が記憶され、該pH測定手段から送られてくるpH値と該管理pH値とを対比し、該pH測定手段から送られてくるpH値と、該管理pH値に差がある場合には、該pH測定手段から送られてくるpH値と該管理pH値との差から、亜塩素酸水溶液のpHを、該管理pH値にするために必要な、該バイパス管送液ポンプの送液流量を算出し、該バイパス管送液ポンプに、送液流量変更命令を送る、第一演算部と、
該二酸化塩素濃度測定手段及び該二酸化塩素溶解水送液ポンプに電気的に繋がり、管理二酸化塩素濃度値が記憶され、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と該管理二酸化塩素濃度値とを対比し、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と、該管理二酸化塩素濃度値に差がある場合には、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と該管理二酸化塩素濃度値との差から、二酸化塩素含有殺菌水中の二酸化塩素濃度を、該管理二酸化塩素濃度値にするために必要な、該二酸化塩素溶解水送液ポンプの送液流量を算出し、該二酸化塩素溶解水送液ポンプに、送液流量変更命令を送る、第二演算部と、
を有することを特徴とする二酸化塩素含有殺菌水の生成装置を提供するものである。
The problems in the above prior art are solved by the present invention described below.
That is, the present invention comprises an ion exchange means for obtaining a chlorite aqueous solution by ion-exchanging sodium ions of sodium chlorite in a diluted sodium chlorite aqueous solution to hydrogen ions,
Catalytic oxidation means for oxidizing chlorine acid in the aqueous chlorous acid solution with an oxidation catalyst to obtain chlorine dioxide-dissolved water;
Diluted water for diluting sodium chlorite aqueous solution is supplied from one end side, and the dilute sodium chlorite aqueous solution feed pipe connected to the ion exchange means at the other end side,
A high-concentration sodium chlorite aqueous solution feed pipe to which a high-concentration sodium chlorite aqueous solution is supplied from one end side and the other end side is connected to the diluted sodium chlorite aqueous solution feed pipe;
One end side is connected to the ion exchange means, the other end side is connected to the catalytic oxidation means, and a chlorous acid aqueous solution feeding pipe through which a chlorous acid aqueous solution is fed;
Dilution water for diluting chlorine dioxide dissolved water is supplied from one end side, and the other end side is a chlorine dioxide-containing sterilizing water feed pipe that leads to a use point,
One end side is connected to the catalytic oxidation means, the other end side is connected to a chlorine dioxide-containing sterilized water supply pipe, and a chlorine dioxide-dissolved water supply pipe through which chlorine dioxide-dissolved water is supplied;
The dilute sodium chlorite aqueous solution feed pipe branches off from the dilute sodium chlorite aqueous solution feed pipe, and the dilute sodium chlorite aqueous solution feed pipe in the dilute sodium chlorite aqueous solution feed pipe transfers the dilute sodium chlorite aqueous solution feed pipe. Dilute sodium chlorite aqueous solution bypass pipe for supplying to the liquid pipe;
A high-concentration sodium chlorite aqueous solution feed pump installed in the high-concentration sodium chlorite aqueous solution feed pipe, and for feeding the high-concentration sodium chlorite aqueous solution;
A bypass pipe installed in the dilute sodium chlorite aqueous solution bypass pipe for feeding a part of the dilute sodium chlorite aqueous solution in the dilute sodium chlorite aqueous solution feed pipe into the chlorite aqueous solution feed pipe A feed pump;
A chlorine dioxide-dissolved water feed pump installed in the chlorine dioxide-dissolved water feed pipe, for delivering chlorine dioxide-dissolved water;
A pH measuring means installed in the chlorous acid aqueous solution feeding pipe for measuring the pH of the chlorous acid aqueous solution;
Chlorine dioxide concentration measuring means installed in the chlorine dioxide-containing sterilized water feed pipe and measuring the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water;
Electrically connected to the pH measuring means and the bypass pipe liquid feeding pump, the management pH value is stored, the pH value sent from the pH measuring means is compared with the management pH value, and the pH measuring means If there is a difference between the pH value sent and the control pH value, the pH of the aqueous chlorous acid solution is determined from the difference between the pH value sent from the pH measuring means and the control pH value. Calculating a liquid feed flow rate of the bypass pipe liquid feed pump necessary for the control pH value, and sending a liquid feed flow rate change command to the bypass pipe liquid feed pump;
The chlorine dioxide concentration measuring means and the chlorine dioxide-dissolved water feed pump are electrically connected to store the management chlorine dioxide concentration value, and the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means and the management chlorine dioxide If there is a difference between the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means and the control chlorine dioxide concentration value, the dioxide dioxide sent from the chlorine dioxide concentration measuring means is compared. From the difference between the chlorine concentration value and the control chlorine dioxide concentration value, the chlorine dioxide-dissolved water feed pump required to make the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water the control chlorine dioxide concentration value Calculating a flow rate, and sending a liquid feed flow rate change command to the chlorine dioxide-dissolved water feed pump;
A device for producing chlorine dioxide-containing sterilizing water is provided.

本発明によれば、イオン交換後の亜塩素酸水溶液及び触媒酸化後の水溶液のpHが低くなり過ぎることなく、具体的には、イオン交換後の亜塩素酸水溶液及び触媒酸化後の水溶液のpHが5〜6.5で、二酸化塩素を含有する殺菌水を製造することができる装置を提供することができる。   According to the present invention, the pH of the aqueous chlorous acid solution after ion exchange and the aqueous solution after catalyst oxidation is not too low, specifically, the pH of the aqueous solution of chlorous acid after ion exchange and the aqueous solution after catalyst oxidation. 5 to 6.5, an apparatus capable of producing sterilizing water containing chlorine dioxide can be provided.

本発明の二酸化塩素含有殺菌水の生成装置の形態例のフロー図である。It is a flowchart of the example of the form of the production | generation apparatus of the chlorine dioxide containing disinfection water of this invention. 本発明の二酸化塩素含有殺菌水の生成装置の形態例のフロー図である。It is a flowchart of the example of the form of the production | generation apparatus of the chlorine dioxide containing disinfection water of this invention. 本発明の二酸化塩素含有殺菌水の生成装置の形態例のフロー図である。It is a flowchart of the example of the form of the production | generation apparatus of the chlorine dioxide containing disinfection water of this invention.

本発明の第の形態の二酸化塩素含有殺菌水の生成装置は、希釈亜塩素酸ナトリウム水溶液中の亜塩素酸ナトリウムのナトリウムイオンを水素イオンにイオン交換して、亜塩素酸水溶液を得るためのイオン交換手段と、
該亜塩素酸水溶液中の亜塩素酸を酸化触媒により酸化して、二酸化塩素溶解水を得るための触媒酸化手段と、
一端側から亜塩素酸ナトリウム水溶液希釈用の希釈水が供給され、他端側が該イオン交換手段に繋がる希釈亜塩素酸ナトリウム水溶液送液管と、
一端側から高濃度亜塩素酸ナトリウム水溶液が供給され、他端側が該希釈亜塩素酸ナトリウム水溶液送液管に繋がる高濃度亜塩素酸ナトリウム水溶液送液管と、
一端側が該イオン交換手段に繋がり、他端側が該触媒酸化手段に繋がり、亜塩素酸水溶液が送液される亜塩素酸水溶液送液管と、
一端側から二酸化塩素溶解水希釈用の希釈水が供給され、他端側がユースポイントに繋がる二酸化塩素含有殺菌水送液管と、
一端側が該触媒酸化手段に繋がり、他端側が二酸化塩素含有殺菌水送液管に繋がり、二酸化塩素溶解水が送液される二酸化塩素溶解水送液管と、
該希釈亜塩素酸ナトリウム水溶液送液管から分岐し、該亜塩素酸水溶液送液管に繋がり、該希釈亜塩素酸ナトリウム水溶液送液管内の希釈亜塩素酸ナトリウム水溶液を、該亜塩素酸水溶液送液管に供給するための希釈亜塩素酸ナトリウム水溶液バイパス管と、
該高濃度亜塩素酸ナトリウム水溶液送液管に設置され、高濃度亜塩素酸ナトリウム水溶液を送液するための高濃度亜塩素酸ナトリウム水溶液送液ポンプと、
該希釈亜塩素酸ナトリウム水溶液バイパス管に設置され、該希釈亜塩素酸ナトリウム水溶液送液管内の希釈亜塩素酸ナトリウム水溶液の一部を該亜塩素酸水溶液送液管内に送液するためのバイパス管送液ポンプと、
該二酸化塩素溶解水送液管に設置され、二酸化塩素溶解水を送液するための二酸化塩素溶解水送液ポンプと、
該亜塩素酸水溶液送液管に設置され、亜塩素酸水溶液のpHを測定するためのpH測定手段と、
該二酸化塩素含有殺菌水送液管に設置され、二酸化塩素含有殺菌水中の二酸化塩素濃度を測定するための二酸化塩素濃度測定手段と、
該pH測定手段及び該バイパス管送液ポンプに電気的に繋がり、管理pH値が記憶され、該pH測定手段から送られてくるpH値と該管理pH値とを対比し、該pH測定手段から送られてくるpH値と、該管理pH値に差がある場合には、該pH測定手段から送られてくるpH値と該管理pH値との差から、亜塩素酸水溶液のpHを、該管理pH値にするために必要な、該バイパス管送液ポンプの送液流量を算出し、該バイパス管送液ポンプに、送液流量変更命令を送る、第一演算部と、
該二酸化塩素濃度測定手段及び該二酸化塩素溶解水送液ポンプに電気的に繋がり、管理二酸化塩素濃度値が記憶され、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と該管理二酸化塩素濃度値とを対比し、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と、該管理二酸化塩素濃度値に差がある場合には、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と該管理二酸化塩素濃度値との差から、二酸化塩素含有殺菌水中の二酸化塩素濃度を、該管理二酸化塩素濃度値にするために必要な、該二酸化塩素溶解水送液ポンプの送液流量を算出し、該二酸化塩素溶解水送液ポンプに、送液流量変更命令を送る、第二演算部と、
を有することを特徴とする二酸化塩素含有殺菌水の生成装置である。
An apparatus for producing chlorine dioxide-containing sterilizing water according to a first aspect of the present invention is an ion for obtaining an aqueous solution of chlorite by ion-exchanging sodium ions of sodium chlorite in a diluted aqueous solution of sodium chlorite to hydrogen ions. Exchange means,
Catalytic oxidation means for oxidizing chlorine acid in the aqueous chlorous acid solution with an oxidation catalyst to obtain chlorine dioxide-dissolved water;
Diluted water for diluting sodium chlorite aqueous solution is supplied from one end side, and the dilute sodium chlorite aqueous solution feed pipe connected to the ion exchange means at the other end side,
A high-concentration sodium chlorite aqueous solution feed pipe to which a high-concentration sodium chlorite aqueous solution is supplied from one end side and the other end side is connected to the diluted sodium chlorite aqueous solution feed pipe;
One end side is connected to the ion exchange means, the other end side is connected to the catalytic oxidation means, and a chlorous acid aqueous solution feeding pipe through which a chlorous acid aqueous solution is fed;
Dilution water for diluting chlorine dioxide dissolved water is supplied from one end side, and the other end side is a chlorine dioxide-containing sterilizing water feed pipe that leads to a use point,
One end side is connected to the catalytic oxidation means, the other end side is connected to a chlorine dioxide-containing sterilized water supply pipe, and a chlorine dioxide-dissolved water supply pipe through which chlorine dioxide-dissolved water is supplied;
The dilute sodium chlorite aqueous solution feed pipe branches off from the dilute sodium chlorite aqueous solution feed pipe, and the dilute sodium chlorite aqueous solution feed pipe in the dilute sodium chlorite aqueous solution feed pipe transfers the dilute sodium chlorite aqueous solution feed pipe. Dilute sodium chlorite aqueous solution bypass pipe for supplying to the liquid pipe;
A high-concentration sodium chlorite aqueous solution feed pump installed in the high-concentration sodium chlorite aqueous solution feed pipe, and for feeding the high-concentration sodium chlorite aqueous solution;
A bypass pipe installed in the dilute sodium chlorite aqueous solution bypass pipe for feeding a part of the dilute sodium chlorite aqueous solution in the dilute sodium chlorite aqueous solution feed pipe into the chlorite aqueous solution feed pipe A feed pump;
A chlorine dioxide-dissolved water feed pump installed in the chlorine dioxide-dissolved water feed pipe, for delivering chlorine dioxide-dissolved water;
A pH measuring means installed in the chlorous acid aqueous solution feeding pipe for measuring the pH of the chlorous acid aqueous solution;
Chlorine dioxide concentration measuring means installed in the chlorine dioxide-containing sterilized water feed pipe and measuring the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water;
Electrically connected to the pH measuring means and the bypass pipe liquid feeding pump, the management pH value is stored, the pH value sent from the pH measuring means is compared with the management pH value, and the pH measuring means If there is a difference between the pH value sent and the control pH value, the pH of the aqueous chlorous acid solution is determined from the difference between the pH value sent from the pH measuring means and the control pH value. Calculating a liquid feed flow rate of the bypass pipe liquid feed pump necessary for the control pH value, and sending a liquid feed flow rate change command to the bypass pipe liquid feed pump;
The chlorine dioxide concentration measuring means and the chlorine dioxide-dissolved water feed pump are electrically connected to store the management chlorine dioxide concentration value, and the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means and the management chlorine dioxide If there is a difference between the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means and the control chlorine dioxide concentration value, the dioxide dioxide sent from the chlorine dioxide concentration measuring means is compared. From the difference between the chlorine concentration value and the control chlorine dioxide concentration value, the chlorine dioxide-dissolved water feed pump required to make the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water the control chlorine dioxide concentration value Calculating a flow rate, and sending a liquid feed flow rate change command to the chlorine dioxide-dissolved water feed pump;
A device for producing sterilizing water containing chlorine dioxide, characterized by comprising:

本発明の二酸化塩素含有殺菌水の生成装置について、図1を参照して説明する。   The production | generation apparatus of the chlorine dioxide containing disinfection water of this invention is demonstrated with reference to FIG.

図1は、本発明の二酸化塩素含有殺菌水の生成装置の形態例のフロー図である。図1に示す二酸化塩素含有殺菌水の生成装置は、イオン交換手段2と、触媒酸化手段5と、を有する。また、図1に示す二酸化塩素含有殺菌水の生成装置は、高濃度亜塩素酸ナトリウム水溶液送液管42と、希釈亜塩素酸ナトリウム水溶液送液管41と、亜塩素酸水溶液送液管43と、二酸化塩素溶解水送液管44と、二酸化塩素含有殺菌水送液管47と、希釈亜塩素酸ナトリウム水溶液バイパス管48を有する。   FIG. 1 is a flow diagram of an embodiment of a chlorine dioxide-containing sterilizing water generator according to the present invention. The apparatus for producing chlorine dioxide-containing sterilizing water shown in FIG. 1 has an ion exchange means 2 and a catalytic oxidation means 5. 1 includes a high-concentration sodium chlorite aqueous solution feeding pipe 42, a diluted sodium chlorite aqueous solution feeding pipe 41, and a chlorite aqueous solution feeding pipe 43. , A chlorine dioxide-dissolved water feed pipe 44, a chlorine dioxide-containing sterilized water feed pipe 47, and a dilute sodium chlorite aqueous solution bypass pipe 48.

イオン交換手段2は、希釈亜塩素酸ナトリウム水溶液51中の亜塩素酸ナトリウムのナトリウムイオンを水素イオンにイオン交換して、亜塩素酸水溶液を得るための手段である。イオン交換手段としては、亜塩素酸ナトリウム水溶液中のナトリウムイオンを、水素イオンにイオン交換することができるH型のイオン交換体であれば、特に制限されない。H型のイオン交換体としては、例えば、陽イオン交換基を有し、その陽イオン交換基のカウンターカチオンが水素イオンであるH型の陽イオン交換樹脂や、H型の無機イオン交換体等が挙げられる。H型の無機イオン交換体としては、H型のゼオライト、H型のジルコニウム、酸化アンチモン等のH型の金属酸化物や、フェロシアン化錯体が挙げられる。 The ion exchange means 2 is means for obtaining a chlorite aqueous solution by ion exchange of sodium ions of sodium chlorite in the diluted sodium chlorite aqueous solution 51 to hydrogen ions. The ion exchange means is not particularly limited as long as it is an H + type ion exchanger capable of exchanging sodium ions in an aqueous sodium chlorite solution into hydrogen ions. Examples of the H + type ion exchanger include an H + type cation exchange resin having a cation exchange group, and the counter cation of the cation exchange group is a hydrogen ion, and an H + type inorganic ion exchange. Examples include the body. Examples of the H + type inorganic ion exchanger include H + type zeolites, H + type metal oxides such as H + type zirconium and antimony oxide, and ferrocyanide complexes.

触媒酸化手段5は、亜塩素酸水溶液(pH調整後)52中の亜塩素酸を酸化触媒により酸化して、二酸化塩素溶解水53を得るための手段である。触媒酸化手段5としては、亜塩素酸水溶液中の亜塩素酸を酸化して、二酸化塩素溶解水を生成させることができる酸化触媒であれば、特に制限されない。触媒酸化手段としては、例えば、Pd、Pt等が担持されているアルミナ、Pd、Pt等が担持されているゼオライト、二酸化マンガン等の酸化触媒が挙げられる。   The catalytic oxidation means 5 is a means for oxidizing the chlorous acid in the aqueous chlorous acid solution (after pH adjustment) 52 with an oxidation catalyst to obtain the chlorine dioxide-dissolved water 53. The catalyst oxidation means 5 is not particularly limited as long as it is an oxidation catalyst that can oxidize chlorous acid in an aqueous chlorous acid solution to generate chlorine dioxide-dissolved water. Examples of the catalytic oxidation means include alumina on which Pd, Pt and the like are supported, an zeolite on which Pd, Pt and the like are supported, and an oxidation catalyst such as manganese dioxide.

希釈亜塩素酸ナトリウム水溶液送液管41は、高濃度亜塩素酸ナトリウム水溶液31を希釈するための希釈水32を、装置外からイオン交換手段2まで送液するための送液管であり、一端側から亜塩素酸ナトリウム水溶液希釈用の希釈水32が供給され、他端側がイオン交換手段2に繋がっている。希釈亜塩素酸ナトリウム水溶液送液管41の途中には、高濃度亜塩素酸ナトリウム水溶液送液管42が繋がっている。この高濃度亜塩素酸ナトリウム水溶液送液管42は、希釈亜塩素酸ナトリウム水溶液送液管41内の亜塩素酸ナトリウム水溶液希釈用の希釈水32に、高濃度亜塩素酸ナトリウム水溶液31を供給するための送液管であり、一端側から高濃度亜塩素酸ナトリウム水溶液31が供給され、他端側が希釈亜塩素酸ナトリウム水溶液送液管41に繋がっている。そして、希釈亜塩素酸ナトリウム水溶液送液管41内の亜塩素酸ナトリウム水溶液希釈用の希釈水32に、高濃度亜塩素酸ナトリウム水溶液31が供給されることで、希釈亜塩素酸ナトリウム水溶液送液管41内で、希釈亜塩素酸ナトリウム水溶液51が調製される。   The diluted sodium chlorite aqueous solution feeding pipe 41 is a liquid feeding pipe for feeding the dilution water 32 for diluting the high concentration sodium chlorite aqueous solution 31 from the outside of the apparatus to the ion exchange means 2. The dilution water 32 for diluting the sodium chlorite aqueous solution is supplied from the side, and the other end side is connected to the ion exchange means 2. In the middle of the diluted sodium chlorite aqueous solution feeding pipe 41, a high concentration sodium chlorite aqueous solution feeding pipe 42 is connected. The high concentration sodium chlorite aqueous solution feeding pipe 42 supplies the high concentration sodium chlorite aqueous solution 31 to the dilution water 32 for diluting the sodium chlorite aqueous solution in the diluted sodium chlorite aqueous solution feeding pipe 41. The high concentration sodium chlorite aqueous solution 31 is supplied from one end side, and the other end side is connected to the diluted sodium chlorite aqueous solution supply tube 41. Then, the dilute sodium chlorite aqueous solution 31 is supplied to the dilute water 32 for diluting the sodium chlorite aqueous solution in the dilute sodium chlorite aqueous solution feed pipe 41, thereby supplying the dilute sodium chlorite aqueous solution 31. In the tube 41, a diluted sodium chlorite aqueous solution 51 is prepared.

亜塩素酸水溶液送液管43は、イオン交換手段2と触媒酸化手段5とを繋ぎ、イオン交換手段2により生成された亜塩素酸水溶液を、触媒酸化手段5に送液するための送液管であり、一端側がイオン交換手段2に繋がり、他端側が触媒酸化手段5に繋がっている。   The chlorous acid aqueous solution feeding pipe 43 connects the ion exchange means 2 and the catalytic oxidation means 5, and feeds the aqueous chlorous acid solution generated by the ion exchange means 2 to the catalytic oxidation means 5. One end side is connected to the ion exchange means 2, and the other end side is connected to the catalytic oxidation means 5.

二酸化塩素含有殺菌水送液管47は、二酸化塩素溶解水53を希釈するための希釈水33aを、装置外からユースポイントまで送液するための送液管であり、一端側から二酸化塩素溶解水希釈用の希釈水33aが供給され、他端側がユースポイントに繋がる。二酸化塩素含有殺菌水送液管47の途中には、二酸化塩素溶解水送液管44が繋がっている。この二酸化塩素溶解水送液管44は、二酸化塩素含有殺菌水送液管47内の二酸化塩素溶解水希釈用の希釈水33aに、触媒酸化手段5で亜塩素酸を酸化して得られる二酸化塩素溶解水53を供給するための送液管であり、一端側が触媒酸化手段5に繋がり、他端側が二酸化塩素含有殺菌水送液管47に繋がっている。そして、二酸化塩素含有殺菌水送液管47内の二酸化塩素溶解水希釈用の希釈水33aに、二酸化塩素溶解水53が供給されることで、二酸化塩素含有殺菌水送液管47内で、二酸化塩素含有殺菌水36が製造される。   The chlorine dioxide-containing sterilizing water liquid feeding pipe 47 is a liquid feeding pipe for feeding the dilution water 33a for diluting the chlorine dioxide-dissolved water 53 from the outside of the apparatus to the use point, and chlorine dioxide-dissolved water from one end side. Dilution water 33a for dilution is supplied, and the other end is connected to a use point. A chlorine dioxide-dissolved water feeding pipe 44 is connected to the middle of the chlorine dioxide-containing sterilizing water feeding pipe 47. This chlorine dioxide-dissolved water feed pipe 44 is chlorine dioxide obtained by oxidizing chlorine dioxide with diluting water 33a for diluting chlorine dioxide-dissolved water in the chlorine dioxide-containing sterilizing water feed pipe 47 by the catalytic oxidation means 5. It is a liquid feed pipe for supplying the dissolved water 53, and one end side is connected to the catalytic oxidation means 5, and the other end side is connected to the chlorine dioxide containing sterilized water liquid feed pipe 47. Then, the chlorine dioxide-dissolved water 53 is supplied to the diluted water 33a for diluting chlorine dioxide-dissolved water in the chlorine dioxide-containing sterilized water feed pipe 47. Chlorine-containing sterilized water 36 is produced.

希釈亜塩素酸ナトリウム水溶液バイパス管48は、希釈亜塩素酸ナトリウム送液管41内の希釈亜塩素酸ナトリウム水溶液51の一部を、イオン交換手段2を通さずに、亜塩素酸水溶液送液管43内に供給するためのバイパス管であり、希釈亜塩素酸ナトリウム水溶液送液管41から分岐し、亜塩素酸水溶液送液管43に繋がる。希釈亜塩素酸ナトリウム水溶液バイパス管48の分岐位置、つまり、希釈亜塩素酸ナトリウム水溶液バイパス管48が希釈亜塩素酸ナトリウム水溶液送液管41に繋がる位置は、高濃度亜塩素酸ナトリウム水溶液送液管42が希釈亜塩素酸ナトリウム水溶液送液管41に繋がる位置より後で、且つ、イオン交換手段2より手前である。また、希釈亜塩素酸ナトリウム水溶液バイパス管48が亜塩素酸水溶液送液管43に繋がる位置は、イオン交換手段2より後で、且つ、pH測定手段3より手前である。そして、亜塩素酸水溶液送液管43内の亜塩素酸水溶液(pH調整前)54、すなわち、イオン交換手段2でイオン交換処理された直後の二酸化塩素水溶液に、希釈亜塩素酸ナトリウム水溶液51が供給されることで、亜塩素酸水溶液送液管43内で、亜塩素酸水溶液(pH調整前)54に希釈亜塩素酸ナトリウム水溶液51が混合されて、亜塩素酸水溶液のpHが調整され、亜塩素酸水溶液(pH調整後)が得られる。   The dilute sodium chlorite aqueous solution bypass pipe 48 does not pass a part of the dilute sodium chlorite aqueous solution 51 in the dilute sodium chlorite liquid feed pipe 41 without passing through the ion exchange means 2. 43 is a bypass pipe for supplying the liquid into the dilute sodium chlorite aqueous solution feed pipe 41 and is connected to the chlorite aqueous solution feed pipe 43. The branch position of the diluted sodium chlorite aqueous solution bypass pipe 48, that is, the position where the diluted sodium chlorite aqueous solution bypass pipe 48 is connected to the diluted sodium chlorite aqueous solution feed pipe 41 is a high-concentration sodium chlorite aqueous solution feed pipe. 42 is after the position connected to the diluted sodium chlorite aqueous solution feeding pipe 41 and before the ion exchange means 2. The position where the diluted sodium chlorite aqueous solution bypass pipe 48 is connected to the chlorite aqueous solution feeding pipe 43 is after the ion exchange means 2 and before the pH measurement means 3. Then, the diluted sodium chlorite aqueous solution 51 is added to the chlorous acid aqueous solution (before pH adjustment) 54 in the chlorous acid aqueous solution feeding pipe 43, that is, the chlorine dioxide aqueous solution immediately after the ion exchange treatment by the ion exchange means 2. By being supplied, the diluted sodium chlorite aqueous solution 51 is mixed with the chlorite aqueous solution (before pH adjustment) 54 in the chlorous acid aqueous solution feeding pipe 43, and the pH of the chlorite aqueous solution is adjusted, A chlorous acid aqueous solution (after pH adjustment) is obtained.

図1に示す二酸化塩素含有殺菌水の生成装置では、高濃度亜塩素酸ナトリウム水溶液送液管42に、高濃度亜塩素酸ナトリウム水溶液送液ポンプ11が設置されている。高濃度亜塩素酸ナトリウム水溶液送液ポンプ11は、希釈亜塩素酸ナトリウム水溶液送液管41内に、高濃度亜塩素酸ナトリウム水溶液31を、供給量を調節して供給するための送液ポンプである。   In the device for generating chlorine dioxide-containing sterilizing water shown in FIG. 1, a high-concentration sodium chlorite aqueous solution feed pump 11 is installed in a high-concentration sodium chlorite aqueous solution feed pipe 42. The high-concentration sodium chlorite aqueous solution feed pump 11 is a feed pump for supplying the high-concentration sodium chlorite aqueous solution 31 in the diluted sodium chlorite aqueous solution feed pipe 41 by adjusting the supply amount. is there.

また、図1に示す二酸化塩素含有殺菌水の生成装置では、二酸化塩素溶解水送液管44に、二酸化塩素溶解水送液ポンプ13が設置されている。二酸化塩素溶解水送液ポンプ13は、触媒酸化手段5で得られる二酸化塩素溶解水53を、二酸化塩素含有殺菌水送液管47に送液するための送液ポンプである。   In the chlorine dioxide-containing sterilizing water generator shown in FIG. 1, the chlorine dioxide-dissolved water feed pump 13 is installed in the chlorine dioxide-dissolved water feed pipe 44. The chlorine dioxide-dissolved water feed pump 13 is a feed pump for feeding the chlorine dioxide-dissolved water 53 obtained by the catalytic oxidation means 5 to the chlorine dioxide-containing sterilizing water feed pipe 47.

また、図1に示す二酸化塩素含有殺菌水の生成装置では、希釈亜塩素酸ナトリウム水溶液バイパス管48に、バイパス管送液ポンプ16が設置されている。バイパス管送液ポンプ16は、希釈亜塩素酸ナトリウム水溶液送液管41内から、希釈亜塩素酸ナトリウム水溶液送液管51の一部を抜出し、亜塩素酸水溶液送液管43内に、希釈亜塩素酸ナトリウム水溶液51を、供給量を調節して供給するための送液ポンプである。   Moreover, in the production apparatus for chlorine dioxide-containing sterilizing water shown in FIG. 1, the bypass pipe liquid feed pump 16 is installed in the diluted sodium chlorite aqueous solution bypass pipe 48. The bypass pipe liquid feed pump 16 extracts a part of the diluted sodium chlorite aqueous solution feed pipe 51 from the diluted sodium chlorite aqueous solution feed pipe 41, It is a liquid feed pump for supplying the sodium chlorate aqueous solution 51 by adjusting the supply amount.

また、図1に示す二酸化塩素含有殺菌水の生成装置では、希釈亜塩素酸ナトリウム水溶液バイパス管48が繋がる位置より後の亜塩素酸水溶液送液管43に、亜塩素酸水溶液のpHを測定するためのpH測定手段3が設置されている。   Further, in the chlorine dioxide-containing sterilizing water generator shown in FIG. 1, the pH of the chlorite aqueous solution is measured in the chlorite aqueous solution feeding pipe 43 after the position where the diluted sodium chlorite aqueous solution bypass pipe 48 is connected. PH measuring means 3 is provided for this purpose.

また、図1に示す二酸化塩素含有殺菌水の生成装置では、二酸化塩素含有殺菌水送液管47に、二酸化塩素含有殺菌水36中の二酸化塩素濃度を測定するための二酸化塩素濃度測定手段7が設置されている。   In the chlorine dioxide-containing sterilizing water generating apparatus shown in FIG. 1, chlorine dioxide concentration measuring means 7 for measuring the chlorine dioxide concentration in the chlorine dioxide-containing sterilizing water 36 is provided in the chlorine dioxide-containing sterilizing water feeding pipe 47. is set up.

そして、図1に示す二酸化塩素含有殺菌水の生成装置は、pH測定手段3及びバイパス管送液ポンプ16に電気的に繋がり、管理pH値が記憶され、pH測定手段3から送られてくるpH値と管理pH値とを対比し、pH測定手段3から送られてくるpH値と、管理pH値に差がある場合には、pH測定手段3から送られてくるpH値と管理pH値との差から、亜塩素酸水溶液(pH調整後)のpHを、管理pH値にするために必要な、バイパス管送液ポンプ16の希釈亜塩素酸ナトリウム水溶液51の送液流量を算出し、バイパス管送液ポンプに、送液流量変更命令を送る、第一演算部26を有する。第一演算部26は、記憶部に管理pH値が記憶されており、pH測定手段3から送られてくるpH値と、管理pH値に差がある場合には、pH測定手段3から送られてくるpH値と管理pH値との差から、亜塩素酸水溶液(pH調整後)のpHを、管理pH値にするために必要な、バイパス管送液ポンプ16の希釈亜塩素酸ナトリウム水溶液51の送液流量を算出し、その送液流量に変更するように、バイパス管送液ポンプ16に、送液流量変更命令を送るプログラムが組み込まれている電子計算機である。なお、管理pH値とは、触媒酸化手段5での酸化に供せられる亜塩素酸水溶液のpH値の設定値を指す。また、亜塩素酸水溶液(pH調整後)のpHを、管理pH値にするために必要な、バイパス管送液ポンプの希釈亜塩素酸ナトリウム水溶液の送液流量を算出し、その送液流量に変更するとは、pH測定手段により測定されるpH値が、管理pH値より高い場合には、バイパス管送液ポンプの送液流量を少なくして、pH測定手段により測定されるpH値が、管理pH値になるように調節することを指し、また、pH測定手段により測定されるpH値が、管理pH値より低い場合には、バイパス管送液ポンプの送液流量を多くして、pH測定手段により測定されるpH値が、管理pH値になるように調節することを指す。なお、pH測定手段により測定されるpH値と、管理pH値とに、どの程度の差があったときに、バイパス管送液ポンプの送液流量を変更する命令を送る必要があるpH差(有効pH差)とするかは、殺菌水の用途、殺菌水中の二酸化塩素濃度の設定値等により、適宜選択される。   Then, the chlorine dioxide-containing sterilizing water generating device shown in FIG. 1 is electrically connected to the pH measuring means 3 and the bypass pipe liquid feeding pump 16, the management pH value is stored, and the pH is sent from the pH measuring means 3. If there is a difference between the pH value sent from the pH measuring means 3 and the managed pH value, the pH value sent from the pH measuring means 3 and the managed pH value are compared. From the difference, the flow rate of the dilute sodium chlorite aqueous solution 51 of the bypass pipe feed pump 16 necessary for setting the pH of the chlorite aqueous solution (after pH adjustment) to the control pH value is calculated and bypassed. It has the 1st calculating part 26 which sends a liquid sending flow rate change command to a pipe liquid feeding pump. The first calculation unit 26 stores the management pH value in the storage unit, and when there is a difference between the pH value sent from the pH measurement unit 3 and the management pH value, the first calculation unit 26 sends it from the pH measurement unit 3. From the difference between the incoming pH value and the control pH value, the dilute sodium chlorite aqueous solution 51 of the bypass pipe feed pump 16 required to bring the pH of the chlorite aqueous solution (after pH adjustment) to the control pH value. Is a computer in which a program for sending a liquid-feeding flow rate change command to the bypass pipe liquid-feeding pump 16 is incorporated so as to calculate the liquid-feeding flow rate. The management pH value refers to the set value of the pH value of the aqueous chlorous acid solution used for oxidation in the catalytic oxidation means 5. In addition, the flow rate of the dilute sodium chlorite aqueous solution of the bypass pipe feed pump, which is necessary to set the pH of the aqueous chlorous acid solution (after pH adjustment) to the control pH value, is calculated. When the pH value measured by the pH measuring unit is higher than the control pH value, the flow rate of the bypass pipe pump is decreased and the pH value measured by the pH measuring unit is controlled. Refers to adjustment to a pH value, and when the pH value measured by the pH measurement means is lower than the control pH value, the liquid flow rate of the bypass pipe liquid feed pump is increased to measure the pH. It means that the pH value measured by the means is adjusted to the control pH value. It should be noted that when there is a difference between the pH value measured by the pH measuring means and the management pH value, a pH difference that requires sending a command to change the flow rate of the bypass pipe liquid feed pump ( The effective pH difference is appropriately selected depending on the use of the sterilizing water, the set value of the chlorine dioxide concentration in the sterilizing water, and the like.

なお、図1に示す二酸化塩素含有殺菌水の生成装置では、イオン交換手段2で得られた亜塩素酸水溶液に、希釈亜塩素酸ナトリウム水溶液が混合されることにより、触媒酸化手段5に供給される亜塩素酸水溶液のpHが調整される。そして、イオン交換手段の出口から、希釈亜塩素酸ナトリウム水溶液バイパス管が繋がる位置までの間の亜塩素酸ナトリウムが、pH調整前の亜塩素酸水溶液であり、本発明では、このpH調整前の亜塩素酸水溶液を、亜塩素酸水溶液(pH調整前)54と記載し。また、希釈亜塩素酸ナトリウム水溶液バイパス管が繋がる位置から、触媒酸化手段5までの間の亜塩素酸ナトリウムが、pH調整後の亜塩素酸水溶液であり、本発明では、このpH調整後の亜塩素酸水溶液を、亜塩素酸水溶液(pH調整後)52と記載する。   In the apparatus for producing chlorine dioxide-containing sterilizing water shown in FIG. 1, the dilute sodium chlorite aqueous solution is mixed with the chlorous acid aqueous solution obtained by the ion exchange means 2 to be supplied to the catalytic oxidation means 5. The pH of the aqueous chlorous acid solution is adjusted. And the sodium chlorite between the outlet of the ion exchange means and the position where the dilute sodium chlorite aqueous solution bypass pipe is connected is the aqueous chlorous acid solution before pH adjustment. In the present invention, before this pH adjustment The aqueous chlorous acid solution is described as an aqueous chlorous acid solution (before pH adjustment) 54. Further, the sodium chlorite from the position where the dilute sodium chlorite aqueous solution bypass pipe is connected to the catalytic oxidation means 5 is the pH-adjusted chlorite aqueous solution. In the present invention, this pH-adjusted sub-chlorite solution is used. The aqueous chloric acid solution is referred to as an aqueous chlorous acid solution (after pH adjustment) 52.

また、図1に示す二酸化塩素含有殺菌水の生成装置では、二酸化塩素濃度測定手段7及び二酸化塩素溶解水送液ポンプ13に電気的に繋がり、管理二酸化塩素濃度値が記憶され、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値と管理二酸化塩素濃度値とを対比し、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値と、管理二酸化塩素濃度値に差がある場合には、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値と管理二酸化塩素濃度値との差から、二酸化塩素含有殺菌水中の二酸化塩素濃度を、管理二酸化塩素濃度値にするために必要な、二酸化塩素溶解水送液ポンプ13の送液流量を算出し、二酸化塩素溶解水送液ポンプ13に、送液流量変更命令を送る、第二演算部が設けられている。第二演算部は、記憶部に管理二酸化塩素濃度が記憶されており、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値と、管理二酸化塩素濃度値に差がある場合には、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値と管理二酸化塩素濃度値との差から、二酸化塩素含有殺菌水中の二酸化塩素濃度を、管理二酸化塩素濃度値にするために必要な、二酸化塩素溶解水送液ポンプ13の送液流量を算出し、その送液流量に変更するように、二酸化塩素溶解水送液ポンプ13に、送液流量変更命令を送るプログラムが組み込まれている電子計算機である。なお、管理二酸化塩素濃度値とは、製造目的とする二酸化塩素含有殺菌水36の二酸化塩素濃度の設定値を指す。また、二酸化塩素含有殺菌水中の二酸化塩素濃度を、管理二酸化塩素濃度値にするために必要な、二酸化塩素溶解水送液ポンプの送液流量を算出し、その送液流量に変更するとは、二酸化塩素濃度測定手段により測定される二酸化塩素濃度値が、管理二酸化塩素濃度値より大きい場合には、二酸化塩素溶解水送液ポンプの送液流量を少なくして、二酸化塩素濃度測定手段により測定される二酸化塩素濃度値が、管理二酸化塩素濃度値になるように調節することを指し、また、二酸化塩素濃度測定手段により測定される二酸化塩素濃度値が、管理二酸化塩素濃度値より小さい場合には、二酸化塩素溶解水送液ポンプの送液流量を多くして、二酸化塩素濃度測定手段により測定される二酸化塩素濃度値が、管理二酸化塩素濃度値になるように調節することを指す。なお、二酸化塩素濃度測定手段により測定される二酸化塩素濃度値と、管理二酸化塩素濃度値とに、どの程度の差があったときに、二酸化塩素溶解水送液ポンプの送液流量を変更する命令を送る必要がある濃度差(有効濃度差)とするかは、殺菌水の用途、殺菌水中の二酸化塩素濃度の設定値等により、適宜選択される。また、第一演算部と第二演算部用のプラグラムは、同じ電子計算機に組み込まれていてもよいし、それぞれ別々の電子計算機に組み込まれていてもよい。   Further, in the chlorine dioxide-containing sterilizing water generator shown in FIG. 1, the chlorine dioxide concentration measuring means 7 and the chlorine dioxide-dissolved water feed pump 13 are electrically connected, the management chlorine dioxide concentration value is stored, and the chlorine dioxide concentration measurement is performed. When the chlorine dioxide concentration value sent from the means 7 is compared with the management chlorine dioxide concentration value, and there is a difference between the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means 7 and the management chlorine dioxide concentration value Is necessary to change the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water to the management chlorine dioxide concentration value from the difference between the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means 7 and the management chlorine dioxide concentration value. A second calculation unit is provided that calculates a liquid feed flow rate of the chlorine dioxide-dissolved water feed pump 13 and sends a liquid feed flow rate change command to the chlorine dioxide-dissolved water feed pump 13. The second arithmetic unit stores the management chlorine dioxide concentration in the storage unit, and if there is a difference between the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means 7 and the management chlorine dioxide concentration value, From the difference between the chlorine dioxide concentration value sent from the chlorine concentration measuring means 7 and the management chlorine dioxide concentration value, the chlorine dioxide necessary to change the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water to the management chlorine dioxide concentration value An electronic computer in which a program for sending a liquid feed flow rate change command to the chlorine dioxide dissolved water feed pump 13 is incorporated so that the liquid feed flow rate of the dissolved water feed pump 13 is calculated and changed to the liquid feed flow rate. is there. The management chlorine dioxide concentration value refers to a set value of the chlorine dioxide concentration of the chlorine dioxide-containing sterilizing water 36 for manufacturing purposes. In addition, the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water is calculated as the flow rate of the chlorine dioxide-dissolved water feed pump required to make the controlled chlorine dioxide concentration value, and changing to that feed rate is When the chlorine dioxide concentration value measured by the chlorine concentration measuring means is larger than the management chlorine dioxide concentration value, the chlorine dioxide concentration measuring means is measured by reducing the feed flow rate of the chlorine dioxide-dissolved water feed pump. This refers to adjustment so that the chlorine dioxide concentration value becomes the controlled chlorine dioxide concentration value. If the chlorine dioxide concentration value measured by the chlorine dioxide concentration measuring means is smaller than the controlled chlorine dioxide concentration value, Increase the flow rate of the chlorine-dissolved water pump to adjust the chlorine dioxide concentration value measured by the chlorine dioxide concentration measurement means to the controlled chlorine dioxide concentration value. It refers to the Rukoto. A command to change the flow rate of the chlorine dioxide-dissolved water feed pump when there is a difference between the chlorine dioxide concentration value measured by the chlorine dioxide concentration measuring means and the management chlorine dioxide concentration value Is selected as appropriate depending on the use of the sterilizing water, the set value of the chlorine dioxide concentration in the sterilizing water, and the like. Moreover, the program for a 1st calculating part and the 2nd calculating part may be integrated in the same electronic computer, and may each be integrated in a separate electronic computer.

また、図1に示す二酸化塩素含有殺菌水の生成装置では、高濃度亜塩素酸ナトリウム水溶液の供給位置より手前の希釈亜塩素酸ナトリウム水溶液送液管41に、加圧ポンプ12が設置されている。加圧ポンプ12は、イオン交換手段2から触媒酸化手段5まで液圧を確保するために設置されるポンプであるが、設置は任意である。例えば、加圧ポンプ12を設置せずに、水道からの水圧で、イオン交換手段2から触媒酸化手段5まで液圧を確保することもできる。   Moreover, in the production | generation apparatus of chlorine dioxide containing sterilization water shown in FIG. 1, the pressurization pump 12 is installed in the diluted sodium chlorite aqueous solution feeding pipe 41 before this high concentration sodium chlorite aqueous solution supply position. . The pressurizing pump 12 is a pump that is installed to secure a hydraulic pressure from the ion exchange means 2 to the catalytic oxidation means 5, but the installation is optional. For example, the hydraulic pressure from the ion exchange means 2 to the catalytic oxidation means 5 can be secured by water pressure from the water supply without installing the pressurizing pump 12.

また、図1に示す二酸化塩素含有殺菌水の生成装置では、二酸化塩素溶解水の供給位置より手前の二酸化塩素含有殺菌液送液管47に、加圧ポンプ15が設置されている。加圧ポンプ15は、ユースポイントに供給される二酸化塩素含有殺菌水の液圧を確保するために設置されるポンプであるが、設置は任意である。例えば、加圧ポンプ15を設置せずに、水道からの水圧で、二酸化塩素含有殺菌水の液圧を保つこともできる。   Further, in the chlorine dioxide-containing sterilizing water generating device shown in FIG. 1, the pressurizing pump 15 is installed in the chlorine dioxide-containing sterilizing liquid feed pipe 47 before the supply position of the chlorine dioxide-dissolved water. The pressurizing pump 15 is a pump that is installed to ensure the liquid pressure of the chlorine dioxide-containing sterilizing water supplied to the use point, but the installation is arbitrary. For example, the hydraulic pressure of chlorine dioxide-containing sterilizing water can be maintained with the water pressure from the water supply without installing the pressurizing pump 15.

次いで、図1に示す二酸化塩素含有殺菌水の生成装置を用いて、二酸化塩素含有殺菌水を製造する方法について説明する。先ず、希釈亜塩素酸ナトリウム水溶液送液管41に、亜塩素酸ナトリウム水溶液希釈用の希釈水32を供給しながら、高濃度亜塩素酸ナトリウム水溶液送液管42に、高濃度亜塩素酸ナトリウム水溶液31を供給する。そして、希釈亜塩素酸ナトリウム水溶液送液管41に、亜塩素酸ナトリウム水溶液希釈用の希釈水32を供給しながら、高濃度亜塩素酸ナトリウム水溶液送液管42に、高濃度亜塩素酸ナトリウム31を供給することにより、希釈亜塩素酸ナトリウム水溶液送液管41内で、イオン交換に供せられる希釈亜塩素酸ナトリウム水溶液51が調製され、イオン交換手段2に供給される。高濃度亜塩素酸ナトリウム31中の亜塩素酸ナトリウムの濃度は、製造目的の二酸化塩素含有殺菌水中の二酸化塩素濃度の設定値により、適宜選択される。例えば、食品用の殺菌水の場合には、高濃度亜塩素酸ナトリウム水溶液31中の亜塩素酸ナトリウムの濃度は、5〜25質量%、好ましくは5〜7.5質量%である。また、亜塩素酸ナトリウム水溶液希釈用の希釈水32は、特に制限されず、例えば、水道水、イオン交換水、蒸留水、活性炭や逆浸透膜で処理された処理水等が挙げられ、殺菌水の用途に応じて、適宜選択される。また、希釈亜塩素酸ナトリウム水溶液51中の亜塩素酸ナトリウムの濃度は、製造目的の二酸化塩素含有殺菌水中の二酸化塩素濃度の設定値により、適宜選択される。希釈亜塩素酸ナトリウム水溶液31中の亜塩素酸ナトリウムの濃度は、通常、0.1〜0.4質量%、好ましくは0.2〜0.3質量%である。   Next, a method for producing chlorine dioxide-containing sterilized water using the chlorine dioxide-containing sterilized water generator shown in FIG. 1 will be described. First, a high concentration sodium chlorite aqueous solution is supplied to the high concentration sodium chlorite aqueous solution supply pipe 42 while supplying the diluted sodium chlorite aqueous solution dilution water 32 to the diluted sodium chlorite aqueous solution supply pipe 41. 31 is supplied. The high concentration sodium chlorite 31 is supplied to the high concentration sodium chlorite aqueous solution feeding pipe 42 while supplying the diluted sodium chlorite aqueous solution dilution water 32 to the diluted sodium chlorite aqueous solution feeding pipe 41. In the diluted sodium chlorite aqueous solution feed pipe 41, a diluted sodium chlorite aqueous solution 51 to be used for ion exchange is prepared and supplied to the ion exchange means 2. The concentration of sodium chlorite in the high-concentration sodium chlorite 31 is appropriately selected according to the set value of the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water for production purposes. For example, in the case of sterilizing water for food, the concentration of sodium chlorite in the high-concentration sodium chlorite aqueous solution 31 is 5 to 25% by mass, preferably 5 to 7.5% by mass. The dilution water 32 for diluting the sodium chlorite aqueous solution is not particularly limited, and examples thereof include tap water, ion exchange water, distilled water, treated water treated with activated carbon and reverse osmosis membrane, and sterilizing water. It is appropriately selected according to the application. Further, the concentration of sodium chlorite in the diluted sodium chlorite aqueous solution 51 is appropriately selected depending on the set value of the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water to be manufactured. The density | concentration of the sodium chlorite in the diluted sodium chlorite aqueous solution 31 is 0.1-0.4 mass% normally, Preferably it is 0.2-0.3 mass%.

次いで、イオン交換手段2により、希釈亜塩素酸ナトリウム水溶液51中の亜塩素酸ナトリウムのナトリウムイオンを、水素イオンにイオン交換して、亜塩素酸水溶液(pH調整前)54を得る。   Next, sodium ion of sodium chlorite in the diluted sodium chlorite aqueous solution 51 is ion-exchanged with hydrogen ions by the ion exchange means 2 to obtain an aqueous chlorite solution (before pH adjustment) 54.

次いで、イオン交換手段2により得られる亜塩素酸水溶液(pH調整前)54に、希釈亜塩素酸ナトリウム水溶液バイパス管48から希釈亜塩素酸ナトリウム水溶液51を適量混合して、亜塩素酸水溶液送液管43内でpHを調節して、亜塩素酸水溶液(pH調整後)を得、得られる亜塩素酸水溶液(pH調整後)を、触媒酸化手段5に送液し、触媒酸化手段5により、亜塩素酸水溶液(pH調整後)中の亜塩素酸を酸化して、二酸化塩素溶解水53を得る。   Next, an appropriate amount of dilute sodium chlorite aqueous solution 51 is mixed from dilute sodium chlorite aqueous solution bypass pipe 48 to chlorous acid aqueous solution (before pH adjustment) 54 obtained by ion exchange means 2, and chlorous acid aqueous solution is fed. The pH in the tube 43 is adjusted to obtain an aqueous chlorous acid solution (after pH adjustment), and the resulting aqueous chlorous acid solution (after pH adjustment) is sent to the catalytic oxidation means 5, The chlorine dioxide dissolved water 53 is obtained by oxidizing the chlorous acid in the aqueous chlorous acid solution (after pH adjustment).

次いで、二酸化塩素含有殺菌水送液管47に、二酸化塩素溶解水希釈用の希釈水33aを供給しながら、二酸化塩素溶解水送液ポンプ13で、二酸化塩素含有殺菌水送液管47内に、触媒酸化手段5により得られる二酸化塩素溶解水53を供給する。そして、二酸化塩素含有殺菌水送液管47に、二酸化塩素溶解水希釈用の希釈水33aを供給しながら、二酸化塩素溶解水送液ポンプ13で、二酸化塩素含有殺菌水送液管47内に、触媒酸化手段5により得られる二酸化塩素溶解水53を供給することにより、二酸化塩素含有殺菌水送液管47内で、二酸化塩素含有殺菌水36が製造され、ユースポイントに供給される。二酸化塩素含有殺菌水36中の二酸化塩素の濃度は、用途に応じて、適宜選択される。二酸化塩素含有殺菌水36中の二酸化塩素の濃度は、通常、0.1〜200mg/L、好ましくは1〜100mg/L、特に好ましくは10〜20mg/Lである。   Next, while supplying the diluted water 33a for diluting chlorine dioxide-dissolved water to the chlorine dioxide-containing sterilized water feed pipe 47, the chlorine dioxide-containing sterilized water feed pipe 47 in the chlorine dioxide-containing sterilized water feed pipe 47, Chlorine dioxide-dissolved water 53 obtained by the catalytic oxidation means 5 is supplied. And while supplying the diluted water 33a for diluting the chlorine dioxide-dissolved water to the chlorine dioxide-containing sterilized water feed pipe 47, the chlorine dioxide-containing sterilized water feed pipe 47 in the chlorine dioxide-containing sterilized water feed pipe 47, By supplying the chlorine dioxide-dissolved water 53 obtained by the catalytic oxidation means 5, the chlorine dioxide-containing sterilized water 36 is produced in the chlorine dioxide-containing sterilized water feed pipe 47 and supplied to the use point. The concentration of chlorine dioxide in the chlorine dioxide-containing sterilizing water 36 is appropriately selected according to the application. The concentration of chlorine dioxide in the chlorine dioxide-containing sterilizing water 36 is usually 0.1 to 200 mg / L, preferably 1 to 100 mg / L, particularly preferably 10 to 20 mg / L.

このようにして、図1に示す二酸化塩素含有殺菌水の生成装置では、二酸化塩素含有殺菌水が製造され、製造された二酸化塩素含有殺菌水が、ユースポイントに供給されるが、二酸化塩素含有殺菌水の製造中、イオン交換手段2から出てくる亜塩素酸水溶液中の亜塩素酸濃度は、全く同じ濃度で推移することはなく、常に、変動している。そして、何らかの要因で、亜塩素酸水溶液中の亜塩素酸濃度が、所望の濃度範囲より、低くなり過ぎたり、あるいは、高くなり過ぎたりすることがある。亜塩素酸水溶液中の亜塩素酸濃度が、所望の濃度範囲より、低くなり過ぎたり、あるいは、高くなり過ぎた亜塩素酸水溶液を、触媒酸化手段5に送液すると、最終的に、ユースポイントに供給される二酸化塩素含有殺菌水中の二酸化塩素濃度のバラツキが大きくなってしまう。そこで、pH測定手段3で、亜塩素酸水溶液のpHを測定することによって、亜塩素酸水溶液中の亜塩素酸濃度が、所望の濃度範囲内になっているか否かを判断し、そして、亜塩素酸水溶液の管理pH値を予め定めておき、pHの測定値と、管理pH値に差がある場合には、pH測定手段3から送られてくるpH値と管理pH値との差から、亜塩素酸水溶液(pH調整後)のpHを、管理pH値にするために必要な、バイパス管送液ポンプ16の希釈亜塩素酸ナトリウム水溶液の送液流量を算出し、その送液流量に、バイパス管送液ポンプ16の送液流量を変更する。このことにより、本発明の二酸化塩素含有殺菌水の生成装置では、希釈亜塩素酸ナトリウム水溶液バイパス管48が繋がる位置より後に送液される亜塩素酸水溶液の濃度のバラツキを小さくすることができるので、二酸化塩素濃度のバラツキが小さい二酸化塩素含有殺菌水を製造することができる。このような、pH測定手段からのpH測定値の取得、pH測定値と管理pH値との対比、対比結果に基づくバイパス管送液ポンプへの命令による制御は、第一演算部により行われる。   Thus, in the chlorine dioxide containing sterilizing water production | generation apparatus shown in FIG. 1, chlorine dioxide containing sterilizing water is manufactured, and the manufactured chlorine dioxide containing sterilizing water is supplied to a use point, but chlorine dioxide containing sterilizing water is supplied. During the production of water, the concentration of chlorous acid in the aqueous chlorous acid solution coming out of the ion exchange means 2 does not change at exactly the same concentration, but always fluctuates. For some reason, the concentration of chlorous acid in the aqueous chlorous acid solution may be too low or too high than the desired concentration range. When a chlorous acid aqueous solution in which the chlorous acid concentration in the aqueous chlorous acid solution is too low or higher than the desired concentration range is sent to the catalytic oxidation means 5, the use point is finally reached. Variation of chlorine dioxide concentration in the chlorine dioxide-containing sterilized water supplied to the water becomes large. Therefore, by measuring the pH of the aqueous chlorous acid solution with the pH measuring means 3, it is determined whether or not the concentration of chlorous acid in the aqueous chlorous acid solution is within a desired concentration range. The management pH value of the chloric acid aqueous solution is determined in advance, and when there is a difference between the measured pH value and the managed pH value, from the difference between the pH value sent from the pH measuring means 3 and the managed pH value, The flow rate of the dilute sodium chlorite aqueous solution of the bypass pipe liquid feed pump 16 necessary for setting the pH of the chlorous acid aqueous solution (after pH adjustment) to the control pH value is calculated. The liquid supply flow rate of the bypass pipe liquid supply pump 16 is changed. As a result, in the chlorine dioxide-containing sterilizing water generator of the present invention, it is possible to reduce the variation in the concentration of the aqueous chlorite solution sent after the position where the diluted sodium chlorite aqueous solution bypass pipe 48 is connected. Thus, chlorine dioxide-containing sterilizing water with small variations in chlorine dioxide concentration can be produced. The first calculation unit performs control based on the acquisition of the pH measurement value from the pH measurement unit, the comparison between the pH measurement value and the management pH value, and the command to the bypass pipe liquid feeding pump based on the comparison result.

また、亜塩素酸ナトリウムは、イオン交換手段で処理されると、酸である亜塩素酸が生成するので、イオン交換処理後の亜塩素酸水溶液は酸性であるが、亜塩素酸水溶液のpHが5より低くなると、水溶液中に塩素ガスが発生し易くなる。そのため、pHが低過ぎる亜塩素酸水溶液を、イオン交換手段より後に送液することは好ましくない。そこで、イオン交換処理された直後の亜塩素酸水溶液(pH調整前)に、希釈亜塩素酸ナトリウム水溶液バイパス管から、希釈亜塩素酸ナトリウム水溶液を混合する。このことにより、希釈亜塩素酸ナトリウム水溶液のpHが低くなり過ぎないようにすることができる。   In addition, when sodium chlorite is treated by ion exchange means, chlorous acid, which is an acid, is produced, so the aqueous chlorite solution after the ion exchange treatment is acidic, but the pH of the aqueous chlorite solution is If it is lower than 5, chlorine gas is likely to be generated in the aqueous solution. For this reason, it is not preferable to send an aqueous solution of chlorous acid whose pH is too low after the ion exchange means. Therefore, the diluted sodium chlorite aqueous solution is mixed from the diluted sodium chlorite aqueous solution bypass pipe into the chlorous acid aqueous solution (before pH adjustment) immediately after the ion exchange treatment. This can prevent the pH of the diluted sodium chlorite aqueous solution from becoming too low.

また、図1に示す二酸化塩素含有殺菌水の生成装置では、二酸化塩素含有殺菌水の製造中、二酸化塩素濃度測定手段7で、二酸化塩素含有殺菌水36中の二酸化塩素濃度を測定し、二酸化塩素濃度の測定値と、管理二酸化塩素濃度値とを対比し、二酸化塩素濃度の測定値と、管理二酸化塩素濃度値に差がある場合には、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値と管理二酸化塩素濃度値との差から、二酸化塩素含有殺菌水中の二酸化塩素濃度を、管理二酸化塩素濃度値にするために必要な、二酸化塩素溶解水送液ポンプ13の送液流量を算出し、その送液流量に、二酸化塩素溶解水送液ポンプ13の送液流量を変更する。このことにより、本発明の二酸化塩素含有殺菌水の生成装置では、二酸化塩素濃度のバラツキが小さい二酸化塩素含有殺菌水を製造することができる。このような、二酸化塩素濃度測定手段からの二酸化塩素濃度値の取得、二酸化塩素濃度の測定値と管理二酸化塩素濃度値との対比、対比結果から送液流量の計算、送液流量に基づく、二酸化塩素溶解水送液ポンプへの命令による制御は、第二演算部により行われる。   Further, in the apparatus for producing chlorine dioxide-containing sterilizing water shown in FIG. 1, the chlorine dioxide concentration measuring means 7 measures the chlorine dioxide concentration in the chlorine dioxide-containing sterilizing water 36 during the production of chlorine dioxide-containing sterilizing water, and chlorine dioxide Concentration measurement value and management chlorine dioxide concentration value are compared. If there is a difference between the chlorine dioxide concentration measurement value and the management chlorine dioxide concentration value, the chlorine dioxide sent from the chlorine dioxide concentration measuring means 7 From the difference between the concentration value and the managed chlorine dioxide concentration value, the liquid feed flow rate of the chlorine dioxide-dissolved water feed pump 13 required to change the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water to the managed chlorine dioxide concentration value is calculated. Then, the liquid feed flow rate of the chlorine dioxide-dissolved water liquid feed pump 13 is changed to the liquid feed flow rate. Thus, the chlorine dioxide-containing sterilizing water producing apparatus of the present invention can produce chlorine dioxide-containing sterilizing water with small variations in chlorine dioxide concentration. Such acquisition of chlorine dioxide concentration value from chlorine dioxide concentration measuring means, comparison of measured value of chlorine dioxide concentration and management chlorine dioxide concentration value, calculation of liquid feeding flow rate from comparison result, based on liquid feeding flow rate, Control by a command to the chlorine-dissolved water feed pump is performed by the second arithmetic unit.

また、本発明の二酸化塩素含有殺菌水の生成装置は、pH測定手段と触媒酸化手段との間の亜塩素酸水溶液送液管に設置される中間タンクを有することができる。   In addition, the chlorine dioxide-containing sterilizing water generator of the present invention can have an intermediate tank installed in a chlorous acid aqueous solution feeding pipe between the pH measuring means and the catalytic oxidation means.

図2は、中間タンクを有する本発明の二酸化塩素含有殺菌水の生成装置の形態例のフロー図である。図2に示す二酸化塩素含有殺菌水の生成装置では、図1に示す二酸化塩素含有殺菌水の生成装置に、更に、中間タンク4が設置されており、イオン交換手段2と触媒酸化手段5とを繋ぐ亜塩素酸水溶液送液管43の途中に、中間タンク4が設置されている。中間タンク4には、中間タンク4内の圧力を調節するために、中間タンク4内に加圧ガスを供給する加圧ガス供給管37と、中間タンク4内のガスを排出する加圧ガス排出管39が付設されている。なお、中間タンク4への加圧ガス供給管37と加圧ガス排出管39の設置は任意である。亜塩素酸水溶液送液管43は、イオン交換手段2と触媒酸化手段5とを、中間タンク4を経て繋ぐ送液管であり、一端側がイオン交換手段2に繋がり、他端側が触媒酸化手段5に繋がっている。そして、亜塩素酸水溶液送液管43の途中には、中間タンク4が設置されている。亜塩素酸水溶液送液管43は、イオン交換手段2により生成された亜塩素酸水溶液を、中間タンク4を経て、触媒酸化手段5まで送液するための送液管である。   FIG. 2 is a flow diagram of an embodiment of the chlorine dioxide-containing sterilizing water generator of the present invention having an intermediate tank. In the chlorine dioxide-containing sterilizing water generator shown in FIG. 2, an intermediate tank 4 is further installed in the chlorine dioxide-containing sterilizing water generator shown in FIG. 1, and the ion exchange means 2 and the catalytic oxidation means 5 are provided. An intermediate tank 4 is installed in the middle of the chlorous acid aqueous solution feeding pipe 43 to be connected. In the intermediate tank 4, in order to adjust the pressure in the intermediate tank 4, a pressurized gas supply pipe 37 that supplies pressurized gas into the intermediate tank 4 and a pressurized gas discharge that discharges gas in the intermediate tank 4. A tube 39 is attached. Note that the installation of the pressurized gas supply pipe 37 and the pressurized gas discharge pipe 39 to the intermediate tank 4 is optional. The chlorous acid aqueous solution feeding pipe 43 is a liquid feeding pipe that connects the ion exchange means 2 and the catalytic oxidation means 5 through the intermediate tank 4, one end side is connected to the ion exchange means 2, and the other end side is the catalytic oxidation means 5. It is connected to. An intermediate tank 4 is installed in the middle of the chlorous acid aqueous solution feeding pipe 43. The chlorous acid aqueous solution feeding pipe 43 is a liquid feeding pipe for feeding the chlorous acid aqueous solution generated by the ion exchange means 2 to the catalytic oxidation means 5 through the intermediate tank 4.

そして、図2に示す二酸化塩素含有殺菌水の生成装置を用いて、二酸化塩素含有殺菌水を製造する方法では、希釈亜塩素酸ナトリウム水溶液51をイオン交換手段2でイオン交換処理し、更に、希釈亜塩素酸水溶液51を混合してpH調整した亜塩素酸水溶液(pH調整後)52を、中間タンク4に送液する。次いで、中間タンク4内の亜塩素酸水溶液(pH調整後)52を、触媒酸化手段5に送液して、触媒酸化手段5により、亜塩素酸水溶液(pH調整後)52中の亜塩素酸を酸化して、二酸化塩素溶解水53を得る。   In the method for producing chlorine dioxide-containing sterilized water using the chlorine dioxide-containing sterilized water generator shown in FIG. 2, the diluted sodium chlorite aqueous solution 51 is ion-exchanged by the ion exchange means 2 and further diluted. A chlorous acid aqueous solution (after pH adjustment) 52 mixed with the chlorous acid aqueous solution 51 and adjusted in pH is sent to the intermediate tank 4. Next, the chlorous acid aqueous solution (after pH adjustment) 52 in the intermediate tank 4 is sent to the catalyst oxidation means 5, and the catalyst oxidization means 5 causes the chlorite in the chlorite aqueous solution (after pH adjustment) 52. Is oxidized to obtain chlorine dioxide-dissolved water 53.

また、本発明の二酸化塩素含有殺菌水の生成装置は、二酸化塩素濃度測定手段とユースポイントとの間の二酸化塩素殺菌水送液管に設置される切り替え弁と、切り替え弁に繋がる二酸化塩素含有殺菌水ブロー管と、を有することができる。   The chlorine dioxide-containing sterilizing water generator of the present invention includes a switching valve installed in a chlorine dioxide sterilizing water feeding pipe between the chlorine dioxide concentration measuring means and the use point, and a chlorine dioxide-containing sterilizing water connected to the switching valve. And a water blow tube.

図3は、切り替え弁と二酸化塩素含有殺菌水ブロー管とを有する本発明の二酸化塩素含有殺菌水の生成装置の形態例のフロー図である。図3に示す二酸化塩素含有殺菌水の生成装置では、図1に示す二酸化塩素含有殺菌水の生成装置に、更に、二酸化塩素濃度測定手段7とユースポイントとの間の二酸化塩素含有殺菌水送液管47に、切り替え弁28が設置されており、この切り替え弁28に、二酸化塩素含有殺菌水ブロー管49が繋がっている。切り替え弁28は、二酸化塩素含有殺菌水が、ユースポイントへ向かう方向か、二酸化塩素含有殺菌水ブロー管49か、のいずれかに流れるように、流れ方向を切り替えるための弁である。   FIG. 3 is a flow diagram of an embodiment of the chlorine dioxide-containing sterilizing water generator of the present invention having a switching valve and a chlorine dioxide-containing sterilizing water blow pipe. In the chlorine dioxide-containing sterilizing water generating device shown in FIG. 3, the chlorine dioxide-containing sterilizing water feeding device between the chlorine dioxide concentration measuring means 7 and the use point is added to the chlorine dioxide-containing sterilizing water generating device shown in FIG. A switching valve 28 is installed in the pipe 47, and a chlorine dioxide-containing sterilizing water blow pipe 49 is connected to the switching valve 28. The switching valve 28 is a valve for switching the flow direction so that the chlorine dioxide-containing sterilized water flows to either the direction toward the use point or the chlorine dioxide-containing sterilized water blow pipe 49.

そして、図3に示す本発明の二酸化塩素含有殺菌水の生成装置は、二酸化塩素濃度測定手段7及び切り替え弁28に電気的に繋がり、管理二酸化塩素濃度範囲が記憶され、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値と管理二酸化塩素濃度範囲とを対比し、二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値が、管理二酸化塩素濃度範囲から外れたときには、切り替え弁28に、液流れをブロー側に切り替える命令を送り、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値が、管理二酸化塩素濃度範囲に戻ったときには、切り替え弁28に、液流れを通常流れ側に切り替える命令を送る、第三演算部29を有する。第三演算部29は、記憶部に管理二酸化塩素濃度範囲が記憶されており、二酸化塩素濃度測定手段7から送られてくる二酸化塩素濃度値と管理二酸化塩素濃度範囲とを対比して、その対比結果により、切り替え弁28に、液流れをブロー側に切り替える命令を送り、あるいは、切り替え弁28に、液流れを通常流れ側に切り替える命令を送るプログラムが組み込まれている電子計算機である。なお、管理二酸化塩素濃度値とは、二酸化塩素含有殺菌水36の二酸化塩素濃度のバラツキ範囲として許容される二酸化塩素濃度の範囲を指す。管理二酸化塩素濃度値は、殺菌水の用途、殺菌水中の二酸化塩素濃度の設定値等により、適宜選択される。また、液流れをブロー側に切り替えるとは、ユースポイントに送液されている二酸化塩素含有殺菌水36が、ユースポイントに向かう二酸化塩素含有殺菌水送液管47には送液されず、且つ、二酸化塩素含有殺菌水ブロー管49に送液されるように切り替えることを指す。また、液流れを通常流れ側に切り替えるとは、二酸化塩素含有殺菌水ブロー管49に送液されている二酸化塩素含有殺菌水36が、二酸化塩素含有殺菌水ブロー管49には送液されず、且つ、ユースポイントに向かう二酸化塩素含有殺菌水送液管47に送液されるように切り替えることを指す。なお、第三演算部用のプラグラムは、第一演算部用のプログラム又は第二演算部用のプログラムと、同じ電子計算機に組み込まれていてもよいし、それぞれ別々の電子計算機に組み込まれていてもよい。   The chlorine dioxide-containing sterilizing water generating device of the present invention shown in FIG. 3 is electrically connected to the chlorine dioxide concentration measuring means 7 and the switching valve 28, and the management chlorine dioxide concentration range is stored, and the chlorine dioxide concentration measuring means 7 The chlorine dioxide concentration value sent from the control chlorine dioxide concentration range is compared with the management chlorine dioxide concentration range, and when the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means is out of the management chlorine dioxide concentration range, When a command to switch the liquid flow to the blow side is sent and the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means 7 returns to the management chlorine dioxide concentration range, the liquid flow is switched to the normal flow side to the switching valve 28. A third operation unit 29 for sending an instruction to switch to The third arithmetic unit 29 stores the management chlorine dioxide concentration range in the storage unit, compares the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means 7 with the management chlorine dioxide concentration range, and compares them. Depending on the result, the electronic computer incorporates a program for sending a command for switching the liquid flow to the blow side to the switching valve 28 or sending a command for switching the liquid flow to the normal flow side for the switching valve 28. The management chlorine dioxide concentration value indicates a range of chlorine dioxide concentration that is allowed as a variation range of the chlorine dioxide concentration of the chlorine dioxide-containing sterilizing water 36. The management chlorine dioxide concentration value is appropriately selected depending on the use of the sterilizing water, the set value of the chlorine dioxide concentration in the sterilizing water, and the like. Further, switching the liquid flow to the blow side means that the chlorine dioxide-containing sterilized water 36 being sent to the use point is not sent to the chlorine dioxide-containing sterilized water feed pipe 47 toward the use point, and It refers to switching so that the solution is sent to the chlorine dioxide-containing sterilizing water blow pipe 49. Further, when the liquid flow is switched to the normal flow side, the chlorine dioxide-containing sterilizing water 36 sent to the chlorine dioxide-containing sterilizing water blow pipe 49 is not sent to the chlorine dioxide-containing sterilizing water blow pipe 49, And it refers to switching so that the chlorine dioxide-containing sterilized water liquid feeding pipe 47 is directed to the use point. The program for the third arithmetic unit may be incorporated in the same computer as the program for the first arithmetic unit or the program for the second arithmetic unit, or may be incorporated in a separate electronic computer. Also good.

図3に示す二酸化塩素含有殺菌水の生成装置を用いて、二酸化塩素含有殺菌水を製造する方法では、二酸化塩素含有殺菌水の製造中に、二酸化塩素含有殺菌水36の二酸化塩素濃度が、管理二酸化塩素濃度範囲から外れてしまったときに、切り替え弁28で、二酸化塩素含有殺菌水の流れ方向を切り替えて、管理二酸化塩素濃度範囲から外れてしまった二酸化塩素含有殺菌水を、二酸化塩素含有殺菌水排水57として装置外に排出する。   In the method for producing chlorine dioxide-containing sterilized water using the chlorine dioxide-containing sterilized water generating device shown in FIG. 3, the chlorine dioxide concentration of the chlorine dioxide-containing sterilized water 36 is controlled during the production of chlorine dioxide-containing sterilized water. When it is out of the chlorine dioxide concentration range, the switching valve 28 switches the flow direction of the chlorine dioxide-containing sterilizing water, and the chlorine dioxide-containing sterilizing water that is out of the management chlorine dioxide concentration range is replaced with the chlorine dioxide-containing sterilization water. It is discharged out of the apparatus as water drainage 57.

亜塩素酸ナトリウムは、(1)式に示すように、水溶液中でNaとClO に解離しており、そして、(2)式に示すように、亜塩素酸ナトリウムのナトリウムイオンが水素イオンにイオン交換されると、亜塩素酸が生成する。
NaClO→Na+ClO (1)
Na+ClO →H+ClO →HClO (2)
次いで、(3)式に示すように、亜塩素酸が酸化されると、二酸化塩素が生成する。
5HClO→4ClO+HCl+2HO (3)
このようなことから、亜塩素酸ナトリウムを、単にイオン交換し、次いで、酸化しただけでは、強酸性の二酸化塩素溶解水が得られてしまう。
ここで、式(3)で得られる水溶液に、亜塩素酸ナトリウムを加えると、式(4)に示すように、水溶液が亜塩素酸ナトリウムで中和されるため、二酸化塩素溶解水のpHを5〜6.5にすることができる。
4ClO+HCl+NaClO→4ClO+NaCl+HClO (4)
Sodium chlorite is dissociated into Na + and ClO 2 in an aqueous solution as shown in formula (1), and the sodium ion of sodium chlorite is hydrogenated as shown in formula (2). When ion exchanged into ions, chlorous acid is produced.
NaClO 2 → Na + + ClO 2 (1)
Na + + ClO 2 → H + + ClO 2 → HClO 2 (2)
Next, as shown in the formula (3), when chlorous acid is oxidized, chlorine dioxide is generated.
5HClO 2 → 4ClO 2 + HCl + 2H 2 O (3)
For this reason, if the sodium chlorite is simply ion-exchanged and then oxidized, a strongly acidic chlorine dioxide-dissolved water can be obtained.
Here, when sodium chlorite is added to the aqueous solution obtained by the formula (3), the aqueous solution is neutralized with sodium chlorite as shown in the formula (4). 5 to 6.5.
4ClO 2 + HCl + NaClO 2 → 4ClO 2 + NaCl + HClO 2 (4)

本発明の二酸化塩素含有殺菌水の製造装置において、イオン交換直後の亜塩素酸水溶液送液管中の亜塩素酸水溶液は、強酸性になるが、アルカリ性である亜塩素酸ナトリウムがバイパス管から注入されることで、弱酸性になる。そして、本発明の二酸化塩素含有殺菌水の製造装置では、酸化前の亜塩素酸水溶液に亜塩素酸ナトリウムを混合することで、酸化後の水溶液を、式(4)で示される、強酸性の二酸化塩素溶解水が亜塩素酸ナトリウムで中和された水溶液と同様な状態にすることができ、pHが5〜6.5の二酸化塩素溶解水が得られる。   In the apparatus for producing sterilized water containing chlorine dioxide according to the present invention, the aqueous chlorite solution in the chlorous acid aqueous solution feeding pipe immediately after the ion exchange becomes strongly acidic, but alkaline sodium chlorite is injected from the bypass pipe. It becomes weakly acidic. And in the manufacturing apparatus of the chlorine dioxide containing sterilization water of this invention, the aqueous solution after oxidation is shown by Formula (4) by mixing sodium chlorite with the chlorite aqueous solution before oxidation, and strongly acidic. Chlorine dioxide-dissolved water can be brought into the same state as an aqueous solution neutralized with sodium chlorite, and chlorine dioxide-dissolved water having a pH of 5 to 6.5 is obtained.

pHが5〜6.5に弱酸性化された二酸化塩素溶解水は、高濃度で二酸化塩素が溶解しているにもかかわらず、取扱いが安全である。そして、本発明の二酸化塩素含有殺菌水の製造装置では、pH5〜6.5で、二酸化塩素が溶解している二酸化塩素溶解水を扱うことができるので、本発明の二酸化塩素含有殺菌水の製造装置によれば、安全に二酸化塩素含有殺菌水を製造することができる。   Chlorine dioxide-dissolved water that has been weakly acidified to a pH of 5 to 6.5 is safe to handle despite the high concentration of dissolved chlorine dioxide. And in the manufacturing apparatus of chlorine dioxide containing sterilizing water of this invention, since it can handle the chlorine dioxide melt | dissolving water in which chlorine dioxide is melt | dissolving by pH 5-6.5, manufacture of the chlorine dioxide containing sterilizing water of this invention According to the apparatus, chlorine dioxide-containing sterilized water can be produced safely.

また、中間タンクを設置する場合、亜塩素酸水溶液のpHが2以下だと、中間タンクで水溶液を貯めている間に、時間の経過に伴い、亜塩素酸から二酸化塩素が生成するため、貯留時間が長くなると、水溶液中から二酸化塩素が放出される危険がある。本発明の二酸化塩素含有殺菌水の製造装置では、亜塩素酸水溶液を、pH5〜6.5にしてから、中間タンクに移送することができるので、本発明の二酸化塩素含有殺菌水の製造装置によれば、中間タンクで貯留中に、水溶液から二酸化塩素が放出されるという危険を回避することができる。   In addition, when installing an intermediate tank, if the pH of the aqueous chlorous acid solution is 2 or less, chlorine dioxide is produced from chlorous acid over time while the aqueous solution is being stored in the intermediate tank. As time goes on, there is a risk of chlorine dioxide being released from the aqueous solution. In the apparatus for producing sterilized water containing chlorine dioxide of the present invention, the aqueous chlorous acid solution can be transferred to an intermediate tank after adjusting the pH to 5 to 6.5. According to this, it is possible to avoid the danger of chlorine dioxide being released from the aqueous solution during storage in the intermediate tank.

このようにして、本発明の二酸化塩素含有殺菌水の製造装置では、二酸化塩素含有殺菌水が得られる。そして、本発明の二酸化塩素含有殺菌水の製造装置により得られる二酸化塩素含有殺菌水は、主たる殺菌成分として、二酸化塩素(ClO)及び亜塩素酸(HClO)を含有し、その他の成分として、ナトリウムイオン、副生成物として、亜塩素酸イオン、塩素酸イオン及び塩素を含有する。つまり、本発明の二酸化塩素含有殺菌水の製造装置は、二酸化塩素及び亜塩素酸を含有する殺菌水の製造装置である。 In this way, chlorine dioxide-containing sterilizing water is obtained in the chlorine dioxide-containing sterilizing water manufacturing apparatus of the present invention. And the chlorine dioxide containing sterilizing water obtained by the chlorine dioxide containing sterilizing water manufacturing apparatus of the present invention contains chlorine dioxide (ClO 2 ) and chlorous acid (HClO 2 ) as main sterilizing components, and as other components. , Sodium ion, and by-product containing chlorite ion, chlorate ion and chlorine. That is, the device for producing sterilized water containing chlorine dioxide of the present invention is a device for producing sterilized water containing chlorine dioxide and chlorous acid.

本発明の二酸化塩素含有殺菌水の製造装置では、亜塩素酸水溶液に亜塩素酸ナトリウムを混合して、水溶液を弱酸性にしているが、亜塩素酸水溶液又は二酸化塩素水溶液を弱酸性にしても、得られる二酸化塩素含有殺菌水中の二酸化塩素濃度は変化しないため、弱酸性にすることによっては、殺菌力は低下することがない。そして、本発明の二酸化塩素含有殺菌水の製造装置では、弱酸性化した二酸化塩素含有水である二酸化塩素溶解水を、ユースポイントでの要求に応じて、希釈水で希釈することにより、二酸化塩素濃度がユースポイントで要求される濃度に調節された二酸化塩素含有殺菌水を得る。   In the apparatus for producing chlorine dioxide-containing sterilizing water of the present invention, sodium chlorite is mixed with an aqueous chlorite solution to make the aqueous solution weakly acidic, but the aqueous chlorous acid solution or aqueous chlorine dioxide solution is made weakly acidic. Since the chlorine dioxide concentration in the obtained chlorine dioxide-containing sterilized water does not change, the sterilizing power is not lowered by making it weakly acidic. Then, in the chlorine dioxide-containing sterilizing water production apparatus of the present invention, chlorine dioxide-dissolved water, which is weakly acidified chlorine dioxide-containing water, is diluted with dilution water according to the requirements at the point of use, thereby producing chlorine dioxide. A chlorine dioxide-containing sterilized water whose concentration is adjusted to the concentration required at the point of use is obtained.

また、本発明の二酸化塩素含有殺菌水の製造装置では、触媒酸化手段で酸化することにより、式(4)に示すように、二酸化塩素及び塩酸を含有する水溶液が、亜塩素酸ナトリウムで中和されて弱酸性化されたものと同様の二酸化塩素溶解水を得ているが、言い換えると、アルカリ性の亜塩素酸ナトリウムが、酸性の二酸化塩素及び塩酸を含有する水溶液により弱酸性化された、弱酸性化亜塩素酸ナトリウム水溶液を得ているとも言える。つまり、本発明の二酸化塩素含有殺菌水の製造装置は、弱酸性化亜塩素酸ナトリウム水溶液の製造装置とも言える。   Moreover, in the apparatus for producing chlorine dioxide-containing sterilizing water of the present invention, an aqueous solution containing chlorine dioxide and hydrochloric acid is neutralized with sodium chlorite, as shown in formula (4), by oxidation with catalytic oxidation means. In other words, it has obtained chlorine dioxide-dissolved water similar to that which has been weakly acidified, but in other words, alkaline sodium chlorite has been weakly acidified with an aqueous solution containing acidic chlorine dioxide and hydrochloric acid. It can be said that an acidified sodium chlorite aqueous solution is obtained. That is, the apparatus for producing chlorine dioxide-containing sterilizing water of the present invention can be said to be an apparatus for producing a weakly acidified sodium chlorite aqueous solution.

2 イオン交換手段
3 pH測定手段
4 中間タンク
5 触媒酸化手段
6 二酸化炭素溶解手段
7 二酸化塩素濃度測定手段
11 高濃度亜塩素酸ナトリウム水溶液送液ポンプ
12 加圧ポンプ
13 二酸化塩素溶解水送液ポンプ
14 加圧ポンプ
15 加圧ポンプ
16 バイパス管送液ポンプ
22 ガス流量調節器
26 第一演算部
27 第二演算部
28 切り替え弁
29 第三演算部
31 高濃度亜塩素酸ナトリウム水溶液
32 希釈水
33a、33b 希釈水
34 二酸化炭素溶解用の水
36 二酸化塩素含有殺菌水
37 加圧ガス供給管
38 二酸化炭素
39 加圧ガス排出管
41 希釈亜塩素酸ナトリウム水溶液送液管
42 高濃度亜塩素酸ナトリウム水溶液送液管
43 亜塩素酸水溶液送液管
44 二酸化塩素溶解水送液管
45 二酸化炭素供給管
46 二酸化炭素溶解用水送液管
47 二酸化塩素含有殺菌水送液管
48 希釈亜塩素酸ナトリウム水溶液バイパス管
49 二酸化塩素含有殺菌水ブロー管
51 希釈亜塩素酸ナトリウム水溶液
52 亜塩素酸水溶液(pH調整後)
53 二酸化塩素溶解水
54 亜塩素酸水溶液(pH調整前)
56 亜塩素酸水溶液排水
57 二酸化塩素含有殺菌水排水
2 ion exchange means 3 pH measuring means 4 intermediate tank 5 catalytic oxidation means 6 carbon dioxide dissolving means 7 chlorine dioxide concentration measuring means 11 high concentration sodium chlorite aqueous solution feed pump 12 pressure pump 13 chlorine dioxide dissolved water feed pump 14 Pressurizing pump 15 Pressurizing pump 16 Bypass pipe liquid feeding pump 22 Gas flow controller 26 First computing unit 27 Second computing unit 28 Switching valve 29 Third computing unit 31 High-concentration sodium chlorite aqueous solution 32 Diluted water 33a, 33b Dilution water 34 Water for dissolving carbon dioxide 36 Chlorine dioxide-containing sterilizing water 37 Pressurized gas supply pipe 38 Carbon dioxide 39 Pressurized gas discharge pipe 41 Diluted sodium chlorite aqueous solution feed pipe 42 High-concentration sodium chlorite aqueous solution feed Tube 43 Chlorous acid aqueous solution feed tube 44 Chlorine dioxide dissolved water feed tube 45 Carbon dioxide supply tube 46 Carbon dioxide dissolving water Liquid feed pipe 47 Chlorine dioxide-containing sterilized water liquid pipe 48 Diluted sodium chlorite aqueous solution bypass pipe 49 Chlorine dioxide-containing sterilized water blow pipe 51 Diluted sodium chlorite aqueous solution 52 Chlorous acid aqueous solution (after pH adjustment)
53 Chlorine dioxide-dissolved water 54 Chlorous acid aqueous solution (before pH adjustment)
56 Wastewater containing chlorous acid 57 Wastewater containing chlorine dioxide

Claims (3)

希釈亜塩素酸ナトリウム水溶液中の亜塩素酸ナトリウムのナトリウムイオンを水素イオンにイオン交換して、亜塩素酸水溶液を得るためのイオン交換手段と、
該亜塩素酸水溶液中の亜塩素酸を酸化触媒により酸化して、二酸化塩素溶解水を得るための触媒酸化手段と、
一端側から亜塩素酸ナトリウム水溶液希釈用の希釈水が供給され、他端側が該イオン交換手段に繋がる希釈亜塩素酸ナトリウム水溶液送液管と、
一端側から高濃度亜塩素酸ナトリウム水溶液が供給され、他端側が該希釈亜塩素酸ナトリウム水溶液送液管に繋がる高濃度亜塩素酸ナトリウム水溶液送液管と、
一端側が該イオン交換手段に繋がり、他端側が該触媒酸化手段に繋がり、亜塩素酸水溶液が送液される亜塩素酸水溶液送液管と、
一端側から二酸化塩素溶解水希釈用の希釈水が供給され、他端側がユースポイントに繋がる二酸化塩素含有殺菌水送液管と、
一端側が該触媒酸化手段に繋がり、他端側が二酸化塩素含有殺菌水送液管に繋がり、二酸化塩素溶解水が送液される二酸化塩素溶解水送液管と、
該希釈亜塩素酸ナトリウム水溶液送液管から分岐し、該亜塩素酸水溶液送液管に繋がり、該希釈亜塩素酸ナトリウム水溶液送液管内の希釈亜塩素酸ナトリウム水溶液を、該亜塩素酸水溶液送液管に供給するための希釈亜塩素酸ナトリウム水溶液バイパス管と、
該高濃度亜塩素酸ナトリウム水溶液送液管に設置され、高濃度亜塩素酸ナトリウム水溶液を送液するための高濃度亜塩素酸ナトリウム水溶液送液ポンプと、
該希釈亜塩素酸ナトリウム水溶液バイパス管に設置され、該希釈亜塩素酸ナトリウム水溶液送液管内の希釈亜塩素酸ナトリウム水溶液の一部を該亜塩素酸水溶液送液管内に送液するためのバイパス管送液ポンプと、
該二酸化塩素溶解水送液管に設置され、二酸化塩素溶解水を送液するための二酸化塩素溶解水送液ポンプと、
該亜塩素酸水溶液送液管に設置され、亜塩素酸水溶液のpHを測定するためのpH測定手段と、
該二酸化塩素含有殺菌水送液管に設置され、二酸化塩素含有殺菌水中の二酸化塩素濃度を測定するための二酸化塩素濃度測定手段と、
該pH測定手段及び該バイパス管送液ポンプに電気的に繋がり、管理pH値が記憶され、該pH測定手段から送られてくるpH値と該管理pH値とを対比し、該pH測定手段から送られてくるpH値と、該管理pH値に差がある場合には、該pH測定手段から送られてくるpH値と該管理pH値との差から、亜塩素酸水溶液のpHを、該管理pH値にするために必要な、該バイパス管送液ポンプの送液流量を算出し、該バイパス管送液ポンプに、送液流量変更命令を送る、第一演算部と、
該二酸化塩素濃度測定手段及び該二酸化塩素溶解水送液ポンプに電気的に繋がり、管理二酸化塩素濃度値が記憶され、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と該管理二酸化塩素濃度値とを対比し、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と、該管理二酸化塩素濃度値に差がある場合には、該二酸化塩素濃度測定手段から送られてくる二酸化塩素濃度値と該管理二酸化塩素濃度値との差から、二酸化塩素含有殺菌水中の二酸化塩素濃度を、該管理二酸化塩素濃度値にするために必要な、該二酸化塩素溶解水送液ポンプの送液流量を算出し、該二酸化塩素溶解水送液ポンプに、送液流量変更命令を送る、第二演算部と、
を有することを特徴とする二酸化塩素含有殺菌水の生成装置。
Ion exchange means for obtaining sodium chlorite aqueous solution by ion exchange of sodium ion of sodium chlorite in dilute sodium chlorite aqueous solution to hydrogen ion;
Catalytic oxidation means for oxidizing chlorine acid in the aqueous chlorous acid solution with an oxidation catalyst to obtain chlorine dioxide-dissolved water;
Diluted water for diluting sodium chlorite aqueous solution is supplied from one end side, and the dilute sodium chlorite aqueous solution feed pipe connected to the ion exchange means at the other end side,
A high-concentration sodium chlorite aqueous solution feed pipe to which a high-concentration sodium chlorite aqueous solution is supplied from one end side and the other end side is connected to the diluted sodium chlorite aqueous solution feed pipe;
One end side is connected to the ion exchange means, the other end side is connected to the catalytic oxidation means, and a chlorous acid aqueous solution feeding pipe through which a chlorous acid aqueous solution is fed;
Dilution water for diluting chlorine dioxide dissolved water is supplied from one end side, and the other end side is a chlorine dioxide-containing sterilizing water feed pipe that leads to a use point,
One end side is connected to the catalytic oxidation means, the other end side is connected to a chlorine dioxide-containing sterilized water supply pipe, and a chlorine dioxide-dissolved water supply pipe through which chlorine dioxide-dissolved water is supplied;
The dilute sodium chlorite aqueous solution feed pipe branches off from the dilute sodium chlorite aqueous solution feed pipe, and the dilute sodium chlorite aqueous solution feed pipe in the dilute sodium chlorite aqueous solution feed pipe transfers the dilute sodium chlorite aqueous solution feed pipe. Dilute sodium chlorite aqueous solution bypass pipe for supplying to the liquid pipe;
A high-concentration sodium chlorite aqueous solution feed pump installed in the high-concentration sodium chlorite aqueous solution feed pipe, and for feeding the high-concentration sodium chlorite aqueous solution;
A bypass pipe installed in the dilute sodium chlorite aqueous solution bypass pipe for feeding a part of the dilute sodium chlorite aqueous solution in the dilute sodium chlorite aqueous solution feed pipe into the chlorite aqueous solution feed pipe A feed pump;
A chlorine dioxide-dissolved water feed pump installed in the chlorine dioxide-dissolved water feed pipe, for delivering chlorine dioxide-dissolved water;
A pH measuring means installed in the chlorous acid aqueous solution feeding pipe for measuring the pH of the chlorous acid aqueous solution;
Chlorine dioxide concentration measuring means installed in the chlorine dioxide-containing sterilized water feed pipe and measuring the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water;
Electrically connected to the pH measuring means and the bypass pipe liquid feeding pump, the management pH value is stored, the pH value sent from the pH measuring means is compared with the management pH value, and the pH measuring means If there is a difference between the pH value sent and the control pH value, the pH of the aqueous chlorous acid solution is determined from the difference between the pH value sent from the pH measuring means and the control pH value. Calculating a liquid feed flow rate of the bypass pipe liquid feed pump necessary for the control pH value, and sending a liquid feed flow rate change command to the bypass pipe liquid feed pump;
The chlorine dioxide concentration measuring means and the chlorine dioxide-dissolved water feed pump are electrically connected to store the management chlorine dioxide concentration value, and the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means and the management chlorine dioxide If there is a difference between the chlorine dioxide concentration value sent from the chlorine dioxide concentration measuring means and the control chlorine dioxide concentration value, the dioxide dioxide sent from the chlorine dioxide concentration measuring means is compared. From the difference between the chlorine concentration value and the control chlorine dioxide concentration value, the chlorine dioxide-dissolved water feed pump required to make the chlorine dioxide concentration in the chlorine dioxide-containing sterilized water the control chlorine dioxide concentration value Calculating a flow rate, and sending a liquid feed flow rate change command to the chlorine dioxide-dissolved water feed pump;
A device for producing chlorine dioxide-containing sterilizing water, comprising:
前記pH測定手段と前記触媒酸化手段との間の前記亜塩素酸水溶液送液管に設置される中間タンクを有することを特徴とする請求項1記載の二酸化塩素含有殺菌水の生成装置。   2. The chlorine dioxide-containing sterilizing water generator according to claim 1, further comprising an intermediate tank installed in the chlorous acid aqueous solution feeding pipe between the pH measuring means and the catalytic oxidation means. 前記二酸化塩素濃度測定手段とユースポイントとの間の前記二酸化塩素含有殺菌水送液管に設置される切り替え弁と、
該切り替え弁に繋がる二酸化塩素含有殺菌水ブロー管と、
を有することを特徴とする請求項1又は2いずれか1項記載の二酸化塩素含有殺菌水の生成装置。
A switching valve installed in the chlorine dioxide-containing sterilizing water feed pipe between the chlorine dioxide concentration measuring means and the use point;
A chlorine dioxide-containing sterilizing water blow pipe connected to the switching valve;
The apparatus for producing sterilized water containing chlorine dioxide according to claim 1 or 2, characterized by comprising:
JP2015065575A 2015-03-27 2015-03-27 Equipment for producing sterilized water containing chlorine dioxide Active JP6491010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015065575A JP6491010B2 (en) 2015-03-27 2015-03-27 Equipment for producing sterilized water containing chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065575A JP6491010B2 (en) 2015-03-27 2015-03-27 Equipment for producing sterilized water containing chlorine dioxide

Publications (2)

Publication Number Publication Date
JP2016182590A JP2016182590A (en) 2016-10-20
JP6491010B2 true JP6491010B2 (en) 2019-03-27

Family

ID=57241266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065575A Active JP6491010B2 (en) 2015-03-27 2015-03-27 Equipment for producing sterilized water containing chlorine dioxide

Country Status (1)

Country Link
JP (1) JP6491010B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702185B (en) * 2017-05-04 2020-08-21 優尼克生技股份有限公司 Chlorine dioxide aqueous solution production equipment
JP7023636B2 (en) * 2017-07-31 2022-02-22 株式会社ジーシー Chlorine concentration regulator and dental unit system
WO2019083182A1 (en) * 2017-10-24 2019-05-02 이동희 Method for preparing chlorine dioxide source, and preparation apparatus therefor
CN108552219A (en) * 2018-06-06 2018-09-21 济南科琳宝环境科技有限公司 A kind of preparation method and device of high-pure chlorinedioxide thimerosal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070105343A (en) * 2005-02-22 2007-10-30 존슨디버세이, 인크. A method and apparatus for producing and dispensing a cleaning solution
WO2007115015A2 (en) * 2006-03-30 2007-10-11 Johnsondiversey, Inc. An apparatus for producing a cleaning solution
JP5670383B2 (en) * 2011-12-15 2015-02-18 株式会社ウオーターテクノカサイ Dialysis water supply device and dialysis water supply method
JP6317623B2 (en) * 2014-05-16 2018-04-25 セントラルフィルター工業株式会社 Disinfection water generator containing chlorous acid and chlorine dioxide

Also Published As

Publication number Publication date
JP2016182590A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6491010B2 (en) Equipment for producing sterilized water containing chlorine dioxide
JP6317623B2 (en) Disinfection water generator containing chlorous acid and chlorine dioxide
AU2005269289B2 (en) Chlorine dioxide solution generator
JPH1099864A (en) Method for producing sterilizing solution and apparatus therefor
JP2014050839A (en) ELECTROLYTIC DEVICE FOR GENERATION OF pH-CONTROLLED HYPOHALOUS ACID AQUEOUS SOLUTIONS FOR DISINFECTANT APPLICATIONS
KR101092818B1 (en) Chlorine dioxide generator and method the same
WO2009011841A1 (en) Cleansing agent generator and dispenser
JP5789900B2 (en) Sterilized electrolyzed water production apparatus, and sterilized electrolyzed water production system and method including the same
KR101556371B1 (en) Apparatus for producing sodium hypochlorite solution
JPH11188083A (en) Sterilized water maker
JP6491009B2 (en) Hypochlorous acid sterilizing water generator
KR20170045839A (en) Hand Sterilizer of Electrolytic Water Disinfection
JP2009136814A (en) Preparation method of weak acidic electrolytic water
JP2011111386A (en) Method for production of hypochlorous acid water
JP3819860B2 (en) Ozone generator
US20140318981A1 (en) Method, apparatus, and system for electro-chemical activation of water
JP6560516B2 (en) Equipment for producing sterilized water containing chlorine dioxide
US20140097095A1 (en) Generation of variable concentrations of chlorine dioxide
JP4726821B2 (en) Method for preparing cleaning liquid for sterilization
JPH0938655A (en) Electrolytic hypochlorous bactericide water containing ozone, its production and device therefor
KR20160150223A (en) Apparatus for manufacturing of hypochlorous acid solution
JP2011056452A (en) Method and apparatus for disinfecting tap water
JP2009279532A (en) Method and apparatus for water treatment with chlorine dioxide
US20230373833A1 (en) The process of using demineralized water for chlorate reduction in on-site brine electrochlorination systems
JP2016150884A (en) Method and apparatus for producing aqueous solution of hypochlorous acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6491010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250