JP6486063B2 - Method for producing powder composition - Google Patents

Method for producing powder composition Download PDF

Info

Publication number
JP6486063B2
JP6486063B2 JP2014218655A JP2014218655A JP6486063B2 JP 6486063 B2 JP6486063 B2 JP 6486063B2 JP 2014218655 A JP2014218655 A JP 2014218655A JP 2014218655 A JP2014218655 A JP 2014218655A JP 6486063 B2 JP6486063 B2 JP 6486063B2
Authority
JP
Japan
Prior art keywords
powder
oil
fat
raw material
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014218655A
Other languages
Japanese (ja)
Other versions
JP2016082924A (en
Inventor
穣寿 丹伊田
穣寿 丹伊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pokka Sapporo Food and Beverage Ltd
Original Assignee
Pokka Sapporo Food and Beverage Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pokka Sapporo Food and Beverage Ltd filed Critical Pokka Sapporo Food and Beverage Ltd
Priority to JP2014218655A priority Critical patent/JP6486063B2/en
Publication of JP2016082924A publication Critical patent/JP2016082924A/en
Application granted granted Critical
Publication of JP6486063B2 publication Critical patent/JP6486063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jellies, Jams, And Syrups (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)

Description

本発明は、粉体組成物の製造方法に関する。   The present invention relates to a method for producing a powder composition.

健康や美容に対する消費者の意識の高まりに対応すべく、コラーゲン、食物繊維といった身体の生理機能に良い影響を与えるものを、飲食物、医薬品、化粧品などに適用する様々な技術が研究開発されている。   In order to respond to the heightened consumer awareness of health and beauty, various technologies have been researched and applied to foods, pharmaceuticals, cosmetics, etc. that have a positive effect on the physiological functions of the body, such as collagen and dietary fiber. Yes.

例えば、特許文献1には、非多孔質で薄片状のコラーゲンペプチド粉末と結着剤とを造粒したことを特徴とする顆粒状造粒物が提案されている。
そして、特許文献1では、この顆粒状造粒物は、水に溶解させる際の沈降溶解性に優れると説明している。
For example, Patent Document 1 proposes a granular granulated product obtained by granulating non-porous and flaky collagen peptide powder and a binder.
And patent document 1 is explaining that this granular granulated material is excellent in the precipitation solubility at the time of making it melt | dissolve in water.

特開2009−171903号公報JP 2009-171903 A

特許文献1に係る技術は、コラーゲンペプチド粉末の構造と、沈降溶解性に着目した技術であるが、当該技術は、特定の構造のコラーゲンペプチド粉末を用いる場合に限定されることから、汎用性の点において優れているとはいえない。   The technique according to Patent Document 1 is a technique that focuses on the structure of collagen peptide powder and sedimentation solubility, but the technique is limited to the case of using a collagen peptide powder having a specific structure. It is not excellent in terms.

また、コラーゲンペプチドのような微細な粒子を多く含む材料(以下、適宜「微細材料」という)を用いて粉体組成物を造粒する場合、微細材料を用いない場合と比較して、微細な粉体(単体の微細な粒子だけでなく、所望のサイズまで造粒していない粉体も含む)が多く発生してしまう。このような微細な粉体は、液体を加えた際に瞬時に液体を吸収して粘度を生じるため、液体が粉体組成物全体へ拡散・浸透するのを妨げる。
したがって、粉体組成物中の微細な粉体は、粉体組成物全体としての液体への溶解性を低下させてしまう。
In addition, when a powder composition is granulated using a material containing a large amount of fine particles such as collagen peptide (hereinafter referred to as “fine material” as appropriate), it is finer than when no fine material is used. Many powders (including not only single fine particles but also powders not granulated to a desired size) are generated. Such a fine powder instantly absorbs the liquid when the liquid is added to generate a viscosity, and thus prevents the liquid from diffusing and penetrating into the entire powder composition.
Therefore, the fine powder in the powder composition decreases the solubility of the powder composition as a whole in the liquid.

そこで、本発明は、微細な粉体の発生を抑制することができる粉体組成物の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the powder composition which can suppress generation | occurrence | production of a fine powder.

前記課題は、以下の手段により解決することができる。
(1)粒径250μm以下の粒子を60質量%以上含む微細材料と、基材と油脂とを混合して得られる吸着油脂粉末と、を含有する原料に対し、バインダー液を噴霧して粉体組成物を造粒する造粒工程、を含み、前記原料に対する前記油脂の含有量が、0.40〜2.0質量%であることを特徴とする粉体組成物の製造方法。
(2)前記微細材料が、コラーゲンペプチド及び食物繊維の少なくとも一方を含有することを特徴とする前記1に記載の粉体組成物の製造方法。
(3)前記バインダー液が、プルランを含有することを特徴とする前記1又は前記2に記載の粉体組成物の製造方法。
)前記原料に対する前記吸着油脂粉末の含有量が、1.0〜10.0質量%であることを特徴とする前記1から前記のいずれか1つに記載の粉体組成物の製造方法。
)前記吸着油脂粉末に対する前記油脂の含有量が、10.0〜50.0質量%であることを特徴とする前記1から前記のいずれか1つに記載の粉体組成物の製造方法。
The above problem can be solved by the following means.
(1) A powder obtained by spraying a binder liquid onto a raw material containing a fine material containing 60% by mass or more of particles having a particle size of 250 μm or less, and an adsorbed oil / fat powder obtained by mixing a base material and an oil / fat. granulation step of granulating the composition, see containing the content of the oil relative to the raw material, the production method of the powder composition, which is a 0.40 to 2.0 wt%.
(2) The method for producing a powder composition according to (1), wherein the fine material contains at least one of a collagen peptide and dietary fiber.
(3) The method for producing a powder composition as described in 1 or 2 above, wherein the binder liquid contains pullulan.
( 4 ) Content of the said adsorption | suction fat-and-oil powder with respect to the said raw material is 1.0-10.0 mass%, Manufacture of the powder composition as described in any one of said 1 to 3 characterized by the above-mentioned Method.
( 5 ) Content of the said fats and oils with respect to the said adsorption | suction fat and oil powder is 10.0-50.0 mass%, The manufacture of the powder composition as described in any one of said 1 to 4 characterized by the above-mentioned Method.

本発明に係る粉体組成物の製造方法によると、基材と油脂とを混合して得られる吸着油脂粉末を原料に含有させていることから、造粒工程において当該吸着油脂粉末が微細材料を捕捉し、微細な粉体の発生を抑制することができる。
つまり、本発明に係る粉体組成物の製造方法によると、微細な粉体の存在割合が低減した粉体組成物を製造することができる。
According to the method for producing a powder composition according to the present invention, the adsorbed fat and oil powder obtained by mixing the base material and the fat and oil is contained in the raw material. Capturing and suppressing generation of fine powder.
That is, according to the method for producing a powder composition according to the present invention, it is possible to produce a powder composition with a reduced proportion of fine powder.

本発明の一実施形態に係る粉体組成物の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the powder composition which concerns on one Embodiment of this invention.

以下、本発明に係る粉体組成物の製造方法を実施するための形態(実施形態)について説明する。
まず、本実施形態に係る粉体組成物の製造方法によって製造される粉体組成物、並びに、本実施形態に係る粉体組成物の製造方法において用いる原料、及び、バインダー液について説明する。
Hereinafter, the form (embodiment) for enforcing the manufacturing method of the powder composition concerning the present invention is explained.
First, the powder composition produced by the method for producing a powder composition according to this embodiment, the raw materials used in the method for producing a powder composition according to this embodiment, and the binder liquid will be described.

[粉体組成物]
本実施形態に係る粉体組成物の製造方法によって製造される粉体組成物とは、微細材料、吸着油脂粉末等の原料が造粒されて形成される顆粒状の組成物である。
そして、粉体組成物は、湯、水、ジュース等の液体に溶解させて飲み物として利用してもよいし、ゼリー等の食べ物として利用してもよく、様々な飲食物として利用することが可能である。
さらに、粉体組成物の用途は、飲食物に限定されることなく、医薬品、サプリメント、化粧品、入浴剤等、顆粒状の組成物であれば限定されることなく広く利用することが可能である。
[Powder composition]
The powder composition produced by the method for producing a powder composition according to the present embodiment is a granular composition formed by granulating raw materials such as fine materials and adsorbed oil / fat powder.
The powder composition may be dissolved in a liquid such as hot water, water or juice and used as a drink, or may be used as a food such as jelly, and can be used as various foods and drinks. It is.
Furthermore, the use of the powder composition is not limited to food and drink, and can be widely used without limitation as long as it is a granular composition such as pharmaceuticals, supplements, cosmetics, bathing agents, and the like. .

[原料]
本実施形態に係る粉体組成物の製造方法において使用する原料は、微細材料と、吸着油脂粉末と、を含有する。また、原料は、前記した様々な種類の粉体組成物を得るために、微細材料や吸着油脂粉末以外の材料を含有していてもよい。
[material]
The raw material used in the manufacturing method of the powder composition which concerns on this embodiment contains a fine material and adsorption fat and oil powder. In addition, the raw material may contain materials other than the fine material and the adsorbed oil / fat powder in order to obtain the various types of powder compositions described above.

(微細材料)
微細材料とは、粒径250μm以下の粒子を60質量%以上含む微細な材料である。
本実施形態に係る粉体組成物の製造方法は、微細材料を原料として用いる場合において、微細な粉体(単体の微細な粒子だけでなく、所望のサイズまで造粒していない粉体も含む)が多く発生してしまうという問題を解消するものである。したがって、微細材料の中でも、前記のような問題が明確に現れる粒径250μm以下の粒子を60質量%以上含むものを対象とした。そして、対象とする微細材料は、前記のような問題がより顕著に現れる粒径250μm以下の粒子を80%以上含むものが好ましい。
(Fine material)
The fine material is a fine material containing 60% by mass or more of particles having a particle size of 250 μm or less.
In the case of using a fine material as a raw material, the method for producing a powder composition according to the present embodiment includes fine powder (including not only single fine particles but also powder not granulated to a desired size). ) Is often solved. Therefore, among the fine materials, those containing 60% by mass or more of particles having a particle size of 250 μm or less in which the above-mentioned problems clearly appear were targeted. The target fine material preferably contains 80% or more of particles having a particle size of 250 μm or less in which the above-described problems appear more remarkably.

粒径250μm以下の粒子の割合は、減圧吸引型ふるい分け装置(ホソカワミクロン社製エアジェットシーブ)によって測定することができる。
そして、微細材料とは、飲食物、医薬品、サプリメント、化粧品、入浴剤等の原料のうち、粒径250μm以下の粒子を前記した所定値以上含む材料が該当するが、具体的には、コラーゲンペプチド、食物繊維等を挙げることができる。
The ratio of particles having a particle size of 250 μm or less can be measured by a vacuum suction type sieving device (Air Jet Sieve manufactured by Hosokawa Micron).
The fine material corresponds to a material containing a particle having a particle size of 250 μm or less among the raw materials such as foods and drinks, pharmaceuticals, supplements, cosmetics, and bathing agents, specifically, a collagen peptide. And dietary fiber.

コラーゲンペプチドとは、コラーゲンを酵素処理等で分解し、低分子化したものである。また、食物繊維とは、人間の消化酵素では消化されない食品中の多糖類を主体とした高分子成分であり、例えば、難消化性デキストリン、ポリデキストロース、セルロース、ペクチン、へミセルロース、リグニン、グルコマンナン、βグルカン等を挙げることができる。
なお、コラーゲンペプチドや食物繊維の由来となる物質や製造方法に関しては、特に限定されない。
The collagen peptide is a product obtained by degrading collagen by enzymatic treatment or the like to lower the molecular weight. Dietary fiber is a high-molecular component mainly composed of polysaccharides in foods that are not digested by human digestive enzymes. For example, indigestible dextrin, polydextrose, cellulose, pectin, hemicellulose, lignin, glucose Mannan, β-glucan and the like can be mentioned.
In addition, it does not specifically limit regarding the substance from which a collagen peptide or dietary fiber originates, or a manufacturing method.

(吸着油脂粉末)
吸着油脂粉末とは、基材と油脂とを混合して得られる粉末である。
ここで、基材とは、澱粉、澱粉加水分解物、ブドウ糖等(これらのうちの1種、又は、1種以上)である。そして、澱粉加水分解物とは、澱粉を加水分解したものであり、例えば、デキストリン、マルトース、オリゴ糖等を挙げることができる。
また、油脂とは、脂肪酸とグリセリンとのエステルであり、サラダ油、コーン油、大豆油、ごま油、パーム油、ヤシ油、オリーブ油等(これらのうちの1種、又は、1種以上)の様々な脂肪油を挙げることができる。
(Adsorbed oil powder)
The adsorbed fat / oil powder is a powder obtained by mixing a base material and fat / oil.
Here, the base material is starch, starch hydrolyzate, glucose, or the like (one or more of them). And a starch hydrolyzate is what hydrolyzed starch, for example, dextrin, maltose, an oligosaccharide etc. can be mentioned.
Oils and fats are esters of fatty acids and glycerin, such as salad oil, corn oil, soybean oil, sesame oil, palm oil, coconut oil, olive oil, etc. (one or more of these). Mention may be made of fatty oils.

そして、吸着油脂粉末は、スプレードライ品等と異なり、積極的な乾燥(例えば、噴霧乾燥等)を施したものではないが、消極的な乾燥(例えば、保管時における自然乾燥等)は許容される。
また、吸着油脂粉末は、基材と油脂以外にも、例えば、乳化剤、糖類、酸化防止剤、固結防止剤等が含まれていてもよい。
Unlike the spray-dried product, the adsorbed fat / oil powder is not subjected to aggressive drying (for example, spray drying), but passive drying (for example, natural drying during storage) is allowed. The
Further, the adsorbed oil / fat powder may contain, for example, an emulsifier, a saccharide, an antioxidant, an anti-caking agent and the like in addition to the base material and the oil / fat.

なお、従来、この吸着油脂粉末については、粉体表面に油にじみがあり、当該粉末間の付着凝集性が高いため、流動性が悪いといった欠点を有すると当業者に認識されていた。
しかしながら、本発明者は、欠点として認識されていた特性によって、吸着油脂粉末が微細材料を捕捉することにより、適正な造粒を可能とするという顕著な効果を発揮することを見出し、言い換えると、微細材料を用いて粉体組成物を造粒する場合に生じる特有の課題(「微細な粉体の発生を抑制する」という課題)を解決できることを見出し、本発明を完成させた。
Conventionally, this adsorbed fat and oil powder has been recognized by those skilled in the art as having the disadvantage that the fluidity is poor because the surface of the powder has oil bleeding and the adhesion and cohesion between the powders is high.
However, the present inventors have found that the adsorbed oil and fat powder exhibits a remarkable effect of enabling proper granulation by capturing fine materials due to the characteristics that have been recognized as drawbacks, in other words, The present invention has been completed by discovering that it is possible to solve a peculiar problem (a problem of “suppressing generation of fine powder”) that occurs when a powder composition is granulated using a fine material.

(吸着油脂粉末:吸着油脂粉末に対する油脂の含有量)
吸着油脂粉末に対する油脂の含有量(詳細には、吸着油脂粉末中の油脂の質量/吸着油脂粉末の質量×100)は、10.0〜50.0質量%が好ましく、30質量%以上がより好ましく、40質量%以上が特に好ましい。
吸着油脂粉末に対する油脂の含有量が所定値未満であると、吸着油脂粉末中の基材が油脂を抱き込んでしまうことによって、吸着油脂粉末の微細材料を捕捉する力が弱くなり、その結果、微細な粉体の発生を効率的に抑えることができなくなる。一方、吸着油脂粉末に対する油脂の含有量が所定値を超えると、吸着油脂粉末の粘性が高くなり、造粒時における流動性を悪化させてしまう。
(Adsorbed oil / fat powder: content of fat / oil with respect to adsorbed oil / fat powder)
The content of fat / oil with respect to the adsorbed fat / oil powder (specifically, the mass of fat / oil in the adsorbed fat / fat powder / the mass of adsorbed fat / oil powder × 100) is preferably 10.0 to 50.0% by mass, more preferably 30% by mass or more. Preferably, 40 mass% or more is particularly preferable.
If the content of the fat / oil with respect to the adsorbed fat / oil powder is less than the predetermined value, the base material in the adsorbed fat / oil powder embraces the fat / oil, thereby weakening the force of capturing the fine material of the adsorbed fat / oil powder, Generation of fine powder cannot be efficiently suppressed. On the other hand, if the content of the fat / oil with respect to the adsorbed fat / oil powder exceeds a predetermined value, the viscosity of the adsorbed fat / oil powder increases, and the fluidity during granulation is deteriorated.

(吸着油脂粉末:原料に対する油脂の含有量)
原料に対する油脂の含有量(詳細には、吸着油脂粉末中の油脂の質量/原料の質量×100)は、0.40〜4.0質量%が好ましく、1.2質量%以上がより好ましく、2.0質量%以下が特に好ましい。
原料に対する油脂の含有量が所定値未満であると、原料全体に対する油脂の含有量を十分に確保することができず、その結果、微細な粉体の発生を効率的に抑えることができなくなる。一方、原料に対する油脂の含有量が所定値を超えると、油脂の量が多く、原料全体として粘性が高くなってしまい、造粒時における流動性を悪化させてしまう。
(Adsorbed oil / fat powder: content of oil / fat with respect to raw material)
The content of fat / oil with respect to the raw material (specifically, the mass of fat / oil in the adsorbed fat / fat powder / the mass of the raw material × 100) is preferably 0.40 to 4.0% by mass, more preferably 1.2% by mass or more, 2.0 mass% or less is especially preferable.
When the content of fats and oils with respect to the raw material is less than a predetermined value, the content of fats and oils with respect to the entire raw material cannot be sufficiently ensured, and as a result, generation of fine powder cannot be efficiently suppressed. On the other hand, if the content of fats and oils relative to the raw material exceeds a predetermined value, the amount of fats and oils is large, the viscosity of the raw material as a whole becomes high, and fluidity during granulation is deteriorated.

(吸着油脂粉末:原料に対する吸着油脂粉末の含有量)
原料に対する吸着油脂粉末の含有量(詳細には、吸着油脂粉末の質量/原料の質量×100)は、1.0〜10.0質量%が好ましく、3.0質量%以上がより好ましく、5.0質量%以下が特に好ましい。
原料に対する吸着油脂粉末の含有量が所定値未満であると、微細材料を捕捉する吸着油脂粉末の量が少なくなり、その結果、微細な粉体の発生を効率的に抑えることができなくなる。一方、原料に対する吸着油脂粉末の含有量が所定値を超えると、吸着油脂粉末の量が多く、原料全体として粘性が高くなってしまい、造粒時における流動性を悪化させてしまう。
(Adsorbed oil / fat powder: content of adsorbed oil / fat powder with respect to raw materials)
The content of the adsorbed oil / fat powder with respect to the raw material (specifically, the mass of the adsorbed oil / fat powder / the mass of the raw material × 100) is preferably 1.0 to 10.0% by mass, more preferably 3.0% by mass or more. 0.0 mass% or less is particularly preferable.
When the content of the adsorbed oil / fat powder with respect to the raw material is less than the predetermined value, the amount of adsorbed oil / fat powder capturing the fine material decreases, and as a result, generation of fine powder cannot be efficiently suppressed. On the other hand, if the content of the adsorbed oil / fat powder with respect to the raw material exceeds a predetermined value, the amount of adsorbed oil / fat powder is large, the viscosity of the entire raw material is increased, and the fluidity during granulation is deteriorated.

(その他の材料)
原料としては、微細材料、吸着油脂粉末以外の材料を含有させてもよい。
例えば、本実施形態に係る粉体組成物の製造方法により、スープ用の顆粒状の組成物を製造する場合、その他の材料としては、コーンパウダー、ポテトパウダー、たまねぎパウダー、チキンパウダー、ホエイパウダー、グラニュー糖、食塩、加工澱粉、乳化油脂粉末(スプレードライ品)、グァーガム等を挙げることができる。
また、医薬品、サプリメント、化粧品、入浴剤用の顆粒状の組成物を製造する場合、各分野における公知の材料を含有させればよい。
(Other materials)
As a raw material, you may contain materials other than a fine material and adsorbed fats and oils powder.
For example, when producing a granular composition for soup by the method for producing a powder composition according to the present embodiment, other materials include corn powder, potato powder, onion powder, chicken powder, whey powder, Examples thereof include granulated sugar, salt, processed starch, emulsified oil / fat powder (spray-dried product), guar gum and the like.
Moreover, what is necessary is just to contain the well-known material in each field | area when manufacturing the granular composition for pharmaceuticals, a supplement, cosmetics, and a bath agent.

[バインダー液]
本実施形態に係る粉体組成物の製造方法において用いるバインダー液は、造粒時において、原料同士を付着させる機能を有する溶液である。
そして、バインダー液としては、例えば、プルラン、グァーガム、アラビアガム、ローカストビーンガム、トレハロース、ゼラチン、デキストリン、アルギン酸ソーダ、各種澱粉、及び、糖類等を1種以上溶解させた溶液、並びに、水、及び、エタノール等を挙げることができる。
[Binder liquid]
The binder liquid used in the method for producing a powder composition according to this embodiment is a solution having a function of adhering raw materials to each other during granulation.
And as the binder liquid, for example, pullulan, guar gum, gum arabic, locust bean gum, trehalose, gelatin, dextrin, sodium alginate, various starches, a solution in which one or more sugars are dissolved, water, and And ethanol.

これらのバインダー液の中でも、プルランを含有するバインダー液を用いるのが好ましい。バインダー液にプルランを含有させることにより、造粒後(詳細には、造粒時のバインダー液の噴霧後)の乾燥・冷却時における顆粒状の組成物の崩壊を抑制できるからである。
ここで、プルランとは、グルコースのみからなる多糖類の一種であり、グルコース3分子がα−1,4結合したマルトトリオースがα−1,6結合で繋がった構造の化合物である。
そして、プルランをバインダー液に含有させる場合、0.1〜10質量%含有させるのが好ましく、前記の効果を十分に得るためには、1.0質量%以上含有させるのがより好ましく、粘度が高過ぎることによる取扱性の低下を回避するためには、5.0質量%以下含有させるのが特に好ましい。
Among these binder liquids, it is preferable to use a binder liquid containing pullulan. This is because inclusion of pullulan in the binder liquid can suppress collapse of the granular composition during drying and cooling after granulation (specifically, after spraying the binder liquid during granulation).
Here, pullulan is a kind of polysaccharide consisting only of glucose, and is a compound having a structure in which maltotriose in which three molecules of glucose are linked by α-1,4 bonds is linked by α-1,6 bonds.
And when pullulan is contained in the binder liquid, it is preferably contained in an amount of 0.1 to 10% by mass, and in order to sufficiently obtain the above-described effect, it is more preferably contained in an amount of 1.0% by mass or more. In order to avoid a decrease in handleability due to being too high, it is particularly preferable to contain 5.0% by mass or less.

なお、前記した原料の各材料、バインダー液に含有するプルラン等は、一般に市販されているものを使用することができる。   In addition, as for each material of an above-mentioned raw material, the pullulan etc. which are contained in a binder liquid, what is generally marketed can be used.

[粉体組成物の製造方法]
次に、本実施形態に係る粉体組成物の製造方法を説明する。
図1に示すように、本実施形態に係る粉体組成物の製造方法は、造粒工程S1を含み、造粒工程S1の前に準備工程S0を含んでもよい。
[Production method of powder composition]
Next, the manufacturing method of the powder composition which concerns on this embodiment is demonstrated.
As shown in FIG. 1, the manufacturing method of the powder composition which concerns on this embodiment may include granulation process S1, and may include preparatory process S0 before granulation process S1.

準備工程S0では、原料、バインダー液の準備を行う。例えば、原料に含有させる吸着油脂粉末や、バインダー液の調合を行う。   In the preparation step S0, a raw material and a binder liquid are prepared. For example, the adsorbed oil and fat powder to be contained in the raw material and the binder liquid are prepared.

造粒工程S1では、原料に対し、バインダー液を噴霧して粉体組成物を造粒する。
造粒工程S1における造粒方法については、流動層造粒、撹拌造粒、転動造粒等、特に限定されない。ただし、これらの造粒方法の中でも、タンクの下方から熱風を吹き付けることで原料を流動化しておき、上方又はタンクの周壁部分からバインダー液を噴霧して粉体組成物を造粒する流動層造粒が好ましい。なお、流動層造粒は、詳細には、熱風を吹き付けつつバインダー液を噴霧する工程と、噴霧を停止し熱風を吹き付けて乾燥する工程と、冷風(または常温の風)を吹き付けて冷却する工程と、に分けることができる。
そして、造粒工程S1において使用する造粒装置については、特に限定されず、公知の造粒装置を用いればよい。
In the granulation step S1, the powder composition is granulated by spraying the binder liquid onto the raw material.
About the granulation method in granulation process S1, it does not specifically limit, such as fluid bed granulation, stirring granulation, rolling granulation. However, among these granulation methods, a fluidized bed structure in which the raw material is fluidized by blowing hot air from below the tank, and the powder composition is granulated by spraying the binder liquid from above or from the peripheral wall portion of the tank. Granules are preferred. The fluidized bed granulation is, in detail, a step of spraying the binder liquid while blowing hot air, a step of stopping spraying and blowing hot air, and a step of cooling by blowing cold air (or room temperature air). And can be divided into
And it does not specifically limit about the granulation apparatus used in granulation process S1, What is necessary is just to use a well-known granulation apparatus.

なお、この造粒工程S1における詳細な造粒の現象については明確ではないが、おそらく、吸着油脂粉末(特に、吸着油脂粉末中の油脂)が微細材料を捕捉しつつ、バインダー液によって所望のサイズとなるまで造粒されることで、微細な粉体(単体の微細な粒子だけでなく、所望のサイズまで造粒していない粉体も含む)の発生を抑制していると考える。   The detailed granulation phenomenon in the granulation step S1 is not clear, but the adsorbed oil / fat powder (particularly the oil / fat in the adsorbed oil / fat powder) captures the fine material and the desired size by the binder liquid It is considered that the generation of fine powder (including not only single fine particles but also powder that has not been granulated to a desired size) is suppressed.

なお、本発明の実施形態に係る粉体組成物の製造方法において、明示していない条件については、従来公知のものであればよく、前記条件によって得られる効果を奏する限りにおいて、限定されないことは言うまでもない。   In the method for producing a powder composition according to the embodiment of the present invention, the conditions that are not explicitly specified may be any conventionally known conditions, and are not limited as long as the effects obtained by the conditions are exhibited. Needless to say.

次に、本発明の要件を満たす実施例とそうでない比較例とを例示して、本発明に係る粉体組成物の製造方法について説明する。
まず、実施例1では、吸着油脂粉末の有無が、微粉率(微細な粉体の含有率)に与える影響について確認する。
Next, the production method of the powder composition according to the present invention will be described by exemplifying examples that satisfy the requirements of the present invention and comparative examples that are not.
First, in Example 1, it confirms about the influence which the presence or absence of adsorption | suction fats and oils powder has on the fine powder rate (content rate of fine powder).

[原料、バインダー液の準備]
原料として、表1に示す各材料を準備した。そして、コラーゲンペプチドは、粒径250μm以下の粒子を82%含むものを使用し、食物繊維(難消化性デキストリン)は、粒径250μm以下の粒子を87%含むものを使用した。なお、表1に示す原料は、じゃがいもスープ用の粉体組成物の製造を想定した原料である。
また、バインダー液として、4%プルラン溶液(プルラン:株式会社林原社製、食品添加物プルラン)を準備した。
[Preparation of raw materials and binder liquid]
Each material shown in Table 1 was prepared as a raw material. A collagen peptide containing 82% of particles having a particle size of 250 μm or less was used, and a dietary fiber (digestible dextrin) containing 87% of particles having a particle size of 250 μm or less was used. In addition, the raw material shown in Table 1 is a raw material supposing manufacture of the powder composition for potato soup.
Moreover, 4% pullulan solution (Pullan: Hayashibara Co., Ltd., food additive pullulan) was prepared as a binder liquid.

[造粒条件]
造粒は、以下の条件で行った。なお、造粒は、バインダー液噴霧工程(熱風の送風+バインダー液の噴霧:約12分)→乾燥工程(熱風の送風:約10分)→冷却工程(ヒーター停止後の略常温の風の送風:約5分)という流れで行った。
流動層造粒装置への原料の投入量:750g
熱風の温度(バインダー液噴霧工程・乾燥工程):95℃
熱風の風量(バインダー液噴霧工程・乾燥工程):0.4L/分
バインダー液の全噴霧量(バインダー液噴霧工程):100mL
バインダー液の噴霧速度(バインダー液噴霧工程):7.5mL/分
略常温の風の風量(冷却工程):0.4L/分
[Granulation conditions]
Granulation was performed under the following conditions. In addition, granulation is performed in a binder liquid spraying process (hot air blowing + binder liquid spraying: about 12 minutes) → drying process (hot air blowing: about 10 minutes) → cooling process (air blowing at substantially normal temperature after stopping the heater) : About 5 minutes).
Input amount of raw material to fluidized bed granulator: 750 g
Hot air temperature (binder liquid spraying process / drying process): 95 ° C
Air volume of hot air (binder liquid spraying process / drying process): 0.4 L / min Total amount of binder liquid sprayed (binder liquid spraying process): 100 mL
Binder liquid spraying speed (binder liquid spraying process): 7.5 mL / min Air flow rate at substantially room temperature (cooling process): 0.4 L / min

[試験内容:微粉率の測定]
粉体組成物の微粉率の測定は、減圧吸引型ふるい分け装置(ホソカワミクロン株式会社社製、エアジェットシーブe200LS、測定条件;吸引圧力3200Pa、2分間)を用いて行った。
なお、コラーゲンペプチドは、バインダー液を吸収して抱え込みやすく、原料中の他の材料を造粒し難くするとともに、抱え込んだ水分を乾燥させるために時間を要するため、乾燥・冷却中に微粉化が進む傾向にある。
実施例1では、コラーゲンペプチドを多く含有させたサンプルも対象にしていることから、実施例1の微粉率は、「150μmパスの量」(フィルター穴径150μmを通過する粉体の含有量)を基準とし、この微粉率が小さいほど、効果(微細な粉体の発生を抑制する効果)が高いと判断できる。
[Test content: Measurement of fines ratio]
The fine powder ratio of the powder composition was measured using a vacuum suction type sieving device (manufactured by Hosokawa Micron Corporation, air jet sieve e200LS, measurement conditions; suction pressure 3200 Pa, 2 minutes).
Collagen peptide absorbs the binder liquid and is easy to hold, making it difficult to granulate other materials in the raw material, and it takes time to dry the held water, so it can be pulverized during drying and cooling. It tends to move forward.
In Example 1, since a sample containing a large amount of collagen peptide is also targeted, the fine powder rate of Example 1 is “amount of 150 μm pass” (content of powder passing through a filter hole diameter of 150 μm). As a reference, it can be determined that the smaller the fine powder rate, the higher the effect (the effect of suppressing the generation of fine powder).

以下、表1には、各サンプルの原料及び試験結果を示す。
なお、表中の「原料に対する粉末の含有量」とは、詳細には「吸着油脂粉末(又はSD粉末)の質量/原料の質量×100」のことであり、「粉末に対する油脂の含有量」とは、「吸着油脂粉末(又はSD粉末)中の油脂の質量/吸着油脂粉末(又はSD粉末)の質量×100」のことであり、「原料に対する油脂の含有量」とは、「吸着油脂粉末(又はSD粉末)中の油脂の質量/原料の質量×100」のことである。
また、表中の「SD粉末」とは、「スプレードライ製法により粉末化した、油脂を含む粉末」のことである。
Table 1 below shows the raw materials and test results of each sample.
In addition, “content of powder with respect to raw material” in the table means “mass of adsorbed oil / fat powder (or SD powder) / mass of raw material × 100” in detail, and “content of oil / fat with respect to powder” Means “mass of fat / oil in adsorbed fat / oil powder (or SD powder) / mass of adsorbed fat / oil powder (or SD powder) × 100”, and “content of fat / oil with respect to raw material” means “adsorbed fat / oil” "Mass of fat / oil in powder (or SD powder) / mass of raw material x 100".
In addition, “SD powder” in the table means “powder containing fats and oils pulverized by a spray drying method”.

Figure 0006486063
Figure 0006486063

[試験結果の検討:実施例1]
サンプル1−1〜1−5は、吸着油脂粉末を使用することなく、乳化油脂粉末(SD粉末)のみを使用していたことから、微粉率が高くなった。
一方、サンプル1−6〜1−10は、吸着油脂粉末を使用していたことから、サンプル1−1〜1−5とそれぞれ比較すると、大幅に微粉率を低減できることがわかった。
[Examination of test results: Example 1]
Since Samples 1-1 to 1-5 used only the emulsified oil / fat powder (SD powder) without using the adsorbed oil / fat powder, the fine powder rate increased.
On the other hand, since samples 1-6 to 1-10 used adsorbed fats and oils powder, it was found that the fine powder rate can be greatly reduced when compared with samples 1-1 to 1-5, respectively.

さらに、サンプル1−6〜1−10は、微細材料であるコラーゲンペプチドの含有量を変化させているが、いずれの結果を確認しても、微粉率が低くなっていることから、微細材料が少ない場合であろうと多い場合であろうと、本発明は効果を発揮できることがわかった。   Furthermore, although samples 1-6 to 1-10 are changing the content of the collagen peptide that is a fine material, the fine material ratio is low no matter which result is confirmed. It has been found that the present invention can be effective regardless of whether the number is small or large.

また、サンプル1−11は、微細材料としてコラーゲンペプチドだけでなく食物繊維を含有させ、サンプル1−12は、微細材料として食物繊維のみを含有させたが、いずれの場合も微粉率を低くすることができた。この結果から、本発明は、微細材料としてコラーゲンペプチドを対象とする場合に限定されるものではなく、粒径の小さな粒子を多く含む材料であれば、様々な微細材料を対象にできることがわかった。   Sample 1-11 contained not only collagen peptide as a fine material but also dietary fiber, and sample 1-12 contained only dietary fiber as a fine material. In either case, the fine powder rate should be lowered. I was able to. From this result, it was found that the present invention is not limited to the case of targeting collagen peptides as a fine material, but can be applied to various fine materials as long as the material contains many particles having a small particle size. .

次に、実施例2では、バインダー液の種類が微粉率に与える影響について確認する。   Next, in Example 2, it confirms about the influence which the kind of binder liquid has on the fine powder rate.

[原料、バインダー液の準備]
原料として、表2、3に示す各材料を準備した。そして、コラーゲンペプチドは、粒径250μm以下の粒子を82%含むものを使用し、食物繊維(難消化性デキストリン)は、粒径250μm以下の粒子を87%含むものを使用した。なお、表2に示す原料は、コーンポタージュ用の粉体組成物の製造を想定した原料であり、表3に示す原料は、じゃがいもスープ用の粉体組成物の製造を想定した原料である。
また、バインダー液として、4%プルラン溶液(プルラン:株式会社林原社製、食品添加物プルラン)と、2%澱粉溶液(澱粉:松谷化学工業株式会社製、マツノリンSM−32)を準備した。
[Preparation of raw materials and binder liquid]
Each material shown in Tables 2 and 3 was prepared as a raw material. A collagen peptide containing 82% of particles having a particle size of 250 μm or less was used, and a dietary fiber (digestible dextrin) containing 87% of particles having a particle size of 250 μm or less was used. In addition, the raw material shown in Table 2 is a raw material which assumed manufacture of the powder composition for corn potage, and the raw material shown in Table 3 is a raw material which assumed manufacture of the powder composition for potato soup.
In addition, 4% pullulan solution (pullulan: Hayashibara Co., Ltd., food additive pullulan) and 2% starch solution (starch: Matsutani Chemical Industries, Ltd., Matsunoline SM-32) were prepared as binder solutions.

[造粒条件]
造粒は、以下の条件で行った。なお、造粒は、バインダー液噴霧工程(熱風の送風+バインダー液の噴霧:約22分)→乾燥工程(熱風の送風:約10分)→冷却工程(ヒーター停止後の略常温の風の送風:約5分)という流れで行った。
流動層造粒装置への原料の投入量:1000g
熱風の温度(バインダー液噴霧工程・乾燥工程):95℃
熱風の風量(バインダー液噴霧工程):0.5L/分
熱風の風量(乾燥工程):0.4L/分
バインダー液の全噴霧量(バインダー液噴霧工程):200mL
バインダー液の噴霧速度(バインダー液噴霧工程):9.0mL/分
略常温の風の風量(冷却工程):0.4L/分
[Granulation conditions]
Granulation was performed under the following conditions. In addition, granulation is performed in a binder liquid spraying process (hot air blowing + binder liquid spraying: about 22 minutes) → drying process (hot air blowing: about 10 minutes) → cooling process (air blowing at substantially normal temperature after stopping the heater) : About 5 minutes).
Raw material input to fluidized bed granulator: 1000 g
Hot air temperature (binder liquid spraying process / drying process): 95 ° C
Air volume of hot air (binder liquid spraying process): 0.5 L / min Air volume of hot air (drying process): 0.4 L / min Total amount of binder liquid sprayed (binder liquid spraying process): 200 mL
Binder liquid spraying speed (binder liquid spraying process): 9.0 mL / min. Air flow rate at substantially room temperature (cooling process): 0.4 L / min.

[試験内容:微粉率の測定]
粉体組成物の粒度分布の測定は、JIS標準ふるいを5枚重ね合わせて50gの試料を供し、重ね合わせたJIS標準ふるいを前後左右に篩った後にメッシュ上に残った試料の重量を計測することにより行った。
実施例2では、「1000μmオンの量」(フィルター穴径1000μmを通過しない粉体の含有量)、「1000μmパス、710μmオンの量」、「710μmパス、500μmオンの量」、「500μmパス、355μmオンの量」、「355μmパス、250μmオンの量」、「250μmパスの量」を測定した。
[Test content: Measurement of fines ratio]
The particle size distribution of the powder composition is measured by overlaying five JIS standard sieves to provide a 50 g sample, and measuring the weight of the sample remaining on the mesh after sieving the overlapped JIS standard sieve back and forth and left and right It was done by doing.
In Example 2, “amount of 1000 μm on” (content of powder not passing through filter hole diameter of 1000 μm), “amount of 1000 μm pass, amount of 710 μm on”, “710 μm pass, amount of 500 μm on”, “500 μm pass, “Amount of 355 μm on”, “Amount of 355 μm pass, 250 μm on”, “Amount of 250 μm pass” were measured.

以下、表2、3には、各サンプルの原料及び試験結果を示す。   Tables 2 and 3 below show the raw materials and test results of each sample.

Figure 0006486063
Figure 0006486063

Figure 0006486063
Figure 0006486063

[試験結果の検討:実施例2]
サンプル2−1と2−2、サンプル2−3と2−4とを比較すると、バインダー液として澱粉溶液を使用するよりも、プルラン溶液を使用した方が、いずれも微粉率を低くできるということがわかった。また、サンプル2−1と2−3に対して、サンプル2−2と2−4の方が、微細な粉体の比率だけでなく、粗大過ぎる粉体の比率も少ないという結果が得られたことから、プルラン溶液を使用した方が、サイズの均等な造粒物を得られることがわかった。
つまり、コーンポタージュ用の粉体組成物の製造を想定した原料を用いた場合であっても、じゃがいもスープ用の粉体組成物の製造を想定した原料を用いた場合であっても、プルラン溶液を使用した方が、微粉率が低く、サイズの均等な造粒物を得られるということがわかった。
[Examination of test results: Example 2]
Comparing Samples 2-1 and 2-2 and Samples 2-3 and 2-4, the use of a pullulan solution rather than the use of a starch solution as a binder solution indicates that both can lower the fine powder rate. I understood. Moreover, the result that not only the ratio of the fine powder but the ratio of the powder which is too coarse with respect to the samples 2-1 and 2-3 was obtained. From this, it was found that a granulated product having a uniform size can be obtained by using the pullulan solution.
In other words, even when using raw materials intended for the production of powder compositions for corn potage, even when using raw materials intended for the production of powder compositions for potato soup, pullulan solution It was found that a granulated product having a lower fine powder ratio and a uniform size can be obtained by using.

なお、実施例2において、造粒中の粉体組成物の挙動を確認したが、澱粉溶液を使用した場合(サンプル2−1、2−3)と、プルラン溶液を使用した場合(サンプル2−2、2−4)を比較して、バインダー液の噴霧中の顆粒の成長に大きな差異は確認できなかった。しかしながら、プルラン溶液を使用した場合(サンプル2−2、2−4)の方が、噴霧停止後の乾燥・冷却時における顆粒状の組成物の崩壊が少ないように思われたため、プルラン溶液の使用は、顆粒状の組成物の崩壊を抑制する効果があると考える。   In Example 2, the behavior of the powder composition during granulation was confirmed. When the starch solution was used (Samples 2-1 and 2-3) and when the pullulan solution was used (Sample 2- 2, 2-4), no significant difference was observed in the growth of granules during spraying of the binder liquid. However, when the pullulan solution was used (samples 2-2 and 2-4), it seemed that the granular composition collapsed less during drying / cooling after stopping spraying. Is considered to have an effect of suppressing the collapse of the granular composition.

次に、実施例3では、吸着油脂粉末(油脂)の含有量が微粉率に与える影響について確認する。   Next, in Example 3, it confirms about the influence which content of adsorption | suction fats and oils powder (fat) has on the fine powder rate.

[原料、バインダー液の準備]
原料として、表4に示す各材料を準備した。そして、コラーゲンペプチドは、粒径250μm以下の粒子を82%含むものを使用し、食物繊維(難消化性デキストリン)は、粒径250μm以下の粒子を87%含むものを使用した。なお、表4に示す原料は、コーンポタージュ用の粉体組成物の製造を想定した原料である。
また、バインダー液として、4%プルラン溶液(プルラン:株式会社林原社製、食品添加物プルラン)を準備した。
[Preparation of raw materials and binder liquid]
Each material shown in Table 4 was prepared as a raw material. A collagen peptide containing 82% of particles having a particle size of 250 μm or less was used, and a dietary fiber (digestible dextrin) containing 87% of particles having a particle size of 250 μm or less was used. In addition, the raw material shown in Table 4 is a raw material which assumed manufacture of the powder composition for corn potage.
Moreover, 4% pullulan solution (Pullan: Hayashibara Co., Ltd., food additive pullulan) was prepared as a binder liquid.

[造粒条件]
造粒は、以下の条件で行った。なお、造粒は、バインダー液噴霧工程(熱風の送風+バインダー液の噴霧:約22分)→乾燥工程(熱風の送風:約10分)→冷却工程(ヒーター停止後の略常温の風の送風:約5分)という流れで行った。
流動層造粒装置への原料の投入量:1000g
熱風の温度(バインダー液噴霧工程・乾燥工程):95℃
熱風の風量(バインダー液噴霧工程):0.5L/分
熱風の風量(乾燥工程):0.4L/分
バインダー液の全噴霧量:200mL
バインダー液の噴霧速度:9.0mL/分
略常温の風の風量(冷却工程):0.4L/分
[Granulation conditions]
Granulation was performed under the following conditions. In addition, granulation is performed in a binder liquid spraying process (hot air blowing + binder liquid spraying: about 22 minutes) → drying process (hot air blowing: about 10 minutes) → cooling process (air blowing at substantially normal temperature after stopping the heater) : About 5 minutes).
Raw material input to fluidized bed granulator: 1000 g
Hot air temperature (binder liquid spraying process / drying process): 95 ° C
Hot air flow rate (binder liquid spraying step): 0.5 L / min Hot air flow rate (drying step): 0.4 L / min Total amount of binder liquid sprayed: 200 mL
Binder liquid spraying rate: 9.0 mL / min. Air flow rate at substantially room temperature (cooling process): 0.4 L / min.

[試験内容:流動性]
造粒時における流動層造粒装置内の原料の流動性を目視にて確認した。
なお、流動性の評価基準は以下のとおりである。
○:造粒時において、粉体が一様に流動層造粒装置内を流動していた。
△:造粒時において、流動層造粒装置の壁面への粉体の付着がやや多いものの、大半の粉体は適切に流動していた。
×:造粒時において、流動層造粒装置の壁面や排気口に粉体が多く付着し、造粒中に粉体が著しく流動しづらいことがあった。
[Test content: fluidity]
The fluidity of the raw material in the fluidized bed granulator at the time of granulation was confirmed visually.
The criteria for evaluating liquidity are as follows.
○: During granulation, the powder was uniformly flowing in the fluidized bed granulator.
(Triangle | delta): At the time of granulation, although the adhesion of the powder to the wall surface of a fluidized-bed granulator was a little large, most powders were flowing appropriately.
X: At the time of granulation, a lot of powder adhered to the wall surface and exhaust port of the fluidized bed granulator, and the powder sometimes hardly flowed during granulation.

[試験内容:微細な粉体の多さ]
造粒後の粉体組成物について、微細な粉体の多さを目視にて確認した。
なお、微細な粉体の多さの評価基準は以下のとおりである。
○:微細な粉体は非常に少なかった。
△:微細な粉体はある程存在したものの、許容の範囲内であった。
×:あきらかに微細な粉体が多く、許容の範囲外であった。
[Test content: Fine powder]
Regarding the powder composition after granulation, the number of fine powders was visually confirmed.
The evaluation criteria for the number of fine powders are as follows.
○: There were very few fine powders.
Δ: Some fine powder was present, but was within an acceptable range.
X: Clearly many fine powders were outside the allowable range.

以下、表4には、各サンプルの原料及び試験結果を示す。   Table 4 below shows the raw materials and test results of each sample.

Figure 0006486063
Figure 0006486063

[試験結果の検討:実施例3]
サンプル3−1〜3−4について、原料に対する吸着油脂粉末の含有量が1.0〜10.0質量%の範囲内、言い換えると、原料に対する油脂の含有量が0.4〜4.0質量%の範囲内であれば、微細な粉末の発生を好適に抑制可能(○又は△)であることがわかった。
特に、サンプル3−2〜3−4によると、原料に対する吸着油脂粉末の含有量が3.0質量%以上、言い換えると、原料に対する油脂の含有量が1.2質量%以上であれば、微細な粉末の発生をより好適に抑制可能(○)であることがわかった。
[Examination of test results: Example 3]
About samples 3-1 to 3-4, the content of the adsorbed oil / fat powder with respect to the raw material is within the range of 1.0 to 10.0% by mass, in other words, the content of the oil / fat with respect to the raw material is 0.4 to 4.0% by mass. %, It was found that generation of fine powder can be suitably suppressed (◯ or Δ).
In particular, according to Samples 3-2 to 3-4, if the content of the adsorbed oil / fat powder with respect to the raw material is 3.0% by mass or more, in other words, if the content of the oil / fat with respect to the raw material is 1.2% by mass or more, it is fine. It was found that the generation of a simple powder can be more suitably suppressed (◯).

なお、サンプル3−1〜3−3によると、原料に対する吸着油脂粉末の含有量が5.0質量%以下、言い換えると、原料に対する油脂の含有量が2.0質量%以下であれば、造粒時の粉体の流動性を好適な状態(○又は△)にできることがわかった。
特に、サンプル3−1、3−2によると、原料に対する吸着油脂粉末の含有量が3.0質量%以下、言い換えると、原料に対する油脂の含有量が1.2質量%以下であれば、造粒時の粉体の流動性をより好適な状態(○)にできることがわかった。
According to Samples 3-1 to 3-3, if the content of the adsorbed oil / fat powder with respect to the raw material is 5.0% by mass or less, in other words, if the content of the oil / fat with respect to the raw material is 2.0% by mass or less, It turned out that the fluidity | liquidity of the powder at the time of a granule can be made into a suitable state ((circle) or (triangle | delta)).
In particular, according to Samples 3-1 and 3-2, if the content of the adsorbed oil / fat powder with respect to the raw material is 3.0% by mass or less, in other words, if the content of the oil / fat with respect to the raw material is 1.2% by mass or less, It turned out that the fluidity | liquidity of the powder at the time of a granule can be made into a more suitable state ((circle)).

S0 準備工程
S1 造粒工程
S0 preparation process S1 granulation process

Claims (5)

粒径250μm以下の粒子を60質量%以上含む微細材料と、基材と油脂とを混合して得られる吸着油脂粉末と、を含有する原料に対し、バインダー液を噴霧して粉体組成物を造粒する造粒工程、を含み、
前記原料に対する前記油脂の含有量が、0.40〜2.0質量%であることを特徴とする粉体組成物の製造方法。
A powder composition is obtained by spraying a binder liquid on a raw material containing a fine material containing particles having a particle size of 250 μm or less in an amount of 60% by mass or more, and an adsorbed oil / fat powder obtained by mixing a base material and an oil / fat. granulation step of granulating, only including,
Content of the said fats and oils with respect to the said raw material is 0.40-2.0 mass%, The manufacturing method of the powder composition characterized by the above-mentioned .
前記微細材料が、コラーゲンペプチド及び食物繊維の少なくとも一方を含有することを特徴とする請求項1に記載の粉体組成物の製造方法。   The method for producing a powder composition according to claim 1, wherein the fine material contains at least one of collagen peptide and dietary fiber. 前記バインダー液が、プルランを含有することを特徴とする請求項1又は請求項2に記載の粉体組成物の製造方法。   The method for producing a powder composition according to claim 1 or 2, wherein the binder liquid contains pullulan. 前記原料に対する前記吸着油脂粉末の含有量が、1.0〜10.0質量%であることを特徴とする請求項1から請求項のいずれか1項に記載の粉体組成物の製造方法。 The method for producing a powder composition according to any one of claims 1 to 3 , wherein the content of the adsorbed fat / oil powder with respect to the raw material is 1.0 to 10.0% by mass. . 前記吸着油脂粉末に対する前記油脂の含有量が、10.0〜50.0質量%であることを特徴とする請求項1から請求項のいずれか1項に記載の粉体組成物の製造方法。 The method for producing a powder composition according to any one of claims 1 to 4 , wherein the content of the fat and oil with respect to the adsorbed fat and oil powder is 10.0 to 50.0 mass%. .
JP2014218655A 2014-10-27 2014-10-27 Method for producing powder composition Active JP6486063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218655A JP6486063B2 (en) 2014-10-27 2014-10-27 Method for producing powder composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218655A JP6486063B2 (en) 2014-10-27 2014-10-27 Method for producing powder composition

Publications (2)

Publication Number Publication Date
JP2016082924A JP2016082924A (en) 2016-05-19
JP6486063B2 true JP6486063B2 (en) 2019-03-20

Family

ID=55971312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218655A Active JP6486063B2 (en) 2014-10-27 2014-10-27 Method for producing powder composition

Country Status (1)

Country Link
JP (1) JP6486063B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047804A1 (en) * 2015-09-17 2017-03-23 三栄源エフ・エフ・アイ株式会社 Production method for polysaccharide thickener-containing preparation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137506A (en) * 1991-11-22 1993-06-01 Taiyo Kagaku Co Ltd Powdered fats and oils and its production
JP3413288B2 (en) * 1994-08-05 2003-06-03 高砂香料工業株式会社 Manufacturing method of powdered flavor
JPH104883A (en) * 1996-06-19 1998-01-13 Meiji Seika Kaisha Ltd Production of formulated cocoa
JPH11346679A (en) * 1998-06-05 1999-12-21 Nof Corp Production of modified royal jelly powder, modified royal jelly powder and food containing the same powder
JP4599154B2 (en) * 2004-12-22 2010-12-15 江崎グリコ株式会社 Method for producing granular food
JP5901125B2 (en) * 2011-03-18 2016-04-06 焼津水産化学工業株式会社 Collagen peptide-containing powder composition and method for producing the same
US20130129867A1 (en) * 2011-11-18 2013-05-23 Nicolas Deak Agglomerated protein composition
JP6164889B2 (en) * 2013-03-29 2017-07-19 焼津水産化学工業株式会社 Granulated granules and method for producing the same

Also Published As

Publication number Publication date
JP2016082924A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP4800425B2 (en) Thickening composition with improved viscosity development
WO2020093919A1 (en) Adsorptive starch and adsorptive starch agglomerate, preparation method and application thereof, and nutrient formulation comprising same
JP2013223480A (en) Method for producing porous granule
JP6930537B2 (en) Vitamin preparation
Jin et al. Starch-based microencapsulation
Lu et al. Bioaccessibility of polymethoxyflavones encapsulated in resistant starch particle stabilized Pickering emulsions: Role of fatty acid complexation and heat treatment
JP7149260B2 (en) Method for producing thickening polysaccharide-containing preparation
KR102039408B1 (en) Thickening composition improved dispersibility and starch hydrolysate containing metal salt used therefor
JP3930140B2 (en) Powdered fat composition
TWI402038B (en) A composition for beverage use containing acidic soluble protein and process for producing the same
JP6486063B2 (en) Method for producing powder composition
JP6800861B2 (en) Method for manufacturing thickening polysaccharide-containing preparation
JP5888868B2 (en) Fat-containing granular food
AU2016409135B2 (en) An edible composition for reducing the digestion or absorption of the harmful/toxic substance
JP7114529B2 (en) Highly dispersible dextrin and method for producing the same
JP7170143B2 (en) Thickening composition
JP3501595B2 (en) Production method of powdered fats and oils
JP7011300B2 (en) HMBCa-containing granule manufacturing method and supplements
JP7346413B2 (en) Highly dispersed dextrin powder
JP2019064970A (en) Tableting disorder inhibitory coating powder and tablet containing tableting disorder inhibitory coating powder
TW201742551A (en) Methods and compositions for reducing digestive/absorptive rates and ratio of food/drinks or reducing a digestive solution
WO2017047803A1 (en) Production method for polysaccharide thickener-containing preparation
JP6254993B2 (en) Thickening composition with improved dispersibility and metal salt-containing starch degradation product used therefor
JP4987766B2 (en) Manufacturing method of processed thickener stabilizer
JP2021084883A (en) Method for producing corosolic acid-containing granule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190219

R150 Certificate of patent or registration of utility model

Ref document number: 6486063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250