JP6484939B2 - Temperature measuring device - Google Patents

Temperature measuring device Download PDF

Info

Publication number
JP6484939B2
JP6484939B2 JP2014138349A JP2014138349A JP6484939B2 JP 6484939 B2 JP6484939 B2 JP 6484939B2 JP 2014138349 A JP2014138349 A JP 2014138349A JP 2014138349 A JP2014138349 A JP 2014138349A JP 6484939 B2 JP6484939 B2 JP 6484939B2
Authority
JP
Japan
Prior art keywords
flow path
inner cylinder
filter
cooling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014138349A
Other languages
Japanese (ja)
Other versions
JP2016017745A (en
Inventor
文夫 松坂
文夫 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014138349A priority Critical patent/JP6484939B2/en
Publication of JP2016017745A publication Critical patent/JP2016017745A/en
Application granted granted Critical
Publication of JP6484939B2 publication Critical patent/JP6484939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炉内等の高温環境に於ける温度計測を行う温度計測装置に関するものである。   The present invention relates to a temperature measuring device for measuring temperature in a high temperature environment such as in a furnace.

炉内温度等の高温環境での温度計測は、熱電対等の接触式の温度計測が主流であり、サーモグラフィや放射温度計の様な光学式のものを用いた非接触式の温度計測も一部では行われている。又、近年、2色測温法等を使用して温度分布画像を作成し、温度分布画像を基に温度計測を行う技術も開発されてきている。   For temperature measurement in a high temperature environment such as the furnace temperature, contact type temperature measurement such as thermocouple is the mainstream, and some non-contact type temperature measurement using an optical type such as thermography or radiation thermometer is also part. It is done. In recent years, a technique has been developed in which a temperature distribution image is created using a two-color temperature measurement method and the like, and temperature measurement is performed based on the temperature distribution image.

光学式で炉内の温度分布を計測する場合、正確な温度分布を得る為には炉内のできる限り広範囲を視野に収める必要があるが、炉の保全と温度維持の為、一般的に計測用の孔は小さく、且つ深くなっており、計測用の孔を介して観察可能な視野角は例えば6°程度であり、極めて狭い。   When measuring the temperature distribution in the furnace with an optical method, it is necessary to keep the widest possible range in the furnace in order to obtain an accurate temperature distribution. However, it is generally measured to maintain the furnace and maintain the temperature. The viewing hole is small and deep, and the viewing angle that can be observed through the measuring hole is, for example, about 6 °, which is extremely narrow.

狭く深い穴を介して観察可能な光学系として、例えば内視鏡の様な光学系が知られているが、内視鏡の場合、2色測温法を行う為の分割光学系や、フィルタの設置等が困難であり、又水冷機構やダストからの防護機構等の追加も困難である。   As an optical system that can be observed through a narrow and deep hole, for example, an optical system such as an endoscope is known. However, in the case of an endoscope, a split optical system or a filter for performing a two-color temperature measurement method is used. Is difficult to install, and it is also difficult to add a water cooling mechanism or a protection mechanism from dust.

尚、特許文献1には、撮像系の光学系部材が長尺の本体と、該本体の先端部に設けられ先端面が凹状に形成された対物レンズと、前記本体の後端部に設けられた支持部とを有し、炉壁の貫通孔に前記本体が挿入配置されたケーシングを挿入し、被検体の観察像からの光が前記対物レンズから本体を介して前記支持部の孔を通過し、CCDカメラに受光され撮像されたカラー画像を基に、二色温度計測法により所定領域の被検体の温度分布を得る温度計測用炉内監視システムが開示されている。   In Patent Document 1, an optical system member of an imaging system is provided at a long main body, an objective lens provided at a front end portion of the main body and having a front end surface formed in a concave shape, and a rear end portion of the main body. A casing in which the main body is inserted and disposed in a through hole in the furnace wall, and light from an observation image of the subject passes through the hole of the support portion from the objective lens through the main body. A temperature measurement in-furnace monitoring system that obtains a temperature distribution of a subject in a predetermined region by a two-color temperature measurement method based on a color image received and picked up by a CCD camera is disclosed.

特開2003−344166号公報JP 2003-344166 A

本発明は斯かる実情に鑑み、炉内からの輻射熱による破損を防止しつつ、炉の小さい観察窓等から炉内の温度状態を計測可能な温度計測装置を提供するものである。   In view of such circumstances, the present invention provides a temperature measuring device capable of measuring a temperature state in a furnace from a small observation window or the like of the furnace while preventing damage due to radiant heat from the inside of the furnace.

本発明は、内筒と、該内筒の外周側に隙間が形成される様前記内筒と同心に設けられた外筒と、全長に亘って通気性を有する様前記内筒の内部に設けられ、測定対象物から放射される光を伝搬させる光学系と、該光学系を透過した光の内特定の波長を透過させる透過特性の異なるフィルタを複数有するフィルタ板と、該フィルタ板のフィルタを切替えるフィルタ切替え部と、該フィルタ切替え部により切替えられた前記フィルタを介して前記測定対象物の画像を撮像する撮像部と、該撮像部により取得した画像に基づき2色測温法により前記測定対象物の温度状態を演算する制御装置とを具備し、前記隙間に冷却水を流通させ、前記内筒の内部に冷却空気を流通させる温度計測装置に係るものである。   The present invention provides an inner cylinder, an outer cylinder provided concentrically with the inner cylinder so that a gap is formed on the outer peripheral side of the inner cylinder, and an inner cylinder provided with air permeability over the entire length. An optical system for propagating light emitted from the measurement object, a filter plate having a plurality of filters having different transmission characteristics for transmitting a specific wavelength of the light transmitted through the optical system, and a filter for the filter plate. A filter switching unit for switching, an imaging unit for capturing an image of the measurement object via the filter switched by the filter switching unit, and the measurement target by a two-color temperature measurement method based on an image acquired by the imaging unit And a control device that calculates the temperature state of the object, and relates to a temperature measuring device that circulates cooling water through the gap and circulates cooling air through the inner cylinder.

又本発明は、前記隙間を周方向に分割する流路分割部材を更に具備し、該流路分割部材により前記冷却水を先端側に向って流通させる供給流路と、該供給流路を流通する前記冷却水を反転させて基端側に向って流通させる排出流路とが形成される温度計測装置に係るものである。   The present invention further includes a flow path dividing member that divides the gap in the circumferential direction, a supply flow path for flowing the cooling water toward the tip side by the flow path dividing member, and a flow through the supply flow path The present invention relates to a temperature measuring device in which a discharge flow path for inverting the cooling water to flow and flowing toward the base end side is formed.

又本発明は、前記供給流路と前記排出流路とがそれぞれ複数設けられ、各供給流路毎に前記冷却水を供給する温度計測装置に係るものである。   The present invention also relates to a temperature measuring device in which a plurality of the supply flow paths and the discharge flow paths are provided, and the cooling water is supplied to each supply flow path.

又本発明は、前記光学系は複数のレンズユニットを有し、該レンズユニット間に外周面に軸心方向全長に亘って凹溝が形成された円筒状の間隔保持部材が設けられ、前記凹溝と前記内筒の内周面とで前記冷却空気が流通する空冷流路が形成される温度計測装置に係るものである。   According to the present invention, the optical system includes a plurality of lens units, and a cylindrical interval holding member is provided between the lens units. The present invention relates to a temperature measuring device in which an air cooling channel through which the cooling air flows is formed by a groove and an inner peripheral surface of the inner cylinder.

更に又本発明は、前記凹溝に前記空冷流路と前記間隔保持部材の内部とを連通させる連通孔が形成された温度計測装置に係るものである。   Furthermore, the present invention relates to a temperature measuring device in which a communication hole for communicating the air cooling flow path and the inside of the spacing member is formed in the concave groove.

本発明によれば、内筒と、該内筒の外周側に隙間が形成される様前記内筒と同心に設けられた外筒と、全長に亘って通気性を有する様前記内筒の内部に設けられ、測定対象物から放射される光を伝搬させる光学系と、該光学系を透過した光の内特定の波長を透過させる透過特性の異なるフィルタを複数有するフィルタ板と、該フィルタ板のフィルタを切替えるフィルタ切替え部と、該フィルタ切替え部により切替えられた前記フィルタを介して前記測定対象物の画像を撮像する撮像部と、該撮像部により取得した画像に基づき2色測温法により前記測定対象物の温度状態を演算する制御装置とを具備し、前記隙間に冷却水を流通させ、前記内筒の内部に冷却空気を流通させるので、前記内筒及び前記外筒が水冷されると共に、前記光学系が空冷され、炉の小さい観察窓等から炉内に前記内筒及び前記外筒を挿入した場合でも、炉内からの輻射熱により前記内筒及び前記外筒や前記光学系を破損させることなく炉内の温度状態を計測することができるという優れた効果を発揮する。   According to the present invention, the inner cylinder, the outer cylinder provided concentrically with the inner cylinder so that a gap is formed on the outer peripheral side of the inner cylinder, and the interior of the inner cylinder so as to have air permeability over the entire length. An optical system for propagating light radiated from a measurement object, a filter plate having a plurality of filters having different transmission characteristics for transmitting a specific wavelength of light transmitted through the optical system, and A filter switching unit that switches a filter; an imaging unit that captures an image of the measurement object through the filter switched by the filter switching unit; and the two-color temperature measurement method based on an image acquired by the imaging unit. And a control device for calculating the temperature state of the measurement object, cooling water is circulated through the gap, and cooling air is circulated inside the inner cylinder, so that the inner cylinder and the outer cylinder are cooled with water. The optical system is empty Even when the inner cylinder and the outer cylinder are inserted into the furnace from a small observation window of the furnace, the inner cylinder, the outer cylinder, and the optical system are not damaged by the radiant heat from the furnace. An excellent effect that the temperature state can be measured is exhibited.

本発明の実施例に係る温度計測装置を示す概略側面図である。It is a schematic side view which shows the temperature measuring device which concerns on the Example of this invention. 図1のA拡大図である。It is A enlarged view of FIG. 図2のB−B矢視図である。It is a BB arrow line view of FIG. 図2のC−C矢視図である。It is CC arrow line view of FIG. 図2のD−D矢視図である。FIG. 3 is a DD arrow view of FIG. 2. 本発明の実施例に係る温度計測装置の冷却流路を説明する展開図である。It is an expanded view explaining the cooling flow path of the temperature measuring device which concerns on the Example of this invention. 本発明の実施例に係る温度計測装置の間隔保持部材であり、(A)は該間隔保持部材の側断面図を示し、(B)は(A)のE−E矢視図を示している。It is a space | interval holding member of the temperature measuring device which concerns on the Example of this invention, (A) shows the sectional side view of this space | interval holding member, (B) has shown the EE arrow line view of (A). . 本発明の実施例に係る温度計測装置のフィルタ部を説明する説明図である。It is explanatory drawing explaining the filter part of the temperature measuring device which concerns on the Example of this invention.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1、図2に於いて、本発明の実施例に係る温度計測装置の概略について説明する。   First, referring to FIG. 1 and FIG. 2, an outline of a temperature measuring apparatus according to an embodiment of the present invention will be described.

温度計測装置1は、2色測温法が可能な構成を具備している。2色測温法は、波長の異なる2つの光を用いて同一点の画像を取得し、光強度と測定対象物の熱放射率から温度を測定するものである。   The temperature measuring device 1 has a configuration capable of two-color temperature measurement. In the two-color temperature measurement method, images of the same point are acquired using two lights having different wavelengths, and the temperature is measured from the light intensity and the thermal emissivity of the measurement object.

前記温度計測装置1は、光学ユニット2と、該光学ユニット2の端部に取付けられた撮像装置としてのカメラ3と、該カメラ3の光軸4上の前記光学ユニット2と前記カメラ3との間に設けられたフィルタ切替え部5と、前記カメラ3で撮像された画像を基に2色測温法により温度計測を行う制御装置6とを有している。尚、800℃以下の低温の炉の温度を計測する場合には、前記カメラ3として、例えば250℃から観察可能な市販の近赤外カメラが用いられる。   The temperature measuring device 1 includes an optical unit 2, a camera 3 as an imaging device attached to an end of the optical unit 2, and the optical unit 2 and the camera 3 on the optical axis 4 of the camera 3. It has a filter switching unit 5 provided between them, and a control device 6 that performs temperature measurement by a two-color temperature measurement method based on an image captured by the camera 3. When measuring the temperature of a low-temperature furnace of 800 ° C. or lower, a commercially available near-infrared camera that can be observed from 250 ° C., for example, is used as the camera 3.

前記光学ユニット2は、内筒7と該内筒7の外周側に隙間が形成される様該内筒7と同心に設けられた外筒8とからなる鏡筒部9を有している。該鏡筒部9は、例えばステンレス製であり、計測される温度環境が600℃以下であれば一部の部品をアルミニウム製としてもよい。   The optical unit 2 has a lens barrel portion 9 including an inner cylinder 7 and an outer cylinder 8 provided concentrically with the inner cylinder 7 so that a gap is formed on the outer peripheral side of the inner cylinder 7. The lens barrel portion 9 is made of, for example, stainless steel, and some components may be made of aluminum if the temperature environment to be measured is 600 ° C. or less.

前記内筒7の内部には、前記光軸4上に複数のレンズからなるレンズユニット11が複数配置されている。該レンズユニット11,11間には、円筒状の間隔保持部材12が配置され、該間隔保持部材12により前記レンズユニット11の位置決めが行われると共に、各レンズユニット11,11間の間隔が維持される様になっている。   A plurality of lens units 11 including a plurality of lenses are arranged on the optical axis 4 inside the inner cylinder 7. A cylindrical spacing member 12 is disposed between the lens units 11 and 11, and the lens unit 11 is positioned by the spacing member 12 and the spacing between the lens units 11 and 11 is maintained. It has become like that.

前記レンズユニット11は、リレーレンズとして機能し、前記カメラ3へと導くものであり、前記フィルタ切替え部5にて波長が選択され、前記カメラ3は前記フィルタ切替え部5で選択された波長の光を前記カメラ3の受光素子に結像する様になっている。   The lens unit 11 functions as a relay lens and guides it to the camera 3. The wavelength is selected by the filter switching unit 5, and the camera 3 has light of the wavelength selected by the filter switching unit 5. Is imaged on the light receiving element of the camera 3.

前記内筒7の基端部には外周方向に突出するフランジ部13が形成され、前記外筒8の基端が前記フランジ部13に溶接等により液密に固着されている。前記内筒7の基端には、リング状のレンズ押え板14が気密に取付けられている。該レンズ押え板14は、内周部が突出し、レンズユニット11に当接し、該レンズユニット11を固定すると共に内周部の外側には段差部が形成されている。該段差部は前記フランジ部13との間にリング状の空間15を形成する。   A flange portion 13 projecting in the outer peripheral direction is formed at the base end portion of the inner cylinder 7, and the base end of the outer tube 8 is fixed to the flange portion 13 in a liquid-tight manner by welding or the like. A ring-shaped lens pressing plate 14 is airtightly attached to the proximal end of the inner cylinder 7. The lens pressing plate 14 has an inner peripheral portion that protrudes and abuts against the lens unit 11 to fix the lens unit 11 and a step portion is formed outside the inner peripheral portion. The step portion forms a ring-shaped space 15 between the flange portion 13 and the step portion.

又、前記鏡筒部9の先端部にはリング状の端板16が図示しないネジ等により固着されている。該端板16は、広い視野を確保する為の孔17が前記光軸4上に形成され、前記端板16により前記内筒7と前記外筒8の先端が液密に閉塞されることで、前記内筒7と前記外筒8との間に液密な空間である水冷流路18が形成される。   A ring-shaped end plate 16 is fixed to the distal end portion of the lens barrel portion 9 with screws or the like (not shown). The end plate 16 has a hole 17 formed on the optical axis 4 for ensuring a wide field of view, and the end plate 16 closes the tips of the inner cylinder 7 and the outer cylinder 8 in a liquid-tight manner. A water-cooled flow path 18 that is a liquid-tight space is formed between the inner cylinder 7 and the outer cylinder 8.

前記フランジ部13には、前記空間15と連通するエア供給孔19が穿設されている。前記レンズユニット11の外周面には、軸心と平行な溝が、周方向に所定の間隔で複数刻設されている。又、前記間隔保持部材12の外周面にも、軸心と平行な溝が周方向に所定の間隔で複数刻設されている。前記内筒7と前記レンズユニット11及び前記間隔保持部材12との間には、前記溝によって前記内筒7全長に亘って延在する空冷流路21が形成される。該空冷流路21は前記空間15と連通しており、前記エア供給孔19と前記空冷流路21は前記空間15を介して連通している。   An air supply hole 19 communicating with the space 15 is formed in the flange portion 13. On the outer peripheral surface of the lens unit 11, a plurality of grooves parallel to the axial center are formed at predetermined intervals in the circumferential direction. A plurality of grooves parallel to the axial center are also formed on the outer peripheral surface of the spacing member 12 at a predetermined interval in the circumferential direction. Between the inner cylinder 7, the lens unit 11, and the interval holding member 12, an air cooling channel 21 extending over the entire length of the inner cylinder 7 is formed by the groove. The air cooling channel 21 communicates with the space 15, and the air supply hole 19 and the air cooling channel 21 communicate with each other via the space 15.

前記内筒7の先端部には保護ガラス22が設けられている。該保護ガラス22は前記端板16によって固定され、該端板16の前記保護ガラス22の接触面には半径方向に延びる溝が放射状に複数形成され、該溝を介して前記鏡筒部9の外部と前記空冷流路21とが連通されている。   A protective glass 22 is provided at the tip of the inner cylinder 7. The protective glass 22 is fixed by the end plate 16, and a plurality of radially extending grooves are formed on the contact surface of the protective plate 22 of the end plate 16, and the lens barrel portion 9 is formed through the grooves. The outside and the air cooling channel 21 are communicated with each other.

又、前記間隔保持部材12には、基端側と先端側の少なくとも各1箇所に、前記空冷流路21と前記間隔保持部材12の内部とを連通させる連通孔23が形成されている。   In addition, a communication hole 23 is formed in the spacing member 12 so as to communicate the air cooling flow path 21 and the interior of the spacing member 12 at least at one location on the base end side and the distal end side.

次に、図3〜図6に於いて、前記水冷流路18の詳細について説明する。尚、図6は該水冷流路18の展開図を示している。   Next, the details of the water cooling channel 18 will be described with reference to FIGS. FIG. 6 is a development view of the water cooling channel 18.

該水冷流路18は、例えば軸心方向に8本のワイヤ等線状部材からなる流路分割部材24a〜24hが周方向に等間隔で配設される。該流路分割部材24a〜24hを前記内筒7に溶接し、前記流路分割部材24a〜24hを溶接した前記内筒7を前記外筒8に挿入する。前記水冷流路18は、前記流路分割部材24a〜24hにより周方向に液密に8分割される。   In the water cooling channel 18, for example, channel dividing members 24 a to 24 h made of linear members such as eight wires are arranged at equal intervals in the circumferential direction. The flow path dividing members 24 a to 24 h are welded to the inner cylinder 7, and the inner cylinder 7 to which the flow path dividing members 24 a to 24 h are welded is inserted into the outer cylinder 8. The water cooling channel 18 is divided into eight liquid-tight in the circumferential direction by the channel dividing members 24a to 24h.

前記流路分割部材24a〜24hの隔列の、前記流路分割部材24a,24c,24e,24gの先端部は前記端板16と溶接等により液密に密着され、他の隔列の前記流路分割部材24b,24d,24f,24hの先端部と前記端板16との間には間隙25a〜25dが形成される。   The front ends of the flow path dividing members 24a, 24c, 24e, and 24g in the rows of the flow path dividing members 24a to 24h are brought into liquid-tight contact with the end plate 16 by welding or the like, so Gaps 25a to 25d are formed between the end portions of the path dividing members 24b, 24d, 24f, and 24h and the end plate 16.

前記流路分割部材24a〜24hと前記フランジ部13との間には間隙が形成され、該間隙は合流流路26を形成している。又、前記流路分割部材24a,24bの基端部に掛渡ってワイヤ等の線状部材からなる閉塞部材27aが溶接等により液密に固着され、同様に前記流路分割部材24c,24dの基端部に掛渡って閉塞部材27bが溶接等により液密に固着され、前記流路分割部材24e,24fの基端部に掛渡って閉塞部材27cが液密に固着され、前記流路分割部材24g,24hの基端部に掛渡って閉塞部材27dが液密に固着されている。   A gap is formed between the flow path dividing members 24 a to 24 h and the flange portion 13, and the gap forms a merging flow path 26. Further, a blocking member 27a made of a linear member such as a wire is fixed to the base end portions of the flow path dividing members 24a and 24b in a liquid-tight manner by welding or the like. Similarly, the flow path dividing members 24c and 24d The blocking member 27b is fixed in a liquid-tight manner by welding or the like over the base end portion, and the blocking member 27c is fixed in a liquid-tight manner over the base end portions of the flow path dividing members 24e and 24f. A closing member 27d is fixed in a liquid-tight manner over the base ends of the members 24g and 24h.

前記流路分割部材24a,24b間に供給流路28aが形成され、前記流路分割部材24c,24d間に供給流路28bが形成され、前記流路分割部材24,24間に供給流路28cが形成され、前記流路分割部材24,24間に供給流路28dが形成される。又、前記流路分割部材24b,24c間に排出流路29aが形成され、前記流路分割部材24d,24e間に排出流路29bが形成され、前記流路分割部材24f,24g間に排出流路29cが形成され、前記流路分割部材24h,24a間に排出流路29dが形成される。尚、前記供給流路28と前記排出流路29とで分割流路が構成される。 The flow path dividing member 24a, the supply passage 28a between 24b are formed, the flow path dividing member 24c, the supply passage 28b is formed between the 24d, the flow path dividing member 24 e, the feed stream between 24 f road 28c is formed, the supply passage 28d is formed between the flow path dividing member 24 g, 24 h. Also, a discharge flow path 29a is formed between the flow path dividing members 24b and 24c, a discharge flow path 29b is formed between the flow path dividing members 24d and 24e, and a discharge flow is generated between the flow path dividing members 24f and 24g. A passage 29c is formed, and a discharge passage 29d is formed between the passage dividing members 24h and 24a. The supply flow path 28 and the discharge flow path 29 constitute a divided flow path.

前記外筒8には、前記供給流路28の上流端に連通する冷却水供給管31、即ち前記供給流路28aに連通する冷却水供給管31a、前記供給流路28bに連通する冷却水供給管31b、前記供給流路28cに連通する冷却水供給管31c、前記供給流路28dに連通する冷却水供給管31dが、前記閉塞部材27a〜27dの近傍に設けられている。   The outer cylinder 8 includes a cooling water supply pipe 31 communicating with the upstream end of the supply flow path 28, that is, a cooling water supply pipe 31a communicating with the supply flow path 28a, and a cooling water supply communicating with the supply flow path 28b. A pipe 31b, a cooling water supply pipe 31c communicating with the supply flow path 28c, and a cooling water supply pipe 31d communicating with the supply flow path 28d are provided in the vicinity of the blocking members 27a to 27d.

又、前記外筒8の前記閉塞部材27a〜27dよりも基端側には、前記合流流路26に連通する冷却水排出管32が設けられている。前記冷却水供給管31a〜31dから供給された冷却水33は、前記供給流路28a〜28dを流通し、前記流路分割部材24b,24d,24f,24hの先端で折返し、前記排出流路29a〜29dを流通し、前記合流流路26で合流された後、前記冷却水排出管32より排出される様になっている。   Further, a cooling water discharge pipe 32 communicating with the merging channel 26 is provided on the base end side of the outer cylinder 8 with respect to the closing members 27a to 27d. The cooling water 33 supplied from the cooling water supply pipes 31a to 31d flows through the supply flow paths 28a to 28d, and is turned back at the tips of the flow path dividing members 24b, 24d, 24f, and 24h, and the discharge flow path 29a. Through 29d, and merged in the merge channel 26, and then discharged from the cooling water discharge pipe 32.

尚、前記流路分割部材24a〜24hと前記閉塞部材27a〜27dは、前記内筒7と前記外筒8との間の間隔を維持する為のスペーサとしての機能も有している。   The flow path dividing members 24 a to 24 h and the closing members 27 a to 27 d also have a function as a spacer for maintaining a space between the inner cylinder 7 and the outer cylinder 8.

次に、図7(A)(B)に於いて、前記間隔保持部材12の詳細について説明する。   Next, referring to FIGS. 7A and 7B, the details of the spacing member 12 will be described.

該間隔保持部材12の外周面には軸心と平行に、且つ軸方向全長に亘って周方向等間隔、例えば45°間隔で凹溝34が形成されている。前記間隔保持部材12は前記内筒7に対して挿脱可能であり、該内筒7に前記間隔保持部材12の挿入時には、前記凹溝34を介して前記内筒7内部の空気が流出する様になっている。   Concave grooves 34 are formed on the outer circumferential surface of the spacing member 12 in parallel with the axial center and at equal circumferential intervals, for example, 45 ° intervals, over the entire axial length. The spacing member 12 can be inserted into and removed from the inner cylinder 7. When the spacing member 12 is inserted into the inner cylinder 7, the air inside the inner cylinder 7 flows out through the concave groove 34. It is like.

前記間隔保持部材12を挿入した際には、前記凹溝34と前記内筒7の内周面とで前記空冷流路21が形成される。   When the spacing member 12 is inserted, the air cooling channel 21 is formed by the concave groove 34 and the inner peripheral surface of the inner cylinder 7.

又、前記間隔保持部材12には、前記凹溝34に開口し、前記空冷流路21と前記間隔保持部材12の内部とを連通させる前記連通孔23が穿設されている。本実施例では、該連通孔23は、基端側と先端側の各1箇所に穿設されているが、各2箇所以上に穿設されていてもよいのは言う迄もない。   The spacing member 12 is provided with the communication hole 23 that opens into the concave groove 34 and communicates the air-cooled flow path 21 with the interior of the spacing member 12. In this embodiment, the communication hole 23 is drilled at one location on each of the proximal end side and the distal end side, but it goes without saying that it may be drilled at two or more locations.

前記エア供給孔19(図2参照)から供給された冷却空気35(図2参照)は、前記空間15、前記空冷流路21を流通すると共に、前記連通孔23を介して前記間隔保持部材12の内部に流入し、前記端板16に形成された溝を介して前記保護ガラス22の表面を流通する様になっている。尚、前記溝ではなく、前記保護ガラス22の周囲に孔を形成し、該孔を介して前記冷却空気35を外部に放出する様にしてもよい。   Cooling air 35 (see FIG. 2) supplied from the air supply hole 19 (see FIG. 2) flows through the space 15 and the air-cooling flow path 21, and also through the communication hole 23, the spacing holding member 12. And flows through the surface of the protective glass 22 through a groove formed in the end plate 16. A hole may be formed around the protective glass 22 instead of the groove, and the cooling air 35 may be discharged to the outside through the hole.

次に、図8に於いて、前記フィルタ切替え部5について説明する。   Next, the filter switching unit 5 will be described with reference to FIG.

該フィルタ切替え部5はフィルタ保持板36を有している。該フィルタ保持板36にはλ1の波長を透過させる第1波長選択フィルタ37と、λ2の波長を透過させる第2波長選択フィルタ38の2つの波長選択フィルタが設けられ、前記第1波長選択フィルタ37、前記第2波長選択フィルタ38はそれぞれ前記光軸4に対して垂直に保持されている。前記フィルタ保持板36はスライダ39に支持され、該スライダ39はガイドシャフト41に摺動自在に設けられ、前記光軸4に対して直交する方向に移動可能となっている。前記スライダ39は、ジョイント42を介してタイミングベルト43に連結されている。   The filter switching unit 5 has a filter holding plate 36. The filter holding plate 36 is provided with two wavelength selection filters, a first wavelength selection filter 37 that transmits the wavelength of λ1 and a second wavelength selection filter 38 that transmits the wavelength of λ2, and the first wavelength selection filter 37. The second wavelength selection filter 38 is held perpendicular to the optical axis 4. The filter holding plate 36 is supported by a slider 39. The slider 39 is slidably provided on a guide shaft 41 and is movable in a direction orthogonal to the optical axis 4. The slider 39 is connected to the timing belt 43 through a joint 42.

該タイミングベルト43は、プーリ44,44に掛回されて設けられ、図示しない減速機を介してモータ45に連結されている。該モータ45は、前記制御装置6(図1参照)に電気的に接続され、該制御装置6により、所定のタイミング、例えば7秒毎に間欠駆動され、所定時間停止した後逆方向に駆動される様になっている。   The timing belt 43 is provided around pulleys 44 and 44 and is connected to a motor 45 via a reduction gear (not shown). The motor 45 is electrically connected to the control device 6 (see FIG. 1), and is intermittently driven by the control device 6 every predetermined timing, for example, every 7 seconds, and is driven in the reverse direction after stopping for a predetermined time. It has become like that.

前記モータ45の駆動により、減速機を介して前記プーリ44が回転される。該プーリ44,44の回転により、前記タイミングベルト43が前記プーリ44を周回する。前記タイミングベルト43は前記プーリ44,44間で直線運動し、前記タイミングベルト43は前記ジョイント42を介して前記スライダ39を前記ガイドシャフト41に沿って往復移動させる。前記スライダ39と一体に前記フィルタ保持板36が移動停止し、停止した位置では前記第1波長選択フィルタ37と前記第2波長選択フィルタ38の何れか一方の中心が前記光軸4と合致する様になっている。   When the motor 45 is driven, the pulley 44 is rotated via a speed reducer. The timing belt 43 circulates around the pulley 44 by the rotation of the pulleys 44 and 44. The timing belt 43 linearly moves between the pulleys 44 and 44, and the timing belt 43 reciprocates the slider 39 along the guide shaft 41 via the joint 42. The filter holding plate 36 stops moving integrally with the slider 39, and at the stopped position, the center of one of the first wavelength selection filter 37 and the second wavelength selection filter 38 is aligned with the optical axis 4. It has become.

尚、前記スライダ39、前記タイミングベルト43、前記プーリ44、前記モータ45によりフィルタ切替え部5が構成される。   The slider 39, the timing belt 43, the pulley 44, and the motor 45 constitute a filter switching unit 5.

前記温度計測装置1により炉内の測定対象物の温度計測を行なう場合について説明する。前記温度計測装置1は、前記光学ユニット2を炉壁に挿通し、先端が炉内に露出する様に取付けられる。前記測定対象物からの光線(熱放射線)は、前記内筒7内に配置された複数の前記レンズユニット11を介し前記第1波長選択フィルタ37を透過して前記カメラ3に入射される。前記第1波長選択フィルタ37を透過することにより、λ1の波長に限定されて前記カメラ3の受光素子に受光さる。該受光素子からの受光信号に基づきλ1の波長による測定対象物像の画像が撮像される。   The case where the temperature measuring device 1 measures the temperature of the measurement object in the furnace will be described. The temperature measuring device 1 is attached so that the optical unit 2 is inserted into the furnace wall and the tip is exposed in the furnace. Light rays (thermal radiation) from the measurement object pass through the first wavelength selection filter 37 through the plurality of lens units 11 arranged in the inner cylinder 7 and enter the camera 3. By passing through the first wavelength selection filter 37, the light is received by the light receiving element of the camera 3 limited to the wavelength of λ1. Based on the light reception signal from the light receiving element, an image of the measurement object image with a wavelength of λ1 is taken.

又、所定時間経過後、前記モータ45が駆動されて前記フィルタ保持板36が移動され、前記光軸4上に前記第2波長選択フィルタ38が位置決めされる。測定対象物からの光線は、前記第2波長選択フィルタ38を透過することにより、λ2の波長に限定されて前記カメラ3の受光素子に受光され、該受光素子からの受光信号に基づきλ2の波長による測定対象物像の画像が撮像される。   Further, after a predetermined time has elapsed, the motor 45 is driven to move the filter holding plate 36, and the second wavelength selection filter 38 is positioned on the optical axis 4. The light beam from the measurement object passes through the second wavelength selection filter 38 and is received by the light receiving element of the camera 3 limited to the wavelength of λ2. Based on the light reception signal from the light receiving element, the wavelength of λ2 is received. An image of the measurement object image is captured.

前記カメラ3で得られた、λ1の波長による測定対象物像の画像と、λ2の波長による測定対象物像の画像が前記制御装置6へと送出され、該制御装置6は2つの画像を基に2色測温法により測定対象物の温度、温度分布等の温度状態を演算する。温度状態は、測定対象物上の測定点と対応させ数値で表示され、或はグラフ化され、或は温度の高低に対応させた色分け表示で画像として表示される。   The image of the measurement object image with the wavelength of λ1 and the image of the measurement object image with the wavelength of λ2 obtained by the camera 3 are sent to the control device 6, and the control device 6 is based on the two images. In addition, the temperature state such as the temperature and temperature distribution of the measurement object is calculated by the two-color temperature measurement method. The temperature state is displayed as a numerical value corresponding to the measurement point on the object to be measured, or graphed, or displayed as an image in a color-coded display corresponding to the temperature level.

上記処理中、前記冷却水供給管31a〜31dから前記水冷流路18へ、前記冷却水33が供給されている。該冷却水33は、前記供給流路28a〜28d内を先端側に向って流通し、前記間隙25a〜25d内を流通して反転し、前記排出流路29a〜29d内を基端側に向って流通し、前記合流流路26で合流した後、前記冷却水排出管32より外部へ排出される。前記冷却水33が前記水冷流路18を流通する過程で、前記鏡筒部9が水冷される。   During the processing, the cooling water 33 is supplied from the cooling water supply pipes 31 a to 31 d to the water cooling channel 18. The cooling water 33 circulates in the supply flow paths 28a to 28d toward the distal end, flows in the gaps 25a to 25d and reverses, and moves in the discharge flow paths 29a to 29d toward the proximal end. Then, after merging in the merging channel 26, it is discharged to the outside through the cooling water discharge pipe 32. In the process in which the cooling water 33 flows through the water cooling channel 18, the lens barrel portion 9 is water cooled.

又、前記エア供給孔19から前記空間15を介して前記空冷流路21へ、前記冷却空気35が供給されている。該冷却空気35は、前記空冷流路21内を先端側に向って流通し、前記保護ガラス22に形成された溝を介して外部に放出される。   Further, the cooling air 35 is supplied from the air supply hole 19 to the air cooling channel 21 through the space 15. The cooling air 35 circulates in the air cooling flow path 21 toward the front end side, and is discharged to the outside through a groove formed in the protective glass 22.

尚、該空冷流路21内を流通する前記冷却空気35の一部は、基端側の前記連通孔23を介して前記間隔保持部材12の内部に流入し、又先端側の前記連通孔23を介して前記空冷流路21に流出する。前記冷却空気35が前記空冷流路21、前記間隔保持部材12の内部を流通する過程で、前記レンズユニット11等の光学系が空冷される。   A part of the cooling air 35 flowing through the air cooling flow path 21 flows into the interval holding member 12 through the communication hole 23 on the base end side, and the communication hole 23 on the front end side. It flows out to the air cooling flow path 21 via. The optical system such as the lens unit 11 is air-cooled in the process in which the cooling air 35 flows through the air-cooling flow path 21 and the interval holding member 12.

前記鏡筒部9が水冷されると共に、前記レンズユニット11等の光学系が空冷されるので、炉の観察窓等から炉内に前記鏡筒部9を挿入した場合でも、炉内からの輻射熱により前記鏡筒部9や前記レンズユニット11が過熱することなく炉内の温度状態を計測することができる。   Since the lens barrel 9 is cooled with water and the optical system such as the lens unit 11 is air-cooled, even when the lens barrel 9 is inserted into the furnace through an observation window of the furnace, the radiant heat from the furnace Thus, the temperature state in the furnace can be measured without overheating the lens barrel portion 9 and the lens unit 11.

又、前記端板16に対し、放射状に複数の溝を形成し、該溝を介して前記冷却空気35が前記保護ガラス22の表面を流通する様にしたので、炉内からの粉塵が前記保護ガラス22の表面に付着するのを防止することができる。   In addition, a plurality of grooves are formed radially on the end plate 16 so that the cooling air 35 circulates on the surface of the protective glass 22 through the grooves. Adhesion to the surface of the glass 22 can be prevented.

又、前記内筒7内に複数の前記レンズユニット11を設け、該複数のレンズユニット11により測定対象物からの放射光を伝搬させる構成となっているので、前記内筒7が軸心方向に長い場合であっても前記カメラ3迄放射光を伝搬させることができる。又、前記内筒7の長さに応じて前記レンズユニット11を適宜設けることで、測定対象物から離れ、熱の影響を受けない位置で撮像することができる。   Further, since the plurality of lens units 11 are provided in the inner cylinder 7 and the radiation light from the measurement object is propagated by the plurality of lens units 11, the inner cylinder 7 is arranged in the axial direction. Even if it is long, the radiated light can be propagated to the camera 3. Further, by appropriately providing the lens unit 11 according to the length of the inner cylinder 7, it is possible to take an image at a position away from the measurement object and not affected by heat.

更に、前記フィルタ切替え部5に於いて、前記フィルタ保持板36を所定時間毎に移動させ、前記光軸4上に位置する波長選択フィルタを切替えることで、2色測温法を行う為の2波長の画像を撮像する様になっているので、測定対象物からの放射光を分割する為の光学系を必要とせず、光学系の小型化が図れると共に、光学系での光の減衰が防止でき、前記カメラ3に受光される放射光の光量を十分に確保することができる。   Further, in the filter switching unit 5, the filter holding plate 36 is moved every predetermined time, and the wavelength selection filter located on the optical axis 4 is switched to perform two-color temperature measurement method 2. Since it captures images of wavelengths, it does not require an optical system to divide the emitted light from the measurement object, miniaturizing the optical system and preventing light attenuation in the optical system. It is possible to secure a sufficient amount of radiated light received by the camera 3.

尚、本実施例では、前記カメラ3として赤外カメラを用いているが、800℃以上の高温の炉の温度を計測する場合にはシリコン素子を有する可視光カメラが用いられる。   In the present embodiment, an infrared camera is used as the camera 3, but a visible light camera having a silicon element is used when measuring the temperature of a furnace having a high temperature of 800 ° C. or higher.

1 温度計測装置 2 光学ユニット
3 カメラ 4 光軸
5 フィルタ切替え部 6 制御装置
7 内筒 8 外筒
11 レンズユニット 12 間隔保持部材
18 水冷流路 19 エア供給孔
21 空冷流路 22 保護ガラス
23 連通孔 24 流路分割部材
28 供給流路 29 排出流路
31 冷却水供給管 32 冷却水排出管
33 冷却水 34 凹溝
35 冷却空気 36 フィルタ保持板
DESCRIPTION OF SYMBOLS 1 Temperature measuring device 2 Optical unit 3 Camera 4 Optical axis 5 Filter switching part 6 Control apparatus 7 Inner cylinder 8 Outer cylinder 11 Lens unit 12 Space | interval holding member 18 Water cooling flow path 19 Air supply hole 21 Air cooling flow path 22 Protective glass 23 Communication hole 24 flow dividing member 28 supply flow path 29 discharge flow path 31 cooling water supply pipe 32 cooling water discharge pipe 33 cooling water 34 concave groove 35 cooling air 36 filter holding plate

Claims (5)

内筒と、該内筒の外周側に隙間が形成される様前記内筒と同心に設けられた外筒と、全長に亘って通気性を有する様前記内筒の内部に設けられ、測定対象物から放射される光を伝搬させる光学系と、該光学系を透過した光の内特定の波長を透過させる透過特性の異なるフィルタを複数有するフィルタ板と、該フィルタ板のフィルタを切替えるフィルタ切替え部と、該フィルタ切替え部により切替えられた前記フィルタを介して前記測定対象物の画像を撮像する撮像部と、該撮像部により取得した画像に基づき2色測温法により前記測定対象物の温度状態を演算する制御装置と、前記内筒の先端部に設けられた保護ガラスと、該保護ガラスを固定するリング状の端板とを具備し、該端板の前記保護ガラスの接触面に半径方向に延びる溝が放射状に複数形成され、前記隙間に冷却水を流通させ、前記内筒の内部に冷却空気を流通させ、該冷却空気を前記溝より放出することを特徴とする温度計測装置。 An inner cylinder, an outer cylinder provided concentrically with the inner cylinder so that a gap is formed on the outer peripheral side of the inner cylinder, and a measurement object provided inside the inner cylinder so as to have air permeability over the entire length. An optical system for propagating light radiated from an object, a filter plate having a plurality of filters having different transmission characteristics for transmitting a specific wavelength of the light transmitted through the optical system, and a filter switching unit for switching the filter of the filter plate An imaging unit that captures an image of the measurement object via the filter switched by the filter switching unit, and a temperature state of the measurement object by a two-color temperature measurement method based on the image acquired by the imaging unit And a protective glass provided at the tip of the inner cylinder, and a ring-shaped end plate for fixing the protective glass, and a radial direction on the contact surface of the protective glass of the end plate Grooves extending radially Formed in plurality, is circulated cooling water in the gap, thereby circulating the cooling air in the interior of the inner tube, the temperature measuring device which is characterized that you released from the groove the cooling air. 前記隙間を周方向に分割する流路分割部材を更に具備し、該流路分割部材により前記冷却水を先端側に向って流通させる供給流路と、該供給流路を流通する前記冷却水を反転させて基端側に向って流通させる排出流路とが形成される請求項1の温度計測装置。   A flow path dividing member that divides the gap in the circumferential direction; a supply flow path that circulates the cooling water toward the tip side by the flow path dividing member; and the cooling water that flows through the supply flow path. The temperature measurement device according to claim 1, wherein a discharge flow path is formed that is reversed and flows toward the base end side. 前記供給流路と前記排出流路とがそれぞれ複数設けられ、各供給流路毎に前記冷却水を供給する請求項2の温度計測装置。   The temperature measuring device according to claim 2, wherein a plurality of the supply flow paths and the discharge flow paths are provided, and the cooling water is supplied for each supply flow path. 前記光学系は複数のレンズユニットを有し、該レンズユニット間に外周面に軸心方向全長に亘って凹溝が形成された円筒状の間隔保持部材が設けられ、前記凹溝と前記内筒の内周面とで前記冷却空気が流通する空冷流路が形成される請求項1〜請求項3のうちいずれか1項に記載の温度計測装置。   The optical system includes a plurality of lens units, and a cylindrical spacing member is provided between the lens units. The cylindrical spacing member is formed on the outer peripheral surface over the entire length in the axial direction. The temperature measuring device according to any one of claims 1 to 3, wherein an air-cooling flow path through which the cooling air flows is formed between the inner circumferential surface and the inner circumferential surface. 前記凹溝に前記空冷流路と前記間隔保持部材の内部とを連通させる連通孔が形成された請求項4の温度計測装置。   The temperature measurement device according to claim 4, wherein a communication hole is formed in the concave groove to communicate the air cooling flow path with the inside of the spacing member.
JP2014138349A 2014-07-04 2014-07-04 Temperature measuring device Active JP6484939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014138349A JP6484939B2 (en) 2014-07-04 2014-07-04 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014138349A JP6484939B2 (en) 2014-07-04 2014-07-04 Temperature measuring device

Publications (2)

Publication Number Publication Date
JP2016017745A JP2016017745A (en) 2016-02-01
JP6484939B2 true JP6484939B2 (en) 2019-03-20

Family

ID=55233074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138349A Active JP6484939B2 (en) 2014-07-04 2014-07-04 Temperature measuring device

Country Status (1)

Country Link
JP (1) JP6484939B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890362A (en) * 1981-11-25 1983-05-30 Sigma Denshi Kogyo:Kk Measuring device for surface temperature of slab in continuous casting device
JPS61190835U (en) * 1985-05-21 1986-11-27
JPS6255100U (en) * 1985-09-26 1987-04-06
JP2687572B2 (en) * 1989-04-17 1997-12-08 三菱マテリアル株式会社 Cement firing furnace monitoring method and apparatus
GB9020219D0 (en) * 1990-09-15 1990-10-24 Smiths Industries Plc Optical temperature sensors
JPH09257580A (en) * 1996-03-21 1997-10-03 Meidensha Corp Temperature detector
JPH11281491A (en) * 1998-03-30 1999-10-15 Nisshin Steel Co Ltd Calibration method and device of two-color thermometer
JP4378003B2 (en) * 1999-11-29 2009-12-02 健司 三井 Imaging system
JP2002323377A (en) * 2001-04-25 2002-11-08 Nippon Crucible Co Ltd In-furnace temperature measuring device
JP2003344166A (en) * 2002-05-24 2003-12-03 Kenji Mitsui In-furnace monitoring system for measuring temperature
JP2008249535A (en) * 2007-03-30 2008-10-16 Fujikura Ltd Temperature measuring device
JP2014041167A (en) * 2010-12-21 2014-03-06 Fujifilm Corp Lens unit and imaging unit

Also Published As

Publication number Publication date
JP2016017745A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US20210341821A1 (en) High Temperature Camera Probe
EP2616799B1 (en) Apparatus and method for automatic inspection of through-holes of a component
JP5693584B2 (en) Combustion turbine monitoring system with imaging flexible fiber bundle
CN103808412B (en) A kind of burner hearth workpiece temperature measuring equipment and method
EP2888570B1 (en) System and method for on-line optical monitoring within a gas turbine combustor section
JP2010508534A (en) Method and apparatus for process monitoring during material processing
JPH08218071A (en) Wall diagnosis for carbonization chamber in coke oven
JP2013505477A5 (en)
CN104897284A (en) Temperature measurement device for hearth workpiece surface and temperature measurement method
ES2359373T3 (en) DEVICE AND METHOD FOR DETECTING THE SURFACE DETAILS OF A WORK PIECE SUCH AS A LAMINATED / STRETCHED METAL BAR.
JP2001286436A (en) Endoscope
JP6484939B2 (en) Temperature measuring device
JP5964504B2 (en) Method of manufacturing a weld joint and forming an image of the weld joint using a cooled X-ray tube
JP6095437B2 (en) Inner surface inspection apparatus and method
JP2007040736A (en) Shape measuring apparatus
JP5278878B2 (en) Pipe inner surface shape measuring device
JP6318853B2 (en) Temperature calibration method and temperature calibration apparatus
US10717221B2 (en) Pelletizer apparatus
JP2009183449A (en) Light source unit
KR101262200B1 (en) Apparatus for diagnosing inside wall of heating chamber
CN109115345A (en) A kind of infrared thermometry device and Equipment for Heating Processing
JP2014509392A (en) Apparatus for detecting and measuring the cylindrical surface of refractory ceramic parts in metallurgical applications
RU180587U1 (en) TELEVISION ENDOSCOPE
KR102053982B1 (en) Method for Inspecting the Inside of a Furnace at High Temperature and Imaging Apparatus used in the Method
KR102500640B1 (en) Furnace control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R151 Written notification of patent or utility model registration

Ref document number: 6484939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151