JP6482543B2 - Polymer resin composite containing biomass nanofiber, method for producing biomass nanofiber, and method for producing the same - Google Patents

Polymer resin composite containing biomass nanofiber, method for producing biomass nanofiber, and method for producing the same Download PDF

Info

Publication number
JP6482543B2
JP6482543B2 JP2016521162A JP2016521162A JP6482543B2 JP 6482543 B2 JP6482543 B2 JP 6482543B2 JP 2016521162 A JP2016521162 A JP 2016521162A JP 2016521162 A JP2016521162 A JP 2016521162A JP 6482543 B2 JP6482543 B2 JP 6482543B2
Authority
JP
Japan
Prior art keywords
biomass
polymer resin
resin composite
producing
nanofibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016521162A
Other languages
Japanese (ja)
Other versions
JPWO2015178483A1 (en
Inventor
貴行 附木
貴行 附木
治男 西田
治男 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Publication of JPWO2015178483A1 publication Critical patent/JPWO2015178483A1/en
Application granted granted Critical
Publication of JP6482543B2 publication Critical patent/JP6482543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Description

本発明は、バイオマス資源を利用したバイオマスナノ繊維を含む高分子樹脂複合体及びバイオマスナノ繊維の製造方法並びに同高分子樹脂複合体の製造方法に関する。 The present invention relates to a polymer resin composite containing biomass nanofibers using biomass resources, a method for producing biomass nanofibers, and a method for producing the polymer resin composite.

近年、化石資源から再生可能な資源への転換が注目されており、特にバイオマス資源への注目度は高く、広く利用されてきている。現在、日本は一次資源のほとんどを輸入に頼っているが、身近なところにも一次資源はあり、その代表的なものとして竹や麦わら等が挙げられる。日本は世界でも有数の森林面積比率を有しているが、価格の安い海外のバイオマスに取って代わられたことに伴う国内生産の激減により、森林や竹林の多くは手入れが行われず、竹に関しては「放置竹林」や「竹公害」が拡大の一歩を辿る。 In recent years, attention has been focused on the conversion from fossil resources to renewable resources, and in particular, attention has been focused on biomass resources and they have been widely used. Currently, Japan relies on imports for most of its primary resources, but there are also primary resources in the immediate vicinity, such as bamboo and straw. Japan has one of the largest forest area ratios in the world, but due to the drastic decline in domestic production due to the replacement of cheaper overseas biomass, many forests and bamboo forests are not maintained, "Leave bamboo forest" and "Bamboo pollution" are one step in the expansion.

しかし、竹を工業資源という観点からみると、竹は西日本を中心に広く分布しており、その賦存量は膨大であり、しかも成長が速いという特徴を持っている。また、材料の観点からも非常に優れており、プラスチックとの複合材料の研究が盛んに行われ、コンポジット特性の向上も多数報告されている。つまり、工業資源としての利用は竹林の問題に対する有効な解決策となると同時に化石燃料の代替資源としても非常に有効である。 However, from the viewpoint of industrial resources, bamboo is widely distributed mainly in western Japan, and its existence is enormous and has a feature of rapid growth. Moreover, it is very excellent from the viewpoint of materials, and research on composite materials with plastics has been actively conducted, and many improvements in composite properties have been reported. In other words, its use as an industrial resource is an effective solution to the bamboo forest problem, and at the same time is very effective as an alternative resource for fossil fuels.

CO2固定化の目的でバイオマスファイバーを基に高物性材料の研究開発が行われている。その中でセルロース系ナノコンポジットの開発が急速に進んできている。その基本要素として、高強度、高弾性、低熱膨張のナノ構造繊維に注目が集まっている。このナノ構造繊維では、いかにして、1)ナノ構造繊維を簡便に得ることができるか、2)その機能を失わずかつ機能を大きく発揮しうるものにするか、3)特に有機高分子との複合化など工業的に加工し易いものにするか、4)それら複合化などの加工中にナノ構造繊維としての形態を失わずかつ分散性の高いことを実証するか、などを着眼として開発することが求められている。 For the purpose of CO 2 fixation, research and development of high physical properties materials are being performed based on biomass fibers. Among them, the development of cellulosic nanocomposites is progressing rapidly. As basic elements, attention has been focused on nano-structured fibers with high strength, high elasticity, and low thermal expansion. In this nanostructured fiber, how 1) nanostructured fiber can be easily obtained, 2) its function is not lost and its function can be exerted greatly, 3) especially organic polymers and Developed with a focus on whether it is easy to process industrially, such as composites, or 4) to demonstrate that nanostructured fibers are not lost during processing such as composites and that they are highly dispersible It is requested to do.

その中でも、竹、木材パルプ、ケナフなど植物系繊維材料からのセルロース単体とリグノセルロースについてのナノ繊維の製造及び有機高分子との複合材料化については、各種の技術が公表されている。
また、パルプなどの植物繊維を解繊して、ミクロフィブリル化を図ることができる。そして、得られるミクロフィブリルを有する繊維と有機高分子を複合化する技術が検討されている。
Among them, various technologies have been published for the production of nanofibers for lignocellulose and a composite material with organic polymer from cellulose-based fiber materials such as bamboo, wood pulp and kenaf.
In addition, plant fibers such as pulp can be defibrated to make microfibrils. And the technique which combines the fiber and the organic polymer which have the obtained microfibril is examined.

従来の複合化技術では、グラインダー、ミキサーなどを用いて繊維をナノサイズまで解繊すること、ナノサイズの繊維表面を化学薬品により処理したものとPP、PEなどの汎用樹脂を混合して相溶性向上を図ること、及び成形時に繊維の再凝集を防ぐために表面改質を行うこと、の3段階の工程を必要とする。 In conventional compounding technology, fibers are defibrated to a nano size using a grinder, mixer, etc., and nano-sized fiber surfaces treated with chemicals are mixed with general-purpose resins such as PP and PE for compatibility. It requires a three-stage process of improving and performing surface modification to prevent fiber re-aggregation during molding.

例えば、次亜塩素酸系の酸化剤を用いることで、ナノ繊維の反発を制御して、分散性の高い繊維を得る技術や(特許文献1)、ミクロフィブリル表面に導入された負の電荷を有するカルボキシル基の存在により、ミクロフィブリル間の反発力を誘引し、分散体中で安定して分散する技術(特許文献2)等が開示されている。 For example, by using a hypochlorous acid-based oxidizing agent to control the repulsion of nanofibers to obtain highly dispersible fibers (Patent Document 1), the negative charge introduced on the microfibril surface is reduced. A technique of attracting repulsive force between microfibrils due to the presence of a carboxyl group and stably dispersing in a dispersion (Patent Document 2) is disclosed.

しかし、これらの技術は、いずれも上記した3段階の工程を簡略化するものではない。また、得られるミクロフィブリルを有するナノ繊維を高分子樹脂中に高分散して成形することは難しい。 However, none of these techniques simplify the above-described three-stage process. In addition, it is difficult to mold the nanofibers having microfibrils obtained by highly dispersing them in a polymer resin.

これに対して、本発明者らは、アブラヤシ由来の原料を過熱水蒸気で処理してバイオマス粉末を得、さらに、バイオマス粉末に熱可塑性樹脂等のプレポリマーを配合して溶融成形してバイオマス複合成形体を得る技術を開示している(特許文献3)。このとき、50質量%以上が長径1〜500μmの範囲にあるバイオマス粉末が得られる。 On the other hand, the present inventors processed the raw material derived from oil palm with superheated steam to obtain biomass powder, and further blended the biomass powder with a prepolymer such as a thermoplastic resin and melt molded it to perform biomass composite molding. A technique for obtaining a body is disclosed (Patent Document 3). At this time, a biomass powder having 50% by mass or more in the range of the major axis of 1 to 500 μm is obtained.

特開2008−1728号公報JP 2008-1728 A 特開2009−293167号公報JP 2009-293167 A WO2013/076960号パンフレットWO2013 / 076960 pamphlet

しかしながら、特許文献3記載の技術においては、ナノオーダーの寸法のバイオマス粉末を得るまでには至っていない。
本発明はかかる事情に鑑みてなされたもので、バイオマス原料からナノオーダーのバイオマスナノ繊維を製造する方法、これを用いた高分子樹脂複合体及びその製造方法を提供することを目的とする。
However, the technique described in Patent Document 3 has not yet reached a biomass powder with a nano-order size.
The present invention has been made in view of such circumstances, and an object thereof is to provide a method for producing nano-order biomass nanofibers from biomass raw materials, a polymer resin composite using the method, and a method for producing the same.

前記目的に沿う第1の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体は、径50〜500nmのバイオマスナノ繊維100質量部と、3〜12質量%のポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンからなる分散剤50〜200質量部と、高分子樹脂400〜3500質量部からなるThe polymer resin composite containing biomass nanofibers according to the first invention that meets the above-mentioned object comprises 100 parts by mass of biomass nanofibers having a diameter of 50 to 500 nm , 3 to 12% by mass of a polyvinyl alcohol aqueous solution, and maleic anhydride-modified polypropylene. Or 50 to 200 parts by mass of a dispersant composed of low molecular weight polycaprolactone and 400 to 3500 parts by mass of a polymer resin.

第1の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体において、前記バイオマスナノ繊維となるバイオマスは、竹、エリアンサス、アブラヤシ、及び麦わらから選ばれる1又は2以上からなるのが好ましい。 In the polymer resin composite containing biomass nanofibers according to the first invention, the biomass to be the biomass nanofibers is preferably composed of one or more selected from bamboo, Elianthus, oil palm, and straw.

第2の発明に係るバイオマスナノ繊維の製造方法は、バイオマスを、180〜230℃の過熱水蒸気で加熱処理してバイオマス繊維を得る工程と、多軸押出機を用い、前記バイオマス繊維に3〜12質量%のポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンからなる分散剤を配合し、処理温度が10〜120℃、軸回転速度が50〜150rpmで混練しながら押出して径50〜500nmのバイオマスナノ繊維を得る工程と、を有する。 In the method for producing biomass nanofibers according to the second invention, the biomass is heated to 180-230 ° C. with superheated steam to obtain biomass fibers, and a multi-screw extruder is used. A dispersing agent comprising a mass% polyvinyl alcohol aqueous solution, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone was blended , extruded while kneading at a processing temperature of 10 to 120 ° C. and an axial rotation speed of 50 to 150 rpm, and a diameter of 50 to Obtaining biomass nanofibers of 500 nm .

第2の発明に係るバイオマスナノ繊維の製造方法において、前記加熱処理は、180〜230℃の過熱水蒸気で1〜5時間行われるのが好ましい。 In the method for producing biomass nanofibers according to the second invention, the heat treatment is preferably performed with superheated steam at 180 to 230 ° C. for 1 to 5 hours.

第2の発明に係るバイオマスナノ繊維の製造方法において、前記バイオマス100質量部に対して、50〜200質量部の前記分散剤を配合するのが好ましい。 In the method for producing biomass nanofibers according to the second invention, it is preferable to blend 50 to 200 parts by mass of the dispersant with respect to 100 parts by mass of the biomass.

第3の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法は、第1の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法であって、第2の発明に係るバイオマスナノ繊維の製造方法により得られる前記バイオマスナノ繊維に高分子樹脂を配合して多軸押出成形機で押出成形し、バイオマスナノ繊維を含む高分子樹脂複合体を得る工程を有する。 The method for producing a polymer resin composite containing biomass nanofibers according to the third invention is a method for producing a polymer resin composite containing biomass nanofibers according to the first invention, and relates to the second invention It has the process of mix | blending polymer resin with the said biomass nanofiber obtained by the manufacturing method of biomass nanofiber, and extrusion-molding with a multi-screw extruder, and obtaining the polymer resin composite containing biomass nanofiber.

第3の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法において、前記高分子樹脂が、熱可塑性樹脂又は熱硬化性樹脂であるのが好ましい。 In the method for producing a polymer resin composite containing biomass nanofibers according to the third invention, the polymer resin is preferably a thermoplastic resin or a thermosetting resin.

第3の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法において、前記高分子樹脂複合体を形成する前記多軸押出成形機での処理温度が、80〜220℃、処理圧力が50MPa以下、軸回転速度が15〜50rpmであるのが好ましい。 In the method for producing a polymer resin composite containing biomass nanofibers according to the third invention, a processing temperature in the multi-screw extruder for forming the polymer resin composite is 80 to 220 ° C., and a processing pressure is It is preferably 50 MPa or less and the shaft rotation speed is 15 to 50 rpm.

第4の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法は、第1の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法であって、上流側に解繊部が下流側に溶融混練部がそれぞれ形成された一つの多軸押出成形機を用い、前記解繊部で第2の発明に係るバイオマスナノ繊維を得る工程、及び前記溶融混練部でバイオマスナノ繊維を含む高分子樹脂複合体の製造を行う工程を、連続的に行う。 A method for producing a polymer resin composite containing biomass nanofibers according to a fourth invention is a method for producing a polymer resin composite containing biomass nanofibers according to the first invention, wherein a defibrating unit is provided upstream. Using a multi-screw extruder having a melt kneading part formed on the downstream side, obtaining the biomass nanofibers according to the second invention in the defibrating part, and biomass nanofibers in the melt kneading part The process of manufacturing the polymer resin composite containing is performed continuously.

第5の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法は、第1の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法であって、複数の連結された多軸押出成形機のうちの上流側に位置する多軸押出成形機で、第2の発明に係るバイオマスナノ繊維を得る工程を、及び前記複数の連結された多軸押出成形機のうちの下流側に位置する多軸押出成形機で、バイオマスナノ繊維を含む高分子樹脂複合体を得る工程を、連続的に行う。 A method for producing a polymer resin composite containing biomass nanofibers according to a fifth invention is a method for producing a polymer resin composite containing biomass nanofibers according to the first invention, wherein a plurality of connected multiple A step of obtaining biomass nanofibers according to the second invention in a multi-screw extruder located on the upstream side of a shaft extruder, and a downstream side of the plurality of connected multi-screw extruders The process of obtaining the polymer resin composite containing biomass nanofibers is continuously performed using a multi-screw extrusion molding machine located in the area.

第4、第5の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法において、前記多軸押出成形機は二軸押出成形機であるのが好ましい。 In the method for producing a polymer resin composite containing biomass nanofibers according to the fourth and fifth inventions, the multi-screw extruder is preferably a twin-screw extruder.

第1の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体は、バイオマスナノ繊維と高分子樹脂とを混合して形成されているので、圧縮成形や射出成形によって強度を有する複雑な成形品を得ることができる。
ここで、ポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンは相溶性を高める物質として作用する。即ち、バイオマス繊維がいかに強度が高くても、高分子樹脂(例えば、PP)とバイオマス繊維は性質が全く異なるので、その界面には接着性はなく、接着性がないとバイオマス繊維による繊維強化は発揮しない。そこで、適切に界面に相溶性(接着性)を高める相溶化剤は不可欠である。従って、第1の発明においては、通常の高分子樹脂の物性にバイオマス繊維の繊維強化を発現させるために、以上の相溶化剤(即ち、分散剤)が添加されている。
Since the polymer resin composite containing biomass nanofibers according to the first invention is formed by mixing biomass nanofibers and polymer resin, a complex molded product having strength by compression molding or injection molding is used. Can be obtained.
Here, the aqueous polyvinyl alcohol solution, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone acts as a substance that enhances the compatibility. That is, no matter how strong the biomass fiber is, the polymer resin (for example, PP) and the biomass fiber have completely different properties. Does not demonstrate. Therefore, a compatibilizing agent that appropriately increases compatibility (adhesion) at the interface is indispensable. Therefore, in the first invention, the above-described compatibilizing agent (that is, a dispersing agent) is added in order to express the fiber reinforcement of the biomass fiber in the physical properties of a normal polymer resin.

また、粉体はその断面径が可視光の波長(370〜780nm)より小さくなると目に見えなくなる。つまり高分子樹脂複合体(樹脂成形品)に透明性が出てくる。また、繊維状のバイオマス繊維の断面径が小さくなると屈曲性を持ち、かつアスペクト比(長さ/断面積の比)が大きくなって、互いに絡まり合いが生じ、これによって高分子樹脂複合体の機械的強度が向上する。 Further, the powder becomes invisible when its cross-sectional diameter becomes smaller than the wavelength of visible light (370 to 780 nm). That is, transparency appears in the polymer resin composite (resin molded product). In addition, when the cross-sectional diameter of the fibrous biomass fiber is reduced, the fiber is flexible and the aspect ratio (length / cross-sectional area ratio) is increased, resulting in entanglement with each other. The mechanical strength is improved.

第2の発明に係るバイオマスナノ繊維の製造方法は、例えば、竹、エリアンサス、アブラヤシ及び麦わらから選ばれる1又は2以上のバイオマスを過熱水蒸気で加熱処理してバイオマス繊維を得る工程と、多軸押出機を用い、バイオマス繊維にポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンを配合して混練しながら押出してバイオマスナノ繊維を得る工程と、を有するため、ナノサイズのバイオマスナノ繊維を好適に得ることができる。 The method for producing biomass nanofibers according to the second invention includes, for example, a process of obtaining biomass fibers by heat-treating one or more biomass selected from bamboo, Elianthus, oil palm and straw with superheated steam; Using an extruder and mixing biomass fiber with polyvinyl alcohol aqueous solution, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone and extruding while kneading to obtain biomass nanofibers. Can be suitably obtained.

第3の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法は、上記のバイオマスナノ繊維の製造方法により得られるバイオマスナノ繊維に高分子樹脂を配合して多軸押出成形機で押出成形し、バイオマスナノ繊維を含む高分子樹脂複合体を得る工程を有するため、高分子樹脂中にバイオマスナノ繊維が高分散されて、高い力学的特性を備えるバイオマスナノ繊維を含む高分子樹脂複合体を好適に得ることができる。 According to a third aspect of the present invention, there is provided a method for producing a polymer resin composite containing biomass nanofibers, wherein a polymer resin is blended with biomass nanofibers obtained by the method for producing biomass nanofibers and extruded with a multi-screw extruder. A polymer resin composite comprising biomass nanofibers having a high mechanical property in which the biomass nanofibers are highly dispersed in the polymer resin because it has a step of forming and obtaining a polymer resin composite containing biomass nanofibers. Can be suitably obtained.

また、第4、第5の発明に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法は、一つの又は複数が連結された多軸押出成形機を用い、一つの多軸押出成形機の上流側で又は複数の連結された多軸押出成形機のうちの上流側に位置する多軸押出成形機で、バイオマスナノ繊維を得る工程を、及び一つの多軸押出成形機の下流側で又は複数の連結された多軸押出成形機のうちの下流側に位置する多軸押出成形機で、バイオマスナノ繊維を含む高分子樹脂複合体を得る工程を、連続的に行うため、バイオマスナノ繊維を含む高分子樹脂複合体を効率的なプロセスで得ることができる。また、得られるバイオマスナノ繊維を装置から一旦取り出した後に別の装置で高分子樹脂に配合する場合は配合するバイオマスナノ繊維が凝集する不具合が生じるおそれがあるが、本発明によれば、そのおそれがない。 Moreover, the manufacturing method of the polymeric resin composite containing the biomass nanofiber which concerns on 4th, 5th invention uses the multi-screw extruder by which one or more were connected, and one multi-screw extruder was used. A process of obtaining biomass nanofibers in a multi-screw extruder located upstream or among a plurality of linked multi-screw extruders, and downstream of one multi-screw extruder or In order to continuously perform the process of obtaining a polymer resin composite containing biomass nanofibers in a multiaxial extruder located downstream of a plurality of connected multiaxial extruders, The polymer resin composite containing it can be obtained by an efficient process. In addition, when the obtained biomass nanofiber is once taken out from the apparatus and then blended with the polymer resin in another apparatus, there is a possibility that the biomass nanofiber to be blended may agglomerate. There is no.

実験例及び比較例で使用した二軸押出成形機の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the twin-screw extruder used by the experiment example and the comparative example. 実験例5で得られたバイオマスナノ繊維を含む高分子樹脂複合体サンプルを液体窒素で固化し、断面をSEMにより鏡査したSEM写真である。It is the SEM photograph which solidified the polymer resin composite sample containing the biomass nanofiber obtained in Experimental example 5 with liquid nitrogen, and examined the section by SEM. 実験例6で得られたバイオマスナノ繊維の凍結乾燥物をFE−SEMにより鏡査したFE−SEM写真である。It is the FE-SEM photograph which examined the freeze-dried material of the biomass nanofiber obtained in Experimental Example 6 with FE-SEM.

続いて、本発明を具体化した実施例について、図を参照しながら説明する。まず、本発明の一実施例に係るバイオマスナノ繊維の製造方法について説明する。
本実施例に係るバイオマスナノ繊維の製造方法は、竹、エリアンサス、アブラヤシ及び麦わらから選ばれる1又は2以上のバイオマスを過熱水蒸気で加熱処理してバイオマス繊維を得る工程と、多軸押出機を用い、バイオマス繊維にポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンを配合して混練しながら押出してバイオマスナノ繊維を得る工程と、を有する。
Next, an embodiment of the present invention will be described with reference to the drawings. First, the manufacturing method of the biomass nanofiber which concerns on one Example of this invention is demonstrated.
The method for producing biomass nanofibers according to this example includes a step of obtaining biomass fibers by heating one or more biomass selected from bamboo, Elianthus, oil palm and straw with superheated steam, and a multi-screw extruder. And a step of blending biomass fiber with a polyvinyl alcohol aqueous solution, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone and extruding while kneading to obtain biomass nanofibers.

竹やエリアンサスは生産性(生長)の効率が良く、バイオマス天然資源として好ましい。また、エリアンサスは永続的に生産が可能でCO2量の固定化が非常に高いため、バイオマス天然資源として植栽することにより、森林伐採により地球上の炭素固定能力が衰え、地球温暖化に進むことを抑制できる能力が高い。アブラヤシと麦わらは、バイオマス資源として活用することで、産業未利用廃棄物の発生量の抑制に寄与する。 Bamboo and Eliansus have good productivity (growth) efficiency and are preferable as biomass natural resources. In addition, Elianthus can be produced permanently and CO 2 fixation is extremely high. By planting it as a natural biomass resource, deforestation reduces its ability to fix carbon on the earth, resulting in global warming. High ability to prevent progress. Oil palm and straw contribute to the reduction of the amount of industrial unused waste by using it as biomass resources.

過熱水蒸気で加熱処理するための装置としては、適宜の反応器を用いることができる。
過熱水蒸気の温度は180〜230℃であることが好ましい。加熱処理時間は、装置条件や処理するバイオマスの条件にもよるが、1〜5時間程度が好ましい。得られるバイオマス繊維は、多軸押出機での処理が容易に行える適宜の寸法に破砕、粉砕あるいは篩い分けなどを行う。
An appropriate reactor can be used as an apparatus for heat treatment with superheated steam.
The temperature of the superheated steam is preferably 180 to 230 ° C. The heat treatment time is preferably about 1 to 5 hours, although it depends on the apparatus conditions and the conditions of the biomass to be treated. The obtained biomass fiber is crushed, crushed or sieved to an appropriate size that can be easily processed in a multi-screw extruder.

多軸押出機は、三軸以上のものを用いてもよいが、二軸のもので十分であり、かつ好ましい。二軸押出機を含む多軸押出機は、温度調節可能なシリンダーと、シリンダー内に回転可能に配備された複数本の軸(以下、これをスクリューという。)と、複数本のスクリューを回転させる図示しないモーター及び減速機からなる回転駆動機構とを備える。シリンダーの上流側にはバイオマス(繊維)及び分散剤(ポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトン)の供給口が配備されている。 As the multi-screw extruder, one having three or more axes may be used, but a twin-screw extruder is sufficient and preferable. A multi-screw extruder including a twin-screw extruder rotates a temperature-adjustable cylinder, a plurality of shafts (hereinafter referred to as screws) rotatably arranged in the cylinder, and a plurality of screws. A rotation drive mechanism including a motor and a speed reducer (not shown). A supply port for biomass (fiber) and a dispersant (polyvinyl alcohol aqueous solution, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone) is disposed on the upstream side of the cylinder.

多軸押出機のスクリュー長さ/スクリュー直径比(L/D)は20〜60程度とすることができる。多軸押出機での処理温度が10〜120℃、処理圧力が50MPa以下、軸回転速度が50〜150rpmであると好ましい。また、処理時間は30〜60分程度であることが好ましい。
多軸押出機のニーディングディスク部分あるいはスクリュー部分により、バイオマスが剪断され、バイオマスナノ繊維が得られる。多軸押出機は、分画された各ゾーンで加熱や混練を行うだけでなく、減圧による揮発成分の除去も可能である。
The screw length / screw diameter ratio (L / D) of the multi-screw extruder can be about 20-60. It is preferable that the processing temperature in a multi-screw extruder is 10 to 120 ° C., the processing pressure is 50 MPa or less, and the shaft rotation speed is 50 to 150 rpm. Moreover, it is preferable that processing time is about 30 to 60 minutes.
Biomass is sheared by the kneading disk part or screw part of the multi-screw extruder, and biomass nanofibers are obtained. The multi-screw extruder not only performs heating and kneading in each fractionated zone, but can also remove volatile components by decompression.

竹、エリアンサス、アブラヤシ及び麦わらは、ヘミセルロースにより強靭な構造を保持するバイオマスであるため、通常、繊維化は容易ではない。本実施例では、これらのバイオマスを多軸押出機で処理し易い適当な寸法、例えば幅1〜3mm、長さ1〜5cm程度に粉砕したうえで、多軸押出機に投入する。このとき、バイオマスとともにポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンを配合する。 Bamboo, Elianthus, oil palm and straw are biomass that retains a tough structure with hemicellulose, and therefore, fiberization is usually not easy. In this example, these biomasses are pulverized into suitable dimensions that are easy to process with a multi-screw extruder, for example, about 1 to 3 mm in width and about 1 to 5 cm in length, and then charged into the multi-screw extruder. At this time, a polyvinyl alcohol aqueous solution, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone is blended together with biomass.

ポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンは、バイオマス繊維を細かく分散しかつ界面の相溶性を改善させる分散剤として作用する。なお、これらのもの以外でも、粘度範囲が1000〜2500cpで、水分量、加熱、分子量制御で調製可能な物質であることと、押出機内で繊維とよく絡み合う物質を分散剤として用いることができる。ポリビニルアルコール水溶液を用いる場合、水溶液の濃度は3〜12質量%が解繊に与える影響の粘性が良く、9質量%濃度のポリビニルアルコール水溶液が特に好ましい。
バイオマス100質量部に対して、好ましくはポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンを50〜200質量部配合する。これにより、数十〜数百nmオーダーの寸法のバイオマスナノ繊維を得る。
Aqueous polyvinyl alcohol, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone acts as a dispersant that finely disperses biomass fibers and improves interfacial compatibility. In addition to these materials, a material having a viscosity range of 1000 to 2500 cp, which can be prepared by controlling the amount of water, heating, and molecular weight, and a material that is well entangled with fibers in the extruder can be used as a dispersant. In the case of using a polyvinyl alcohol aqueous solution, the concentration of the aqueous solution is 3-12% by mass having a good viscosity that affects defibration, and a 9% by mass polyvinyl alcohol aqueous solution is particularly preferable.
Preferably, 50 to 200 parts by mass of an aqueous polyvinyl alcohol solution, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone is added to 100 parts by mass of biomass. Thereby, biomass nanofibers having dimensions of the order of several tens to several hundreds of nanometers are obtained.

次に、本発明の第1の実施例に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法について説明する。
本実施例に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法は、上記のバイオマスナノ繊維の製造方法により得られるバイオマスナノ繊維に高分子樹脂を配合して多軸押出成形機で押出成形し、バイオマスナノ繊維を含む高分子樹脂複合体を得る工程を有する。多軸押出成形機は、基本的に多軸押出機と同様の構成であるが、目的とする形状に成形するための金型(別置きでも可)をさらに備える。多軸押出成形機(一例として二軸押出成形機)はその処理温度が、80〜220℃、処理圧力が50MPa以下、軸回転速度が15〜50rpmであるのが好ましい。
Next, the manufacturing method of the polymeric resin composite containing the biomass nanofiber which concerns on the 1st Example of this invention is demonstrated.
The method for producing a polymer resin composite containing biomass nanofibers according to the present example is prepared by mixing a polymer resin with biomass nanofibers obtained by the above-described biomass nanofiber production method and extruding with a multi-screw extruder. And a step of obtaining a polymer resin composite containing biomass nanofibers. The multi-screw extruder has basically the same configuration as that of the multi-screw extruder, but further includes a mold (may be separately provided) for molding into a target shape. It is preferable that the processing temperature of the multi-screw extruder (for example, a twin-screw extruder) is 80 to 220 ° C., the processing pressure is 50 MPa or less, and the shaft rotation speed is 15 to 50 rpm.

高分子樹脂の種類は特に限定するものではないが、熱可塑性樹脂又は熱硬化性樹脂であるのが好ましい。バイオマスナノ繊維100質量部に対して高分子樹脂を400〜3500質量部配合するのが好ましい。これにより、高分子樹脂中にバイオマスナノ繊維が高均一に分散され、高い力学的特性を備えるバイオマスナノ繊維を含む高分子樹脂複合体が得られる。 The kind of the polymer resin is not particularly limited, but is preferably a thermoplastic resin or a thermosetting resin. It is preferable to blend 400 to 3500 parts by mass of the polymer resin with respect to 100 parts by mass of the biomass nanofibers. Thereby, biomass nanofibers are highly uniformly dispersed in the polymer resin, and a polymer resin composite containing biomass nanofibers having high mechanical properties is obtained.

また、本発明の第2の実施例に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法は、一つの又は複数が連結された多軸押出成形機(具体的には二軸押出成形機)を用い、一つの多軸押出成形機の上流側で又は複数の連結された多軸押出成形機のうちの上流側に位置する多軸押出成形機で、バイオマスナノ繊維を得る工程を、及び一つの多軸押出成形機の下流側で又は複数の連結された多軸押出成形機のうちの下流側に位置する多軸押出成形機で、バイオマスナノ繊維を含む高分子樹脂複合体を得る工程を、連続的に行う。
一つの多軸押出成形機を使用する場合、上流側に解繊部を、下流側に溶融混練部を形成し、解繊部でバイオマスナノ繊維の製造を行い、連続して溶融混練部でバイオマスナノ繊維を含む高分子樹脂複合体の製造を行う。
In addition, a method for producing a polymer resin composite containing biomass nanofibers according to a second embodiment of the present invention includes a multi-screw extruder (specifically, a twin-screw extruder) in which one or more are connected. And the step of obtaining biomass nanofibers with a multi-screw extruder located upstream of one multi-screw extruder or upstream of a plurality of connected multi-screw extruders, and A step of obtaining a polymer resin composite containing biomass nanofibers in a multi-screw extruder located downstream of one multi-screw extruder or downstream of a plurality of connected multi-screw extruders Are performed continuously.
When one multi-screw extruder is used, a defibrating unit is formed on the upstream side, a melt-kneading unit is formed on the downstream side, and biomass nanofibers are produced in the defibrating unit. Manufacture of polymer resin composites containing nanofibers.

これにより、バイオマスナノ繊維を含む高分子樹脂複合体を効率的なプロセスで得ることができる。また、得られるバイオマスナノ繊維を装置から一旦取り出した後に別の装置で高分子樹脂に配合する場合は、配合するバイオマスナノ繊維が凝集する不具合が生じるおそれがあるが、本実施例によれば、そのおそれがない。 Thereby, the polymer resin composite containing biomass nanofibers can be obtained by an efficient process. In addition, when the obtained biomass nanofibers are once taken out from the apparatus and then blended with the polymer resin in another apparatus, there is a risk that the biomass nanofibers to be blended may agglomerate, but according to this example, There is no fear.

第1、第2の実施例に係るバイオマスナノ繊維を含む高分子樹脂複合体の製造方法により得られるバイオマスナノ繊維を含む高分子樹脂複合体は、家電製品、携帯電話等の筐体、自動車の内装、建築資材、梱包資材、3Dプリンターの樹脂補強材など幅広い分野への応用が期待される。
なお、多軸押出整形機で得られた例えばペレット形状の高分子樹脂複合体を原料として、圧縮成形や射出成形によって所望の複雑な形状の成形品を得ることは、好ましい実施態様である。
Polymer resin composites containing biomass nanofibers obtained by the method for producing polymer resin composites containing biomass nanofibers according to the first and second embodiments are used for home appliances, housings for mobile phones, automobiles, etc. Applications in a wide range of fields such as interior materials, building materials, packaging materials, and resin reinforcements for 3D printers are expected.
In addition, it is a preferable embodiment to obtain a molded product having a desired complicated shape by compression molding or injection molding using, for example, a pellet-shaped polymer resin composite obtained by a multi-screw extrusion shaping machine as a raw material.

[実験例]
以下、本発明の作用、効果を明確にした実験例及び比較例を説明するが、本発明はこれらの実験例に限定されるものではない。
まず、得られるバイオマスナノ繊維を含む高分子樹脂複合体の評価方法について説明する。
[Experimental example]
Hereinafter, although the experiment example and comparative example which clarified the effect | action and effect of this invention are demonstrated, this invention is not limited to these experiment examples.
First, the evaluation method of the polymer resin composite containing the obtained biomass nanofiber is demonstrated.

<引張試験>
バイオマスナノ繊維を含む高分子樹脂複合体を短冊状(長さ:40mm、幅:5mm、厚さ:0.3mm)に切り出し、引張試験片とした。引張試験は、JUSK−6732に従い、井元製作所製のIMC−18E0型引張圧縮試験機を用いて、得られた応力−歪曲線より、引張強度、引張弾性率、及び伸び率の算出をした。
<Tensile test>
A polymer resin composite containing biomass nanofibers was cut into strips (length: 40 mm, width: 5 mm, thickness: 0.3 mm) to obtain tensile test pieces. In the tensile test, tensile strength, tensile elastic modulus, and elongation were calculated from the obtained stress-strain curve using an IMC-18E0 type tensile compression tester manufactured by Imoto Seisakusho according to JUSK-6732.

<形態観察>
観察用サンプルは、バイオマスナノ繊維を含む高分子樹脂複合体の試験片を液体窒素で凍結し、破断面を走査型電子顕微鏡(SME、日立製、S−3000N)で観察をし、ナノ構造繊維状態を電界放出形電子顕微鏡(FE−SEM、日立製、S−5200)により観察した。
<Morphological observation>
For the sample for observation, a specimen of a polymer resin composite containing biomass nanofibers was frozen with liquid nitrogen, and the fracture surface was observed with a scanning electron microscope (SME, Hitachi, S-3000N). The state was observed with a field emission electron microscope (FE-SEM, Hitachi, S-5200).

(比較例、実施例に用いた装置の説明)
図1に示す二軸押出成形機10(井元製作所製:二軸混練押出機160B型、同方向回転、スクリュー直径20mm、L/D=25、ベント口数2)を用いた。二軸押出成形機10は、上流側の解繊部と下流側の溶融混練部で構成される。解繊部には水蒸気処理されたバイオマスと分散剤としてのポリビニルアルコール水溶液等の投入口(供給口)11を有し、溶融混練部には高分子樹脂(高分子材料)の投入口(ベント口)12と揮発成分を脱気するベント口13を有する。なお、図1において、14は温度調節可能なシリンダー、15はシリンダー14内に回転可能に配備された複数本のスクリュー(軸)を示す。ベント口13の更に下流側には、シリンダー14に連接して金型を有する。
以下の実験例、比較例においても特に断らない限り、この二軸押出成形機10を用いた。
(Explanation of devices used in comparative examples and examples)
A biaxial extruder 10 (manufactured by Imoto Seisakusho: biaxial kneading extruder 160B, rotating in the same direction, screw diameter 20 mm, L / D = 25, vent number 2) shown in FIG. 1 was used. The twin-screw extruder 10 includes an upstream defibrating unit and a downstream melt-kneading unit. The defibrating unit has a steam-treated biomass and an inlet (supply port) 11 for an aqueous polyvinyl alcohol solution as a dispersant, and the melt-kneading unit has an inlet (vent port) for a polymer resin (polymer material). ) 12 and a vent port 13 for degassing volatile components. In FIG. 1, reference numeral 14 denotes a temperature-adjustable cylinder, and 15 denotes a plurality of screws (shafts) arranged rotatably in the cylinder 14. On the further downstream side of the vent port 13, a mold is connected to the cylinder 14.
In the following experimental examples and comparative examples, this twin-screw extruder 10 was used unless otherwise specified.

(比較例1)
ポリプロピレン(PP、日本ポリプロピレン株式会社、FY6 MFR2.5)を二軸押出成形機の投入口に投入し、スクリュー回転数15rpm、シリンダー温度を200℃で5分かけて押出成形して、成形体サンプルを得た。
(Comparative Example 1)
Polypropylene (PP, Nippon Polypropylene Co., Ltd., FY6 MFR2.5) is put into the inlet of a twin screw extruder, extruded at a screw speed of 15 rpm and a cylinder temperature of 200 ° C. for 5 minutes, and a molded product sample Got.

(実験例1)
竹を処理し易い寸法に裁断して、反応器(直本工業株式会社製 過熱水蒸気処理装置NHL−1型)に投入し、210℃の過熱水蒸気で3h処理した。これにより予備解繊されたバイオマスを更に破砕機(株式会社フジテックス製 木材粉砕機)を用いて粉砕し、粉砕竹粉(幅1〜3mm、長さ1〜5cm)を得た。以下の他の実験例における粉砕竹粉もこの方法で得たものである。
(Experimental example 1)
Bamboo was cut into dimensions that could be easily treated, put into a reactor (superheated steam treatment apparatus NHL-1 manufactured by Naomoto Kogyo Co., Ltd.), and treated with superheated steam at 210 ° C. for 3 hours. The preliminarily defibrated biomass was further pulverized using a crusher (wood crusher manufactured by Fujitex Co., Ltd.) to obtain crushed bamboo powder (width 1 to 3 mm, length 1 to 5 cm). The ground bamboo powder in the other experimental examples below was also obtained by this method.

ポリビニルアルコール(PVA 東京化成株式会社、けん化度80moL%:重合度2000)の9質量%濃度の水溶液(粘度:1800cp)を撹拌機(アズワン、撹拌棒径状:錨型)を用いて、80℃で1時間、500rpmで撹拌して調製した。なお、デジタル粘度計(ブルックフィールド社、DV−I prime)を用いて、温度:22℃、回転速度:10rpmで90秒後の値を水溶液の粘度とした。 An aqueous solution (viscosity: 1800 cp) of polyvinyl alcohol (PVA Tokyo Kasei Co., Ltd., saponification degree 80 mol%: polymerization degree 2000) with a concentration of 9% by mass is used at 80 ° C. And stirred for 1 hour at 500 rpm. In addition, using a digital viscometer (Brookfield, DV-I prime), the value after 90 seconds at a temperature of 22 ° C. and a rotation speed of 10 rpm was taken as the viscosity of the aqueous solution.

粉砕竹粉10gに対し、ポリビニルアルコール水溶液を10gの割合でプリブレンドし、二軸押出成形機の供給口から投入し、解繊部において、常温、スクリュー回転速度95rpmで1hかけて解繊した。さらに、溶融混練部において、スクリュー回転速度15rpm、シリンダー温度を200℃とし、上流部のベント口からポリプロピレン(PP 日本ポリプロピレン株式会社、FY6 MFR=2.5)を180g投入し、下流部のベント口から水分を50KPaで脱気し、5分かけて押出成形し、バイオマスナノ繊維を含む高分子樹脂複合体サンプルを得た。 A polyvinyl alcohol aqueous solution was pre-blended at a rate of 10 g with respect to 10 g of the pulverized bamboo powder, charged from the supply port of the twin-screw extruder, and defibrated at room temperature and at a screw rotation speed of 95 rpm for 1 h. Further, in the melt-kneading part, the screw rotation speed is 15 rpm, the cylinder temperature is 200 ° C., 180 g of polypropylene (PP Nippon Polypropylene Co., Ltd., FY6 MFR = 2.5) is introduced from the upstream vent port, and the downstream vent port The water was deaerated at 50 KPa and extruded over 5 minutes to obtain a polymer resin composite sample containing biomass nanofibers.

(実験例2)
二軸押出成形機を2基(第1押出機、第2押出機)連結して用いた。
第1押出機は解繊専用として、実験例1と同様の処理条件で処理してバイオマスナノ繊維を得た。得られたバイオマスナノ繊維はPVA水溶液中で分散状態を保持し、第2押出機にてポリプロピレンを投入し、スクリュー回転速度15rpm、シリンダー温度を200℃とし、下流部のベント口から水分を50KPaで脱気し、5分かけて押出成形し、バイオマスナノ繊維を含む高分子樹脂複合体サンプルを得た。
(Experimental example 2)
Two twin screw extruders (first extruder and second extruder) were connected and used.
The first extruder was exclusively used for defibration and was processed under the same processing conditions as in Experimental Example 1 to obtain biomass nanofibers. The obtained biomass nanofibers are kept in a dispersed state in the PVA aqueous solution, and polypropylene is introduced in the second extruder, the screw rotation speed is 15 rpm, the cylinder temperature is 200 ° C., and the moisture is 50 KPa from the downstream vent port. Degassing and extrusion molding over 5 minutes gave a polymer resin composite sample containing biomass nanofibers.

(実験例3)
実験例1の9質量%濃度のポリビニルアルコール水溶液に代えて無水マレイン酸変性ポリプロピレン(MA−PP、三洋化成工業、ユーメックス1010)を使用した点とシリンダー温度常温で解繊したほかは実験例1と同じ条件で処理してバイオマスナノ繊維を含む高分子樹脂複合体サンプルを得た。
(Experimental example 3)
Experimental Example 1 except that the maleic anhydride-modified polypropylene (MA-PP, Sanyo Chemical Industries, Yumex 1010) was used instead of the 9% by weight polyvinyl alcohol aqueous solution of Experimental Example 1, and the cylinder temperature was defibrated at room temperature. A polymer resin composite sample containing biomass nanofibers was obtained by treatment under the same conditions.

(実験例4)
シリンダー温度100℃、スクリュー回転速度100rpmで解繊し、スクリュー回転速度25rpmでバイオマスナノ繊維を含む高分子樹脂複合体サンプルを得たほかは実験例3と同じ条件で処理してバイオマスナノ繊維を含む高分子樹脂複合体サンプルを得た。
(Experimental example 4)
The polymer resin composite sample containing biomass nanofibers was obtained at a cylinder temperature of 100 ° C. and a screw rotation speed of 100 rpm, and the biomass rotation speed was 25 rpm. A polymer resin composite sample was obtained.

(比較例2)
高分子量ポリカプロラクトン(H−PCL、ALDRICH、分子量:90000、ペレット状)を100g、押出成形機の投入口に投入し、スクリュー回転数15rpm、シリンダー温度を200℃で5分かけて押出成形して、成形体サンプルを得た。なお、この比較例2は実施例5の比較対象データである。
(Comparative Example 2)
100 g of high molecular weight polycaprolactone (H-PCL, ALDRICH, molecular weight: 90000, pellet form) is put into an inlet of an extruder, and is extruded at a screw speed of 15 rpm and a cylinder temperature of 200 ° C. for 5 minutes. A molded body sample was obtained. The comparative example 2 is comparison target data of the fifth embodiment.

(実験例5)
粉砕竹粉10gに対してポリビニルアルコール水溶液に代えて低分子量ポリカプロラクトン(L−PCL、ダイセル化学工業株式会社、PLACCEL L220AL、分子量:2000、液状)10gをプルブレンドして、二軸押出成形機の投入口に投入し、解繊部において、シリンダー温度60℃、スクリュー回転速度95rpmで1hで解繊した。ついで、溶融混練部において、高分子量ポリカプロラクトン(H−PCL、ALDRICH、分子量:90000、ペレット状)を100gを投入し、シリンダー温度100℃、スクリュー回転速度15rpmで5分かけて押出成形し、バイオマスナノ繊維を含む高分子樹脂複合体サンプルを得た。
バイオマスナノ繊維を含む高分子樹脂複合体サンプルのSEM写真を図2に示す。白い糸状に見える300〜500nm程度のバイオマスナノ繊維が高分子樹脂中に分散していることが分かる。
(Experimental example 5)
10 g of pulverized bamboo powder is replaced with a polyvinyl alcohol aqueous solution and 10 g of low molecular weight polycaprolactone (L-PCL, Daicel Chemical Industries, Ltd., PLACEL L220AL, molecular weight: 2000, liquid) is pull-blended. The product was put into the inlet and defibrated at the defibrating part for 1 h at a cylinder temperature of 60 ° C. and a screw rotation speed of 95 rpm. Next, in the melt-kneading part, 100 g of high molecular weight polycaprolactone (H-PCL, ALDRICH, molecular weight: 90000, pellet form) is charged, extruded at a cylinder temperature of 100 ° C. and a screw rotation speed of 15 rpm for 5 minutes, and biomass. A polymer resin composite sample containing nanofibers was obtained.
An SEM photograph of a polymer resin composite sample containing biomass nanofibers is shown in FIG. It can be seen that biomass nanofibers of about 300 to 500 nm that look like white threads are dispersed in the polymer resin.

(比較例3)
ポリビニルアルコールを用いなかった他は実験例1と同じ処理を行った。粉砕竹粉は十分に解繊せず、このため、その後の成形処理も行えなかった。
(Comparative Example 3)
The same treatment as in Experimental Example 1 was performed except that polyvinyl alcohol was not used. The pulverized bamboo powder was not sufficiently defibrated, and therefore, subsequent molding treatment could not be performed.

(実験例6)
実験例1と同じ条件で二軸押出成形機で解繊してバイオマスナノ繊維を得た。水溶性樹脂であるPVAの過剰分を取り除くために、水分を加えて希釈し、上澄みのバイオマスナノ繊維を凍結乾燥機(東京理科機械FDU−1200)を用いて凍結乾燥した。ついで、これを破砕した凍結乾燥粉10gに対してポリプロピレン90gの割合で配合して二軸押出成形機に投入して成形したほかは実験例1と同じ条件で処理してバイオマスナノ繊維を含む高分子樹脂複合体サンプルを得た。
バイオマスナノ繊維の凍結乾燥物のFE−SEM写真を図3に示す。バイオマスナノ繊維が絡み合ってネットワークが形成されていることが分かる。
上記の実験例及び比較例の複合体又は成形体の各成分配合割合(重量比)を表1に示す。そして、サンプル又は成形体サン複合体プルの力学物性を表2に示す。
(Experimental example 6)
Fiber nanofibers were obtained by defibration with a twin screw extruder under the same conditions as in Experimental Example 1. In order to remove excess PVA, which is a water-soluble resin, water was added for dilution, and the supernatant biomass nanofibers were lyophilized using a freeze dryer (Tokyo Science Machine FDU-1200). Next, it was processed at the same conditions as in Experimental Example 1 except that it was blended at a ratio of 90 g of polypropylene to 10 g of crushed lyophilized powder, put into a twin-screw extruder, and then processed under the same conditions as in Experimental Example 1. A molecular resin composite sample was obtained.
An FE-SEM photograph of the freeze-dried biomass nanofiber is shown in FIG. It can be seen that the network is formed by intertwining the biomass nanofibers.
Table 1 shows the blending ratio (weight ratio) of each component of the composites or molded bodies of the above experimental examples and comparative examples. Table 2 shows the mechanical properties of the sample or the molded body sun composite pull.

表2より、実験例1〜4、6では引張強度に優れる複合体が得られていることが分かる。特に、実験例4では、解繊時に熱を加えることによって、固体表面間の接触熱抵抗が低下し、MA−PPがさらに効率よく繊維表面に密着し、PPとの相溶化が高まった結果、引張強度が大幅に向上した。
一方、実験例5では、弾性率が3倍以上の向上を得ることができた。
From Table 2, it can be seen that in Examples 1 to 4 and 6, composites having excellent tensile strength are obtained. In particular, in Experimental Example 4, as a result of applying heat at the time of defibration, the contact thermal resistance between the solid surfaces was reduced, MA-PP was more closely adhered to the fiber surface, and the compatibility with PP increased, Tensile strength was greatly improved.
On the other hand, in Experimental Example 5, the elastic modulus was improved by 3 times or more.

本発明は以上の実施例及び実験例に限定されるものではなく、発明の要旨を変更しない範囲で、改良、変更することもできる。 The present invention is not limited to the above examples and experimental examples, and can be improved and changed without departing from the gist of the invention.

本発明に係るバイオマスナノ繊維を含む高分子樹脂複合体及びバイオマスナノ繊維の製造方法並びに同高分子樹脂複合体の製造方法によって、より精密で強度を有する高分子樹脂複合体を形成でき、しかも、この高分子樹脂複合体を安価に製造できる。 A polymer resin composite containing biomass nanofibers according to the present invention, a method for producing biomass nanofibers, and a method for producing the polymer resin composite can form a more precise and strong polymer resin composite, This polymer resin composite can be manufactured at low cost.

10:二軸押出成形機、11:投入口、12:投入口、13:ベント口、14:シリンダー、15:スクリュー

10: biaxial extruder, 11: input port, 12: input port, 13: vent port, 14: cylinder, 15: screw

Claims (9)

径50〜500nmのバイオマスナノ繊維100質量部と、3〜12質量%のポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンからなる分散剤50〜200質量部と、高分子樹脂400〜3500質量部からなることを特徴とするバイオマスナノ繊維を含む高分子樹脂複合体。 100-mass parts of biomass nanofibers having a diameter of 50-500 nm, 50-200 parts by weight of a dispersant comprising 3-12% by weight of a polyvinyl alcohol aqueous solution, maleic anhydride-modified polypropylene, or low molecular weight polycaprolactone, and a polymer resin 400- A polymer resin composite containing biomass nanofibers, comprising 3500 parts by mass . 請求項1記載のバイオマスナノ繊維を含む高分子樹脂複合体において、前記バイオマスナノ繊維となるバイオマスは、竹、エリアンサス、アブラヤシ、及び麦わらから選ばれる1又は2以上からなることを特徴とするバイオマスナノ繊維を含む高分子樹脂複合体。 2. The polymer resin composite comprising biomass nanofibers according to claim 1, wherein the biomass as the biomass nanofibers comprises one or more selected from bamboo, Elianthus, oil palm, and straw. A polymer resin composite containing nanofibers. バイオマスを、180〜230℃の過熱水蒸気で加熱処理してバイオマス繊維を得る工程と、
多軸押出機を用い、前記バイオマス繊維に3〜12質量%のポリビニルアルコール水溶液、無水マレイン酸変性ポリプロピレン、又は低分子量ポリカプロラクトンからなる分散剤を配合し、処理温度が10〜120℃、軸回転速度が50〜150rpmで混練しながら押出して径50〜500nmのバイオマスナノ繊維を得る工程と、
を有することを特徴とするバイオマスナノ繊維の製造方法。
A step of heat-treating biomass with superheated steam at 180 to 230 ° C. to obtain biomass fibers;
Using a multi-screw extruder, 3 to 12% by mass of a polyvinyl alcohol aqueous solution, a maleic anhydride-modified polypropylene, or a low molecular weight polycaprolactone dispersant is blended with the biomass fiber , the processing temperature is 10 to 120 ° C., and the shaft is rotated. Extruding while kneading at a speed of 50 to 150 rpm to obtain biomass nanofibers having a diameter of 50 to 500 nm ;
A method for producing biomass nanofibers, comprising:
請求項記載のバイオマスナノ繊維の製造方法により得られる前記バイオマスナノ繊維に高分子樹脂を配合して多軸押出成形機で押出成形し、バイオマスナノ繊維を含む高分子樹脂複合体を得る工程を有することを特徴とする請求項1又は2記載のバイオマスナノ繊維を含む高分子樹脂複合体の製造方法。 A step of obtaining a polymer resin composite containing biomass nanofibers by blending a polymer resin with the biomass nanofibers obtained by the method for producing biomass nanofibers according to claim 3 and extruding with a multi-screw extruder. A method for producing a polymer resin composite comprising biomass nanofibers according to claim 1 or 2 . 請求項記載のバイオマスナノ繊維を含む高分子樹脂複合体の製造方法において、前記高分子樹脂が、熱可塑性樹脂又は熱硬化性樹脂であることを特徴とするバイオマスナノ繊維を含む高分子樹脂複合体の製造方法。 5. The method for producing a polymer resin composite containing biomass nanofibers according to claim 4 , wherein the polymer resin is a thermoplastic resin or a thermosetting resin. Body manufacturing method. 請求項4又は5記載のバイオマスナノ繊維を含む高分子樹脂複合体の製造方法において、前記高分子樹脂複合体を形成する前記多軸押出成形機での処理温度が、80〜220℃、処理圧力が50MPa以下、軸回転速度が15〜50rpmであることを特徴とするバイオマスナノ繊維を含む高分子樹脂複合体の製造方法。 The method for producing a polymer resin composite containing biomass nanofibers according to claim 4 or 5 , wherein a processing temperature in the multi-screw extruder for forming the polymer resin composite is 80 to 220 ° C, a processing pressure. Is 50 MPa or less, and a shaft rotational speed is 15-50 rpm, The manufacturing method of the polymer resin composite containing the biomass nanofiber characterized by the above-mentioned. 上流側に解繊部が下流側に溶融混練部がそれぞれ形成された一つの多軸押出成形機を用い、前記解繊部で請求項3記載のバイオマスナノ繊維を得る工程、及び前記溶融混練部でバイオマスナノ繊維を含む高分子樹脂複合体の製造を行う工程を、連続的に行うことを特徴とする請求項1又は2記載のバイオマスナノ繊維を含む高分子樹脂複合体の製造方法。A process of obtaining biomass nanofibers according to claim 3 in the defibrating unit using one multi-screw extruder in which a defibrating unit is formed on the upstream side and a melt kneading unit is formed on the downstream side, and the melt kneading unit The method for producing a polymer resin composite containing biomass nanofibers according to claim 1 or 2, wherein the step of producing a polymer resin composite containing biomass nanofibers is continuously performed. 複数の連結された多軸押出成形機のうちの上流側に位置する多軸押出成形機で、請求項3記載のバイオマスナノ繊維を得る工程を、及び前記複数の連結された多軸押出成形機のうちの下流側に位置する多軸押出成形機で、バイオマスナノ繊維を含む高分子樹脂複合体を得る工程を、連続的に行うことを特徴とする請求項1又は2記載のバイオマスナノ繊維を含む高分子樹脂複合体の製造方法。A step of obtaining biomass nanofibers according to claim 3 in a multi-screw extruder located upstream of a plurality of connected multi-screw extruders, and the plurality of connected multi-screw extruders 3. The biomass nanofiber according to claim 1 or 2, wherein the step of obtaining a polymer resin composite containing biomass nanofiber is continuously performed by a multi-screw extrusion molding machine located on the downstream side of A method for producing a polymer resin composite. 請求項7又は8記載のバイオマスナノ繊維を含む高分子樹脂複合体の製造方法において、前記多軸押出成形機は二軸押出成形機であることを特徴とする請求項1又は2記載のバイオマスナノ繊維を含む高分子樹脂複合体の製造方法。9. The method for producing a polymer resin composite containing biomass nanofibers according to claim 7 or 8, wherein the multi-screw extruder is a twin-screw extruder. A method for producing a polymer resin composite containing fibers.
JP2016521162A 2014-05-22 2015-05-22 Polymer resin composite containing biomass nanofiber, method for producing biomass nanofiber, and method for producing the same Active JP6482543B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014105821A JP5660513B1 (en) 2014-05-22 2014-05-22 Biomass nanofiber manufacturing method and biomass nanofiber / polymer resin composite manufacturing method
PCT/JP2015/064748 WO2015178483A1 (en) 2014-05-22 2015-05-22 Polymer resin complex comprising biomass nanofibers, method for producing biomass nanofibers, and method for producing said polymer resin complex

Publications (2)

Publication Number Publication Date
JPWO2015178483A1 JPWO2015178483A1 (en) 2017-06-08
JP6482543B2 true JP6482543B2 (en) 2019-03-13

Family

ID=52437522

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014105821A Active JP5660513B1 (en) 2014-05-22 2014-05-22 Biomass nanofiber manufacturing method and biomass nanofiber / polymer resin composite manufacturing method
JP2016521162A Active JP6482543B2 (en) 2014-05-22 2015-05-22 Polymer resin composite containing biomass nanofiber, method for producing biomass nanofiber, and method for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014105821A Active JP5660513B1 (en) 2014-05-22 2014-05-22 Biomass nanofiber manufacturing method and biomass nanofiber / polymer resin composite manufacturing method

Country Status (3)

Country Link
JP (2) JP5660513B1 (en)
MY (1) MY172357A (en)
WO (1) WO2015178483A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102408611B1 (en) * 2015-04-10 2022-06-15 엘지전자 주식회사 Reinforced transparent composite and preparation method thereof
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
CN108638261A (en) * 2018-05-17 2018-10-12 阜南县铭钰柳木工艺品有限公司 A kind of processing method improving bamboo clappers dyeability
JP7128660B2 (en) * 2018-05-31 2022-08-31 大王製紙株式会社 METHOD FOR MANUFACTURING FIBROUS CELLULOSE COMPOSITE RESIN
JP2020011452A (en) * 2018-07-18 2020-01-23 住友林業株式会社 Manufacturing method of compression molding of cellulose fiber
JP7380969B2 (en) * 2019-10-09 2023-11-15 株式会社豊田中央研究所 Method for producing plant fiber reinforced resin composition
JP7347739B2 (en) * 2019-10-09 2023-09-20 株式会社豊田中央研究所 Method for producing plant fiber reinforced resin composition
JP7437106B2 (en) 2020-06-25 2024-02-22 トヨタ車体株式会社 Method for producing fiber reinforced resin composition
JP7266217B2 (en) * 2020-06-30 2023-04-28 東洋ライト株式会社 Method for producing resin composite
WO2022137548A1 (en) * 2020-12-25 2022-06-30 株式会社バイオマステクノロジー Method for producing rice-containing resin composition and twin-screw kneading device
WO2024024847A1 (en) * 2022-07-28 2024-02-01 三菱ケミカル株式会社 Method for producing water-soluble film, water-soluble film, packaging, and drug packaging
WO2024024848A1 (en) * 2022-07-28 2024-02-01 三菱ケミカル株式会社 Method for manufacturing water-soluble film, water-soluble film, package, and drug packaging

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027498D1 (en) * 2003-07-31 2010-07-15 Hitachi Ltd FIBER-REINFORCED COMPOSITE MATERIAL, MANUFACTURING METHOD AND USE THEREOF
JP4998981B2 (en) * 2006-06-20 2012-08-15 国立大学法人 東京大学 Fine cellulose fiber
JP2008037022A (en) * 2006-08-08 2008-02-21 Chuniti Seiko Kk Method for injection-molding of lignocellulosic resin composition into case and ligunocellulosic resin composition
JP4660528B2 (en) * 2007-05-01 2011-03-30 アグリフューチャー・じょうえつ株式会社 Polymer composite material manufacturing apparatus and manufacturing method thereof
JP2009293167A (en) * 2008-06-09 2009-12-17 Nobuo Shiraishi Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
JP5395496B2 (en) * 2008-09-12 2014-01-22 ダイセルポリマー株式会社 Method for producing cellulose fiber-containing thermoplastic resin composition
JP2010167692A (en) * 2009-01-23 2010-08-05 Mariko Yoshioka Biomass nanofiber-containing three-dimensionally hardening resin
JP5677754B2 (en) * 2010-03-05 2015-02-25 オリンパス株式会社 Cellulose nanofiber and method for producing the same, composite resin composition, molded article
JP2011219571A (en) * 2010-04-07 2011-11-04 Mitsubishi Paper Mills Ltd Method for producing cellulose-containing thermoplastic resin, the cellulose-containing thermoplastic resin, and molded body of the same
JP5656167B2 (en) * 2010-08-13 2015-01-21 国立大学法人九州工業大学 Bamboo fiber, method for producing the same, and method for producing a composite material using bamboo fiber
JP2012236906A (en) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd Resin composition
JP5880827B2 (en) * 2011-11-25 2016-03-09 国立研究開発法人産業技術総合研究所 Method for producing cellulose nanofiber
JP5946226B2 (en) * 2011-11-25 2016-07-05 国立大学法人九州工業大学 Oil palm derived biomass powder and method for producing the same, biomass composite molded body and method for producing the same
JP5496435B2 (en) * 2012-03-09 2014-05-21 国立大学法人京都大学 Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
WO2013137449A1 (en) * 2012-03-16 2013-09-19 王子ホールディングス株式会社 Method for producing plant fiber-containing resin composition, method for producing ground product of molded article, and plant fiber-containing resin composition
JP5799877B2 (en) * 2012-03-30 2015-10-28 東レ株式会社 Method for producing thermoplastic resin composition and extruder for powder raw material
JP5669072B2 (en) * 2012-07-02 2015-02-12 国立大学法人九州工業大学 Molded body for laying
JP2014095049A (en) * 2012-11-12 2014-05-22 Polymer Associates Kk Cellulose fiber reinforced thermoplastic resin composite molded article
JP6317903B2 (en) * 2013-09-26 2018-04-25 株式会社白石バイオマス Rice bran film and method for producing the same

Also Published As

Publication number Publication date
WO2015178483A1 (en) 2015-11-26
JPWO2015178483A1 (en) 2017-06-08
JP2016064501A (en) 2016-04-28
JP5660513B1 (en) 2015-01-28
MY172357A (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6482543B2 (en) Polymer resin composite containing biomass nanofiber, method for producing biomass nanofiber, and method for producing the same
Jayanth et al. A review on biodegradable polymeric materials striving towards the attainment of green environment
Li et al. Cotton cellulose nanofiber-reinforced high density polyethylene composites prepared with two different pretreatment methods
Deb et al. Natural fibers reinforced FDM 3D printing filaments
Arao et al. Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites
Khalid et al. Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose
Liu et al. Bamboo fiber and its reinforced composites: structure and properties
CN101200579B (en) Natural fibre reinforced polylactic acid composite material and method for making same
JP5656167B2 (en) Bamboo fiber, method for producing the same, and method for producing a composite material using bamboo fiber
Akter et al. Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications
CN109251494B (en) Natural gutta-percha/cellulose modified polylactic acid composite material and preparation method thereof
Li et al. Preparation and properties of wood plastic composite reinforced by ultralong cellulose nanofibers
CN106133032B (en) Method for incorporating wet natural fibers and starch into thermoplastics
JP6871079B2 (en) Method for producing defibrated cellulose fiber and method for producing resin composition
Perumal et al. Biocomposite reinforced with nanocellulose for packaging applications
Sakakibara et al. Preparation of high-performance polyethylene composite materials reinforced with cellulose nanofiber: simultaneous nanofibrillation of wood pulp fibers during melt-compounding using urea and diblock copolymer dispersant
JP2011148939A (en) Fiber composite material
JP2011038193A (en) Cellulose fiber and fiber composite material
Khademieslam et al. Evaluation of the bending strength, impact strength, and morphological properties of wheat straw fiber/paper mill sludge/polypropylene composites
Subyakto et al. Injection molded of bio-micro-composites from natural fibers and polylactic acid
Luna et al. Mechanical and spectroscopic properties of rice husk reinforced polypropylene composites: effect of sodium hydroxide
CN112094487B (en) Easily-cleaned high-temperature-resistant polylactic acid composite material for environment-friendly tableware
JP7104910B2 (en) Method for producing fiber composite, polymer material containing fiber composite, and fiber composite
Nishida et al. One-Pot Nanofibrillation and Nanocomposite Production Through Extrusion
Asokan et al. Hemp composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150