JP6482017B2 - Heat exchange structure and heat utilization method - Google Patents

Heat exchange structure and heat utilization method Download PDF

Info

Publication number
JP6482017B2
JP6482017B2 JP2014229260A JP2014229260A JP6482017B2 JP 6482017 B2 JP6482017 B2 JP 6482017B2 JP 2014229260 A JP2014229260 A JP 2014229260A JP 2014229260 A JP2014229260 A JP 2014229260A JP 6482017 B2 JP6482017 B2 JP 6482017B2
Authority
JP
Japan
Prior art keywords
heat exchange
pipe
heat
water
pipe line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014229260A
Other languages
Japanese (ja)
Other versions
JP2016090213A (en
Inventor
伸吉 大岡
伸吉 大岡
張 満良
満良 張
Original Assignee
吉佳エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉佳エンジニアリング株式会社 filed Critical 吉佳エンジニアリング株式会社
Priority to JP2014229260A priority Critical patent/JP6482017B2/en
Publication of JP2016090213A publication Critical patent/JP2016090213A/en
Application granted granted Critical
Publication of JP6482017B2 publication Critical patent/JP6482017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/026Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled and formed by bent members, e.g. plates, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、地中に敷設された管路を略満水状態で流れる水の熱を利用するための熱交換構造と熱利用方法に関するものである。   The present invention relates to a heat exchange structure and a heat utilization method for utilizing the heat of water flowing in a substantially full state in a pipe line laid in the ground.

地中に敷設されて常に水が略満水状態で流れる管路として、上水道用の管路や工業用水用の管路或いは農業用水用の管路等がある。これらの管路の内部を流れる水の温度は四季を通して大きく変動することがなく、略一定の値を保持している。例えば、上水道用の管路を流れる水の温度は、夏季にあっては外気温度よりも低く、冬季にあっては外気温度よりも高い。このため、管路の内部を流れる水との温度差を利用した熱交換を行うことで新たなエネルギー源とすることが考えられる。   Examples of pipes that are laid in the ground and in which water always flows in a substantially full state include water supply pipes, industrial water pipes, and agricultural water pipes. The temperature of the water flowing inside these pipes does not fluctuate greatly throughout the four seasons and maintains a substantially constant value. For example, the temperature of water flowing through a pipe for waterworks is lower than the outside air temperature in summer and higher than the outside air temperature in winter. For this reason, it can be considered that a new energy source is obtained by performing heat exchange using a temperature difference with water flowing inside the pipe.

例えば、特許文献1に記載された発明は、下水熱採熱設備と下水熱利用システムに関するものである。この発明では、採熱設備は下水道管の外周のうち少なくとも上方を被覆するジャケット状に配設されており、この採熱設備は、熱原水が通流し高熱伝導率材料で形成された採熱管と、採熱管の間隙及び周囲に充填された保護材とを有している。また採熱管は、下水道管の長手方向に平行に複数配設された直管と、直管同士を接続するベント管によって構成されている。   For example, the invention described in Patent Document 1 relates to a sewage heat collection facility and a sewage heat utilization system. In the present invention, the heat collecting equipment is arranged in a jacket shape covering at least the upper part of the outer periphery of the sewer pipe, and this heat collecting equipment comprises a heat collecting pipe formed of a high thermal conductivity material through which the heat source water flows. , And a protective material filled in and around the gap of the heat collection tube. Further, the heat collecting pipe is constituted by a plurality of straight pipes arranged in parallel to the longitudinal direction of the sewer pipe and a vent pipe connecting the straight pipes.

上記の如く構成された採熱設備では、採熱管が下水道管の外周に配設される。このため、採熱管が下水に直接接触することがなく、メンテナンスが不要となり維持コストが低減できるという効果を有する。また、既設の下水道管に設置する場合には、周囲の地盤を掘削して開放した下水道管の外周に採熱管を配設すると共に、所定の部位に保護材を充填することで良く、工事が容易であるという効果も有する。   In the heat collecting equipment configured as described above, the heat collecting pipe is disposed on the outer periphery of the sewer pipe. For this reason, there is an effect that the heat collecting pipe does not directly contact the sewage, maintenance is unnecessary, and the maintenance cost can be reduced. In addition, when installing in an existing sewer pipe, it is sufficient to install a heat collecting pipe on the outer periphery of the sewer pipe opened by excavating the surrounding ground and to fill a predetermined part with a protective material. It also has the effect of being easy.

特開2008−241226号公報JP 2008-241226 A

特許文献1に記載された発明は上記の如き特徴を有する。しかし、下水道はコンクリート管や陶管で構成されているのが一般的であり、且つ通常の状態では下水が管の内部を略満水状態で流れることはない。このため、このような管を介して下水の熱を取得するのでは、下水の熱を効率良く利用し得ない虞がある。   The invention described in Patent Document 1 has the characteristics as described above. However, the sewer is generally composed of a concrete pipe or a ceramic pipe, and under normal conditions, the sewage does not flow in the pipe in a substantially full state. For this reason, if heat of sewage is acquired through such a pipe, there is a possibility that heat of sewage cannot be used efficiently.

本発明の目的は、管路の内部を略満水状態で流れる水の熱を交換することができる構造と、熱利用方法を提供することにある。   An object of the present invention is to provide a structure capable of exchanging heat of water flowing in a pipe in a substantially full state, and a heat utilization method.

上記課題を解決するために本発明に係る熱交換構造は、地中に敷設された管路を略満水状態で流れる水の熱を利用するための熱交換構造であって、略満水状態で水が流れる管路の外周面に於ける所定長さ範囲に全周にわたって配置された熱交換部材と、前記熱交換部材に熱交換媒体を流通させるポンプと、を有するものである。   In order to solve the above problems, a heat exchange structure according to the present invention is a heat exchange structure for utilizing the heat of water flowing in a substantially full state in a pipe laid in the ground, and the water is exchanged in a substantially full state. A heat exchanging member disposed over the entire circumference in a predetermined length range on the outer peripheral surface of the pipe through which the gas flows, and a pump for circulating a heat exchanging medium through the heat exchanging member.

上記熱交換構造に於いて、前記熱交換部材と地盤との間に断熱材が配置されていることが好ましい。   In the heat exchange structure, it is preferable that a heat insulating material is disposed between the heat exchange member and the ground.

特に、前記管路は地中に敷設された管路から分岐した管路であり、該管路を構成する管が、鋼管又は鋳鉄管である。 In particular, the conduit is a pipe branched from the pipe laid in the ground, the tubes constituting the tube path, Ru steel or cast iron pipe der.

また、上記何れかの熱交換構造に於いて、前記熱交換部材が、前記管路の外周に螺旋状に巻きつけられた管であることが好ましい。   In any one of the heat exchange structures described above, it is preferable that the heat exchange member is a pipe spirally wound around an outer periphery of the pipe line.

また、上記何れかの熱交換構造に於いて、前記熱交換部材が、前記管路の外周に嵌装された外管を有し、該外管の両端部と前記管路の外周面との隙間を遮蔽すると共に両端部又は両端部の近傍に前記ポンプとの接続部材が配置されていることが好ましい。   Further, in any one of the heat exchange structures, the heat exchange member has an outer tube fitted on an outer periphery of the pipe line, and an end portion of the outer pipe and an outer peripheral surface of the pipe line It is preferable that a connection member with the pump is disposed at both ends or in the vicinity of both ends while shielding the gap.

また、上記熱交換構造に於いて、前記外管が、熱伝導率の低い材料によって形成されていることが好ましい。   In the heat exchange structure, it is preferable that the outer tube is made of a material having low thermal conductivity.

また、上記何れかの熱交換構造に於いて、前記外管の内部には、熱交換媒体の流れを乱すための流通阻害部材が配置されているか、又は熱交換媒体を螺旋状に流すための螺旋状仕切部材が配置されていることが好ましい。   In any of the above heat exchange structures, a flow-inhibiting member for disturbing the flow of the heat exchange medium is disposed inside the outer tube, or the heat exchange medium is made to flow spirally. It is preferable that a spiral partition member is disposed.

また、本発明に係る熱利用方法は、地中に敷設された管路を略満水状態で流れる水の熱を利用するための方法であって、地中に敷設された下水道用の管路から鋼管又は鋳鉄管からなる管路を分岐させて略満水状態で水が流れる管路とし、該管路の外周面に於ける所定長さ範囲に全周にわたって熱交換部材を配置し、該熱交換部材にポンプによって付勢した熱交換媒体を流通させると共に、熱交換装置によって前記熱交換部材を通過した熱交換媒体との熱交換を行うことを特徴とするものである。 Further, the heat utilization method according to the present invention is a method for utilizing the heat of water flowing in a substantially full water state in a pipeline laid in the ground, from a sewer pipeline laid in the ground. by branching the steel or conduits made of cast iron pipes and pipe flows water at substantially filled with water, a heat exchange member placed over entire circumference in a predetermined length range on the outer peripheral surface of the pipe, the heat exchanger A heat exchange medium energized by a pump is circulated through the member, and heat exchange with the heat exchange medium that has passed through the heat exchange member is performed by a heat exchange device.

本発明に係る熱交換構造では、管路の内部を流れる水の熱を効率良く交換することができる。即ち、管路の内部を略満水状態で水が流れるため、管壁と水との接触面積が大きくなるため、水と管壁との間で効率の良い熱交換が行われる。そして、熱交換部材が、管路の外周面の全周に配置されているため、管壁との熱交換を効率良く行うことができる。   In the heat exchange structure according to the present invention, the heat of water flowing inside the pipe line can be efficiently exchanged. That is, since the water flows in the pipe in a substantially full state, the contact area between the pipe wall and the water is increased, so that efficient heat exchange is performed between the water and the pipe wall. And since the heat exchange member is arrange | positioned in the perimeter of the outer peripheral surface of a pipe line, heat exchange with a pipe wall can be performed efficiently.

特に、熱交換部材と地盤との間に断熱材が配置されていることによって、地盤や地下水の影響を受けることなく、効率の良い熱交換を行うことができる。   In particular, since the heat insulating material is disposed between the heat exchange member and the ground, efficient heat exchange can be performed without being affected by the ground or groundwater.

特に、既設管路が下水道管路である場合、本管から常に略満水状態で下水を流せるような管路を分岐させ、この分岐した管路を鋼管或いは鋳鉄管とすることで安定した熱交換を行うことができる。 In particular, if already設管path is sewerage line, always branches the conduit that can safely sewage substantially filled with water from the mains, stable thermal By the branched pipeline steel pipes or cast iron pipes Exchanges can be made.

また、管路の外周に配置される熱交換部材が、該管路の外周に螺旋状に巻きつけられた管である場合、該管に熱交換媒体を流すことで、管路の管壁及び管の管壁を介して熱交換を行うことができる。   In addition, when the heat exchange member disposed on the outer periphery of the pipe is a pipe spirally wound around the outer circumference of the pipe, a heat exchange medium is allowed to flow through the pipe, so that the pipe wall of the pipe and Heat exchange can be performed through the tube wall of the tube.

また、管路の外周に配置される熱交換部材が、管路の外周に嵌装された外管の両端部と管路の外周面との隙間を遮蔽すると共に両端部又は両端部の近傍にポンプとの接続部材が配置されて構成されているので、ポンプから供給された熱交換媒体が熱交換部材から漏洩することなく流通することができる。特に、外管が熱伝導率の低い材料によって形成されている場合には、管路の周囲に存在する地下水の影響を受けることなく、管壁を介して水との熱交換を行うことができる。   Further, the heat exchange member disposed on the outer periphery of the pipe line shields the gap between the both ends of the outer pipe fitted on the outer periphery of the pipe and the outer peripheral surface of the pipe and Since the connection member with the pump is arranged and configured, the heat exchange medium supplied from the pump can be distributed without leaking from the heat exchange member. In particular, when the outer pipe is formed of a material having low thermal conductivity, heat exchange with water can be performed through the pipe wall without being affected by groundwater existing around the pipe line. .

更に、上記外管の内部に熱交換媒体の流れを乱すための流通阻害部材が配置されているので、外管の内部を流通する熱交換媒体の流れが乱れたものとなる。このため、流通過程で管路に接触する熱交換媒体が常に交代することとなり、熱交換を促進してより効率の良い熱交換を行うことができる。   Furthermore, since the flow-inhibiting member for disturbing the flow of the heat exchange medium is disposed inside the outer tube, the flow of the heat exchange medium flowing through the outer tube is disturbed. For this reason, the heat exchange medium in contact with the pipe line is always changed during the distribution process, and heat exchange can be promoted to perform more efficient heat exchange.

また、外管の内部に熱交換媒体を螺旋状に流すための螺旋状仕切部材が配置されている場合には、熱交換媒体を管路の外周面に沿って螺旋状に流通させることができる。このため、熱交換媒体の管路に対する接触長さを延長することが可能となり、効率の良い熱交換を行うことができる。   Further, in the case where a spiral partition member for flowing the heat exchange medium in a spiral manner is disposed inside the outer tube, the heat exchange medium can be spirally circulated along the outer peripheral surface of the pipe line. . For this reason, it becomes possible to extend the contact length with respect to the pipe line of a heat exchange medium, and efficient heat exchange can be performed.

特に、流通阻害部材或いは螺旋状仕切部材を外管と一体的に構成することによって、該外管の剛性を高め、或いは強度を高めることができる。このため、外管の肉厚を薄くし、或いは強度の低い材質とすることができる。   In particular, by configuring the flow-inhibiting member or the helical partition member integrally with the outer tube, the rigidity of the outer tube can be increased or the strength can be increased. For this reason, it is possible to reduce the thickness of the outer tube or to use a material having low strength.

本発明に係る熱利用方法では、略満水状態で水が流れる管路の外周面に全周にわたって熱交換部材を配置し、この熱交換部材にポンプによって付勢した熱交換媒体を流通させると共に熱交換装置によって前記熱交換部材を通過した熱交換媒体との熱交換を行うことで、管路を流れる水の熱を効率良く利用することができる。   In the heat utilization method according to the present invention, a heat exchange member is arranged over the entire circumference on the outer peripheral surface of a pipeline through which water flows in a substantially full state, and a heat exchange medium energized by a pump is circulated through the heat exchange member and heat By performing heat exchange with the heat exchange medium that has passed through the heat exchange member by the exchange device, it is possible to efficiently use the heat of water flowing through the pipeline.

管路と熱交換部材との関係の例を説明すると共に熱利用方法を説明する図である。It is a figure explaining the heat utilization method while explaining the example of the relationship between a pipe line and a heat exchange member . 管路と熱交換部材との関係の他の例を説明する図である。It is a figure explaining the other example of the relationship between a pipe line and a heat exchange member . 管路と熱交換部材との関係の他の例を説明する図である。It is a figure explaining the other example of the relationship between a pipe line and a heat exchange member . 管路と熱交換部材との関係の他の例を説明する図である。It is a figure explaining the other example of the relationship between a pipe line and a heat exchange member . 本発明の実施例を説明する図である。It is a figure explaining the Example of this invention .

以下、本発明に係る熱交換構造、熱利用方法について説明する。   Hereinafter, the heat exchange structure and heat utilization method according to the present invention will be described.

中に敷設された管路であって水が略満水状態で流れる管路としては、上水道用の管路、農業用水用の管路、工業用水用の管路を含む種々の管路がある。これらの管路を流れる水の温度は一年を通して大きく変動することがない。 The a pipeline laid in the ground line flowing water substantially filled with water, the conduit for water supply, conduit for agricultural water, various conduit there, including a conduit for industrial water The Temperature of the water flowing through these conduits is to availability and can vary greatly throughout the year.

また、通常は管路内を略満水状態で流れることがない下水道管路に適用する場合、本管から分岐管を分岐させることで、該分岐管の内部を略満水状態で流すようにしているIn addition, when applied to a sewer pipe that normally does not flow in the pipe in a substantially full state, the branch pipe is branched from the main pipe so that the inside of the branch pipe flows in a substantially full state . .

管路の内部を水が略満水状態で流れるため、管路の内周面には略全周にわたって水が接触していることとなり、流れる水と管路との熱の伝達は効率良く行われる。このため、管路の外周面の温度は、管路の熱伝導率と、管壁の厚さを含む条件に対応した温度となり、流れる水の温度に応じて大きく変動することはない。   Since the water flows through the inside of the pipe line in a substantially full state, the water is in contact with the inner peripheral surface of the pipe line over almost the entire circumference, and heat transfer between the flowing water and the pipe line is performed efficiently. . For this reason, the temperature of the outer peripheral surface of a pipe line becomes a temperature corresponding to the conditions including the thermal conductivity of the pipe line and the thickness of the pipe wall, and does not vary greatly depending on the temperature of the flowing water.

上記の如く、管路の外周面の温度が大きく変動することがない。しかし、管路を熱伝導率の大きい鋼管や鋳鉄管によって構成することで、流れる水との熱の授受をより効果的に行うことが可能である。 As described above, the temperature of the outer peripheral surface of the pipe does not fluctuate greatly . However, the conduit by configuring the large steel pipes or cast iron pipes of thermal conductivity, Ru can der performing thermal exchange with the water flow more effectively.

熱交換部材は、内部に熱交換媒体を流通させて管路との熱交換を行うものである。熱交換部材を管路の長手方向に配置する際の長さは特に限定するものではなく、管路の外径、管路を構成する材質、管路を流れる水の温度、流量、熱交換媒体の材質、流量、予め想定した交換熱量等の条件に応じて設定することが好ましい。   The heat exchange member circulates a heat exchange medium therein to exchange heat with the pipe line. The length when the heat exchange member is arranged in the longitudinal direction of the pipe line is not particularly limited, and the outer diameter of the pipe line, the material constituting the pipe line, the temperature of the water flowing through the pipe line, the flow rate, the heat exchange medium It is preferable to set according to conditions such as the material, the flow rate, and the presumed exchange heat amount.

また、熱交換部材の形状も特に限定するものではなく、例えば円筒管、角型管、かまぼこ型管等の長尺状の管を用いることが可能である。また、熱交換部材として、管路の外周に嵌装した筒状の外管を用い、該外管の内部に熱交換媒体を流通させて管路との熱交換を行うように構成することも可能である。   Further, the shape of the heat exchange member is not particularly limited, and for example, a long tube such as a cylindrical tube, a square tube, or a kamaboko tube can be used. Further, as the heat exchange member, a cylindrical outer tube fitted on the outer periphery of the pipe line may be used, and a heat exchange medium may be circulated inside the outer pipe to perform heat exchange with the pipe line. Is possible.

熱交換媒体を流通させる熱交換部材の材質は限定するものではない。即ち、熱交換部材として、鋼管やアルミニウム管或いは銅管等の金属製の管を利用し、或いは外管として鋼、ステンレス鋼、アルミニウム或いは銅等の金属製の筒体を利用することが可能である。熱交換部材として金属製の管或いは筒体を用いた場合、これらは熱を効率良く伝導することが可能なため、管路を流れる水の熱のみならず、地盤中の熱、特に地下水の熱を利用することが可能である。特に、熱交換部材として金属製の管を用いる場合、土圧或いは地下水圧に対抗し得るような強度を得やすく有利である。   The material of the heat exchange member that distributes the heat exchange medium is not limited. That is, it is possible to use a metal tube such as a steel tube, an aluminum tube or a copper tube as the heat exchange member, or a metal cylinder such as steel, stainless steel, aluminum or copper as the outer tube. is there. When metal pipes or cylinders are used as heat exchange members, they can conduct heat efficiently, so not only the heat of water flowing through the pipeline, but also the heat in the ground, especially the heat of groundwater. Can be used. In particular, when a metal pipe is used as the heat exchange member, it is easy to obtain a strength that can withstand earth pressure or groundwater pressure.

合成樹脂は、熱を効率良く伝導せず断熱材として機能する。このため、熱交換部材を構成する外管として合成樹脂製の管を用いた場合、内部を流通する熱交換媒体が、地盤中の熱、地下水の熱の影響を受けることなく、管路を流れる水の熱のみを利用することが可能である。特に、熱交換部材を構成する外管として合成樹脂製の管を用いる場合、該熱交換部材を複数に分割して製造したり、内部に流通阻害部材、或いは螺旋状仕切部材を設けるような場合に有利である。   Synthetic resin does not conduct heat efficiently and functions as a heat insulating material. For this reason, when a synthetic resin pipe is used as the outer pipe constituting the heat exchange member, the heat exchange medium flowing inside the pipe flows without being affected by the heat in the ground or the groundwater. It is possible to use only the heat of water. In particular, when a synthetic resin pipe is used as the outer pipe constituting the heat exchange member, the heat exchange member is divided into a plurality of parts, or a flow blocking member or a spiral partition member is provided inside. Is advantageous.

上記の如く、熱交換部材の形状、構造や材質によって管路を流れる水を熱源とするか、管路を或いは管路を流れる水に加えて地盤や地下水も熱源とするか、を選択することが可能となる。このため、対象となる管路を流れる水の温度と、地盤や地下水の温度との差を考慮した上で、熱交換部材の形状や構造、材質を決定することが好ましい。   As described above, select whether to use water flowing through the pipeline as the heat source, or to use the ground or groundwater as the heat source in addition to the water flowing through the pipeline, depending on the shape, structure and material of the heat exchange member. Is possible. For this reason, it is preferable to determine the shape, structure, and material of the heat exchange member in consideration of the difference between the temperature of water flowing through the target pipe line and the temperature of the ground or groundwater.

例えば、下水道用の管路を流れる水は、地盤、地下水の温度と大きく異なることがなく、熱交換部材として、金属製の管を巻き付ける構造、外管を金属製の筒体で構成する構造を採用することが可能である。 For example, the water flowing through the pipe for sewerage is not significantly different from the temperature of the ground and groundwater, and as a heat exchange member, a structure in which a metal pipe is wound, and a structure in which the outer pipe is constituted by a metal cylinder. Ru can der be adopted.

熱交換部材と地盤との間に断熱材が配置される。この断熱材としては、例えば石綿のようなものを利用することが可能である。例えば、長尺状の管からなる熱交換部材の場合には、該管を管路に巻き付けた後、その外側に断熱材を配置することで良く、外管を有する熱交換部材の場合も同様に外管を管路に嵌装した後、その外側に断熱材を配置することで良い。また、断熱材としては必ずしも厚さを有する材である必要はなく、例えば、外管の外周面に断熱性を有する塗装を施したり、メッキ等の表面処理を施して断熱材としても良い。   A heat insulating material is disposed between the heat exchange member and the ground. As this heat insulating material, for example, asbestos can be used. For example, in the case of a heat exchange member composed of a long tube, after the tube is wound around a pipe line, a heat insulating material may be disposed outside the tube, and the same applies to a heat exchange member having an outer tube. After the outer pipe is fitted into the pipe, a heat insulating material may be disposed outside the pipe. Further, the heat insulating material is not necessarily a material having a thickness. For example, the heat insulating material may be applied to the outer peripheral surface of the outer tube or may be subjected to a surface treatment such as plating.

また、熱交換部材として錆が生じる虞のある金属を採用する場合、メッキや塗装等の表面処理を施して防錆処理しておくことが好ましい。   Moreover, when employ | adopting the metal which may produce rust as a heat exchange member, it is preferable to give surface treatments, such as plating and coating, and to carry out a rust prevention process.

熱交換部材は管路に固定されて利用されるが、該熱交換部材を管路に固定する構造は限定するものではなく、管路の材質や熱交換部材の材質等の条件に応じて適宜選択することが好ましい。例えば熱交換部材が金属製の長尺状の管を管路に巻き付けることによって構成されている場合、特別な固定手段を必要としないこともある。   The heat exchange member is used while being fixed to the pipe line, but the structure for fixing the heat exchange member to the pipe line is not limited, and is appropriately determined according to conditions such as the material of the pipe line and the material of the heat exchange member. It is preferable to select. For example, when the heat exchange member is configured by winding a long metal pipe around a pipe, a special fixing means may not be required.

熱交換部材が外管を有しており、この外管と管路が鋼によって構成されている場合、両者を溶接或いは接着によって固定することが可能である。また、外管が肉厚の薄い鋼、ステンレス鋼、アルミニウム、銅、或いは合成樹脂等の筒体であって、可撓性に富んでいるような場合、外管の両端部にボスを形成し、該ボスを可撓性を有するベルトを利用して管路に締め付けることで固定するのが好ましい。   When the heat exchange member has an outer tube and the outer tube and the pipe are made of steel, both can be fixed by welding or bonding. Also, if the outer tube is a thin cylinder of steel, stainless steel, aluminum, copper, or synthetic resin, and is very flexible, bosses are formed at both ends of the outer tube. It is preferable to fix the boss by tightening the boss to the pipeline using a flexible belt.

熱交換部材を流通する熱交換媒体としては特に限定するものではなく、熱交換部材を構成する管の管壁を介して、或いは管路の管壁を介して円滑な熱交換を行うことが可能であれば良い。このような熱交換媒体として、水を利用することが可能であり、冬季に於ける凍結を考慮すると、水にアルコール或いはエチレングリコールを混合させた所謂不凍液であることが好ましい。   The heat exchange medium that circulates through the heat exchange member is not particularly limited, and smooth heat exchange can be performed through the tube wall of the pipe constituting the heat exchange member or through the tube wall of the pipe line. If it is good. As such a heat exchange medium, water can be used, and in consideration of freezing in winter, a so-called antifreeze liquid in which water or alcohol or ethylene glycol is mixed is preferable.

次に、管路と熱交換部材との関係の例について図1を用いて説明し、合せて熱利用方法について説明する。 Next, an example of the relationship between the pipe line and the heat exchange member will be described with reference to FIG. 1, and a heat utilization method will be described together.

図に於いて、地中に敷設された管路1は内部を略満水状態で水2が矢印a方向に流れている。管路1は複数の鋳鉄管を直列に配列し、フランジをボルト接合して接続することで構成されて地中に敷設されている。 In the figure, the water 2 flows in the direction of arrow a substantially full level the inner portion conduit 1 laid in the ground. The pipe line 1 is constructed by arranging a plurality of cast iron pipes in series and connecting them by bolting flanges and laying in the ground.

管路1の外周面に於ける所定長さ範囲の全周にわたって熱交換部材Aが配置されている。この熱交換部材Aは、管路1の外径よりも大きい内径を有する外管11と、該外管11の両端部に夫々固定されたリング状の端板11a、11bと、を有して構成されている。外管11は、管路1との間に形成された空間20に熱交換媒体を流通させて管路1との間で熱交換させるものであり、端板11a、11bは外管11の内周面と管路1の外周面との隙間(空間20)を遮蔽するものである。   A heat exchange member A is disposed over the entire circumference of a predetermined length range on the outer peripheral surface of the pipe 1. The heat exchange member A includes an outer tube 11 having an inner diameter larger than the outer diameter of the pipe 1 and ring-shaped end plates 11a and 11b fixed to both ends of the outer tube 11, respectively. It is configured. The outer tube 11 circulates a heat exchange medium through a space 20 formed between the outer tube 11 and exchanges heat between the outer tube 11 and the end plates 11a and 11b. The gap (space 20) between the peripheral surface and the outer peripheral surface of the pipe line 1 is shielded.

外管11の長さは予め設定された熱交換部材Aの長さと略等しい長さを有している。また、外管11内径は予め想定した熱交換媒体の流量や流速等の条件に応じて設定されている。例えば、管路1の外径が150mm〜450mmである場合、外管11の内径は200mm〜600mmであることが好ましい。即ち、管路1の外周面と外管11の内周面との間に形成された空間20の高さが25mm〜75mm程度であることが好ましい。   The outer tube 11 has a length substantially equal to the length of the heat exchange member A set in advance. Further, the inner diameter of the outer tube 11 is set according to conditions such as a flow rate and a flow rate of the heat exchange medium assumed in advance. For example, when the outer diameter of the pipe line 1 is 150 mm to 450 mm, the inner diameter of the outer pipe 11 is preferably 200 mm to 600 mm. That is, it is preferable that the height of the space 20 formed between the outer peripheral surface of the pipe line 1 and the inner peripheral surface of the outer tube 11 is about 25 mm to 75 mm.

従って、端板11a、11bは外径が200mm〜600mm、内径が150mm〜450mmの範囲の寸法を持ったリングとして形成されている。   Accordingly, the end plates 11a and 11b are formed as rings having dimensions of an outer diameter of 200 mm to 600 mm and an inner diameter of 150 mm to 450 mm.

熱交換部材Aを構成する外管11及び端板11a、11bの構造は特に限定するものではない。しかし、熱交換部材Aを管路1に設置する工事の容易性を考慮すると、予め外管11と端板11a、11bを一体化した上で、長手方向に沿って半径方向に2分割〜4分割しておき、分割した各分割片をボルト、ナットを利用して組み立てるようにすることが好ましい。   The structure of the outer tube 11 and the end plates 11a and 11b constituting the heat exchange member A is not particularly limited. However, considering the ease of construction for installing the heat exchange member A in the pipe line 1, the outer tube 11 and the end plates 11a and 11b are integrated in advance and then divided into two in the radial direction along the longitudinal direction. It is preferable to divide and assemble the divided pieces using bolts and nuts.

外管11を上記の如く複数の分割片を組み立てて構成した場合、各分割片どうしの接続部分にパッキンを配置して止水することは同然である。また、外管11を管路1に設置するに際し、各端板11a、11bと管路1の外周面との間にもパッキンを配置して止水することも当然である。   When the outer tube 11 is constructed by assembling a plurality of divided pieces as described above, it is natural that the packing is disposed at the connection portion between the divided pieces to stop the water. Moreover, when installing the outer pipe | tube 11 in the pipe line 1, it is also natural to arrange a packing also between each end plate 11a, 11b and the outer peripheral surface of the pipe line 1, and to stop water.

外管11の材質も特に限定するものではなく、鋼管や合成樹脂製の管を利用することが可能である。外管11を鋼管によって構成した場合、端板11a、11bも鋼板とし、両者を溶接することが必要となる。   The material of the outer pipe 11 is not particularly limited, and a steel pipe or a synthetic resin pipe can be used. When the outer tube 11 is formed of a steel pipe, the end plates 11a and 11b are also made of steel plates, and both need to be welded.

また、外管11を合成樹脂製の管によって構成した場合、該外管11自体が断熱材として機能することとなる。この場合、端板11a、11bも合成樹脂板として構成し、これらの端板11a、11bと外管11を溶着することが必要である。特に、外管11を半径方向に複数に分割した分割片として構成する場合、例えば射出成形によって外管11と端板11a、11bを一体化させた形状とすることが好ましい。   Further, when the outer tube 11 is constituted by a synthetic resin tube, the outer tube 11 itself functions as a heat insulating material. In this case, the end plates 11a and 11b are also configured as synthetic resin plates, and it is necessary to weld these end plates 11a and 11b to the outer tube 11. In particular, when the outer tube 11 is configured as a divided piece that is divided into a plurality of pieces in the radial direction, it is preferable that the outer tube 11 and the end plates 11a and 11b are integrated, for example, by injection molding.

各端板11a、11bには夫々エルボ状の接続部材12a、12bが取り付けられており、これらの接続部材12a、12bに夫々熱交換媒体が流通する配管13a、13bが接続されている。配管13aは熱交換媒体を供給する配管でありポンプ14が接続され、該ポンプ14を介してヒートポンプ15に接続されている。また、配管13bは熱交換媒体を排出する配管であり、直接ヒートポンプ15に接続されている。   Elbow-shaped connection members 12a and 12b are attached to the end plates 11a and 11b, respectively, and pipes 13a and 13b through which a heat exchange medium flows are connected to the connection members 12a and 12b, respectively. The pipe 13 a is a pipe for supplying a heat exchange medium, and is connected to a pump 14 and is connected to the heat pump 15 through the pump 14. The pipe 13b is a pipe for discharging the heat exchange medium, and is directly connected to the heat pump 15.

ヒートポンプ15には熱交換媒体、管路1を介して授受した水の熱を利用する機器、例えば、室内機16が接続されている。   The heat pump 15 is connected to a heat exchange medium and a device that uses the heat of water transferred through the pipe 1, for example, an indoor unit 16.

上記の如く構成した熱交換部材Aに対し、ポンプ14を駆動して配管13aから熱交換媒体を供給すると、供給された熱交換媒体は空間20を満水状態にして流通し、この流通過程で管路1の外周面と接触して熱交換が行われる。そして、熱交換媒体は空間20から配管13bからヒートポンプ15に流入し、該ヒートポンプ15で熱の授受を行うことが可能である。更に、ヒートポンプ15で授受された熱によって、該ヒートポンプ15に接続された室内機16を運転することが可能である。   When the pump 14 is driven to supply the heat exchange medium from the pipe 13a to the heat exchange member A configured as described above, the supplied heat exchange medium circulates with the space 20 full of water, Heat exchange is performed in contact with the outer peripheral surface of the path 1. The heat exchange medium flows from the space 20 into the heat pump 15 through the pipe 13b, and the heat pump 15 can exchange heat. Furthermore, the indoor unit 16 connected to the heat pump 15 can be operated by the heat transferred by the heat pump 15.

上記の如くして、管路1に略満水状態で流れる水2の熱を、熱交換媒体を介してヒートポンプ15に伝えることで利用することが可能となる。   As described above, it is possible to utilize the heat of the water 2 flowing in the pipe line 1 in a substantially full state by transmitting it to the heat pump 15 through the heat exchange medium.

例えば、管路1に流れる水2の温度20℃〜25℃程度であり、熱交換部材Aを構成する外管11の空間20に対し、配管13aから熱交換媒体を供給すると、該熱交換媒体が空間20を流れる過程で管路1を介して熱交換が行われる。特に、配管13aから供給された熱交換媒体の温度が30℃〜35℃程度とし、配管13bに排出するときの温度が25℃〜30℃程度となるような熱交換が行えるように、熱交換部材Aの長さや熱交換媒体の流量、流速等が設定されている。この結果、熱交換媒体から管路1を流れる水2に対して熱を伝えることとなり、熱交換媒体の排熱作用が実行されることになる。 For example, the temperature of the water 2 flowing through the pipe 1 is Ri 20 ° C. to 25 ° C. of about der, to space 20 of the outer tube 11 constituting a heat exchanging member A, is supplied to the heat exchange medium from the piping 13a, heat Heat exchange is performed via the pipe line 1 in the process in which the exchange medium flows through the space 20. In particular, heat exchange is performed so that the heat exchange medium supplied from the pipe 13a has a temperature of about 30 ° C. to 35 ° C., and the temperature when discharged to the pipe 13b is about 25 ° C. to 30 ° C. The length of the member A, the flow rate of the heat exchange medium, the flow velocity, etc. are set. As a result, heat is transmitted from the heat exchange medium to the water 2 flowing through the pipe line 1, and the heat exchange action of the heat exchange medium is executed.

また、冬季に於ける温度が15℃〜18℃程度であり、外管11の空間20に対し、配管13aから熱交換媒体を供給すると、該熱交換媒体が空間20を流れる過程で管路1を介して熱交換が行われる。特に、配管13aから供給された熱交換媒体の温度が3℃〜9℃程度とし、配管13bに排出するときの温度が8℃〜15℃程度となるような熱交換が行えるように、熱交換部材Aの長さや熱交換媒体の流量、流速等が設定されている。この結果、熱交換媒体は管路1を流れる水2から熱を受けることとなり、熱交換媒体の吸熱作用が実行されることになる。 The temperature is 15 ° C. ~ 18 ° C. of about der that put the winter is, with respect to the space 20 of the outer tube 11, is supplied to the heat exchange medium from the piping 13a, a tube in the process of heat exchange medium flows through the space 20 Heat exchange takes place via path 1. In particular, heat exchange is performed so that the temperature of the heat exchange medium supplied from the pipe 13a is about 3 ° C. to 9 ° C., and the temperature when discharged to the pipe 13b is about 8 ° C. to 15 ° C. The length of the member A, the flow rate of the heat exchange medium, the flow velocity, etc. are set. As a result, the heat exchange medium receives heat from the water 2 flowing through the pipe line 1 and the heat absorption action of the heat exchange medium is executed.

上記の如く構成された熱交換構造では、ヒートポンプ15を介して接続された室内機16を冷房運転、暖房運転する際に、管路1を流れる水2の熱を利用することが可能となる。   In the heat exchange structure configured as described above, the heat of the water 2 flowing through the pipe line 1 can be used when the indoor unit 16 connected via the heat pump 15 is cooled or heated.

次に、管路と熱交換部材との関係の他の例について図2を用いて説明する。尚、図に於いて前述の実施例と同一の部分又は同一の機能を有する部分には同一の符号を付して説明を省略する(以下の管路と熱交換部材との関係の他の例以降も同じ)。また、図に於いて、配管13a、13bは図1と同様にポンプ14を介してヒートポンプ15に接続されている(以下の管路と熱交換部材との関係の他の例以降も同じ)。 Next, another example of the relationship between the pipe line and the heat exchange member will be described with reference to FIG. In the figure, the same reference numerals are given to the same portions or portions having the same functions as those of the above-described embodiments, and the description thereof will be omitted ( other examples of the relationship between the pipe line and the heat exchange member below). And so on) In the figure, the pipes 13a and 13b are connected to the heat pump 15 via the pump 14 as in FIG. 1 (the same applies to other examples of the relationship between the pipe line and the heat exchange member below).

図に於いて、熱交換部材Aは管路1の外周面に巻き付けられた管21によって構成されており、該管21に配管13a、13bが接続されて熱交換媒体を流通させることが可能なように構成されている。熱交換部材Aを構成する管21の形状は特に限定するものではなく、円筒管、角筒管、かまぼこ型管等の管を用いることが可能である。特に、管路1との間で効率を良く熱交換を行うには、該管路1の外周面との接触面積を大きくとることが可能な角筒管であることが好ましい。   In the figure, the heat exchanging member A is constituted by a pipe 21 wound around the outer peripheral surface of the pipe 1, and pipes 13 a and 13 b are connected to the pipe 21 so that a heat exchanging medium can be circulated. It is configured as follows. The shape of the tube 21 constituting the heat exchange member A is not particularly limited, and a tube such as a cylindrical tube, a rectangular tube, or a kamaboko tube can be used. In particular, in order to efficiently exchange heat with the pipe line 1, it is preferable to use a rectangular tube that can have a large contact area with the outer peripheral surface of the pipe line 1.

熱交換部材Aを構成する管21の材質は限定するものではないが、熱を効率良く伝えることが可能で、且つ管路1に巻き付ける際の作業を容易に行えるような材質であることが好ましい。このような材質としては鋼、ステンレス鋼、銅、アルミニウム等があり、何れも好ましく利用することが可能である。但し、鋼からなる熱交換部材Aを利用する場合、充分な防錆処理を施しておくことが好ましい。   Although the material of the pipe | tube 21 which comprises the heat exchange member A is not limited, It is preferable that it is a material which can transmit heat | fever efficiently and can perform the operation | work at the time of winding around the pipe line 1 easily. . Examples of such materials include steel, stainless steel, copper, and aluminum, and any of them can be preferably used. However, when the heat exchange member A made of steel is used, it is preferable to perform a sufficient rust prevention treatment.

本実施例に係る熱交換構造であっても、管21に対し配管13aから供給された熱交換媒体が配管13bに向けて流通する過程で、管路1及び管21を介して水2との間で熱交換することが可能である。そして、前述の管路と熱交換部材との関係の例と同様に、ヒートポンプ15を介して接続された室内機16を運転することが可能である。 Even in the heat exchange structure according to the present embodiment, in the process in which the heat exchange medium supplied from the pipe 13a to the pipe 21 flows toward the pipe 13b, it is exchanged with the water 2 via the pipe line 1 and the pipe 21. It is possible to exchange heat between them. And it is possible to drive the indoor unit 16 connected via the heat pump 15 similarly to the example of the relationship between the pipe line and the heat exchange member described above.

次に、管路と熱交換部材との関係の他の例に係る熱交換構造について図3を用いて説明する。本実施例に於ける熱交換部材Aは、前述の管路と熱交換部材との関係の例に於ける熱交換部材Aを応用したものであり、該熱交換部材Aの空間20に於ける熱交換媒体の流れを乱すことで万遍なく管路1と接触させ、これにより熱交換を促進させるようにしたものである。 Next, a heat exchange structure according to another example of the relationship between the pipe line and the heat exchange member will be described with reference to FIG. The heat exchanging member A in this embodiment is an application of the heat exchanging member A in the above-described example of the relationship between the pipe line and the heat exchanging member, and in the space 20 of the heat exchanging member A. By uniformly disturbing the flow of the heat exchange medium, the pipe 1 is uniformly contacted, thereby promoting heat exchange.

本実施例に係る熱交換部材Aは、外管11の内周面に複数の流通阻害部材22が配置されている。この流通阻害部材22は、配管13aから空間20に供給され、該空間20を流通する熱交換媒体を衝突させて流れを乱すためのものである。流れが乱れた熱交換媒体は、常に管路1に対して接触する熱交換媒体が入れ替わることで熱交換が促進され、効率の良い熱交換を実現することが可能である。   In the heat exchange member A according to the present embodiment, a plurality of flow inhibition members 22 are arranged on the inner peripheral surface of the outer tube 11. The flow inhibition member 22 is supplied to the space 20 from the pipe 13a and is used for colliding a heat exchange medium flowing through the space 20 to disturb the flow. The heat exchange medium in which the flow is disturbed is always exchanged with the heat exchange medium in contact with the pipe 1, whereby heat exchange is promoted, and efficient heat exchange can be realized.

本実施例は、前述の管路と熱交換部材との関係の例に係る熱交換部材Aが外管11のみによって形成されており、配管13aから供給された熱交換媒体が、配管13bに向かって最短距離を流通して効率の良い熱交換を行えない虞かあるという問題を解消するものである。 In the present embodiment, the heat exchange member A according to the example of the relationship between the pipe line and the heat exchange member is formed only by the outer tube 11, and the heat exchange medium supplied from the pipe 13a is directed to the pipe 13b. Therefore, the problem that there is a possibility that efficient heat exchange cannot be performed through the shortest distance is solved.

流通阻害部材22は、リング状の板を管路1の外周面との間に隙間を設けて外管11の内周面に固定することで形成されていても良い。この場合、外管11の内周面と管路1の外周面とで構成された空間20は、管路1の外周面に沿って連続した空間として形成されるものの、外管11の内周面側は非連続した空間として形成される。   The flow inhibiting member 22 may be formed by providing a ring-shaped plate between the outer peripheral surface of the pipe line 1 and fixing it to the inner peripheral surface of the outer tube 11. In this case, the space 20 formed by the inner peripheral surface of the outer tube 11 and the outer peripheral surface of the pipe 1 is formed as a continuous space along the outer peripheral surface of the pipe 1, but the inner periphery of the outer tube 11. The surface side is formed as a non-continuous space.

また、流通阻害部材22は、羽子板状の板を外管11の内周面に固定することで形成されていても良い。羽子板状の板の先端は、管路1の外周面に接触させても良く、或いは隙間を設けていても良い。このように、羽子板状の板によって流通阻害部材22を形成した場合、空間20は流通阻害部材22によってジグザグ状に区画された空間として形成される。   Further, the flow inhibiting member 22 may be formed by fixing a battledore-like plate to the inner peripheral surface of the outer tube 11. The tip of the battledore plate may be brought into contact with the outer peripheral surface of the pipe line 1 or may be provided with a gap. As described above, when the flow inhibition member 22 is formed of a battledore plate, the space 20 is formed as a space partitioned in a zigzag manner by the flow inhibition member 22.

上記の如く構成された熱交換部材Aでは、配管13aから空間20に供給された熱交換媒体は、流通阻止部材22に衝突して流れが乱され、この影響を受けて管路1の外周面と接触する熱交換媒体は常に入れ替わる。この結果、熱交換媒体は万遍なく管路1と接触して熱交換が促進され、より効率の良い熱交換を実現することが可能となる。   In the heat exchanging member A configured as described above, the heat exchanging medium supplied to the space 20 from the pipe 13a collides with the flow blocking member 22 and the flow is disturbed. The heat exchange medium in contact with is always replaced. As a result, the heat exchange medium uniformly contacts the pipe line 1 to promote heat exchange, and it becomes possible to realize more efficient heat exchange.

特に、外管11の内周面側に流通阻害部材22が一体的に形成されるため、該外管11の剛性が向上し、外圧となる土圧や地下水圧に対する抵抗を向上させることが可能である。   In particular, since the flow-inhibiting member 22 is integrally formed on the inner peripheral surface side of the outer pipe 11, the rigidity of the outer pipe 11 is improved, and resistance to earth pressure and groundwater pressure, which are external pressures, can be improved. It is.

尚、図に於いて、11cは端板11a、11bに形成され、内径が管路1の外径に略等しいボスであり、11dはボス11cを管路1に締め付けるための締付バンドである。この締付バンド11dの構成は特に限定するものではなく、ラチェット機構を採用した締付構造、或いはねじ機構を採用した締付構造等を利用することが可能である。   In the figure, 11c is a boss formed on the end plates 11a and 11b, the inner diameter is substantially equal to the outer diameter of the pipe line 1, and 11d is a fastening band for fastening the boss 11c to the pipe line 1. . The configuration of the tightening band 11d is not particularly limited, and a tightening structure employing a ratchet mechanism, a tightening structure employing a screw mechanism, or the like can be used.

本実施例に係る熱交換構造であっても、熱交換部材Aの空間20に対し配管13aから供給された熱交換媒体が配管13bに向けて流通する過程で流れが乱れることで、管路1を介して水2との間で熱交換することが可能である。そして、前述の管路と熱交換部材との関係の例と同様に、ヒートポンプ15を介して接続された室内機16を運転することが可能である。 Even in the heat exchange structure according to the present embodiment, the flow is disturbed in the process in which the heat exchange medium supplied from the pipe 13a flows into the space 20 of the heat exchange member A toward the pipe 13b. It is possible to exchange heat with water 2 via And it is possible to drive the indoor unit 16 connected via the heat pump 15 similarly to the example of the relationship between the pipe line and the heat exchange member described above.

次に、管路と熱交換部材との関係の他の例に係る熱交換構造について図4を用いて説明する。本実施例に於ける熱交換部材Aは、前述の管路と熱交換部材との関係の例に於ける熱交換部材Aを応用したものであり、該熱交換部材Aの空間20に供給された熱交換媒体を螺旋状に流通させることで接触長さを増大させ、これにより熱交換の効率を向上させるようにしたものである。 Next, a heat exchange structure according to another example of the relationship between the pipe line and the heat exchange member will be described with reference to FIG. The heat exchanging member A in this embodiment is an application of the heat exchanging member A in the example of the relationship between the pipe line and the heat exchanging member, and is supplied to the space 20 of the heat exchanging member A. The contact length is increased by circulating the heat exchange medium spirally, thereby improving the efficiency of heat exchange.

本実施例に係る熱交換部材Aは、外管11の内周面に螺旋状の仕切部材23が配置されている。この仕切部材23は、外管11の内周面に固定されており、内径(螺旋状の内周を軸方向に貫通した径)が管路1の外径よりも僅かに大きく形成されている。従って、空間20には仕切部材23によって螺旋状の流通路が形成される。   In the heat exchange member A according to the present embodiment, a spiral partition member 23 is disposed on the inner peripheral surface of the outer tube 11. The partition member 23 is fixed to the inner peripheral surface of the outer tube 11, and has an inner diameter (diameter penetrating the spiral inner periphery in the axial direction) slightly larger than the outer diameter of the pipe line 1. . Accordingly, a spiral flow passage is formed in the space 20 by the partition member 23.

上記の如く構成された熱交換部材Aでは、配管13aから空間20に供給された熱交換媒体は、仕切部材23に沿って管路1の外周を回る螺旋状の流れとなる。この結果、熱交換媒体は管路1に対する接触長を大きくなり、良好な熱交換を行うことが可能となる。   In the heat exchange member A configured as described above, the heat exchange medium supplied from the pipe 13 a to the space 20 becomes a spiral flow that goes around the outer periphery of the pipe line 1 along the partition member 23. As a result, the heat exchange medium has a large contact length with respect to the pipe line 1 and can perform good heat exchange.

特に、外管11の内周面に仕切部材23が一体的に形成されるため、外管11の剛性が向上し、外圧となる土圧や地下水圧に対する抵抗を向上させることが可能である。   In particular, since the partition member 23 is integrally formed on the inner peripheral surface of the outer pipe 11, the rigidity of the outer pipe 11 is improved, and resistance to earth pressure and groundwater pressure, which are external pressures, can be improved.

本実施例に係る熱交換構造であっても、熱交換部材Aの空間20に対し配管13aから供給された熱交換媒体が配管13bに向けて流通する過程で流れが螺旋状となることで、管路1を介して水2との間で熱交換することが可能である。そして、前述の管路と熱交換部材との関係の例と同様に、ヒートポンプ15を介して接続された室内機16を運転することが可能である。 Even in the heat exchange structure according to the present embodiment, the flow becomes spiral in the process of flowing the heat exchange medium supplied from the pipe 13a toward the pipe 13b into the space 20 of the heat exchange member A. It is possible to exchange heat with the water 2 via the pipe line 1. And it is possible to drive the indoor unit 16 connected via the heat pump 15 similarly to the example of the relationship between the pipe line and the heat exchange member described above.

次に、本発明の実施例である熱交換構造を下水道に適用する場合について図5により説明する。図に示すように、下水道管路31にはマンホール32が設けられている。通常は下水道管路31に下水が満水状態で流れることはなく、管底に僅かな深さを保持して流れている。 Next, the case where the heat exchange structure which is an Example of this invention is applied to a sewer will be described with reference to FIG. As shown in the figure, a manhole 32 is provided in the sewer line 31. Normally, sewage does not flow in the sewer pipe 31 in a full state, but flows with a slight depth at the bottom of the pipe.

下水道管路31の所定位置には流出分岐31aが配置され、この流出分岐31aの下流側に堰33が形成されている。また、流出分岐31aの下流側で該流出分岐31aから熱交換部材Aの長さよりも充分に大きい距離離隔した位置に流入分岐31bが配置されている。そして、下水道管路31に配置された流出分岐31aと流入分岐31bを接続して管路1が配置されると共に、該管路1に熱交換部材Aが構成されている。前記熱交換部材Aは前述した管路と熱交換部材との関係の例の何れかであって良い。 An outflow branch 31a is disposed at a predetermined position of the sewer pipe 31, and a weir 33 is formed on the downstream side of the outflow branch 31a. In addition, an inflow branch 31b is disposed at a position separated from the outflow branch 31a by a distance sufficiently larger than the length of the heat exchange member A on the downstream side of the outflow branch 31a. And the outflow branch 31a and the inflow branch 31b which were arrange | positioned in the sewer pipe line 31 are connected, the pipe line 1 is arrange | positioned, and the heat exchange member A is comprised by this pipe line 1. FIG. The heat exchange member A may be any of the above-described examples of the relationship between the pipe line and the heat exchange member .

下水道管路31と管路1の深さ方向の位置関係(下水道管路31を流れる下水の水位と管路1を流れる水2の水位の関係)は、管路1が下水道管路31よりも深い位置に敷設されている。   The positional relationship in the depth direction between the sewer pipe 31 and the pipe 1 (the relation between the water level of the sewage flowing through the sewer pipe 31 and the water level of the water 2 flowing through the pipe 1) is as follows. It is laid deep.

また、堰33は下水道管路31の底から中心方向に起立して形成されており、大雨時に下水道管路31内に流れる下水が増大したとき、回動して堰33の存在に関わらす下水道管路31の断面積を可及的に減ずることがないように構成されている。堰33の回動構造は特に限定するものではなく、下水道管路31の直径方向に縦軸又は横軸を通し、この軸に堰33を回動可能に装着することで良い。   Further, the weir 33 is formed so as to stand in the center direction from the bottom of the sewer pipe 31, and when the sewage flowing into the sewer pipe 31 increases during heavy rain, the sewer is rotated and related to the presence of the weir 33. The cross-sectional area of the pipe 31 is configured so as not to be reduced as much as possible. The rotating structure of the weir 33 is not particularly limited, and the vertical axis or the horizontal axis may be passed in the diameter direction of the sewer pipe 31, and the weir 33 may be rotatably mounted on this axis.

本実施例では、下水道管路31に横軸を設け、該軸に堰33をコイルばねのような付勢部材を介して軸に取り付けることで、下水道管路31内の水位の変化に応じて堰33は横軸を中心として回動することで、下水道管路31の断面積を減ずることがない。   In the present embodiment, a horizontal axis is provided in the sewer pipe line 31, and a weir 33 is attached to the axis via a biasing member such as a coil spring, thereby changing the water level in the sewer pipe line 31. The weir 33 does not reduce the cross-sectional area of the sewer pipe line 31 by rotating around the horizontal axis.

このため、下水道管路31を流れる水2は堰33に遮られて流出分岐31aから管路1に導入され、該管路1を流れる。そして、管路1を流れた水2は流入分岐31bから下水道管路31に流入して下流側に流れる。このとき、管路1の内部は、水2が略満水状態となり、流出分岐31aと流入分岐31bの間に生じている堰33の高さに対応する差圧によって流れが継続する。   For this reason, the water 2 flowing through the sewer pipe 31 is blocked by the weir 33 and introduced into the pipe 1 from the outflow branch 31 a and flows through the pipe 1. And the water 2 which flowed through the pipe line 1 flows into the sewer pipe line 31 from the inflow branch 31b, and flows downstream. At this time, the inside of the pipe line 1 is substantially filled with the water 2, and the flow continues due to the differential pressure corresponding to the height of the weir 33 generated between the outflow branch 31a and the inflow branch 31b.

従って、熱交換部材Aに熱交換媒体を供給することで、該熱交換媒体は管路1を介して水2との熱交換を行うことが可能となる。そして、前述の管路と熱交換部材との関係の例と同様に、ヒートポンプ15を介して接続された室内機16を運転することが可能である。 Therefore, by supplying the heat exchange medium to the heat exchange member A, the heat exchange medium can exchange heat with the water 2 through the pipe line 1. And it is possible to drive the indoor unit 16 connected via the heat pump 15 similarly to the example of the relationship between the pipe line and the heat exchange member described above.

本発明に係る熱交換構造は、内部を略満水状態で流れる管路であれば利用することが可能であり、熱の活用をはかることができる。   The heat exchange structure according to the present invention can be used as long as it is a pipe line that flows in a substantially full state, and heat can be utilized.

A 熱交換部材
1 管路
2 水
11 外管
11a、11b 端板
11c ボス
11d 締付バンド
12a、12b 接続部材
13a、13b 配管
14 ポンプ
15 ヒートポンプ
16 室内機
20 空間
21 管
22 流通阻害部材
23 仕切部材
31 下水道管路
31a 流出分岐
31b 流入分岐
32 マンホール
33 堰
A Heat exchange member 1 Pipe 2 Water 11 Outer tube 11a, 11b End plate 11c Boss 11d Tightening band 12a, 12b Connection member 13a, 13b Pipe 14 Pump 15 Heat pump 16 Indoor unit 20 Space 21 Pipe 22 Distribution inhibition member 23 Partition member 31 Sewer pipe 31a Outflow branch 31b Inflow branch 32 Manhole 33 Weir

Claims (8)

地中に敷設された管路を略満水状態で流れる水の熱を利用するための熱交換構造であって、
地中に敷設された管路から分岐した鋼管又は鋳鉄管からなる略満水状態で水が流れる管路の外周面に於ける所定長さ範囲に全周にわたって配置された熱交換部材と、
前記熱交換部材に熱交換媒体を流通させるポンプと、
を有することを特徴とする熱交換構造。
A heat exchange structure for utilizing the heat of water flowing in a substantially full state in a pipeline laid in the ground,
A heat exchange member disposed over the entire circumference in a predetermined length range in the outer peripheral surface of the pipe through which water flows in a substantially full state consisting of a steel pipe or a cast iron pipe branched from a pipe laid in the ground ;
A pump for circulating a heat exchange medium through the heat exchange member;
The heat exchange structure characterized by having.
前記熱交換部材と地盤との間に断熱材が配置されていることを特徴とする請求項1に記載した熱交換構造。   The heat exchange structure according to claim 1, wherein a heat insulating material is disposed between the heat exchange member and the ground. 前記熱交換部材が、前記管路の外周に螺旋状に巻きつけられた管であることを特徴とする請求項1又は請求項2に記載した熱交換構造。   The heat exchange structure according to claim 1 or 2, wherein the heat exchange member is a pipe spirally wound around an outer periphery of the pipe line. 前記熱交換部材が、前記管路の外周に嵌装された外管を有し、該外管の両端部と前記管路の外周面との隙間を遮蔽すると共に両端部又は両端部の近傍に前記ポンプとの接続部材が配置されていることを特徴とする請求項1乃至請求項3のいずれかに記載した熱交換構造。   The heat exchange member has an outer tube fitted on the outer periphery of the pipe, shields a gap between both ends of the outer pipe and the outer peripheral surface of the pipe, and closes both ends or both ends. The heat exchange structure according to any one of claims 1 to 3, wherein a connection member with the pump is disposed. 前記外管が、熱伝導率の低い材料によって形成されていることを特徴とする請求項4に記載した熱交換構造。   The heat exchange structure according to claim 4, wherein the outer tube is made of a material having low thermal conductivity. 前記外管の内部には、熱交換媒体の流れを乱すための流通阻害部材が配置されていることを特徴とする請求項4又は請求項5に記載した熱交換構造。   The heat exchange structure according to claim 4 or 5, wherein a flow inhibiting member for disturbing a flow of a heat exchange medium is disposed inside the outer tube. 前記外管の内部には、熱交換媒体を螺旋状に流すための螺旋状仕切部材が配置されていることを特徴とする請求項4又は請求項5に記載した熱交換構造6. The heat exchange structure according to claim 4, wherein a spiral partition member for flowing a heat exchange medium in a spiral shape is disposed inside the outer tube. 地中に敷設された管路を略満水状態で流れる水の熱を利用するための方法であって、
地中に敷設された管路から鋼管又は鋳鉄管からなる管路を分岐させて略満水状態で水が流れる管路とし、該管路の外周面に於ける所定長さ範囲に全周にわたって熱交換部材を配置し、該熱交換部材にポンプによって付勢した熱交換媒体を流通させると共に、熱交換装置によって前記熱交換部材を通過した熱交換媒体との熱交換を行うことを特徴とする熱利用方法。
A method for utilizing the heat of water flowing in a substantially full state in a pipeline laid in the ground,
Branches the conduit consisting of steel or cast iron pipe from the pipe laid in the ground as a conduit flowing water substantially filled with water, heat over entire circumference in a predetermined length range on the outer peripheral surface of the pipe A heat exchanger characterized by disposing an exchange member, causing the heat exchange medium energized by a pump to flow through the heat exchange member, and performing heat exchange with the heat exchange medium that has passed through the heat exchange member by a heat exchange device. How to Use.
JP2014229260A 2014-11-11 2014-11-11 Heat exchange structure and heat utilization method Active JP6482017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229260A JP6482017B2 (en) 2014-11-11 2014-11-11 Heat exchange structure and heat utilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229260A JP6482017B2 (en) 2014-11-11 2014-11-11 Heat exchange structure and heat utilization method

Publications (2)

Publication Number Publication Date
JP2016090213A JP2016090213A (en) 2016-05-23
JP6482017B2 true JP6482017B2 (en) 2019-03-13

Family

ID=56016034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229260A Active JP6482017B2 (en) 2014-11-11 2014-11-11 Heat exchange structure and heat utilization method

Country Status (1)

Country Link
JP (1) JP6482017B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273053B1 (en) * 2017-01-17 2018-01-31 租 池田 Heat collection pipe mechanism, manufacturing method thereof, and air conditioner
CN113457053B (en) * 2021-07-19 2022-03-04 六安华晟智恒工业设计有限公司 Fire-fighting waterway heating equipment for fire engine in cold region

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622788U (en) * 1992-08-03 1994-03-25 株式会社ガスター Heat exchanger
JPH11201338A (en) * 1998-01-07 1999-07-30 Mesco Inc Water supply pipe
JP2002030717A (en) * 2000-07-18 2002-01-31 Ace Plan:Kk Sewer for constructing sewage-utilizing heat-source facility
JP2002162175A (en) * 2000-11-22 2002-06-07 Sunpot Co Ltd Double tube heat exchanger
JP5914084B2 (en) * 2012-03-26 2016-05-11 積水化学工業株式会社 Heat collection system for sewage heat and its construction method
JP5917286B2 (en) * 2012-05-11 2016-05-11 吉佳エンジニアリング株式会社 Pipe structure

Also Published As

Publication number Publication date
JP2016090213A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
CN102884390B (en) Method for extracting heat from an effluent flowing in a duct, heat exchanger and system for carrying out such a method
RU2010144069A (en) HEATING CYLINDER INSTALLED WITH U-SHAPED ROD PIPELINE AND RING PIPELINE
JP6482017B2 (en) Heat exchange structure and heat utilization method
JP2013513081A (en) Low-energy system ground circuit
JP2017166211A (en) Freezing method
CN107250664A (en) Horizontal steam generator for reactor plant
KR20100084603A (en) Installation for extracting a heat from flowing water
US20140151005A1 (en) Method for extraction heat from an effluent, especially waste water, circulating in a conduit, heat exchanger and material for implementing said method
JP6160275B2 (en) Heat exchange pipe unit
CN206399237U (en) Choked flow type liquid heat-exchanger
JP6062181B2 (en) Pipe repair structure and repair method
CN101463400B (en) Water-cooling system for top distributor of blast furnace
KR101663201B1 (en) Heat exchanger for power plant using duplex pipe
RU178987U1 (en) Waste Water Heat Recovery System
JP6757002B2 (en) Heat exchanger
JP5917286B2 (en) Pipe structure
RU2611429C1 (en) Gas and liquid mediums electric heater
KR101321205B1 (en) Bellows type frozen preventive tools and the applicable water gauge and heatexchanger
US20160097566A1 (en) Cooling system using deep seawater
CN207985778U (en) A kind of removable storage tank internal heater
Shah et al. Design Modification of Cooling Water System for Hydropower Plants [A Case Study of Middle Marsyangdi Hydropower Plant in Nepal]
RU2725068C1 (en) Heat exchanger
CN203833715U (en) big pipe diameter magnetization antiscale device
Araromi et al. Design and development of a small heat exchanger as auxiliary cooling system for domestic and industrial applications
RU185391U1 (en) SHELL-TUBE HEAT EXCHANGE UNIT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6482017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250