JP6273053B1 - Heat collection pipe mechanism, manufacturing method thereof, and air conditioner - Google Patents

Heat collection pipe mechanism, manufacturing method thereof, and air conditioner Download PDF

Info

Publication number
JP6273053B1
JP6273053B1 JP2017005591A JP2017005591A JP6273053B1 JP 6273053 B1 JP6273053 B1 JP 6273053B1 JP 2017005591 A JP2017005591 A JP 2017005591A JP 2017005591 A JP2017005591 A JP 2017005591A JP 6273053 B1 JP6273053 B1 JP 6273053B1
Authority
JP
Japan
Prior art keywords
pipe
flow path
heat collecting
pipe member
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017005591A
Other languages
Japanese (ja)
Other versions
JP2018115785A (en
Inventor
租 池田
租 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017005591A priority Critical patent/JP6273053B1/en
Application granted granted Critical
Publication of JP6273053B1 publication Critical patent/JP6273053B1/en
Publication of JP2018115785A publication Critical patent/JP2018115785A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

【課題】水漏れが起こりにくい採熱用管機構及びその製造方法、並びにこれを用いた空調装置を提供する。【解決手段】空調装置は、地中に配される採熱用管機構10と、外部空間から建物へ空気を供給する空気供給機構と、熱交換用の水の循環を行う水循環機構と、を備える。採熱用管機構10は、一方から他方へ空気を流す第1流路11Xを有する管部材11と、一方から他方へ熱交換用の地下水を流す第2流路12Xを有する螺旋管12と、給水機構15を備える。給水機構15は、第2流路12Xの開口端部を塞ぐ閉塞部材15Cと、閉塞部材15Cを貫通する貫通パイプ15Pと、貫通パイプ15Pに接続されたエルボ管15Lと、エルボ管15Lに接続された配管15Hと、を備える。【選択図】図5The present invention provides a heat collecting pipe mechanism that hardly causes water leakage, a manufacturing method thereof, and an air conditioner using the same. An air conditioner includes a heat collection pipe mechanism 10 disposed in the ground, an air supply mechanism that supplies air from an external space to a building, and a water circulation mechanism that circulates water for heat exchange. Prepare. The heat collecting pipe mechanism 10 includes a pipe member 11 having a first flow path 11X for flowing air from one side to the other, a spiral pipe 12 having a second flow path 12X for flowing ground water for heat exchange from one side to the other, A water supply mechanism 15 is provided. The water supply mechanism 15 is connected to the closing member 15C that closes the opening end of the second flow path 12X, the through pipe 15P that passes through the closing member 15C, the elbow pipe 15L that is connected to the through pipe 15P, and the elbow pipe 15L. A pipe 15H. [Selection] Figure 5

Description

本発明は、採熱用管機構及びその製造方法、並びに空調装置に関する。   The present invention relates to a heat collecting pipe mechanism, a manufacturing method thereof, and an air conditioner.

近年、通年の温度変動が小さい地中熱を利用して建物の冷暖房等を行う空調装置が注目されている。かかる空調装置110の一例を、図1Aに示す。この装置110は、地中熱の採取用に、管軸方向C111を略水平方向に向けながら地中に埋設された採熱用管機構111を有している。そして、同装置110によれば、一方の管端部111eaから採熱用管機構111内に空調用の空気が取り込まれて同管部材111内を流れた後に、当該空気は他方の管端部111ebから取り出される。これにより、空気は、夏場には冷却され冬場には加温される。そして、冷却又は加温された空気は、畜舎等の農業施設、集合住宅や公共の体育館等の一般施設、工場等の工業施設の如き大きな空間を有する建屋120の空調等に供される。   In recent years, air conditioners that heat and cool buildings and the like using geothermal heat with small year-round temperature fluctuations have attracted attention. An example of such an air conditioner 110 is shown in FIG. 1A. This device 110 has a heat collecting pipe mechanism 111 embedded in the ground while the pipe axis direction C111 is oriented in a substantially horizontal direction for collecting ground heat. Then, according to the apparatus 110, after air for air conditioning is taken into the heat collecting pipe mechanism 111 from one pipe end 111ea and flows through the pipe member 111, the air is supplied to the other pipe end 111a. It is taken out from 111eb. Thereby, the air is cooled in the summer and heated in the winter. The cooled or heated air is used for air conditioning of a building 120 having a large space such as an agricultural facility such as a barn, a general facility such as an apartment house or a public gymnasium, or an industrial facility such as a factory.

ところで、地中における通年の温度変動は、図1Bに示すように、地表からの深さに応じて変化する。例えば深さ5m未満の浅い位置では、年間の温度変動は大きいが、深さ5m以上の深い位置では、年間の温度変動がほぼ無視できる程度に小さくなって、その略一定の温度値は、同位置の年間平均気温と概ね一致する。そのため、一般に採熱用管機構111の埋設深さを5m以上にすれば、地中熱との間で良好な熱交換性が担保される。これに対して、5m未満にした場合には、上記の5m以上の場合と比べて、夏場での空気の冷却能力及び冬場での空気の加温能力が劣ってしまう。   By the way, the year-round temperature fluctuation in the ground changes according to the depth from the ground surface as shown in FIG. 1B. For example, the annual temperature fluctuation is large at a shallow position less than 5 m deep, but the annual temperature fluctuation is small enough to be ignored at a deep position of 5 m or more deep, and the substantially constant temperature value is the same. It almost coincides with the annual average temperature of the location. Therefore, generally, if the embedment depth of the heat collecting pipe mechanism 111 is 5 m or more, good heat exchange with the underground heat is ensured. On the other hand, when the distance is less than 5 m, the air cooling ability in summer and the air heating ability in winter are inferior compared to the case of 5 m or more.

一方、採熱用管機構111を地中に埋設する際の掘削コストは高く、そして、同コストは、掘削深さが深くなるに連れて増大する。そのため、同管部材111の埋設深さを極力浅くしたいという要望がある。かかる要望に応えるべく、夏場の冷却能力及び冬場の加温能力の向上と、掘削コストの低減との両立を可能にする空調装置が提案されている(例えば、特許文献1)。   On the other hand, the excavation cost when the heat collecting pipe mechanism 111 is buried in the ground is high, and the cost increases as the excavation depth increases. Therefore, there is a desire to make the embedment depth of the pipe member 111 as shallow as possible. In order to meet such demands, an air conditioner has been proposed that makes it possible to simultaneously improve the cooling capacity in summer and the warming capacity in winter and reduce the excavation cost (for example, Patent Document 1).

特許文献1に記載の空調装置は、採熱用管機構111に替えて、図1Cに示すような採熱用管機構111aを用いる。この採熱用管機構111aは、空気が通る中空部Xaを有する管状体111aaと、管状体111aaの周部において螺旋状に配された水路111awと、を備える。また、水路111awの両端部には、熱交換用の水を給水する給水管やこれを排水する排水管が設けられ、給水管や排水管としては、図1Dに示すように、管状体111aaの内周面から水路111awに向けて貫通するジョイント構造111ajを備える。このような水路111awに水を上記管部材111aの一方の管端部111aeaから他方の管端部111aebへと流すようにすれば、同管部材111aを地中の深さ5m未満の浅い位置に埋設した場合に生じ得る地中熱の夏場の冷却能力の低下分及び冬場の加温能力の低下分を、当該一方の管端部111aeaから他方の管端部111aebへと流れる水との熱交換によって補うことができる。   The air conditioner described in Patent Document 1 uses a heat collecting pipe mechanism 111 a as shown in FIG. 1C instead of the heat collecting pipe mechanism 111. The heat collecting pipe mechanism 111a includes a tubular body 111aa having a hollow portion Xa through which air passes, and a water channel 111aw arranged in a spiral shape in the peripheral portion of the tubular body 111aa. Further, at both ends of the water channel 111aw, a water supply pipe for supplying water for heat exchange and a drain pipe for draining the water are provided. As the water supply pipe and the drain pipe, as shown in FIG. 1D, the tubular body 111aa A joint structure 111aj penetrating from the inner peripheral surface toward the water channel 111aw is provided. If water is allowed to flow through the water channel 111aw from one pipe end 111aea of the pipe member 111a to the other pipe end 111aeb, the pipe member 111a is placed at a shallow depth of less than 5 m in the ground. Heat exchange with the water flowing from the one pipe end portion 111 aea to the other pipe end portion 111 aeb for the decrease in the summer cooling capacity of the geothermal heat and the decrease in the warming capacity in winter that can occur when buried. Can be supplemented by.

特開2015−212606号公報Japanese Patent Laying-Open No. 2015-212606

ところが、採熱用管機構111aを採用した空調装置を運転すると、ジョイント構造111ajの周辺から水が漏れる可能性があることが判明した。かかる事象は、採熱用管機構111を地中に埋設する場合に限らず採熱用管機構111を地上に設置する場合にも同様である。   However, it has been found that when an air conditioner employing the heat collecting pipe mechanism 111a is operated, water may leak from the vicinity of the joint structure 111aj. This phenomenon is not limited to the case where the heat collecting pipe mechanism 111 is buried in the ground, and the same applies to the case where the heat collecting pipe mechanism 111 is installed on the ground.

本発明は、斯かる実情に鑑み、水漏れが起こりにくい採熱用管機構及びその製造方法、並びにこれを用いた空調装置を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a heat collecting pipe mechanism that hardly causes water leakage, a manufacturing method thereof, and an air conditioner using the same.

本発明の採熱用管機構は、一方から他方へ第1物質を流す第1流路を有する第1管部材と、前記第1管部材に形成され、一方から他方へ第2物質を流す第2流路を有する第2管部材と、を備え、前記第2管部材及び前記第1管部材を介して、前記第1物質及び前記第2物質の熱交換を行う採熱用管機構であって、前記第2管部材の端部の開口を塞ぐ閉塞部と、前記閉塞部を貫通する貫通パイプと、を備え、前記第2管部材は前記第1管部材の軸方向を中心に螺旋状に延び、前記第2管部材の端部の開口は、前記第2管部材の螺旋方向へ開口し、前記貫通パイプは、前記第2管部材の螺旋方向を向き、前記第1物質は気体であり、前記第2物質は液体であり、前記第1管部材と前記第2管部材とは、合成樹脂製であることを特徴とする。また、本発明の採熱用管機構は、一方から他方へ第1物質を流す第1流路を有する第1管部材と、前記第1管部材に形成され、一方から他方へ第2物質を流す第2流路を有する第2管部材と、を備え、前記第2管部材及び前記第1管部材を介して、前記第1物質及び前記第2物質の熱交換を行う採熱用管機構であって、前記第2管部材の端部の開口を塞ぐ溶着部と、前記溶着部を貫通する貫通パイプと、を備え、前記第1物質は気体であり、前記第2物質は液体であり、前記第1管部材と前記第2管部材とは合成樹脂製であることを特徴とする。 The heat collecting pipe mechanism of the present invention includes a first pipe member having a first flow path for flowing a first substance from one side to the other, a first pipe member formed on the first pipe member, and a second substance flowing from the one side to the other. A second pipe member having two flow paths, and a heat collecting pipe mechanism for exchanging heat between the first substance and the second substance via the second pipe member and the first pipe member. A closing portion that closes an opening at an end of the second tube member, and a through pipe that penetrates the closing portion, and the second tube member is spiral with the axial direction of the first tube member as a center. The opening of the end of the second tube member opens in the spiral direction of the second tube member, the through pipe faces the spiral direction of the second tube member, and the first substance is a gas. The second substance is a liquid, and the first pipe member and the second pipe member are made of synthetic resin . In addition, the heat collecting pipe mechanism of the present invention is formed in the first pipe member having the first flow path for flowing the first substance from one side to the other, and the second pipe substance from one side to the other. And a second pipe member having a second flow path for flowing, and a heat collecting pipe mechanism for exchanging heat between the first substance and the second substance via the second pipe member and the first pipe member And a welding part that closes an opening at an end of the second pipe member, and a through pipe that penetrates the welding part, wherein the first substance is a gas and the second substance is a liquid. The first tube member and the second tube member are made of synthetic resin .

本発明の空調装置は、上記の採熱用管機構を備えたことを特徴とする。  An air conditioner according to the present invention includes the above-described heat collecting pipe mechanism.

本発明の採熱用管機構の製造方法は、流路を有する螺旋管の端部に形成された流路開口を閉塞状態にする閉塞工程と、前記流路を外部空間と連通させる連通工程と、を備え、前記連通工程では、前記螺旋管の閉塞部に貫通パイプを貫通させ、前記流路開口は螺旋方向へ開口し、前記貫通パイプは前記螺旋方向へ向き、前記螺旋管は、合成樹脂製であることを特徴とする。また、本発明の採熱用管機構の製造方法は、流路を有する螺旋管の端部に形成された流路開口を溶着する閉塞工程と、前記流路を外部空間と連通させる連通工程と、を備え、前記連通工程では、前記螺旋管の溶着部に貫通パイプを貫通させ、前記螺旋管は、合成樹脂製であることを特徴とする。 The manufacturing method of the heat collecting pipe mechanism of the present invention includes a closing step of closing a flow passage opening formed at an end of a spiral tube having a flow passage, and a communication step of communicating the flow passage with an external space. In the communicating step, a through pipe is passed through the closed portion of the spiral tube , the flow passage opening opens in the spiral direction, the through pipe faces in the spiral direction, and the spiral tube is made of synthetic resin. It is made of . Further, the manufacturing method of the heat collecting pipe mechanism of the present invention includes a closing step of welding a flow channel opening formed at an end of a spiral tube having a flow channel, and a communication step of communicating the flow channel with an external space. In the communication step, a penetration pipe is passed through the welded portion of the spiral tube, and the spiral tube is made of a synthetic resin .

本発明によれば、水漏れが起こりにくい採熱用管機構や空調装置を提供することができる。   According to the present invention, it is possible to provide a heat collecting pipe mechanism and an air conditioner that are unlikely to cause water leakage.

従来の空調装置の概要を示す側面図である。It is a side view which shows the outline | summary of the conventional air conditioning apparatus. 地表からの深さと地中の温度との関係を月別に示すグラフである。It is a graph which shows the relationship between the depth from the surface of the earth, and the temperature of the ground for each month. 従来の採熱用管部材の概要を示す斜視図である。It is a perspective view which shows the outline | summary of the conventional pipe member for heat collection. 従来の採熱用管部材の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the conventional pipe member for heat collection. 空調装置の概要を示す側面図である。It is a side view which shows the outline | summary of an air conditioning apparatus. 採熱用管部材の概要を示す斜視図である。It is a perspective view which shows the outline | summary of the pipe member for heat collection. 採熱用管部材の概要を示す側面図である。It is a side view which shows the outline | summary of the pipe member for heat collection. (A)は、採熱用管部材の概要を示す正面図である。(B)は、(A)中の破線部の拡大図である。(A) is a front view which shows the outline | summary of the pipe member for heat collection. (B) is an enlarged view of a broken line part in (A). 採熱用管機構10の製造方法をフローチャートである。5 is a flowchart of a method for manufacturing the heat collecting pipe mechanism 10. 第2流路機構81を示す断面図である。7 is a cross-sectional view showing a second flow path mechanism 81. FIG. 採熱用管機構10の概要を示す部分拡大図である。It is the elements on larger scale which show the outline | summary of the pipe mechanism 10 for heat collection.

図2に示すように、空調装置2は、地中GNDに配される採熱用管機構10と、外部空間GX及び採熱用管機構10を連通する第1ダクト機構20と、採熱用管機構10及び建物120を連通する第2ダクト機構30と、外部空間GXから建物120へ空気を供給する空気供給機構50と、熱交換用の水の循環を行う水循環機構60と、を備える。   As shown in FIG. 2, the air conditioner 2 includes a heat collection pipe mechanism 10 disposed in the underground GND, a first duct mechanism 20 that communicates the external space GX and the heat collection pipe mechanism 10, and a heat collection apparatus. A second duct mechanism 30 that communicates the pipe mechanism 10 and the building 120, an air supply mechanism 50 that supplies air from the external space GX to the building 120, and a water circulation mechanism 60 that circulates water for heat exchange are provided.

図3〜4に示すように、採熱用管機構10は、一方から他方へ空気(第1物質)を流す第1流路11Xを有する管部材11と、一方から他方へ熱交換用の地下水(第2物質)を流す第2流路12Xを有する螺旋管12と、を備える。なお、管部材11と螺旋管12とは一体となっていることが好ましい。   As shown in FIGS. 3 to 4, the heat collecting pipe mechanism 10 includes a pipe member 11 having a first flow path 11 </ b> X that flows air (first substance) from one side to the other, and groundwater for heat exchange from one side to the other. And a spiral tube 12 having a second flow path 12X for flowing (second substance). The tube member 11 and the spiral tube 12 are preferably integrated.

管部材11は、円筒状に形成されるものであり、地中GNDにおいてほぼ水平方向に配される。採熱用管機構10として、管部材11が複数用いられる場合、隣り合う管部材11の第1流路11Xの端部の開口が正対するように配される。螺旋管12は、採熱用管機構10の管軸方向C1周りに螺旋状に延びるものであり、管部材11の外周面11Gにおいて外側へ突設される。   The pipe member 11 is formed in a cylindrical shape, and is arranged in a substantially horizontal direction in the underground GND. When a plurality of tube members 11 are used as the heat collecting tube mechanism 10, the tube members 11 are arranged so that the openings at the ends of the first flow paths 11 </ b> X of the adjacent tube members 11 face each other. The spiral tube 12 extends spirally around the tube axis direction C1 of the heat collecting tube mechanism 10 and protrudes outward on the outer peripheral surface 11G of the tube member 11.

図2に戻って、採熱用管機構10は、さらに、第2流路12Xの一方の開口端部に設けられた給水機構15と、第2流路12Xの他方の開口端部に設けられた排水機構16と、を備える。   Returning to FIG. 2, the heat collecting pipe mechanism 10 is further provided at the water supply mechanism 15 provided at one opening end of the second flow path 12X and the other opening end of the second flow path 12X. A drainage mechanism 16.

図5に示すように、給水機構15は、第2流路12Xの開口端部を塞ぐ閉塞部材15Cと、閉塞部材15Cを貫通する貫通パイプ15Pと、貫通パイプ15Pに接続されたエルボ管15Lと、エルボ管15Lに接続された配管15Hと、を備える。   As shown in FIG. 5, the water supply mechanism 15 includes a closing member 15C that closes the open end of the second flow path 12X, a through pipe 15P that passes through the closing member 15C, and an elbow pipe 15L that is connected to the through pipe 15P. And a pipe 15H connected to the elbow pipe 15L.

閉塞部材15Cの厚さTH1は、第2流路12Xを形成する螺旋管12の厚さTH0よりも厚いことが好ましい。閉塞部材15Cには、外部空間と第2流路12Xとを連通する孔15CX(図8(C))が形成される。貫通パイプ15Pの一方側の端部は、孔15CXに挿入可能となっている。貫通パイプ15Pの一方側の端部を孔15CXに挿入すると、貫通パイプ15Pの一方側の端部開口は、第2流路12Xに開口する。貫通パイプ15Pの他方側の端部は、エルボ管15Lと接続している。これにより、給水機構15が、管部材11の外径方向R1(図5(A))や管軸方向C1(図4)において、管部材11よりも突出せずに済む。   The thickness TH1 of the closing member 15C is preferably thicker than the thickness TH0 of the spiral tube 12 that forms the second flow path 12X. The blocking member 15C is formed with a hole 15CX (FIG. 8C) that communicates the external space with the second flow path 12X. One end of the through pipe 15P can be inserted into the hole 15CX. When one end of the through pipe 15P is inserted into the hole 15CX, one end opening of the through pipe 15P opens into the second flow path 12X. The other end of the through pipe 15P is connected to the elbow pipe 15L. Thereby, the water supply mechanism 15 does not protrude from the pipe member 11 in the outer diameter direction R1 (FIG. 5A) and the pipe axis direction C1 (FIG. 4) of the pipe member 11.

なお、貫通パイプ15Pの一方側の端部開口は、閉塞部材15Cの壁面15CAに対して、面一となっていてもよいし、陥没または突出していてもよい。また、貫通パイプ15Pの一方側の端部の外周部には、オネジが形成されることが好ましい。さらに、孔15CXには、貫通パイプ15Pのオネジに螺合可能なメネジが形成されることが好ましい(図5(B))。加えて、貫通パイプ15Pの外周部には、シールテープが巻きつけられていることが好ましい。   The end opening on one side of the through pipe 15P may be flush with the wall surface 15CA of the closing member 15C, or may be depressed or protruded. Moreover, it is preferable that an external thread is formed in the outer peripheral part of the one end part of the penetration pipe 15P. Furthermore, it is preferable that a female screw that can be screwed into the male screw of the through pipe 15P is formed in the hole 15CX (FIG. 5B). In addition, a seal tape is preferably wound around the outer peripheral portion of the through pipe 15P.

排水機構16は、給水機構15と同様の構造であるためその詳細の説明は省略する。   Since the drainage mechanism 16 has the same structure as the water supply mechanism 15, a detailed description thereof will be omitted.

図2に示すように、空気供給機構50は、ダクト機構20に設けられるポンプと、ダクト機構20に設けられる各種センサと、各部と接続するコントローラとを備える。コントローラは、各種センサからのセンシング信号を読み取り、各種ポンプの制御を行う。空気供給機構50より、外部空間の空気を地中の採熱用管機構10へ送るとともに、地中で熱交換された空気を建物120へ送ることができる。   As shown in FIG. 2, the air supply mechanism 50 includes a pump provided in the duct mechanism 20, various sensors provided in the duct mechanism 20, and a controller connected to each part. The controller reads sensing signals from various sensors and controls various pumps. From the air supply mechanism 50, the air in the external space can be sent to the underground heat collecting pipe mechanism 10, and the heat exchanged in the ground can be sent to the building 120.

水循環機構60は、給水機構15と排水機構16とをつなぐ配管61と、配管61を集約する配管ユニット62とを有する。配管ユニット62は、配管61に設けられるポンプ62Pと、配管61に設けられる各種センサ62Sと、各部と接続するコントローラ62Cなどを備え、配管61及び第2流路12X(図5)を含む循環路において、熱交換用の水の循環を行う。熱交換用の水として、年間ほぼ一定の温度である地下水を用いる。このような地下水を熱交換用の水として用いることにより、夏場における空気の冷却能力不足と、冬場における空気の加熱能力不足とを補うことができる。   The water circulation mechanism 60 includes a pipe 61 that connects the water supply mechanism 15 and the drainage mechanism 16 and a pipe unit 62 that collects the pipes 61. The piping unit 62 includes a pump 62P provided in the piping 61, various sensors 62S provided in the piping 61, a controller 62C connected to each portion, and the like, and a circulation path including the piping 61 and the second flow path 12X (FIG. 5). Circulates water for heat exchange. As the water for heat exchange, groundwater that is at a constant temperature annually is used. By using such groundwater as water for heat exchange, it is possible to compensate for the lack of air cooling capability in summer and the lack of air heating capability in winter.

ここで、空気供給機構50や水循環機構60の各種センサには、流量センサや温度センサ等が含まれる。   Here, various sensors of the air supply mechanism 50 and the water circulation mechanism 60 include a flow sensor, a temperature sensor, and the like.

次に、空調装置2の使用方法について説明する。   Next, a method for using the air conditioner 2 will be described.

図2に示すように、水循環機構60は、配管61及び第2流路12X(図5)を含む循環路において地下水を循環させる。空気供給機構50は、採熱用管機構10の第1流路11Xを介して、外部空間の空気を建物120へ送る。水循環機構60及び空気供給機構50によって、第1流路11Xを通過する空気は、管部材11周りの地中GNDと第2流路12Xを通過する水との間で熱交換が行われる。この結果、地中GNDと、地下水と、第1流路11Xを通過する空気と、の間で熱交換を効率よく行うことができる。   As shown in FIG. 2, the water circulation mechanism 60 circulates groundwater in a circulation path including a pipe 61 and a second flow path 12X (FIG. 5). The air supply mechanism 50 sends the air in the external space to the building 120 via the first flow path 11X of the heat collecting pipe mechanism 10. By the water circulation mechanism 60 and the air supply mechanism 50, the air passing through the first flow path 11X undergoes heat exchange between the underground GND around the tube member 11 and the water passing through the second flow path 12X. As a result, heat exchange can be efficiently performed between the underground GND, groundwater, and air passing through the first flow path 11X.

ここで、ポンプ62Pによる送液圧力を高めると、第2流路12Xにおける水圧が増大する。この結果、螺旋管12は、水圧増大によって膨れ上がるように変形する。従来技術では、給水機構15や排水機構16に相当するジョイント構造111ajの貫通パイプ111ap(図1D)は、螺旋管12のうち変形しやすい部分を貫通するため、水圧の増大によって、貫通パイプ111apと螺旋管12との隙間のシール効果が小さくなり、水漏れが起こりやすい。   Here, when the liquid feeding pressure by the pump 62P is increased, the water pressure in the second flow path 12X increases. As a result, the spiral tube 12 is deformed so as to swell due to an increase in water pressure. In the prior art, the through pipe 111ap (FIG. 1D) of the joint structure 111aj corresponding to the water supply mechanism 15 and the drainage mechanism 16 penetrates a portion of the spiral pipe 12 that is easily deformed. The sealing effect of the gap with the spiral tube 12 is reduced, and water leakage is likely to occur.

一方、本発明では、図5に示すように、閉塞部材15Cの厚みTH1が、第2流路12Xを形成する螺旋管12の厚みTH0よりも厚いため、水圧の増大に起因する閉塞部材15Cの変形は、螺旋管12よりも起こりにくい。また、貫通パイプ15Pは、変形の起こりにくい閉塞部材15Cを貫通する。したがって、水圧の増大に起因する水漏れが起こりにくい。   On the other hand, in the present invention, as shown in FIG. 5, since the thickness TH1 of the closing member 15C is thicker than the thickness TH0 of the spiral tube 12 forming the second flow path 12X, the blocking member 15C is caused by an increase in water pressure. Deformation is less likely to occur than the helical tube 12. Further, the through pipe 15P penetrates the closing member 15C which is not easily deformed. Therefore, water leakage due to an increase in water pressure is unlikely to occur.

また、従来技術(図1D)においては、ワッシャーを介したボルト締めにより、螺旋管12の内面に対して貫通パイプ111apを固定して、シール性を確保しようとしている。しかしながら、螺旋管12の内面は曲面である。さらに、後述するように、螺旋管12が押出成形体の場合には、成形の跡である微小な凹凸が螺旋管12の内面に残ってしまう。このような状態の螺旋管12の内面に対して、ワッシャーを介したボルト締めを用いて、貫通パイプ111apを固定しても、高いシール性は実現しにくい。本発明では、閉塞部材15Cに孔15CXを形成しそこに貫通パイプ15Pを螺合するため、従来技術に比べて、高いシール性を確保することができる。   In the prior art (FIG. 1D), the through pipe 111ap is fixed to the inner surface of the spiral tube 12 by bolting via a washer to secure the sealing performance. However, the inner surface of the spiral tube 12 is a curved surface. Furthermore, as will be described later, when the spiral tube 12 is an extrusion-molded body, minute irregularities that are marks of molding remain on the inner surface of the spiral tube 12. Even if the through pipe 111ap is fixed to the inner surface of the spiral tube 12 in such a state by using bolting via a washer, it is difficult to achieve high sealing performance. In the present invention, since the hole 15CX is formed in the closing member 15C and the through pipe 15P is screwed into the hole 15CX, higher sealing performance can be ensured as compared with the prior art.

熱交換率の観点からみると、第2流路12Xを形成する螺旋管12のうち、内周側の部分は、地下水と空気との熱交換が行われる経路(以下、熱交換経路と称する)となるため、当該部分はできるだけ薄くしたい。同様に、その外周側の部分は、地中GNDと地下水との熱交換が行われる熱交換経路となるため、当該部分もできるだけ薄くしたい。一方、第2流路12Xと外部空間とが連通する経路は、閉塞部材15Cのように、熱交換経路を避けるように設定されている。このため、熱交換率の低下を抑えながら、地下水の循環及び地下水の漏れ防止を行うことができる。すなわち、第2流路12Xと外部空間とにおける地下水の循環及び地下水の漏れ防止と、熱交換率の確保とを個別に設計しやすくなる。   From the viewpoint of the heat exchange rate, the inner peripheral side portion of the spiral tube 12 forming the second flow path 12X is a path through which heat is exchanged between groundwater and air (hereinafter referred to as a heat exchange path). Therefore, I want to make that part as thin as possible. Similarly, since the outer peripheral portion serves as a heat exchange path for exchanging heat between the underground GND and the groundwater, it is desired to make the portion as thin as possible. On the other hand, the path through which the second flow path 12X communicates with the external space is set so as to avoid the heat exchange path, like the closing member 15C. For this reason, it is possible to prevent groundwater circulation and groundwater leakage while suppressing a decrease in the heat exchange rate. That is, it becomes easy to individually design the circulation of groundwater and the prevention of leakage of groundwater in the second flow path 12X and the external space, and the securing of the heat exchange rate.

さらに、閉塞部材15Cの孔15CXに貫通パイプ15Pを螺合する場合には、貫通パイプ15Pの開口方向が第2流路12Xにおける流れ方向に平行となるため、貫通パイプ111apの開口方向が第2流路12Xにおける流れ方向に直交する場合に比べ、第2流路12Xから貫通パイプ15Pに向けて水が流れやすくなる。したがって、熱交換率は向上する。   Further, when the through pipe 15P is screwed into the hole 15CX of the closing member 15C, the opening direction of the through pipe 15P is parallel to the flow direction in the second flow path 12X. Compared with the case where the flow direction is orthogonal to the flow path 12X, water becomes easier to flow from the second flow path 12X toward the through pipe 15P. Therefore, the heat exchange rate is improved.

次に、採熱用管機構10の製造方法について説明する。   Next, a method for manufacturing the heat collecting pipe mechanism 10 will be described.

採熱用管機構10の製造方法は、図6に示すように、第2流路12Xを有する第2流路機構81を形成する第2流路形成工程90と、螺旋状の第2流路機構81から採熱用管機構10を形成する管機構形成工程92と、閉塞部材を用いて第2流路12Xの端部開口を閉塞する閉塞工程94と、閉塞部材15Cに孔を開ける穴あけ工程96と、閉塞部材15Cに貫通パイプ15Pを貫通させる貫通工程98と、を備える。   As shown in FIG. 6, the manufacturing method of the heat collecting pipe mechanism 10 includes a second flow path forming step 90 for forming a second flow path mechanism 81 having a second flow path 12X, and a spiral second flow path. A tube mechanism forming step 92 for forming the heat collecting tube mechanism 10 from the mechanism 81, a closing step 94 for closing the end opening of the second flow path 12X using the closing member, and a drilling step for opening a hole in the closing member 15C. 96 and a penetrating process 98 for penetrating the penetrating pipe 15P through the closing member 15C.

第2流路形成工程90では、金型を用いて、第2流路12Xとなる中空部を有する筒状体の第2流路機構81を形成する。本実施形態では、第2流路機構81の中空部は、図7に示すように断面台形状となっている。   In the second flow path forming step 90, a cylindrical second flow path mechanism 81 having a hollow portion that becomes the second flow path 12X is formed using a mold. In the present embodiment, the hollow portion of the second flow path mechanism 81 has a trapezoidal cross section as shown in FIG.

管機構形成工程92では、第2流路機構81を螺旋状にして、隣接部81D同士を溶着させる。こうして、螺旋状の第2流路機構81から採熱用管機構10が形成される(図5)。このとき、第2流路機構81の断面方向において、第2流路機構81の内周部分81Nが管部材11として機能し、第2流路機構81の外周部分81Gが螺旋管12として機能する(図8(A))。   In the pipe mechanism forming step 92, the second flow path mechanism 81 is spiraled and the adjacent portions 81D are welded together. Thus, the heat collecting pipe mechanism 10 is formed from the spiral second flow path mechanism 81 (FIG. 5). At this time, in the cross-sectional direction of the second flow path mechanism 81, the inner peripheral portion 81N of the second flow path mechanism 81 functions as the tube member 11, and the outer peripheral portion 81G of the second flow path mechanism 81 functions as the spiral tube 12. (FIG. 8 (A)).

閉塞工程94では、閉塞部材15Cを用いて、第2流路12Xの端部開口12XXを閉塞する(図8(B))。図示するように、閉塞部材15Cは、第2流路12X内に配してもよいし、第2流路12Xの外側に配してもよい。閉塞部材15Cの材料としては、特に限定されないが、第2流路機構81と同じ材料や第2流路機構81よりも変形しにくい材料を用いることが好ましい。なお、閉塞部材15Cの材料として第2流路機構81よりも変形しやすい材料を用いる場合には、閉塞部材15Cの厚みを、第2流路機構81よりも変形しにくい程度のものとすればよい。   In the closing step 94, the end opening 12XX of the second flow path 12X is closed using the closing member 15C (FIG. 8B). As illustrated, the closing member 15C may be disposed in the second flow path 12X or may be disposed outside the second flow path 12X. The material of the closing member 15C is not particularly limited, but it is preferable to use the same material as the second flow path mechanism 81 or a material that is more difficult to deform than the second flow path mechanism 81. When a material that is more easily deformed than the second flow path mechanism 81 is used as the material of the closing member 15C, the thickness of the closing member 15C is set to a level that is less likely to be deformed than the second flow path mechanism 81. Good.

閉塞の方法としては、閉塞部材15Cの材料が合成樹脂であれば、溶着が好ましい。閉塞部材15Cや第2流路機構81の材料として用いられる合成樹脂としては、ポリエチレン等があり、中でも高密度ポリエチレンが用いられる。なお、閉塞部材15Cの材料が金属であれば溶接を用いてもよい。閉塞部材15Cや第2流路機構81の材料として用いられる金属としては、ステンレス鋼やアルミニウム合金等がある。また、閉塞の態様としては、閉塞部材15Cと採熱用管機構10との接触部分を溶着又は溶接を行ってもよいし、閉塞部材15C全体に対し溶着又は溶接を行ってもよい。   As a closing method, welding is preferable if the material of the closing member 15C is a synthetic resin. Examples of the synthetic resin used as a material for the closing member 15C and the second flow path mechanism 81 include polyethylene, and among them, high-density polyethylene is used. In addition, if the material of the closing member 15C is a metal, welding may be used. Examples of the metal used as the material of the closing member 15C and the second flow path mechanism 81 include stainless steel and aluminum alloy. Moreover, as an aspect of closure, the contact portion between the closure member 15C and the heat collecting pipe mechanism 10 may be welded or welded, or the entire closure member 15C may be welded or welded.

穴あけ工程96では、第2流路12Xと外部空間を連通する孔15CXを閉塞部材15Cに設け、孔15CXにメネジを形成する(図8(C))。   In the drilling step 96, a hole 15CX communicating with the second flow path 12X and the external space is provided in the closing member 15C, and a female screw is formed in the hole 15CX (FIG. 8C).

貫通工程98では、孔15CXに対して螺合可能な貫通パイプ15Pを螺合する(図8(D))。これにより、給水機構15や排水機構16を通して、第2流路12Xと外部空間とが連通する。   In the penetration step 98, a penetration pipe 15P that can be screwed into the hole 15CX is screwed (FIG. 8D). Accordingly, the second flow path 12X and the external space communicate with each other through the water supply mechanism 15 and the drainage mechanism 16.

なお、管機構形成工程92は、閉塞工程94、穴あけ工程96及び貫通工程98よりも前に行ったが、本発明はこれに限られず、閉塞工程94、穴あけ工程96及び貫通工程98のうちいずれかの工程の後に行ってもよい。   The pipe mechanism forming step 92 is performed before the closing step 94, the drilling step 96, and the penetrating step 98. However, the present invention is not limited to this, and any of the closing step 94, the punching step 96, and the penetrating step 98 is performed. You may carry out after that process.

なお、上記実施形態では、第1物質を空気とし、第2物質を地下水としたが、本発明はこれに限られない。例えば、第1物質は、窒素や酸素などの気体でもよいし、第2物質としては、温度が調節された水やその他の液体を用いてもよい。   In the above embodiment, the first substance is air and the second substance is groundwater, but the present invention is not limited to this. For example, the first substance may be a gas such as nitrogen or oxygen, and the second substance may be water or other liquid whose temperature is adjusted.

なお、上記実施形態では、螺旋管12は、管部材11の外周面11Gにおいて外側へ突設されるとしたが(図5(B))、本発明はこれに限られず、管部材11の内周面11Nにおいて内側へ突設してもよいし、管部材11の肉厚部11Cに設けられてもよい。   In the above-described embodiment, the spiral tube 12 is projected outwardly on the outer peripheral surface 11G of the tube member 11 (FIG. 5B), but the present invention is not limited to this, and the inside of the tube member 11 It may project inward on the peripheral surface 11N or may be provided on the thick portion 11C of the pipe member 11.

上記実施形態では、採熱用管機構10を地中GNDに配したが、本発明はこれに限られず、採熱用管機構10を地上に配してもよい。採熱用管機構10を地上に配する場合には、管部材11と螺旋管12とが一体となった管ユニットを覆う囲い部材と、管ユニットと囲い部材との隙間に充填された充填材と、を備えることが好ましい。また、熱伝導率は、囲い部材、充填材、管ユニットの順に高くなることが好ましい。囲い部材は、3層構造となっており、断熱層と、断熱層の外側に位置する外層と、断熱層の内側に位置する内層と、を備えることが好ましい。断熱層は硬質ウレタンフォーム(硬質ポリウレタン発泡体)からなり、その熱伝導率は、充填材及び管ユニットよりも低い。外層の材料としては、鋼板等があり、内層の材料としては、アルミシート等がある。充填材としては、水、砂(川砂、山砂、珪砂など)、土等を用いてもよい。砂を用いる場合には、熱伝導率を高める目的から、含水状態の砂を用いることが好ましい。またさらに、熱伝導率を高める目的から、砂や土に対して、1〜20%の容積含有率で、酸化ケイ素、アルミナ及び高炉スラグのうち少なくとも1つからなる粒状物を混入させてもよい。   In the above embodiment, the heat collecting pipe mechanism 10 is arranged in the ground GND, but the present invention is not limited to this, and the heat collecting pipe mechanism 10 may be arranged on the ground. When the heat collecting pipe mechanism 10 is arranged on the ground, an enclosure member that covers the pipe unit in which the pipe member 11 and the spiral pipe 12 are integrated, and a filler that fills a gap between the pipe unit and the enclosure member. And preferably. Moreover, it is preferable that thermal conductivity becomes high in order of an enclosure member, a filler, and a pipe unit. The enclosing member has a three-layer structure, and preferably includes a heat insulating layer, an outer layer located outside the heat insulating layer, and an inner layer located inside the heat insulating layer. The heat insulating layer is made of rigid urethane foam (rigid polyurethane foam), and its thermal conductivity is lower than that of the filler and the tube unit. The outer layer material includes a steel plate, and the inner layer material includes an aluminum sheet. As the filler, water, sand (river sand, mountain sand, quartz sand, etc.), soil or the like may be used. When using sand, it is preferable to use water-containing sand for the purpose of increasing the thermal conductivity. Furthermore, for the purpose of increasing the thermal conductivity, a granular material composed of at least one of silicon oxide, alumina, and blast furnace slag may be mixed at a volume content of 1 to 20% with respect to sand or earth. .

上記実施形態では、管部材11の周りに螺旋状の第2流路12Xを設けたが、本発明はこれに限られず、管部材11の周りに直線上の第2流路12Xを設けてもよい。   In the above embodiment, the spiral second flow path 12X is provided around the tube member 11. However, the present invention is not limited to this, and a straight second flow path 12X may be provided around the tube member 11. Good.

尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

2 空調装置
10 採熱用管機構
15 給水機構
15C 閉塞部材
15P 貫通パイプ
15L エルボ管
15H 配管
16 排水機構
20 第1ダクト機構
30 第2ダクト機構
50 空気供給機構
60 水循環機構


2 Air conditioner 10 Heat collection pipe mechanism 15 Water supply mechanism 15C Closure member 15P Through pipe 15L Elbow pipe 15H Pipe 16 Drainage mechanism 20 First duct mechanism 30 Second duct mechanism 50 Air supply mechanism 60 Water circulation mechanism


Claims (11)

一方から他方へ第1物質を流す第1流路を有する第1管部材と、
前記第1管部材に形成され、一方から他方へ第2物質を流す第2流路を有する第2管部材と、を備え、
前記第2管部材及び前記第1管部材を介して、前記第1物質及び前記第2物質の熱交換を行う採熱用管機構であって、
前記第2管部材の端部の開口を塞ぐ閉塞部と、
前記閉塞部を貫通する貫通パイプと、を備え、
前記第2管部材は前記第1管部材の軸方向を中心に螺旋状に延び、
前記第2管部材の端部の開口は前記第2管部材の螺旋方向へ向き、
前記貫通パイプは前記第2管部材の螺旋方向を向き、
前記第1物質は気体であり、前記第2物質は液体であり、
前記第1管部材と前記第2管部材とは合成樹脂製であることを特徴とする採熱用管機構。
A first pipe member having a first flow path for flowing a first substance from one to the other;
A second pipe member formed on the first pipe member and having a second flow path for flowing a second substance from one to the other,
A heat collecting pipe mechanism for performing heat exchange between the first substance and the second substance via the second pipe member and the first pipe member;
A blocking portion that closes an opening at an end of the second pipe member;
A through pipe penetrating the blocking portion,
The second pipe member extends spirally around the axial direction of the first pipe member,
The opening at the end of the second pipe member is directed in the spiral direction of the second pipe member,
The through pipe faces the spiral direction of the second pipe member,
The first substance is a gas and the second substance is a liquid;
The heat collecting pipe mechanism, wherein the first pipe member and the second pipe member are made of synthetic resin.
前記閉塞部は溶着部であることを特徴とする請求項1記載の採熱用管機構。   2. The heat collecting pipe mechanism according to claim 1, wherein the closed portion is a welded portion. 一方から他方へ第1物質を流す第1流路を有する第1管部材と、
前記第1管部材に形成され、一方から他方へ第2物質を流す第2流路を有する第2管部材と、を備え、
前記第2管部材及び前記第1管部材を介して、前記第1物質及び前記第2物質の熱交換を行う採熱用管機構であって、
前記第2管部材の端部の開口を塞ぐ溶着部と、
前記溶着部を貫通する貫通パイプと、を備え、
前記第1物質は気体であり、前記第2物質は液体であり、
前記第1管部材と前記第2管部材とは合成樹脂製であることを特徴とする採熱用管機構。
A first pipe member having a first flow path for flowing a first substance from one to the other;
A second pipe member formed on the first pipe member and having a second flow path for flowing a second substance from one to the other,
A heat collecting pipe mechanism for performing heat exchange between the first substance and the second substance via the second pipe member and the first pipe member;
A welded portion that closes an opening at an end of the second pipe member;
A through pipe penetrating the welded portion,
The first substance is a gas and the second substance is a liquid;
The heat collecting pipe mechanism, wherein the first pipe member and the second pipe member are made of synthetic resin.
前記貫通パイプによる貫通部分の厚さは、前記第2流路を形成する部材の他の部分よりも厚いことを特徴とする請求項1ないし3のうちいずれか1項記載の採熱用管機構。   4. The heat collecting pipe mechanism according to claim 1, wherein a thickness of a penetrating portion by the penetrating pipe is thicker than other portions of the member forming the second flow path. 5. . 前記管部材は押出成形体からなることを特徴とする請求項1ないし4のうちいずれか1項記載の採熱用管機構。   The tube structure for heat collection according to any one of claims 1 to 4, wherein the tube member is formed of an extruded product. 請求項1ないし5のうちいずれか1項記載の採熱用管機構を備えたことを特徴とする空調装置。   An air conditioner comprising the heat collecting pipe mechanism according to any one of claims 1 to 5. 流路を有する螺旋管の端部に形成された流路開口を閉塞状態にする閉塞工程と、
前記流路を外部空間と連通させる連通工程と、を備え、
前記連通工程では、前記螺旋管の閉塞部に貫通パイプを貫通させ、
前記流路開口は螺旋方向へ開口し、
前記貫通パイプは前記螺旋方向へ向き、
前記螺旋管は、合成樹脂製であることを特徴とする採熱用管機構の製造方法。
A closing step of closing the flow path opening formed at the end of the spiral tube having the flow path;
A communication step of communicating the flow path with an external space,
In the communication step, a through pipe is passed through the closed portion of the spiral tube,
The channel opening opens in a spiral direction;
The through pipe is directed in the spiral direction,
The method of manufacturing a heat collecting pipe mechanism, wherein the spiral pipe is made of a synthetic resin.
前記閉塞工程では流路開口に対して溶着を行って流路開口を閉塞状態にし、
前記閉塞部は溶着部であることを特徴とする請求項7記載の採熱用管機構の製造方法。
In the blockage step, the channel opening is closed by welding the channel opening,
The method for manufacturing a heat collecting pipe mechanism according to claim 7, wherein the closed portion is a welded portion .
流路を有する螺旋管の端部に形成された流路開口を溶着する閉塞工程と、
前記流路を外部空間と連通させる連通工程と、を備え、
前記連通工程では、前記螺旋管の溶着部に貫通パイプを貫通させ、
前記螺旋管は、合成樹脂製であることを特徴とする採熱用管機構の製造方法。
A closing step of welding a channel opening formed at the end of a spiral tube having a channel;
A communication step of communicating the flow path with an external space,
In the communication step, a through pipe is passed through the welded portion of the spiral tube,
The method of manufacturing a heat collecting pipe mechanism, wherein the spiral pipe is made of a synthetic resin.
前記閉塞工程及び前記連通工程の間に行われ、前記貫通パイプが挿通可能な孔を形成する孔形成工程を備えることを特徴とする請求項7ないし9のうちいずれか1項記載の採熱用管機構の製造方法。   The heat collecting device according to any one of claims 7 to 9, further comprising a hole forming step which is performed between the closing step and the communication step and forms a hole through which the through pipe can be inserted. A method of manufacturing a pipe mechanism. 前記閉塞工程の前に行われ、前記螺旋管の隣接部同士を接続させて、前記螺旋管によって囲まれてなる管構造を形成する管構造形成工程を備え、
前記螺旋管は、液体が流通し、前記管構造は、気体が流通することを特徴とする請求項7ないし10のうちいずれか1項記載の採熱用管機構の製造方法。
A tube structure forming step that is performed before the closing step and connects adjacent portions of the spiral tube to form a tube structure surrounded by the spiral tube;
11. The method of manufacturing a heat collecting pipe mechanism according to claim 7, wherein a liquid flows through the spiral tube and a gas flows through the tube structure. 11.
JP2017005591A 2017-01-17 2017-01-17 Heat collection pipe mechanism, manufacturing method thereof, and air conditioner Expired - Fee Related JP6273053B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005591A JP6273053B1 (en) 2017-01-17 2017-01-17 Heat collection pipe mechanism, manufacturing method thereof, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005591A JP6273053B1 (en) 2017-01-17 2017-01-17 Heat collection pipe mechanism, manufacturing method thereof, and air conditioner

Publications (2)

Publication Number Publication Date
JP6273053B1 true JP6273053B1 (en) 2018-01-31
JP2018115785A JP2018115785A (en) 2018-07-26

Family

ID=61074872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005591A Expired - Fee Related JP6273053B1 (en) 2017-01-17 2017-01-17 Heat collection pipe mechanism, manufacturing method thereof, and air conditioner

Country Status (1)

Country Link
JP (1) JP6273053B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143947A (en) * 2018-02-23 2019-08-29 株式会社シミズ・ビルライフケア Air conditioning system, air conditioning method, food storage system, food storage method, air conditioning control device and air conditioning control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268192A (en) * 1991-02-20 1992-09-24 Nikkiso Co Ltd Double coil type submerged cooler
JP2012026680A (en) * 2010-07-26 2012-02-09 Fujitsu Ltd Air conditioning system, and method of controlling the air conditioning system
JP2013513081A (en) * 2009-12-04 2013-04-18 リースコスキー、マウリ、アンテロ Low-energy system ground circuit
JP2013228085A (en) * 2012-03-30 2013-11-07 Sekisui Chem Co Ltd Method for constructing double-pipe structure with helical pipe arrangement, and pipe-making machine used for the method
WO2014061313A1 (en) * 2012-10-16 2014-04-24 日プレ株式会社 Air-conditioning device and air-conditioning method
JP2015051597A (en) * 2013-09-09 2015-03-19 積水化学工業株式会社 Method of producing member for pipe formation
JP2015212606A (en) * 2014-04-17 2015-11-26 池田テクニカル株式会社 Air conditioner
JP2016090213A (en) * 2014-11-11 2016-05-23 吉佳エンジニアリング株式会社 Heat exchanging structure and heat utilization method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268192A (en) * 1991-02-20 1992-09-24 Nikkiso Co Ltd Double coil type submerged cooler
JP2013513081A (en) * 2009-12-04 2013-04-18 リースコスキー、マウリ、アンテロ Low-energy system ground circuit
JP2012026680A (en) * 2010-07-26 2012-02-09 Fujitsu Ltd Air conditioning system, and method of controlling the air conditioning system
JP2013228085A (en) * 2012-03-30 2013-11-07 Sekisui Chem Co Ltd Method for constructing double-pipe structure with helical pipe arrangement, and pipe-making machine used for the method
WO2014061313A1 (en) * 2012-10-16 2014-04-24 日プレ株式会社 Air-conditioning device and air-conditioning method
JP2015051597A (en) * 2013-09-09 2015-03-19 積水化学工業株式会社 Method of producing member for pipe formation
JP2015212606A (en) * 2014-04-17 2015-11-26 池田テクニカル株式会社 Air conditioner
JP2016090213A (en) * 2014-11-11 2016-05-23 吉佳エンジニアリング株式会社 Heat exchanging structure and heat utilization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143947A (en) * 2018-02-23 2019-08-29 株式会社シミズ・ビルライフケア Air conditioning system, air conditioning method, food storage system, food storage method, air conditioning control device and air conditioning control method

Also Published As

Publication number Publication date
JP2018115785A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US20090025902A1 (en) Probe For Collecting Thermal Energy From The Ground For A Heat Pump, And A Collection Network Equipped With Such Probes
SI20343A (en) Air conditioning system for buildings and air-conditioned building, especially a zero energy house
JP2007139370A (en) Underground heat exchanger
US20100252228A1 (en) Geothermal System
JP6273053B1 (en) Heat collection pipe mechanism, manufacturing method thereof, and air conditioner
JPS5818087A (en) Structure of heat exchanger pipe used for air conditioning system
JP5297044B2 (en) Underground heat exchanger
US9551535B2 (en) Apparatus and method for cooling selected portions of swimming pool water
US10883766B2 (en) System of double concentric pipes having different enthalpy
CN111059647B (en) Planning method for air source and ground source heat pump air conditioning system
JP2015055365A (en) Heat collecting pipe for underground thermal heat pump system
JP2005069538A (en) Buried pipe for heat exchange
KR200269746Y1 (en) Resin pipe
JP3148898U (en) Geothermal building
JP6738596B2 (en) Underground heat exchange mechanism
JP3325251B2 (en) Pit casing
JP6537112B2 (en) Freezing method
KR101606830B1 (en) Tube Well-type Heat Exchanger for Heat Pump System
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
JP2006152670A (en) Outside heat insulation system
JP2018115786A (en) Heat extraction pipe mechanism, manufacturing method of the same, and air conditioner
JP4859871B2 (en) Buried pipe for heat exchange
WO2014061313A1 (en) Air-conditioning device and air-conditioning method
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
JP5836452B2 (en) Air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180104

R150 Certificate of patent or registration of utility model

Ref document number: 6273053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees