JP2018115786A - Heat extraction pipe mechanism, manufacturing method of the same, and air conditioner - Google Patents

Heat extraction pipe mechanism, manufacturing method of the same, and air conditioner Download PDF

Info

Publication number
JP2018115786A
JP2018115786A JP2017005592A JP2017005592A JP2018115786A JP 2018115786 A JP2018115786 A JP 2018115786A JP 2017005592 A JP2017005592 A JP 2017005592A JP 2017005592 A JP2017005592 A JP 2017005592A JP 2018115786 A JP2018115786 A JP 2018115786A
Authority
JP
Japan
Prior art keywords
pipe
water
temperature
heat
pipe member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017005592A
Other languages
Japanese (ja)
Inventor
租 池田
Mitsugi Ikeda
租 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017005592A priority Critical patent/JP2018115786A/en
Publication of JP2018115786A publication Critical patent/JP2018115786A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which can be used regardless of a situation of an installation location.SOLUTION: The air conditioner includes: a heat extraction pipe mechanism disposed in the ground; an air supply mechanism which supplies air from an external space to a building; a water circulation mechanism 60 which circulates water for heat exchange; and a temperature adjustment mechanism 70 which uses a heat transfer medium for temperature adjustment to adjust a temperature of the water. The heat extraction pipe mechanism includes: a pipe member 11 having a first passage for flowing air from one side to the other side; a spiral pipe 12 having a second passage for flowing ground water for heat exchange from one side to the other side; a water supply mechanism 15; and a drain mechanism 16. The temperature adjustment mechanism 70 includes: a temperature adjustment pipeline 71 installed in the ground GND; and a temperature adjustment circulation path connecting the temperature adjustment pipeline 71 with a second tank 61B. The temperature adjustment pipeline 71 is disposed near the pipe member 11, a water supply pipeline 62, and a drain pipeline 63 in a substantially horizontal direction.SELECTED DRAWING: Figure 4

Description

本発明は、採熱用管機構及びその製造方法、並びに空調装置に関する。   The present invention relates to a heat collecting pipe mechanism, a manufacturing method thereof, and an air conditioner.

近年、通年の温度変動が小さい地中熱を利用して建物の冷暖房等を行う空調装置が注目されている。かかる空調装置110の一例を、図1Aに示す。この装置110は、地中熱の採取用に、管軸方向C111を略水平方向に向けながら地中に埋設された採熱用管機構111を有している。そして、同装置110によれば、一方の管端部111eaから採熱用管機構111内に空調用の空気が取り込まれて同管部材111内を流れた後に、当該空気は他方の管端部111ebから取り出される。これにより、空気は、夏場には冷却され冬場には加温される。そして、冷却又は加温された空気は、畜舎等の農業施設、集合住宅や公共の体育館等の一般施設、工場等の工業施設の如き大きな空間を有する建屋120の空調等に供される。   In recent years, air conditioners that heat and cool buildings and the like using geothermal heat with small year-round temperature fluctuations have attracted attention. An example of such an air conditioner 110 is shown in FIG. 1A. This device 110 has a heat collecting pipe mechanism 111 embedded in the ground while the pipe axis direction C111 is oriented in a substantially horizontal direction for collecting ground heat. Then, according to the apparatus 110, after air for air conditioning is taken into the heat collecting pipe mechanism 111 from one pipe end 111ea and flows through the pipe member 111, the air is supplied to the other pipe end 111a. It is taken out from 111eb. Thereby, the air is cooled in the summer and heated in the winter. The cooled or heated air is used for air conditioning of a building 120 having a large space such as an agricultural facility such as a barn, a general facility such as an apartment house or a public gymnasium, or an industrial facility such as a factory.

ところで、地中における通年の温度変動は、図1Bに示すように、地表からの深さに応じて変化する。例えば深さ5m未満の浅い位置では、年間の温度変動は大きいが、深さ5m以上の深い位置では、年間の温度変動がほぼ無視できる程度に小さくなって、その略一定の温度値は、同位置の年間平均気温と概ね一致する。そのため、一般に採熱用管機構111の埋設深さを5m以上にすれば、地中熱との間で良好な熱交換性が担保される。これに対して、5m未満にした場合には、上記の5m以上の場合と比べて、夏場での空気の冷却能力及び冬場での空気の加温能力が劣ってしまう。   By the way, the year-round temperature fluctuation in the ground changes according to the depth from the ground surface as shown in FIG. 1B. For example, the annual temperature fluctuation is large at a shallow position less than 5 m deep, but the annual temperature fluctuation is small enough to be ignored at a deep position of 5 m or more deep, and the substantially constant temperature value is the same. It almost coincides with the annual average temperature of the location. Therefore, generally, if the embedment depth of the heat collecting pipe mechanism 111 is 5 m or more, good heat exchange with the underground heat is ensured. On the other hand, when the distance is less than 5 m, the air cooling ability in summer and the air heating ability in winter are inferior compared to the case of 5 m or more.

一方、採熱用管機構111を地中に埋設する際の掘削コストは高く、そして、同コストは、掘削深さが深くなるに連れて増大する。そのため、同管部材111の埋設深さを極力浅くしたいという要望がある。かかる要望に応えるべく、夏場の冷却能力及び冬場の加温能力の向上と、掘削コストの低減との両立を可能にする空調装置が提案されている(例えば、特許文献1)。   On the other hand, the excavation cost when the heat collecting pipe mechanism 111 is buried in the ground is high, and the cost increases as the excavation depth increases. Therefore, there is a desire to make the embedment depth of the pipe member 111 as shallow as possible. In order to meet such demands, an air conditioner has been proposed that makes it possible to simultaneously improve the cooling capacity in summer and the warming capacity in winter and reduce the excavation cost (for example, Patent Document 1).

特許文献1に記載の空調装置は、採熱用管機構111に替えて、図1Cに示すような採熱用管機構111aを用いる。この採熱用管機構111aは、空気が通る中空部Xaを有する管状体111aaと、管状体111aaの周部において螺旋状に配された水路111awと、を備える。また、水路111awの両端部には、熱交換用の水を給水する給水管やこれを排水する排水管が設けられ、給水管や排水管としては、図1Dに示すように、管状体111aaの内周面から水路111awに向けて貫通するジョイント構造111ajを備える。このような水路111awに水を上記管部材111aの一方の管端部111aeaから他方の管端部111aebへと流すようにすれば、同管部材111aを地中の深さ5m未満の浅い位置に埋設した場合に生じ得る地中熱の夏場の冷却能力の低下分及び冬場の加温能力の低下分を、当該一方の管端部111aeaから他方の管端部111aebへと流れる水との熱交換によって補うことができる。   The air conditioner described in Patent Document 1 uses a heat collecting pipe mechanism 111 a as shown in FIG. 1C instead of the heat collecting pipe mechanism 111. The heat collecting pipe mechanism 111a includes a tubular body 111aa having a hollow portion Xa through which air passes, and a water channel 111aw arranged in a spiral shape in the peripheral portion of the tubular body 111aa. Further, at both ends of the water channel 111aw, a water supply pipe for supplying water for heat exchange and a drain pipe for draining the water are provided. As the water supply pipe and the drain pipe, as shown in FIG. 1D, the tubular body 111aa A joint structure 111aj penetrating from the inner peripheral surface toward the water channel 111aw is provided. If water is allowed to flow through the water channel 111aw from one pipe end 111aea of the pipe member 111a to the other pipe end 111aeb, the pipe member 111a is placed at a shallow depth of less than 5 m in the ground. Heat exchange with the water flowing from the one pipe end portion 111 aea to the other pipe end portion 111 aeb for the decrease in the summer cooling capacity of the geothermal heat and the decrease in the warming capacity in winter that can occur when buried. Can be supplemented by.

ここで、水路111aを流れる熱交換用の水として、年間ほぼ一定の温度である地下水を用いることにより、夏場における空気の冷却能力不足と、冬場における空気の加熱能力不足とを補うことができる。   Here, as the water for heat exchange flowing through the water passage 111a, groundwater having a substantially constant temperature can be used to compensate for the lack of air cooling ability in summer and the lack of air heating ability in winter.

特開2015−212606号公報Japanese Patent Laying-Open No. 2015-212606

ところが、十分な量の地下水が存在していない場合や、取水制限が課されている場合等、地中熱利用空調装置の設置場所において、十分な地下水の量を確保できるとは限らない。   However, when there is no sufficient amount of groundwater or when water intake restrictions are imposed, it is not always possible to secure a sufficient amount of groundwater at the place where the geothermal air conditioning system is installed.

本発明は、斯かる実情に鑑み、設置場所の事情によらず利用可能な空調装置を提供しようとするものである。   In view of such a situation, the present invention intends to provide an air conditioner that can be used regardless of the installation location.

本発明の採熱用管機構は、一方から他方へ第1物質を流す第1流路を有する第1管部材と、前記第1管部材に形成され、一方から他方へ第2物質を流す第2流路を有する第2管部材と、前記第2流路を含む第2物質循環経路において前記第2物質を循環させる第2物質循環機構と、前記第2物質循環経路における前記第2物質の温度調節を行うための第2物質温度調節機構と、を備え、前記第2管部材及び前記第1管部材を介して、前記第1物質及び前記第2物質の熱交換を行う採熱用管機構であって、前記第2物質温度調節機構は、第3物質が循環する第3物質循環路を形成する第3管部材と、前記第3管部材における前記第3物質を循環させるポンプと、前記第2物質循環路と前記第3物質循環路との間で熱交換を行う熱交換部と、を有することを特徴とする。   The heat collecting pipe mechanism of the present invention includes a first pipe member having a first flow path for flowing a first substance from one side to the other, a first pipe member formed on the first pipe member, and a second substance flowing from the one side to the other. A second pipe member having two flow paths, a second material circulation mechanism for circulating the second substance in a second substance circulation path including the second flow path, and the second substance circulation path in the second substance circulation path. A second material temperature adjusting mechanism for adjusting temperature, and a heat collecting tube for exchanging heat between the first material and the second material via the second tube member and the first tube member. A second material temperature adjusting mechanism comprising: a third pipe member forming a third material circulation path through which the third substance circulates; a pump for circulating the third substance in the third pipe member; A heat exchanging section that exchanges heat between the second material circulation path and the third material circulation path. And wherein the Rukoto.

本発明によれば、設置場所の事情によらず利用可能な空調装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which can be utilized irrespective of the situation of an installation place can be provided.

従来の空調装置の概要を示す側面図である。It is a side view which shows the outline | summary of the conventional air conditioning apparatus. 地表からの深さと地中の温度との関係を月別に示すグラフである。It is a graph which shows the relationship between the depth from the surface of the earth, and the temperature in the ground according to the month. 従来の採熱用管部材の概要を示す斜視図である。It is a perspective view which shows the outline | summary of the conventional pipe member for heat collection. 従来の採熱用管部材の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the conventional pipe member for heat collection. 空調装置の概要を示す側面図である。It is a side view which shows the outline | summary of an air conditioning apparatus. 空調装置の概要を示す斜視図である。It is a perspective view which shows the outline | summary of an air conditioning apparatus. 空調装置の概要を示す接続図である。It is a connection diagram which shows the outline | summary of an air conditioner. 地中に配された配管の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the piping distribute | arranged in the ground.

図2に示すように、空調装置2は、地中GNDに配される採熱用管機構10と、外部空間GX及び採熱用管機構10を連通する第1ダクト機構20と、採熱用管機構10及び建物120を連通する第2ダクト機構30と、外部空間GXから建物120へ空気を供給する空気供給機構50と、熱交換用の水の循環を行う水循環機構60と、を備える。   As shown in FIG. 2, the air conditioner 2 includes a heat collection pipe mechanism 10 disposed in the underground GND, a first duct mechanism 20 that communicates the external space GX and the heat collection pipe mechanism 10, and a heat collection apparatus. A second duct mechanism 30 that communicates the pipe mechanism 10 and the building 120, an air supply mechanism 50 that supplies air from the external space GX to the building 120, and a water circulation mechanism 60 that circulates water for heat exchange are provided.

図3に示すように、採熱用管機構10は、一方から他方へ空気(第1物質)を流す第1流路11Xを有する管部材11と、一方から他方へ熱交換用の地下水を流す第2流路(図示省略)を有する螺旋管12と、を備える。なお、管部材11と螺旋管12とは一体となっていることが好ましい。   As shown in FIG. 3, the heat collecting pipe mechanism 10 has a pipe member 11 having a first flow path 11 </ b> X that flows air (first substance) from one side to the other, and flows groundwater for heat exchange from one side to the other. And a spiral tube 12 having a second flow path (not shown). The tube member 11 and the spiral tube 12 are preferably integrated.

管部材11は、円筒状に形成されるものであり、地中GNDにおいてほぼ水平方向に配される。採熱用管機構10として、管部材11が複数用いられる場合、隣り合う管部材11の第1流路11Xの端部の開口が正対するように配される。螺旋管12は、採熱用管機構10の管軸方向C1周りに螺旋状に延びるものであり、管部材11の外周面11Gにおいて外側へ突設される。   The pipe member 11 is formed in a cylindrical shape, and is arranged in a substantially horizontal direction in the underground GND. When a plurality of tube members 11 are used as the heat collecting tube mechanism 10, the tube members 11 are arranged so that the openings at the ends of the first flow paths 11 </ b> X of the adjacent tube members 11 face each other. The spiral tube 12 extends spirally around the tube axis direction C1 of the heat collecting tube mechanism 10 and protrudes outward on the outer peripheral surface 11G of the tube member 11.

図2に戻って、採熱用管機構10は、さらに、第2流路の一方の開口端部に設けられた給水機構15と、第2流路の他方の開口端部に設けられた排水機構16と、を備える。   Returning to FIG. 2, the heat collecting pipe mechanism 10 further includes a water supply mechanism 15 provided at one open end of the second flow path, and a drainage provided at the other open end of the second flow path. And a mechanism 16.

空気供給機構50は、ダクト機構20に設けられるポンプと、ダクト機構20に設けられる各種センサと、各部と接続するコントローラとを備える。コントローラは、各種センサからのセンシング信号を読み取り、各種ポンプの制御を行う。空気供給機構50より、外部空間の空気を地中の採熱用管機構10へ送るとともに、地中で熱交換された空気を建物120へ送ることができる。   The air supply mechanism 50 includes a pump provided in the duct mechanism 20, various sensors provided in the duct mechanism 20, and a controller connected to each part. The controller reads sensing signals from various sensors and controls various pumps. From the air supply mechanism 50, the air in the external space can be sent to the underground heat collecting pipe mechanism 10, and the heat exchanged in the ground can be sent to the building 120.

図4〜5に示すように、水循環機構60は、水を収容するタンクユニット61と、タンクユニット61から給水機構15へ水を送るための給水配管62と、排水機構16からタンクユニット61へ水を送るための排水配管63と、給水配管62に設けられたポンプ64Pと、各配管62〜63に設けられた弁64Bと、各部に配された各種センサ64Sと、各部を制御するコントローラと、を備える。   As shown in FIGS. 4 to 5, the water circulation mechanism 60 includes a tank unit 61 that stores water, a water supply pipe 62 for sending water from the tank unit 61 to the water supply mechanism 15, and water from the drainage mechanism 16 to the tank unit 61. Drainage pipe 63, pump 64 </ b> P provided in water supply pipe 62, valve 64 </ b> B provided in each of pipes 62 to 63, various sensors 64 </ b> S provided in each part, controller for controlling each part, Is provided.

コントローラの制御の下、水循環機構60は、タンクユニット61、給水配管62、給水機構15、第2配管12、排水機構16、排水配管63、そしてタンクユニット61へと、水を循環させる。   Under the control of the controller, the water circulation mechanism 60 circulates water to the tank unit 61, the water supply pipe 62, the water supply mechanism 15, the second pipe 12, the drainage mechanism 16, the drainage pipe 63, and the tank unit 61.

タンクユニット61は、第1タンク61Aと、第2タンク61Bと、第1タンク61A及び第2タンク61Bを連通する連通管61Pと、を備える。連通管61Pは、第2タンク61Bの比較的高い位置に開口するものであり、第2タンク61Bの水位が高くなると、第2タンク61Bの水が第1タンク61Aへ流れるオーバフロー回路として機能する。   The tank unit 61 includes a first tank 61A, a second tank 61B, and a communication pipe 61P that communicates the first tank 61A and the second tank 61B. The communication pipe 61P opens to a relatively high position of the second tank 61B, and functions as an overflow circuit in which the water of the second tank 61B flows to the first tank 61A when the water level of the second tank 61B increases.

コントローラによる弁64Bの制御により、タンクユニット61は、給水配管62に向けて第1タンク61Aに貯留する水を送り出す状態と、給水配管62に向けて第2タンク61Bに貯留する水を送り出す状態との間で切替自在となる。同様にして、コントローラの制御の下、タンクユニット61は、排水配管63からの水が第1タンク61Aに貯留する状態と、排水配管63からの水が第2タンク61Bに貯留する状態との間で切替自在となる。   By the control of the valve 64B by the controller, the tank unit 61 sends out the water stored in the first tank 61A toward the water supply pipe 62, and sends out the water stored in the second tank 61B toward the water supply pipe 62. Can be switched between. Similarly, under the control of the controller, the tank unit 61 is between the state in which the water from the drain pipe 63 is stored in the first tank 61A and the state in which the water from the drain pipe 63 is stored in the second tank 61B. It becomes switchable with.

さらに、空調装置2は、温調用伝熱媒体を用いて、水の温度を調節するための温度調節機構70を備える。   Further, the air conditioner 2 includes a temperature adjustment mechanism 70 for adjusting the temperature of water using a temperature control heat transfer medium.

温度調節機構70は、地中GNDに設置される温調配管71と、第2タンク61Bから温調配管71へ温調用伝熱媒体を送る温調側送り配管72と、温調配管71から第2タンク61Bへ温調用伝熱媒体を戻す温調側戻り配管73と、温調側送り配管72に設けられた弁74B及びポンプ74Pと、を備える。温調配管71は、管部材11、給水配管62や排水配管63の近傍にて、ほぼ水平方向に配されることが好ましい。また、管部材11、螺旋管12、給水配管62や排水配管63から温調配管71までの間隔は、管部材11、螺旋管12、給水配管62や排水配管63からの熱の影響を受けない程度に離れていることが好ましい。なお、温調配管71の設置深さとしては、管部材11や螺旋管12の場合と同様に、基準値Tm(図1B)を用いた以下条件を少なくとも1つ満たすことが好ましい。
(条件1)地表の温度が基準値Tmよりも高い場合には基準値Tmよりも低温の範囲であること。
(条件2)地表の温度が基準値Tmよりも低い場合には基準値Tmよりも高温の範囲であること。
ここで、基準値Tmとは、年間を通じてほぼ一定となる地中の温度(図1B)である。また、「地表の温度が基準値Tmよりも高い場合」としては、夏の場合を考慮してもよい。同様に、「地表の温度が基準値Tmよりも低い場合」としては、冬の場合を考慮してもよい。
そして、温調配管71の設置深さとしては、管部材11の下側半分の位置であることが好ましく、実際の施工コストを鑑みると、温調配管71の設置深さとしては、所望の温度差が得られる程度であればよく、例えば、1.5m以上4m以下の深さであることが好ましく、2m以上3m以下の深さであることがより好ましい。
The temperature control mechanism 70 includes a temperature control pipe 71 installed in the underground GND, a temperature control side feed pipe 72 that sends a temperature control heat transfer medium from the second tank 61B to the temperature control pipe 71, and a temperature control pipe 71 A temperature adjustment side return pipe 73 for returning the temperature control heat transfer medium to the two tanks 61B, and a valve 74B and a pump 74P provided in the temperature adjustment side feed pipe 72 are provided. The temperature control pipe 71 is preferably arranged in a substantially horizontal direction in the vicinity of the pipe member 11, the water supply pipe 62 and the drain pipe 63. Further, the interval from the pipe member 11, the spiral pipe 12, the water supply pipe 62 or the drainage pipe 63 to the temperature control pipe 71 is not affected by the heat from the pipe member 11, the spiral pipe 12, the water supply pipe 62 or the drainage pipe 63. It is preferable that they are far apart. In addition, as the installation depth of the temperature control piping 71, it is preferable to satisfy | fill at least 1 of the following conditions using the reference value Tm (FIG. 1B) similarly to the case of the pipe member 11 and the spiral pipe 12. FIG.
(Condition 1) When the temperature of the ground surface is higher than the reference value Tm, the temperature should be lower than the reference value Tm.
(Condition 2) When the temperature of the ground surface is lower than the reference value Tm, the temperature is higher than the reference value Tm.
Here, the reference value Tm is an underground temperature (FIG. 1B) that is substantially constant throughout the year. Further, the case of summer may be considered as “when the temperature of the ground surface is higher than the reference value Tm”. Similarly, the case of winter may be considered as “when the temperature of the ground surface is lower than the reference value Tm”.
And as installation depth of the temperature control piping 71, it is preferable that it is the position of the lower half of the pipe member 11, and when the actual construction cost is considered, as installation depth of the temperature control piping 71, desired temperature is set. It is sufficient that the difference is obtained. For example, the depth is preferably 1.5 m or more and 4 m or less, and more preferably 2 m or more and 3 m or less.

ここで、管部材11、螺旋管12、給水配管62、排水配管63、温調配管71、送り配管72や戻し配管73の材料としては、金属や合成樹脂等を用いることができるが、中でも、合成樹脂を用いることが好ましい。合成樹脂の中では、ポリエチレン等が用いられることが好ましく、中でも高密度ポリエチレンが用いられることが好ましい。   Here, as a material of the pipe member 11, the spiral pipe 12, the water supply pipe 62, the drain pipe 63, the temperature control pipe 71, the feed pipe 72 and the return pipe 73, metal, synthetic resin, or the like can be used. It is preferable to use a synthetic resin. Among the synthetic resins, polyethylene or the like is preferably used, and among them, high density polyethylene is preferably used.

このように、コントローラによるポンプ74P及び弁74Bの制御により、温度調節機構70は、第2タンク61B、送り配管72、戻し配管73、そして第2タンク61Bへと、温調用伝熱媒体を循環させる。   As described above, the temperature adjusting mechanism 70 circulates the temperature control heat transfer medium to the second tank 61B, the feed pipe 72, the return pipe 73, and the second tank 61B by the control of the pump 74P and the valve 74B by the controller. .

加えて、空調装置2は、水を加温するための加温機構80を備える。   In addition, the air conditioner 2 includes a heating mechanism 80 for heating water.

加温機構80は、伝熱媒体が貯留する加温タンク81と、第1タンク61Aから加温タンク81へ水を送る加温用送り配管82と、加温タンク81から第1タンク61Aへ水を戻す加温用戻し配管83と、加温用送り配管82に設けられたポンプ84Pと、加温用送り配管82に設けられ水を加熱するヒータ84Hと、加温タンク81にて伝熱媒体中に配された熱交換機86と、を備える。なお、熱交換機86は省略してもよい。   The heating mechanism 80 includes a heating tank 81 in which a heat transfer medium is stored, a heating feed pipe 82 that sends water from the first tank 61A to the heating tank 81, and water from the heating tank 81 to the first tank 61A. A heating return pipe 83, a pump 84 </ b> P provided in the heating feed pipe 82, a heater 84 </ b> H provided in the heating feed pipe 82 for heating water, and the heating tank 81. A heat exchanger 86 disposed therein. The heat exchanger 86 may be omitted.

伝熱媒体としては、水等を用いることができる。   Water or the like can be used as the heat transfer medium.

コントローラによるポンプ84Pの制御により、加温機構80は、第1タンク61A、加温用送り配管82、加温用戻し配管83、そして、第1タンク61Aへと、水を循環させる。   Under the control of the pump 84P by the controller, the heating mechanism 80 circulates water to the first tank 61A, the heating feed pipe 82, the heating return pipe 83, and the first tank 61A.

次に、空調装置2の使用方法について説明する。   Next, a method for using the air conditioner 2 will be described.

図4に示すように、水循環機構60は、コントローラの制御の下、タンクユニット61、給水配管62、給水機構15、螺旋管12、排水機構16、排水配管63、そしてタンクユニット61へと、水を循環させる。   As shown in FIG. 4, under the control of the controller, the water circulation mechanism 60 supplies water to the tank unit 61, the water supply pipe 62, the water supply mechanism 15, the spiral pipe 12, the drainage mechanism 16, the drainage pipe 63, and the tank unit 61. Circulate.

空気供給機構50は、採熱用管機構10の第1流路11X(図2)を介して、外部空間の空気を建物120へ送る。水循環機構60及び空気供給機構50によって、第1流路11Xを通過する空気は、管部材11周りの地中GNDと第2流路を通過する水との間で熱交換が行われる。この結果、地中GNDと、水と、第1流路11Xを通過する空気と、の間で熱交換を効率よく行うことができる。   The air supply mechanism 50 sends the air in the external space to the building 120 via the first flow path 11X (FIG. 2) of the heat collecting pipe mechanism 10. By the water circulation mechanism 60 and the air supply mechanism 50, the air passing through the first flow path 11 </ b> X undergoes heat exchange between the ground GND around the tube member 11 and the water passing through the second flow path. As a result, heat exchange can be efficiently performed between the underground GND, water, and air passing through the first flow path 11X.

ところで、地表の温度が地中の温度よりも高い場合(例えば、夏場)において一定期間、採熱用管機構10を運転し続けると、螺旋管12を含む循環経路を流れる水の温度は次第に上昇していく。この場合において、循環経路を流れる水の温度上昇は、採熱用管機構10の冷却効率の低下につながる。   By the way, when the temperature of the ground surface is higher than the temperature of the ground (for example, summer), if the heat collecting pipe mechanism 10 is continuously operated for a certain period, the temperature of the water flowing through the circulation path including the spiral pipe 12 gradually increases. I will do it. In this case, an increase in the temperature of the water flowing through the circulation path leads to a decrease in the cooling efficiency of the heat collecting pipe mechanism 10.

ここで、コントローラが、タンクユニット61に設けた温度センサを読み取り、タンクユニット61における水温が所定の範囲から外れたと検知した場合には、温度調節機構70は、コントローラの制御の下、第2タンク61B及び温調配管71を介した温調循環経路において、水を循環させる。温調配管71を水が通過すると、温調配管71を介して、水と地中GNDとの間で熱交換が行われる。この熱交換により、水は冷却され、第2タンク61Bへ戻る。この結果、水循環機構60は、螺旋管12を含む循環経路において、冷却された水を循環させることができる。したがって、水の温度上昇に起因する冷却効率の低下を抑えることができる。   Here, when the controller reads the temperature sensor provided in the tank unit 61 and detects that the water temperature in the tank unit 61 is out of the predetermined range, the temperature adjustment mechanism 70 controls the second tank under the control of the controller. Water is circulated in the temperature control circulation path via 61B and the temperature control pipe 71. When water passes through the temperature control pipe 71, heat exchange is performed between the water and the underground GND via the temperature control pipe 71. By this heat exchange, the water is cooled and returned to the second tank 61B. As a result, the water circulation mechanism 60 can circulate the cooled water in the circulation path including the spiral tube 12. Therefore, it is possible to suppress a decrease in cooling efficiency due to an increase in water temperature.

同様に、地表の温度が地中の温度よりも低い場合(例えば、冬場)において一定期間、採熱用管機構10を運転し続けると、螺旋管12を含む循環経路を流れる水の温度は次第に低下していく。この場合において、循環経路を流れる水の温度低下は、採熱用管機構10の暖房効率の低下につながる。   Similarly, when the temperature of the heat collecting pipe mechanism 10 is continuously operated for a certain period when the temperature of the ground surface is lower than the temperature of the ground (for example, in winter), the temperature of the water flowing through the circulation path including the spiral pipe 12 gradually increases. It goes down. In this case, a decrease in the temperature of the water flowing through the circulation path leads to a decrease in the heating efficiency of the heat collecting pipe mechanism 10.

ここで、コントローラが、タンクユニット61に設けた温度センサを読み取り、タンクユニット61における水温が所定の範囲よりも低いと検知した場合には、温機構80は、コントローラの制御の下、第1タンク61A及び加温タンク81を介した加温循環経路において、水を循環させる。ヒータ85Hを水が通過すると、水は加熱され、第1タンク61Aへ戻る。この結果、水循環機構60は、螺旋管12を含む循環経路において、加温された水を循環させることができる。したがって、水の温度低下に起因する暖房効率の低下を抑えることができる。   Here, when the controller reads the temperature sensor provided in the tank unit 61 and detects that the water temperature in the tank unit 61 is lower than a predetermined range, the temperature mechanism 80 controls the first tank under the control of the controller. Water is circulated in the heating circulation path via 61A and the heating tank 81. When water passes through the heater 85H, the water is heated and returns to the first tank 61A. As a result, the water circulation mechanism 60 can circulate the heated water in the circulation path including the spiral tube 12. Therefore, it is possible to suppress a decrease in heating efficiency due to a decrease in water temperature.

なお、地表の温度が地中の温度よりも高い場合(例えば、夏場)において、以下のような制御を行ってもよい。コントローラが、第2タンク62Aに設けた温度センサを読み取り、第2タンク62Aにおける水温が所定の範囲よりも高いと検知した場合には、水循環機構60が第1タンク61Aを介した第1循環路において水を循環させる一方、コントローラが、第1タンク61Aに設けた温度センサを読み取り、第1タンク61Aにおける水温が所定の範囲よりも高いと検知した場合には、水循環機構60が第2タンク62Aを介した第2循環路において水を循環させてもよい。また、コントローラが、第1タンク61Aに設けた温度センサ及び第2タンク62Aに設けた温度センサを読み取り、両方の水温のうち一方の水温が低いと検知した場合には、水温が低いと検知されたほうの水の循環を行ってもよい。あるいは、所定のタイミングで、第1循環路における水の循環と、第2循環路における水の循環と、を交互に行ってもよい。   In addition, when the surface temperature is higher than the underground temperature (for example, summer), the following control may be performed. When the controller reads the temperature sensor provided in the second tank 62A and detects that the water temperature in the second tank 62A is higher than a predetermined range, the water circulation mechanism 60 uses the first circulation path via the first tank 61A. When the controller reads the temperature sensor provided in the first tank 61A and detects that the water temperature in the first tank 61A is higher than the predetermined range, the water circulation mechanism 60 causes the second tank 62A to circulate. You may circulate water in the 2nd circulation path via. Further, when the controller reads the temperature sensor provided in the first tank 61A and the temperature sensor provided in the second tank 62A and detects that one of the water temperatures is low, it is detected that the water temperature is low. You may circulate the water. Alternatively, water circulation in the first circulation path and water circulation in the second circulation path may be alternately performed at a predetermined timing.

上記実施形態では、温度調節機構70による温調循環経路における水の循環を行うか否かについて、検知した水温に基づいて行ったが、本発明はこれに限られず、地中熱利用空調装置2の運転に追従して温調循環経路における水の循環を行ってもよい。   In the above-described embodiment, whether or not to circulate water in the temperature control circulation path by the temperature adjustment mechanism 70 is performed based on the detected water temperature, but the present invention is not limited to this, and the underground heat utilization air conditioner 2 is used. The water may be circulated in the temperature control circulation path following the above operation.

また、上記実施形態では、第2タンク61Bを含む温調循環経路を形成させたが、本発明はこれに限られず、第1タンク61Aを含む温調循環経路を併せて形成させて、2つの温調循環経路を適宜切り替えて用いてもよい。例えば、水循環機構60が水を第1循環路で循環させている間、温調機構70は、第2タンク61B及び温調配管72を含む温調循環経路において水を循環させる一方、水循環機構60が水を第2循環路で循環させている間、温調機構70は、第1タンク61A及び温調配管72を含む温調循環経路において水を循環させてもよい。   Moreover, in the said embodiment, although the temperature control circulation path containing the 2nd tank 61B was formed, this invention is not limited to this, The temperature control circulation path containing the 1st tank 61A is formed together, and two types are formed. The temperature control circulation path may be switched as appropriate. For example, while the water circulation mechanism 60 circulates water in the first circulation path, the temperature adjustment mechanism 70 circulates water in the temperature adjustment circulation path including the second tank 61 </ b> B and the temperature adjustment pipe 72, while the water circulation mechanism 60. While circulating water in the second circulation path, the temperature adjustment mechanism 70 may circulate water in a temperature adjustment circulation path including the first tank 61A and the temperature adjustment pipe 72.

上記実施形態では、水循環機構60によって循環路を流れる水と、温調機構70による温調循環経路を流れる水とを第2タンク61Bで合流させたが、本発明はこれに限られない。温調循環経路として、第2タンク61Bを含めずに、第2タンク61Bに設けた熱交換器を設けてもよい。これにより、
水循環機構60によって循環路を流れる水と、温調機構70による温調循環経路を流れる温調用伝熱媒体とを個別の物質としてもよい。
In the above embodiment, the water flowing through the circulation path by the water circulation mechanism 60 and the water flowing through the temperature adjustment circulation path by the temperature adjustment mechanism 70 are merged in the second tank 61B, but the present invention is not limited to this. As the temperature control circulation path, a heat exchanger provided in the second tank 61B may be provided without including the second tank 61B. This
Water flowing through the circulation path by the water circulation mechanism 60 and the temperature adjustment heat transfer medium flowing through the temperature adjustment circulation path by the temperature adjustment mechanism 70 may be separate substances.

上記実施形態では、採熱用管機構10を地中GNDに配したが、本発明はこれに限られず、採熱用管機構10を地上に配してもよい。採熱用管機構10を地上に配する場合には、管部材11と螺旋管12とが一体となった管ユニットを覆う囲い部材と、管ユニットと囲い部材との隙間に充填された充填材と、を備えることが好ましい。また、熱伝導率は、囲い部材、充填材、管ユニットの順に高くなることが好ましい。囲い部材は、3層構造となっており、断熱層と、断熱層の外側に位置する外層と、断熱層の内側に位置する内層と、を備えることが好ましい。断熱層は硬質ウレタンフォーム(硬質ポリウレタン発泡体)からなり、その熱伝導率は、充填材及び管ユニットよりも低い。外層は鋼板であり、内層はアルミシートである。充填材としては、水、砂(川砂、山砂、珪砂など)、土等を用いてもよい。砂を用いる場合には、熱伝導率を高める目的から、含水状態の砂を用いることが好ましい。またさらに、熱伝導率を高める目的から、砂や土に対して、1〜20%の容積含有率で、酸化ケイ素、アルミナ及び高炉スラグのうち少なくとも1つからなる粒状物を混入させてもよい。   In the above embodiment, the heat collecting pipe mechanism 10 is arranged in the ground GND, but the present invention is not limited to this, and the heat collecting pipe mechanism 10 may be arranged on the ground. When the heat collecting pipe mechanism 10 is arranged on the ground, an enclosure member that covers the pipe unit in which the pipe member 11 and the spiral pipe 12 are integrated, and a filler that fills a gap between the pipe unit and the enclosure member. And preferably. Moreover, it is preferable that thermal conductivity becomes high in order of an enclosure member, a filler, and a pipe unit. The enclosing member has a three-layer structure, and preferably includes a heat insulating layer, an outer layer located outside the heat insulating layer, and an inner layer located inside the heat insulating layer. The heat insulating layer is made of rigid urethane foam (rigid polyurethane foam), and its thermal conductivity is lower than that of the filler and the tube unit. The outer layer is a steel plate and the inner layer is an aluminum sheet. As the filler, water, sand (river sand, mountain sand, quartz sand, etc.), soil or the like may be used. When using sand, it is preferable to use water-containing sand for the purpose of increasing the thermal conductivity. Furthermore, for the purpose of increasing the thermal conductivity, a granular material composed of at least one of silicon oxide, alumina, and blast furnace slag may be mixed at a volume content of 1 to 20% with respect to sand or earth. .

上記実施形態では、管部材11の周りに螺旋状の第2流路12Xを設けたが、本発明はこれに限られず、管部材11の周りに直線上の第2流路12Xを設けてもよい。   In the above embodiment, the spiral second flow path 12X is provided around the tube member 11. However, the present invention is not limited to this, and a straight second flow path 12X may be provided around the tube member 11. Good.

尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

2 空調装置
10 採熱用管機構
15 給水機構
16 排水機構
20 第1ダクト機構
30 第2ダクト機構
50 空気供給機構
60 水循環機構
70 温度調節機構
80 加温機構


2 Air conditioner 10 Heat collection pipe mechanism 15 Water supply mechanism 16 Drainage mechanism 20 First duct mechanism 30 Second duct mechanism 50 Air supply mechanism 60 Water circulation mechanism 70 Temperature adjustment mechanism 80 Heating mechanism


Claims (4)

一方から他方へ第1物質を流す第1流路を有する第1管部材と、
前記第1管部材に形成され、一方から他方へ第2物質を流す第2流路を有する第2管部材と、
前記第2流路を含む第2物質循環経路において前記第2物質を循環させる第2物質循環機構と、
前記第2物質循環経路における前記第2物質の温度調節を行うための第2物質温度調節機構と、を備え、
前記第2管部材及び前記第1管部材を介して、前記第1物質及び前記第2物質の熱交換を行う採熱用管機構であって、
前記第2物質温度調節機構は、
第3物質が循環する第3物質循環路を形成する第3管部材と、
前記第3管部材における前記第3物質を循環させるポンプと、
前記第2物質循環路と前記第3物質循環路との間で熱交換を行う熱交換部と、を有することを特徴とする採熱用管機構。
A first pipe member having a first flow path for flowing a first substance from one to the other;
A second pipe member formed in the first pipe member and having a second flow path for flowing a second substance from one to the other;
A second material circulation mechanism for circulating the second material in a second material circulation path including the second flow path;
A second substance temperature adjustment mechanism for adjusting the temperature of the second substance in the second substance circulation path,
A heat collecting pipe mechanism for performing heat exchange between the first substance and the second substance via the second pipe member and the first pipe member;
The second substance temperature adjusting mechanism includes:
A third pipe member forming a third material circulation path through which the third material circulates;
A pump for circulating the third substance in the third pipe member;
A heat collecting pipe mechanism, comprising: a heat exchanging portion that exchanges heat between the second material circulation path and the third material circulation path.
前記第3管部材は、地中において、前記第1管部材又は前記第2管部材とほぼ同じ深さの位置、又は前記第1管部材又は前記第2管部材よりも深い位置に配されたことを特徴とする請求項1記載の採熱用管機構。   The third pipe member is disposed in the ground at a position substantially the same depth as the first pipe member or the second pipe member, or at a position deeper than the first pipe member or the second pipe member. The heat collecting pipe mechanism according to claim 1. 前記第2物質循環路と前記第3物質循環路とは、共通の流路を有し、前記共通の流路が前記熱交換部を兼ねることを特徴とする請求項1または2記載の採熱用管機構。   The heat collection according to claim 1 or 2, wherein the second material circulation path and the third material circulation path have a common flow path, and the common flow path also serves as the heat exchange section. Pipe mechanism. 前記熱交換部は、前記第2物質及び前記第3物質が収容されるタンクが設けられたことを特徴とする請求項3記載の採熱用管機構。

4. The heat collecting pipe mechanism according to claim 3, wherein the heat exchange part is provided with a tank in which the second substance and the third substance are accommodated.

JP2017005592A 2017-01-17 2017-01-17 Heat extraction pipe mechanism, manufacturing method of the same, and air conditioner Pending JP2018115786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005592A JP2018115786A (en) 2017-01-17 2017-01-17 Heat extraction pipe mechanism, manufacturing method of the same, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005592A JP2018115786A (en) 2017-01-17 2017-01-17 Heat extraction pipe mechanism, manufacturing method of the same, and air conditioner

Publications (1)

Publication Number Publication Date
JP2018115786A true JP2018115786A (en) 2018-07-26

Family

ID=62984952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005592A Pending JP2018115786A (en) 2017-01-17 2017-01-17 Heat extraction pipe mechanism, manufacturing method of the same, and air conditioner

Country Status (1)

Country Link
JP (1) JP2018115786A (en)

Similar Documents

Publication Publication Date Title
JP3927593B1 (en) Double pipe type geothermal water circulation device
JP5963790B2 (en) Groundwater circulation type geothermal heat collection system and geothermal use air conditioning or hot water supply system
JP2007183023A (en) Heating/cooling method and device utilizing geothermal heat
JP4785098B2 (en) Underground heat exchanger buried structure
JP4869145B2 (en) Underground heat exchange system
JP2012137211A (en) Heat exchange system
JP6442712B2 (en) Heat utilization device
JP2003021360A (en) Air conditioning system utilizing soil heat, and heat exchanger apparatus in soil
JP2020176745A (en) Geo hybrid system
JP2011102676A (en) Air conditioning system using underground water heat
WO2009150393A1 (en) Changing the temperature of a thermal load
JP5690960B1 (en) Heat exchange system
US20100251710A1 (en) System for utilizing renewable geothermal energy
JP2018115786A (en) Heat extraction pipe mechanism, manufacturing method of the same, and air conditioner
KR101658407B1 (en) Thermal energy storage tank and Heating and cooling and hot water supplying apparatus using geothermy
JP2015055365A (en) Heat collecting pipe for underground thermal heat pump system
JP2014098535A (en) Air conditioning system for building utilizing geothermal heat and heat pump
US7337838B2 (en) Plant for tempering of a building
CN110017624A (en) The system of double concentric tubes with different enthalpys
JP2007127397A (en) Geothermal heat utilization system of house in cold area
CN211261124U (en) Shallow geothermal heat exchange device
JP6913449B2 (en) Geothermal utilization system
JP2021131223A (en) Geothermal heat utilization device and method for using the same
KR101551911B1 (en) Heating and cooling systems for building using filtration-well in seaside
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure