JP6481841B1 - Motor or generator and also linear motor [2] - Google Patents

Motor or generator and also linear motor [2] Download PDF

Info

Publication number
JP6481841B1
JP6481841B1 JP2018085789A JP2018085789A JP6481841B1 JP 6481841 B1 JP6481841 B1 JP 6481841B1 JP 2018085789 A JP2018085789 A JP 2018085789A JP 2018085789 A JP2018085789 A JP 2018085789A JP 6481841 B1 JP6481841 B1 JP 6481841B1
Authority
JP
Japan
Prior art keywords
coil
tooth
phase
support substrate
tooth core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085789A
Other languages
Japanese (ja)
Other versions
JP2019165609A (en
Inventor
粛 梅森
粛 梅森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCU LINEAR MOTOR LABORATORY LTD.
Original Assignee
CCU LINEAR MOTOR LABORATORY LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCU LINEAR MOTOR LABORATORY LTD. filed Critical CCU LINEAR MOTOR LABORATORY LTD.
Priority to JP2018085789A priority Critical patent/JP6481841B1/en
Application granted granted Critical
Publication of JP6481841B1 publication Critical patent/JP6481841B1/en
Priority to PCT/JP2019/011546 priority patent/WO2019181963A1/en
Publication of JP2019165609A publication Critical patent/JP2019165609A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

【課題】
既登録特許第6085753号は,コイル構成と鉄心構造のイノベーションによって,(トルク,出力/重量)が従来モータの大略1桁増の革新的な所謂磁石無しモータである。上記,鉄心構造は,軽量化のために歯鉄心の両端面を対向面にして,継鉄部分は無く,コイルと組み合わせてエポキシモールドする構造であり,製作工程における歯鉄心の保持方法が課題になる。
【解決手段】 非磁性,高強度,軽金属,例へば硬質アルミ材の支持基板7に,歯鉄心10の配列する位置に合わせて歯鉄心が嵌まる穴7−1,7−2,……,7’−1,7’−2,……をくりぬき,歯鉄心をきつく嵌め込んで歯鉄心の対向面に合わせてエポキシモールドすることで,鉄骨コンクリートの原理で強度のあるモールド体が構成できる。コイルの発生熱は支持基板に集約され,冷却は支持基板を冷却することで達成できる。
【選択図】図1
【Task】
The registered patent No. 6085753 is an innovative so-called magnetless motor whose (torque, output / weight) is increased by about one digit compared to the conventional motor due to the innovation of the coil configuration and the iron core structure. The above-mentioned iron core structure has a structure in which both ends of the tooth core are opposed to each other for weight reduction, there is no yoke part, and the epoxy mold is combined with the coil. Become.
SOLUTION: Holes 7-1, 7-2,..., 7 into which toothed iron cores are fitted in support boards 7 made of non-magnetic, high strength, light metal, for example, hard aluminum material, according to the positions where the toothed iron cores 10 are arranged. A strong mold body can be constructed based on the principle of steel concrete by hollowing out '-1, 7'-2, ..., and fitting the tooth iron core tightly and epoxy molding according to the opposite surface of the tooth iron core. The generated heat of the coil is concentrated on the support substrate, and cooling can be achieved by cooling the support substrate.
[Selection] Figure 1

Description

本発明は後期[0002]項に記載の特許第6085753号の相互結合複合型梅森モータにおける固定子の歯鉄心とコイルのモールド構造に関するものである。  The present invention relates to a stator tooth core and coil mold structure in an interconnected composite type Umemori motor of Japanese Patent No. 6085753 described in the latter term [0002].

昭和40年台疑似正弧波による可変電圧可変周波インバータが発明されて同期電動機,誘導電動と組合わせて良質な速度制御が可能なシステムが完成し,現在迄広く使われてきた。しかし近年炭酸ガスによる地球温暖化の問題が

Figure 0006481841
まれて現在のモータは制御性だけではなく高効率化,低コスト化への宿命を負わされていまった。
この様な状況のもとで本出願と同一の出願人,発明者によって特許第6085753号,相互結合複合型梅森モータが登録された。該特許は転流相手のA,B相の2相構成のコイル組を複数互いに位相角を(π/コイル組数)ずつずらして重ね両面対向面の複数の歯溝鉄心それぞれに収納して構成した固定子と,両面或は両端に対向面を持つ複数の吸引極で対向面を構成した回転子または移動子と,二象限定電流制御回路からの定電流をA相,B相に切り換へながら順次に位相差(π/コイル組数)で各コイル組に供給して,各コイルの起磁力が集中した位置に該吸引極先端部或は後端部がくるように動作するスイッチとで構成したモータ或は発電機さらにまたリニアモータに関するもので高効率化,低コスト化の時代の要求によく適応できる。In 1965, a variable voltage variable frequency inverter using a pseudo positive arc wave was invented, and a system capable of high-quality speed control in combination with a synchronous motor and induction motor was completed and has been widely used until now. However, in recent years, the problem of global warming caused by carbon dioxide has been
Figure 0006481841
Rarely, current motors were not only responsible for controllability but also for high efficiency and low cost.
Under such circumstances, the same applicant and inventor as in the present application registered Japanese Patent No. 6085753, an interconnected hybrid Umemori motor. The patent consists of a pair of commutation counterpart A and B phase two-phase coil stacks, with phase angles shifted by (π / number of coil pairs) and housed in a plurality of tooth gap cores on both surfaces facing each other. The fixed current from the two-quadrant limited current control circuit is switched between the A phase and the B phase, and the stator or rotor having the opposing surface composed of a plurality of attracting poles having opposing surfaces on both sides or both ends. A switch that sequentially supplies a phase difference (π / the number of coil sets) to each coil set while moving so that the tip or rear end of the attracting pole comes to a position where the magnetomotive force of each coil is concentrated. This is related to the motors or generators configured as above, and also to linear motors, and can be well adapted to the requirements of the era of high efficiency and low cost.

本発明は上記特許第6085753号,相互結合複合型梅森モータ,の歯鉄心とコイルのモールド構造の固定子について,モールド行程時における歯鉄心の保持,外皮に頼らない強皮構造,コイル発生熱の有効な冷却法を解決して実用性を更に高めたものである。  The present invention relates to a stator with a core structure and a coil structure of the above-mentioned Japanese Patent No. 6085753, an interconnected composite type Umemori motor, for maintaining the tooth core during the molding process, a strong skin structure that does not rely on the outer skin, It solves an effective cooling method and further enhances its practicality.

本発明は、外周部分と内周部分が厚く両者の間の部分は薄く形成された非磁性支持性基板に歯鉄心の断面形状と同じ形状の穴をくりぬいて、その穴に該歯鉄心の両面対向面のそれぞれの面をそろえて嵌め込んで該歯鉄心の中央部を該支持基板に固定して歯鉄心に転流相手のA,B相の2相構成のコイル組を複数互いに位相角を(π/組数)ずつずらして重ねて収納した複数の固定子要素と、両面或は両端に対向面をもつ複数の吸引極で対向面を構成した回転子または移動子と、二象限定電流制御回路からの定電流をA相,B相を切換えながら順次に位相差(π/コイル組数)で各コイル組に供給して各コイルの起磁力が集中した位置に該吸引極先端部或は後端部がくるように動作するスイッチとで構成したモータ或は発電機さらにまたリニアモータである。  In the present invention, a hole having the same shape as the cross-sectional shape of a tooth core is cut out in a nonmagnetic support substrate in which the outer peripheral portion and the inner peripheral portion are thick and the portion between them is thin. The opposing surfaces are aligned and fixed, the central portion of the tooth core is fixed to the support substrate, and a plurality of two-phase coil sets of the A and B phases of the commutation counterpart are set on the tooth core. (Π / number of sets) A plurality of stator elements that are stacked and housed in a shifted manner, a rotor or a moving element that has opposing surfaces with a plurality of attracting poles having opposing surfaces on both sides or both ends, and a two-quadrant limited current A constant current from the control circuit is sequentially supplied to each coil set with a phase difference (π / number of coil sets) while switching between the A phase and the B phase, and the tip of the attracting pole or the position where the magnetomotive force of each coil is concentrated. Is a motor or generator composed of a switch that operates so that the rear end comes. Data.

・製作時の歯鉄心の位置定めと保持の機構は,歯鉄心を非磁性支持基板の穴に嵌め込む作業に置き換へられるので固定子製造の機械化の第一歩になる。
・非磁性支持基板は硬強度の材質を選択することで,鉄骨コンクリートにおける鉄骨の役目を果たして,固定子外皮に頼らずに強度を保持できる。
・非磁性支持基板は伝熱性の良い材質を選択することで,コイル発生熱は効果的に集約でき,該支持基板に冷却フィンを取り付けることで容易に冷却できる。
・ The mechanism for positioning and holding the tooth core at the time of manufacture is replaced by the work of fitting the tooth core into the hole of the non-magnetic support board, which is the first step in mechanization of stator manufacturing.
・ By selecting a hard-strength material for the non-magnetic support substrate, it plays the role of a steel frame in steel concrete and can maintain strength without relying on the stator skin.
-The non-magnetic support substrate can be effectively consolidated by selecting a material with good heat conductivity, and can be easily cooled by attaching cooling fins to the support substrate.

本発明に係る6極4重相4面構成モータの実施例Example of a 6-pole, 4-phase 4-sided motor according to the present invention 本発明に係る非磁性支持基板Non-magnetic support substrate according to the present invention [A]本発明に係るコイル構成 [B]本発明に係る歯鉄心の磁束循環[A] Coil configuration according to the present invention [B] Magnetic flux circulation of tooth core according to the present invention 本発明に係る回転子構造Rotor structure according to the present invention [A]本発明に係るFFスイッチの構成 [B]本発明に係る各相コイル電流[A] Configuration of FF switch according to the present invention [B] Each phase coil current according to the present invention 動作説明のための基本構成(1)Basic configuration for operation explanation (1) 動作説明のための基本構成(2)Basic configuration for operation explanation (2) 動作説明のための基本構成(3)Basic configuration for operation explanation (3)

図1は,本発明に係る実施例の6極4重相4面構成の横断面構成を示す。図において,1は固定子,2は回転子,3は軸受板,4は回転軸,5はベアリング,6は角度位置検知器,7は支持基板,8は冷却フィン,9はスペーサー,10は歯鉄心,12はコイル,23は固定子支持部材,13は回転子支持部材,14は吸引極,15は固定子ネジ,16は回転子ネジである。固定子は円板状でケース外周でスペーサ9と固定子ネジ15で固定されている。回転子2は回転子要素2−1と回転子要素2−2の二つに分離できる構成にしてあり,組立て行程に際して固定子1を挟むように順序に回転軸4に挿入して回転子ネジ16で回転軸4に固定してある。  FIG. 1 shows a cross-sectional configuration of a six-pole quadruple-phase four-plane configuration according to an embodiment of the present invention. In the figure, 1 is a stator, 2 is a rotor, 3 is a bearing plate, 4 is a rotating shaft, 5 is a bearing, 6 is an angular position detector, 7 is a support substrate, 8 is a cooling fin, 9 is a spacer, 10 is Tooth core, 12 is a coil, 23 is a stator support member, 13 is a rotor support member, 14 is a suction pole, 15 is a stator screw, and 16 is a rotor screw. The stator is disc-shaped and is fixed around the case by spacers 9 and stator screws 15. The rotor 2 is configured to be separated into a rotor element 2-1 and a rotor element 2-2, and is inserted into the rotating shaft 4 in order so as to sandwich the stator 1 during the assembly process, and is inserted into the rotor screw. 16 is fixed to the rotary shaft 4.

図2は支持基板7であり,図1における固定子1の二重リング状歯溝鉄心を構成するための骨格をなしている。該支持基板は非磁性,伝熱性の高強度軽金属製,例へば硬質アルミ製を用いる。支持基板7の外周部分と内周部分が厚く,両者の間の部分は薄くしてある。厚い部分は後述のリング状歯鉄心の対向面と一致するようにしてある。該支持基板の外周側の穴7−1,7−2,7−3……は外周側の歯鉄が嵌まり,内周側の穴7’−1,7’−2,7’−3…

Figure 0006481841
紙面に垂直方向に貫通する。歯鉄心の磁束に垂直な断面の形状と穴の形状が合致するように構成し,歯鉄心の磁束方向の中央部を支持板に固定するようにきつく固定する。歯鉄心の周囲は支持板の骨格部分も含めて対向面以内はコイル収納のためのスペースになる。コイルは巻線機で,巻いたものを収納することが可能である。この後,該支持基板の両側面の対向面に挟まれた総ての空間部,即ち外周側の歯鉄心の外周側の部分23−1,隣接歯鉄心の溝の部分23−2,23−4,外周側歯鉄心と内周側歯鉄心に挟まれた部分23−3,内周側歯鉄心の内側部分23−5をコイル12と共に固定子支持部材23で充填する。コイル発生熱は支持基板7で効果的に集められ,図1を参照して,支持基板の外側に取付けた冷却フィン8によって効果的に放散できる。FIG. 2 shows a support substrate 7 which forms a skeleton for constituting the double ring-shaped tooth gap core of the stator 1 in FIG. The support substrate is made of non-magnetic, heat-conductive, high-strength light metal, for example, hard aluminum. The outer peripheral part and the inner peripheral part of the support substrate 7 are thick, and the part between them is thin. The thick part is made to correspond to the opposing surface of the ring-shaped tooth core mentioned later. The outer peripheral side holes 7-1, 7-2, 7-3... Fit into the outer peripheral side teeth, and the inner peripheral holes 7′-1, 7′-2, 7′-3. ...
Figure 0006481841
It penetrates perpendicularly to the page. It is constructed so that the shape of the cross section perpendicular to the magnetic flux of the tooth core matches the shape of the hole, and it is firmly fixed so that the central portion of the tooth core in the magnetic flux direction is fixed to the support plate. The area around the tooth core, including the frame portion of the support plate, is a space for storing the coil within the opposing surface. The coil is a winding machine and can store the wound one. Thereafter, all the spaces sandwiched between the opposing surfaces of the both side surfaces of the support substrate, that is, the outer peripheral portion 23-1 of the outer peripheral iron core and the groove portions 23-2, 23- of the adjacent tooth core. 4. A portion 23-3 sandwiched between the outer peripheral side iron core and the inner peripheral side iron core, and an inner portion 23-5 of the inner peripheral side iron core are filled together with the coil 12 by the stator support member 23. The heat generated by the coil is effectively collected by the support substrate 7 and can be effectively dissipated by the cooling fins 8 attached to the outside of the support substrate with reference to FIG.

図3[A]は固定子1に巻かれたコイルの構成,同図[B]は固定子1の歯鉄心の磁束17の循環の様子を説明するための図である。6極4重相構成より磁極ピッチは,360°/6(極)=60°,歯鉄心のピッチ,溝のピッチは磁極ピッチ60°,重相数4より 60°/4(重相)=15°となる。1周の歯鉄心数と溝数は360°/15°=24である。
図3(A)において,歯鉄心10−1,10−2,10−3……は外周側の歯鉄心,溝11−1,11−2,11−3……は外周側の溝を示す。同様歯鉄心10’−1,10’−2,10’−3‥‥は内周側の歯鉄心,溝11’−1,11’−2,11’−3‥‥は内周側の溝を示す。同図は何れもその一部を示してある。固定子1を挟むように存在する回転子2の回転方向は上記歯鉄心10−1,10−2,10−3‥‥の追い番の方向を順方向とする。
コイル12−1Aは,外周側の溝11−1と溝11−4の間の3個の歯鉄心10−1,10−2,10−3を右回わりで所定巻数を巻いて,同じ角度位置の内周側の溝11’−1と溝11’−4の間の3個の歯鉄心10’−1,10’−2,10’−3を上記とは逆の左回わりで所定の巻数が巻いてある。これによって同図(B)に示す磁束17の循環が生じ,1磁極内で空隙18−1,18−2,18−3,18−4の4面の対向面が構成できる。
該空隙4面は云う迄もなく,モータとしての吸引力,発電機としての起電力を生じる根拠になる。
図3(A)では表示していないが上記と同様のことを2磁極ピッチ即ち8溝ピッチで全部で以下に示す3回繰り返す。
溝11−1,溝11−4と溝11’−1,溝11’−4
溝11−9,溝11−12と溝11’−9,溝11’−12
溝11−17,溝11−20と溝11’−17,溝11’−20
以上,上記3組のコイルは直列接続してコイル12−1Aを構成する。
FIG. 3A is a diagram illustrating a configuration of a coil wound around the stator 1, and FIG. 3B is a diagram for explaining a circulation state of the magnetic flux 17 of the tooth core of the stator 1. From the 6-pole quadrupole configuration, the magnetic pole pitch is 360 ° / 6 (pole) = 60 °, the pitch of the tooth core and groove pitch is 60 ° / 4 (heavy phase) 60 poles / 4 (heavy phase) 15 °. The number of tooth cores and the number of grooves in one round is 360 ° / 15 ° = 24.
In FIG. 3 (A), the tooth cores 10-1, 10-2, 10-3... Are outer peripheral tooth cores, and the grooves 11-1, 11-2, 11-3. . Similarly, the tooth cores 10'-1, 10'-2, 10'-3 are inner tooth cores, and the grooves 11'-1, 11'-2, 11'-3 are inner grooves. Indicates. The figure shows a part of each. The rotation direction of the rotor 2 existing so as to sandwich the stator 1 is the forward direction of the serial number of the tooth cores 10-1, 10-2, 10-3,.
The coil 12-1A is wound at the same angle by turning the three toothed iron cores 10-1, 10-2, 10-3 between the outer circumferential groove 11-1 and the groove 11-4 to the right. Three tooth cores 10′-1, 10′-2, 10′-3 between the groove 11′-1 and the groove 11′-4 on the inner peripheral side of the position are predetermined by turning counterclockwise opposite to the above. Is wound. As a result, the circulation of the magnetic flux 17 shown in FIG. 5B occurs, and four opposing surfaces of the air gaps 18-1, 18-2, 18-3, and 18-4 can be formed in one magnetic pole.
Needless to say, the surface of the air gap 4 is a basis for generating a suction force as a motor and an electromotive force as a generator.
Although not shown in FIG. 3 (A), the same thing as the above is repeated 3 times as shown below with 2 magnetic pole pitch, that is, 8 groove pitch.
Groove 11-1, Groove 11-4 and Groove 11'-1, Groove 11'-4
Groove 11-9, Groove 11-12 and Groove 11'-9, Groove 11'-12
Groove 11-17, Groove 11-20 and Groove 11'-17, Groove 11'-20
As described above, the three sets of coils are connected in series to constitute the coil 12-1A.

前記コイル12−1Aを基準にして1磁極ピッチ即ち溝ピッチずらして別コイルを設けることでコイル12−1Bを構成する。コイル12−1Aとコイル12−1Bは1溝ピッチ間隔が開けてあるが,コイル電流の転流のための余裕時間を設けたものである。  A coil 12-1B is configured by providing another coil with a shift of one magnetic pole pitch, that is, a groove pitch, with respect to the coil 12-1A. The coil 12-1A and the coil 12-1B are spaced by one groove pitch, but have a margin for commutation of the coil current.

更に上記コイル12−1Aとコイル12−1Bとを基準にしてそれぞれ回転方向に1溝ピッチずらして別コイルを設けることで,コイル12−2A,コイル12−2Bを構成する。更にまた最初の位置から2溝ピッチずらしてコイル12−3A,コイル12−3Bを,3溝ピッチずらしてコイル12−4A,12−4Bを構成する。  Furthermore, coils 12-2A and 12-2B are configured by providing separate coils with a shift of one groove pitch in the rotational direction with respect to the coils 12-1A and 12-1B. Further, the coils 12-3A and 12-3B are shifted by two grooves from the initial position, and the coils 12-4A and 12-4B are shifted by three grooves.

コイル12の起磁力の向きは外周側のコイルと内周側のコイルそれぞれの間では統一して外周側コイルと内周側コイルとの間では逆向きにすることで,対向した吸引極14が歯溝鉄心のどの位置にあっても同じ向きの循環磁束を生じる。  The direction of magnetomotive force of the coil 12 is unified between the outer coil and the inner coil, and is reversed between the outer coil and the inner coil. Circulating magnetic flux is generated in the same direction regardless of the position of the tooth gap core.

図1を参照して,回転子2は回転子要素2−1と回転子要素2−2の二つに分離できる構造にしてあり,組立て行程に際して固定子1を挟むように順次に回転軸4に挿入して回転子ネジ16で固定する。
図4は回転子要素2−1の構成を説明するための図である。同図(A)は回転子要素2−1の対向面を相手側の固定子1の対向面側から見た図である。14−1,14−2,14−3は吸引極である。吸引極の回転方向巾は6極構造より,(360°/6(極))=60°で,外周側歯鉄心10と内周側歯鉄心10’とのそれぞれと対向する対向面を持ち,両者を磁路で結ぶように構成して,2磁極ピッチ即ち120°ピッチで3組配置して,非磁性,軽量の回転子支持部材13で保持してある。図1を参照して,回転子要素2−2は,上記回転子要素2−1と鏡面対向する様に構成してある。吸引極14には,面に垂

Figure 0006481841
する必要がある。Referring to FIG. 1, the rotor 2 has a structure that can be separated into a rotor element 2-1 and a rotor element 2-2, and the rotating shaft 4 is sequentially arranged so as to sandwich the stator 1 during the assembly process. And fixed with the rotor screw 16.
FIG. 4 is a diagram for explaining the configuration of the rotor element 2-1. FIG. 2A is a view of the facing surface of the rotor element 2-1 as viewed from the facing surface side of the counterpart stator 1. Reference numerals 14-1, 14-2, and 14-3 denote suction poles. The width of the suction pole in the rotational direction is 6-pole structure, (360 ° / 6 (pole)) = 60 °, and has opposing surfaces facing the outer peripheral iron core 10 and the inner peripheral iron core 10 ′. Both are configured to be connected by a magnetic path, and three sets are arranged at two magnetic pole pitches, that is, 120 ° pitches, and held by a nonmagnetic, lightweight rotor support member 13. Referring to FIG. 1, the rotor element 2-2 is configured to face the rotor element 2-1. The suction electrode 14 is perpendicular to the surface.
Figure 0006481841
There is a need to.

図5は,図1の固定子1に係るフリップフロップスイッチ(以下FFスイッチと略称する)とコイルの接続,コイル電流波形を示すための図である。
図5[A]において,二象限定電流制御回路22は,交流或は直流電源21を入力として,負荷起電力の正負,大小に関係なく設定した定電流Iを出力するためのものである。転流相手のコイル12−1Aと,コイル12−1BはそれぞれFFスイッチ20−1A,20−1Bを介して並列接続されて,FFスイッチユニットを構成して,オンした方のFFスイッチを二象限定電流制御回路22から定電流Iが供給される。転流相手のいずれか一方を流れた電流は一旦回路は合流して定電流Iとして次のFFスイッチユニットへ入力し,これを全体で4回くり返す。
尚FFスイッチは該図では通常のスイッチ記号を使用しているが,実際はIGBT等の半導体スイッチを用い,コンデンサ等による過電圧抑制等の処理が必要である。
図5[B]は,コイル12−1A,12−1B〜コイル12−4A,12−4Bの8相の電流波形を示す。総ての波形は,ピーク値Iで同じ方向に流れる片根巾台形波である。波形は順次π/4の位相差でずれている。表1は,同図におけるFFスイッチの動作順序を示す。表中の○印はFFスイッチオン,×印はFFスイッチオフを示す。動作モードは順方向動作を基準にしており動作モードを4ずらすと制動モードになる。

Figure 0006481841
FIG. 5 is a diagram illustrating a connection between a flip-flop switch (hereinafter abbreviated as FF switch) and a coil, and a coil current waveform according to the stator 1 of FIG.
In FIG. 5A, the two-quadrant limited current control circuit 22 is for inputting a constant current I set regardless of whether the load electromotive force is positive or negative, with an AC or DC power supply 21 as an input. The commutation counterpart coil 12-1A and coil 12-1B are connected in parallel via FF switches 20-1A and 20-1B, respectively, to form an FF switch unit, and two FF switches that are turned on A constant current I is supplied from the limited current control circuit 22. The currents that flow through one of the commutation counterparts are temporarily merged and input as a constant current I to the next FF switch unit, which is repeated four times in total.
The FF switch uses a normal switch symbol in the figure, but actually, a semiconductor switch such as an IGBT is used and processing such as overvoltage suppression by a capacitor or the like is required.
FIG. 5B shows eight-phase current waveforms of the coils 12-1A and 12-1B to coils 12-4A and 12-4B. All the waveforms are one-sided trapezoidal waves that flow in the same direction at the peak value I. The waveforms are sequentially shifted by a phase difference of π / 4. Table 1 shows the operation order of the FF switches in FIG. In the table, ◯ indicates FF switch on, and X indicates FF switch off. The operation mode is based on the forward operation, and when the operation mode is shifted by 4 the brake mode is set.
Figure 0006481841

図6は,図1に係る動作を説明するための基本構成である。図1の実施例は6極4重相4面構成であるため歯鉄心と吸引極の対向面は12面あるが,図6の基本構成は1面のみに単純化して,且つ見やすいように直線化してある。磁路構成は完結しておらず,図中に矢印17の磁路の存在を前提にしてある。
図6を参照して吸引極14の先端Pが溝11−5にある状態ではFFスイッチ20−1A〜20−4Aは総てオン,FFスイッチ20−B〜20−4Bは総てオフで,コイル12−1A〜12−4Aは二象限定電流制御回路22からの供給電流Iが流れる。
通流コイルは黒く塗りつぶしてある。各歯鉄心の磁束は下記のように生じる。
・歯鉄心10−3の空隙は,コイル12−1Aのコイル1個分の電流による磁束。
・歯鉄心10−4の空隙は,コイル12−1A,12−2Aのコイル2個分の電流による磁束。
・歯鉄心10−5の空隙は,吸引極14の対向した局部だけコイル12−1A,12−2A,12−3Aのコイル3個分の電流による磁束。
吸引極14の先端Pが歯鉄心10−5を横断をする間,歯鉄心10−3,10−4の空隙磁束は変化せず,歯鉄心10−5の磁束だけが直線的に増加する。
結局は,吸引極14が歯鉄心10−5を移動する間の磁気エネルギの増加分は歯鉄心10−5の空隙磁気エネルギと等しく,吸引極1個当り

Figure 0006481841
取得した磁気エネルギと同量の力学的エネルギが出力し,吸引力は移動距離aで割って
Figure 0006481841
ここに
:磁束密度〔T〕
:空隙磁気エネルギ〔J〕
:発生吸引力〔N〕
:4π×10−7
g:空隙長〔m〕
a:歯鉄心進行方向円弧長〔m〕
Figure 0006481841
多相コイルの各相コイルが独立して吸引力発生の仕事をするのではなく各相コイルの全電流が同じ方向に相互結合して競合して一体化して吸引動作の仕事をする。吸引力は電流の約二乗に比例するため各相コイル電流を相互競合結合で一体化することで実効的重相数倍の吸引力を生じさせている。FIG. 6 is a basic configuration for explaining the operation according to FIG. Since the embodiment of FIG. 1 has a 6-pole quadruple-phase 4-face configuration, there are 12 facing surfaces of the tooth core and the suction pole, but the basic configuration of FIG. 6 is simplified to only one face and is straight for easy viewing. It has become. The magnetic path configuration is not complete, and it is assumed that there is a magnetic path indicated by an arrow 17 in the figure.
Referring to FIG. 6, in the state where the tip P of the suction electrode 14 is in the groove 11-5, the FF switches 20-1A to 20-4A are all on, and the FF switches 20-B to 20-4B are all off. The coil 12-1A to 12-4A is supplied with the supply current I from the two-quadrant limited current control circuit 22.
The flow coil is painted black. The magnetic flux of each tooth core is generated as follows.
-The gap of the tooth core 10-3 is a magnetic flux generated by the current of one coil of the coil 12-1A.
-The gap of the tooth core 10-4 is a magnetic flux generated by the current of two coils of the coils 12-1A and 12-2A.
The gap of the tooth core 10-5 is a magnetic flux generated by the current of three coils 12-1A, 12-2A, and 12-3A only at the part where the attracting pole 14 faces.
While the tip P of the attracting pole 14 crosses the tooth core 10-5, the air gap magnetic flux of the tooth cores 10-3 and 10-4 does not change, and only the magnetic flux of the tooth core 10-5 increases linearly.
Eventually, the increase in magnetic energy while the attracting pole 14 moves through the tooth core 10-5 is equal to the gap magnetic energy of the tooth core 10-5, and per attracting pole.
Figure 0006481841
The same amount of mechanical energy as the acquired magnetic energy is output, and the attractive force is divided by the moving distance a.
Figure 0006481841
Where B m : Magnetic flux density [T]
E m : Air gap magnetic energy [J]
F m : Generated suction force [N]
Mo : 4π × 10 −7
g: Air gap length [m]
a: Tooth iron core traveling direction arc length [m]
Figure 0006481841
Each phase coil of the multi-phase coil does not work for generating an attractive force independently, but all currents of the respective phase coils are mutually coupled in the same direction and compete and integrate to work. Since the attractive force is proportional to the square of the current, each phase coil current is integrated by mutual competitive coupling to generate an attractive force that is double the number of effective heavy phases.

図7を参照して,吸引極14の先端Pが歯鉄心10−5を横断して溝11−6に達した時点で,コイル12−1Aの電流がコイル12−1Bに転流する。コイル12−1Aは,自身のコイルの自己インダクタンスにもどづく磁気エネルギとコイル12−2A,コイル12−3Aそれぞれとの相互インダクタンスにもとづく磁気エネルギを保持する。
転流に際して,これ迄のコイル12−2A,12−3A,と転流先のコイル12−1Bに再配分されて,一部は負の過電圧を発生して電源側に高効率で回収される。
Referring to FIG. 7, when the tip P of the suction pole 14 crosses the tooth core 10-5 and reaches the groove 11-6, the current of the coil 12-1A is commutated to the coil 12-1B. The coil 12-1A holds the magnetic energy based on the self-inductance of its own coil and the magnetic energy based on the mutual inductance of the coils 12-2A and 12-3A.
At the time of commutation, the current is redistributed to the coils 12-2A, 12-3A and the coil 12-1B of the commutation destination, and a part is generated with high efficiency on the power source side by generating a negative overvoltage. .

図8を参照して,上記コイル12−1Aからコイル12−1Bへの転流後の状態を示してある。この状態は,図6における状態と基本的に同じで,吸引極14の先端Pが歯鉄心10−6で駆動を継続できる。
本実施例は4重相の実施例について示したが,6重相,8重相,……についても基本的に同じ考えで実施できる。
Referring to FIG. 8, a state after commutation from the coil 12-1A to the coil 12-1B is shown. This state is basically the same as the state in FIG. 6, and the tip P of the attracting pole 14 can continue to be driven by the tooth core 10-6.
Although the present embodiment has been described with respect to the quadruple phase embodiment, the same concept can be applied to the sixfold phase, the eightfold phase, and so on.

・本発明によるモータ,発電機,リニアモータは,レアメタル磁石は不要,コイルはアルミ線の適用可能であり資源フリー,
・据置型,軸型,インホイール型,平型,等形状フリー,
・(トルク,出力/重量)従来機器の大略1桁大,
・駆動,制動は特別な制御無しで目途90%効率でリバーシブル
・量産化し易い構造
の特徴をもつ。
さらにまた,本発明のモータ,発電機,リニアモータの特徴を生かした次のような新しい適応が考えられる。
・電気自動車用インホイールモータ,軸型モータ,
・低床式電車用軸型モータ
・ギャレス風力発電機
・ギャレス平型エレベータモータ
・ワイヤレスリニアモータ駆動エレベータ
・フォークリフト昇降リニアモータ
・カタパルト推進,制動用リニアモータ
・ビル用免震機構
・燃料電池船舶用軸型モータ
・電池ダンパ機構
・ The motor, generator and linear motor according to the present invention do not require a rare metal magnet, the coil can be made of aluminum wire, and is free of resources.
-Stationary type, shaft type, in-wheel type, flat type, iso-shape free,
・ (Torque, Output / Weight) About one digit larger than conventional equipment,
・ Drive and brake are reversible with 90% efficiency without any special control.
Furthermore, the following new adaptations utilizing the features of the motor, generator and linear motor of the present invention are conceivable.
・ In-wheel motor for electric vehicles, shaft type motor,
・ Low-floor type shaft motor ・ Garless wind generator ・ Garless flat elevator motor ・ Wireless linear motor drive elevator ・ Forklift linear motor ・ Catapult propulsion and braking linear motor ・ Building seismic isolation mechanism ・ Fuel cell ship Shaft type motor and battery damper mechanism

1.固定子
2.回転子
3,軸受板
4 回転軸
5,ベアリング
6,角度位置検知器
7 支持基板
7−1,7−2,7−3……,7’−1,7’−2,7’−3……くりぬき穴
8,冷却フィン
9,スペーサー

Figure 0006481841
Figure 0006481841
Figure 0006481841
13,回転子支持部材
14 14−1,14−2,14−3 吸引極
15,固定子ネジ
16 回転子ネジ
17,磁束
18,18−1,18−2,18−3,18−4 空隙
Figure 0006481841
21,交流電源或は直流電源
22,二象限定電流制御回路
23,固定子支持部材1. Stator 2. Rotor 3, bearing plate 4 rotating shaft 5, bearing 6, angular position detector 7 support substrate 7-1, 7-2, 7-3, 7'-1, 7'-2, 7'-3 ... ... bored holes 8, cooling fins 9, spacers
Figure 0006481841
Figure 0006481841
Figure 0006481841
13, rotor support member 14 14-1, 14-2, 14-3 suction pole 15, stator screw 16 rotor screw 17, magnetic flux 18, 18-1, 18-2, 18-3, 18-4 gap
Figure 0006481841
21, AC power source or DC power source 22, two-quadrant limited current control circuit 23, stator support member

Claims (1)

外周部分と内周部分が厚く、両者の間の部分は薄く形成された非磁性支持基板に歯鉄心の断面形状と同じ形状の穴をくりぬいて、その穴に該歯鉄心の両面対向面のそれぞれの面をそろえて嵌め込んで該歯鉄心の中央部を該支持基板に固定して歯鉄心に転流相手のA,B相の2相構成のコイル組を複数互いに位相角を(π/コイル組数)ずつずらして重ねて収納した複数の固定子要素と、両面或は両端に対向面をもつ複数の吸引極で対向面を構成した回転子または移動子と、二象限定電流制御回路からの定電流をA相,B相を切換えながら順次に位相差(π/コイル組数)で各コイル組に供給して各コイルの起磁力が集中した位置に該吸引極先端部或いは後端部がくるように動作するスイッチとで構成したモータ或は発電機さらにまたリニアモータ。  A non-magnetic support substrate with a thick outer peripheral part and inner peripheral part and a thin part between them is cut out with a hole having the same shape as the cross-sectional shape of the tooth core, and each of the opposite surfaces of the tooth core is inserted into the hole. The center of the tooth core is fixed to the support substrate, and a plurality of two-phase coil sets of the A and B phases of the commutation partner are set on the tooth core with a phase angle of (π / coil From a plurality of stator elements which are stacked and shifted in stages, a rotor or a mover having opposite surfaces formed by a plurality of suction poles having opposite surfaces on both sides or both ends, and a two-letter limited current control circuit The constant current of A is switched to the A phase and B phase while the phase difference (π / the number of coil sets) is sequentially supplied to each coil set, and the leading end or the rear end of the attracting pole at the position where the magnetomotive force of each coil is concentrated Motors or generators configured with switches that act like Ta.
JP2018085789A 2018-03-20 2018-03-20 Motor or generator and also linear motor [2] Active JP6481841B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018085789A JP6481841B1 (en) 2018-03-20 2018-03-20 Motor or generator and also linear motor [2]
PCT/JP2019/011546 WO2019181963A1 (en) 2018-03-20 2019-03-19 Motor or generator, and linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085789A JP6481841B1 (en) 2018-03-20 2018-03-20 Motor or generator and also linear motor [2]

Publications (2)

Publication Number Publication Date
JP6481841B1 true JP6481841B1 (en) 2019-03-13
JP2019165609A JP2019165609A (en) 2019-09-26

Family

ID=65718340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085789A Active JP6481841B1 (en) 2018-03-20 2018-03-20 Motor or generator and also linear motor [2]

Country Status (2)

Country Link
JP (1) JP6481841B1 (en)
WO (1) WO2019181963A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615522A (en) * 2020-11-30 2021-04-06 珠海格力电器股份有限公司 Magnetic gear assembly and composite motor with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759312A (en) * 1993-08-19 1995-03-03 Mitsubishi Electric Corp Ac generator for vehicle
JP2007215343A (en) * 2006-02-10 2007-08-23 Nissan Motor Co Ltd Rotating electric machine and its assembling method
JP2010246171A (en) * 2009-03-31 2010-10-28 Hitachi Industrial Equipment Systems Co Ltd Axial gap type dynamo-electric machine
JP2011125125A (en) * 2009-12-09 2011-06-23 Ev Motor Systems Co Ltd Switched reluctance motor and switched reluctance motor drive system
JP6085753B1 (en) * 2016-01-15 2017-03-01 株式会社Ccuリニアモータ研究所 Mutual coupling type Umemori motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759312A (en) * 1993-08-19 1995-03-03 Mitsubishi Electric Corp Ac generator for vehicle
JP2007215343A (en) * 2006-02-10 2007-08-23 Nissan Motor Co Ltd Rotating electric machine and its assembling method
JP2010246171A (en) * 2009-03-31 2010-10-28 Hitachi Industrial Equipment Systems Co Ltd Axial gap type dynamo-electric machine
JP2011125125A (en) * 2009-12-09 2011-06-23 Ev Motor Systems Co Ltd Switched reluctance motor and switched reluctance motor drive system
JP6085753B1 (en) * 2016-01-15 2017-03-01 株式会社Ccuリニアモータ研究所 Mutual coupling type Umemori motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615522A (en) * 2020-11-30 2021-04-06 珠海格力电器股份有限公司 Magnetic gear assembly and composite motor with same
CN112615522B (en) * 2020-11-30 2021-11-16 珠海格力电器股份有限公司 Magnetic gear assembly and composite motor with same

Also Published As

Publication number Publication date
WO2019181963A1 (en) 2019-09-26
JP2019165609A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
US11374442B2 (en) Multi-tunnel electric motor/generator
Shi et al. A novel linear permanent magnet Vernier machine with consequent-pole permanent magnets and Halbach permanent magnet arrays
JP4474547B2 (en) Permanent magnet movable electric machine
JP6085753B1 (en) Mutual coupling type Umemori motor
Madhavan et al. Performance improvement in the axial flux-segmented rotor-switched reluctance motor
CN108964396B (en) Stator partition type alternate pole hybrid excitation motor
Wan et al. A novel transverse flux machine for vehicle traction aplications
CN110165852B (en) Double-stator phase group concentrated winding and magnetism gathering type permanent magnet linear motor
CN112467950B (en) Rotor permanent magnet type dual-rotor axial magnetic field hybrid excitation flux switching motor
JP6789451B1 (en) Hybrid field double gap synchronous machine and drive system
EP4369570A1 (en) Harmonic magnetic field driving electric motor
CN111082548A (en) Stator modular hybrid excitation alternating pole magnetic flux reverse motor
CN106374705B (en) Axial flux permanent magnet machine
Ji et al. New high force density tubular permanent-magnet motor
Nasiri-Zarandi et al. Cogging torque reduction in U-core TFPM generator using different halbach-array structures
CN110112878A (en) A kind of extremely tangential excitation vernier magneto of alternating
CN107579637A (en) A kind of axial radial flux magneto
CN112467951A (en) Double-stator alternate-pole brushless hybrid excitation motor
JP2012178955A (en) Linear motor
WO2014019987A1 (en) Hybrid electric reluctance machine
JP6481841B1 (en) Motor or generator and also linear motor [2]
CN108599492B (en) Unit type axial flux switch reluctance motor
KR20120032142A (en) Permanent magnet chain track type generator
Wang et al. Novel DC-saturation-relieving hybrid reluctance machine with skewed permanent magnets for electric vehicle propulsion
JP7074983B2 (en) Motor or generator and also linear motor [3]

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190129

R150 Certificate of patent or registration of utility model

Ref document number: 6481841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250