JP6478496B2 - 撮像装置およびその制御方法 - Google Patents

撮像装置およびその制御方法 Download PDF

Info

Publication number
JP6478496B2
JP6478496B2 JP2014138017A JP2014138017A JP6478496B2 JP 6478496 B2 JP6478496 B2 JP 6478496B2 JP 2014138017 A JP2014138017 A JP 2014138017A JP 2014138017 A JP2014138017 A JP 2014138017A JP 6478496 B2 JP6478496 B2 JP 6478496B2
Authority
JP
Japan
Prior art keywords
imaging
focus detection
band
focus
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014138017A
Other languages
English (en)
Other versions
JP2016014839A5 (ja
JP2016014839A (ja
Inventor
友美 渡邉
友美 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014138017A priority Critical patent/JP6478496B2/ja
Priority to TW104119282A priority patent/TWI548272B/zh
Priority to EP15172640.3A priority patent/EP2963492A1/en
Priority to RU2015126537A priority patent/RU2622461C2/ru
Priority to BR102015016072-0A priority patent/BR102015016072B1/pt
Priority to RU2017119391A priority patent/RU2670591C1/ru
Priority to US14/790,580 priority patent/US9641769B2/en
Priority to CN201910129046.6A priority patent/CN109981945B/zh
Priority to CN201510389126.7A priority patent/CN105323441B/zh
Publication of JP2016014839A publication Critical patent/JP2016014839A/ja
Publication of JP2016014839A5 publication Critical patent/JP2016014839A5/ja
Priority to RU2018136261A priority patent/RU2696372C1/ru
Application granted granted Critical
Publication of JP6478496B2 publication Critical patent/JP6478496B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/365Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals by analysis of the spatial frequency components of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Description

本発明は撮像装置およびその制御方法に関し、特には自動焦点検出技術に関する。
撮像装置の自動焦点検出(AF)方式として、コントラストAF方式と位相差AF方式が知られている。コントラストAF方式も位相差AF方式もビデオカメラやデジタルスチルカメラで多く用いられるAF方式であり、撮像素子が焦点検出用センサとして用いられるものが存在する。
これらのAF方式は光学像を利用して焦点検出を行うため、光学像を結像する光学系の収差が焦点検出結果に誤差を与える場合があり、このような誤差を低減するための方法が提案されている。
特許文献1には、AF枠、焦点距離、AF評価周波数、被写体までの距離のそれぞれについて、複数の代表値の組み合わせを規定した基準補正データを用意し、実際の条件に応じて補間して求めた補正データで焦点検出結果を補正する方法が開示されている。
特許第5087077号公報
しかしながら、カメラ本体に固有のAF評価周波数に適した補正値を用いて焦点検出結果を補正する特許文献1の方法では、焦点検出誤差の補正を十分に行えないという問題がある。焦点検出誤差は、本来、撮影された画像において最も良好なピント状態であると観察者が感じられる焦点状態と、焦点検出結果が示す焦点状態の差である。しかしながら、特許文献1記載の方法では、撮影された画像の焦点状態について考慮されていない。

また、特許文献1におけるAF評価周波数は、単一周波数の空間周波数特性を表すものである。しかしながら、焦点検出で実際に評価される帯域は、周波数帯域幅を有しており、単一周波数の特性のみを表すものではない。
本発明はこのような従来技術の問題点の1つ以上を改善することを目的としている。具体的には、少なくとも撮影画像の焦点状態を考慮して焦点検出結果を補正することにより、光学系の収差による焦点検出誤差を精度良く補正可能な撮像装置およびその制御方法を提供することを目的とする。
上述の目的は、撮像素子から得られる信号を用いて撮影光学系の自動焦点検出を実行可能な撮像装置であって、それぞれが異なる周波数帯域に対応した、撮影光学系の複数の結像位置に関する情報を、第1の複数の重みおよび第3の複数の重みで加重加算した第1の結像位置情報と、第2の複数の重みおよび第の複数の重みで加重加算した第2の結像位置情報とを取得する取得手段と、第1の結像位置情報と第2の結像位置情報との比較結果によって、自動焦点検出の結果を補正する補正手段と、補正された自動焦点検出の結果に基づいて撮影光学系が有するフォーカスレンズの位置を制御する制御手段と、を有し第1の複数の重みは、ピント状態を評価するための周波数帯域である第1の評価帯域に対応し、第1の評価帯域は、撮影画像の特性に関する帯域であり第2の複数の重みは、ピント状態を評価するための周波数帯域である第2の評価帯域に対応し、第2の評価帯域は、自動焦点検出のために用いられる信号の特性に関する帯域であり、第3の複数の重みは周波数帯域ごとに異なる重みであり、周波数帯域が低くなるほど小さくなることを特徴とする撮像装置によって達成される。
このような構成により、本発明によれば、少なくとも撮影画像の焦点状態を考慮して焦点検出結果を補正することにより、光学系の収差による焦点検出誤差を精度良く補正可能な撮像装置およびその制御方法を提供できる。
実施形態におけるAF動作を示すフローチャート 実施形態におけるAF動作を示すフローチャート 実施形態に係る撮像装置の一例としてデジタルカメラのブロック図 実施形態における撮像素子の構成例を示す図。 実施形態における光電変換領域と射出瞳との関係を示す図 図2のTVAF部130のブロック図 実施形態における焦点検出領域の例を示す図 実施形態における縦横BP補正値(BP1)算出処理のフローチャート 実施形態における縦横BP補正値算出処理を説明するための図 実施形態における色BP補正値(BP2)算出処理を説明するための図 第1の実施形態における空間周波数BP補正値(BP3)算出処理を説明するための図 実施形態における各種空間周波数特性を示す図 第2の実施形態における空間周波数BP補正値(BP3)算出処理を説明するための図 第3の実施形態における空間周波数BP補正値(BP3)算出処理を説明するためのフローチャート
以下、図面を参照しながら本発明の例示的な実施形態について説明する。なお、実施形態は発明の理解と説明を容易にするため、具体的かつ特定の構成を有するが、本発明はそのような特定の構成に限定されない。例えば、以下では本発明をレンズ交換可能な一眼レフタイプのデジタルカメラに適用した実施形態について説明するが、本発明はレンズ交換できないタイプのデジタルカメラや、ビデオカメラに対しても適用可能である。また、カメラを備えた任意の電子機器、例えば携帯電話機、パーソナルコンピュータ(ラップトップ、タブレット、デスクトップ型など)、ゲーム機などで実施することもできる。
●(第1の実施形態)
(撮像装置の構成の説明−レンズユニット)
図2は、実施形態に係る撮像装置の一例としてデジタルカメラの機能構成例を示すブロック図である。本実施形態のデジタルカメラはレンズ交換式一眼レフカメラであり、レンズユニット100とカメラ本体120とを有する。レンズユニット100は図中央の点線で示されるマウントMを介して、カメラ本体120に装着される。
レンズユニット100は、光学系(第1レンズ群101、絞り102、第2レンズ群103、フォーカスレンズ群(以下、単に「フォーカスレンズ」という)104)及び、駆動/制御系を有する。このようにレンズユニット100は、フォーカスレンズ104を含み、被写体の光学像を形成する撮影レンズである。
第1レンズ群101はレンズユニット100の先端に配置され、光軸方向OAに移動可能に保持される。絞り102は、撮影時の光量を調節する機能のほか、静止画撮影時には露出時間を制御するメカニカルシャッタとしても機能する。絞り102及び第2レンズ群103は一体で光軸方向OAに移動可能であり、第1レンズ群101と連動して移動することによりズーム機能を実現する。フォーカスレンズ104も光軸方向OAに移動可能であり、位置に応じてレンズユニット100が合焦する被写体距離(合焦距離)が変化する。フォーカスレンズ104の光軸方向OAにおける位置を制御することにより、レンズユニット100の合焦距離を調節する焦点調節を行う。
駆動/制御系は、ズームアクチュエータ111、絞りアクチュエータ112、フォーカスアクチュエータ113、ズーム駆動回路114、絞り絞り駆動回路115、フォーカス駆動回路116、レンズMPU117、レンズメモリ118を有する。
ズーム駆動回路114は、ズームアクチュエータ111を用いて第1レンズ群101や第3レンズ群103を光軸方向OAに駆動し、レンズユニット100の光学系の画角を制御する。絞り駆動回路115は、絞りアクチュエータ112を用いて絞り102を駆動し、絞り102の開口径や開閉動作を制御する。フォーカス駆動回路116はフォーカスアクチュエータ113を用いてフォーカスレンズ104を光軸方向OAに駆動し、レンズユニット100の光学系の合焦距離を制御する。また、フォーカス駆動回路116は、フォーカスアクチュエータ113を用いてフォーカスレンズ104の現在位置を検出する。
レンズMPU(プロセッサ)117は、レンズユニット100に係る全ての演算、制御を行い、ズーム駆動回路114、絞り駆動回路115、フォーカス駆動回路116を制御する。また、レンズMPU117は、マウントMを通じてカメラMPU125と接続され、コマンドやデータを通信する。例えばレンズMPU117はフォーカスレンズ104の位置を検出し、カメラMPU125からの要求に対してレンズ位置情報を通知する。このレンズ位置情報は、フォーカスレンズ104の光軸方向OAにおける位置、光学系が移動していない状態の射出瞳の光軸方向OAにおける位置および直径、射出瞳の光束を制限するレンズ枠の光軸方向OAにおける位置および直径などの情報を含む。またレンズMPU117は、カメラMPU125からの要求に応じて、ズーム駆動回路114、絞り駆動回路115、フォーカス駆動回路116を制御する。レンズメモリ118は自動焦点検出に必要な光学情報が予め記憶されている。カメラMPU125は例えば内蔵する不揮発性メモリやレンズメモリ118に記憶されているプログラムを実行することで、レンズユニット100の動作を制御する。
(撮像装置の構成の説明−カメラ本体)
カメラ本体120は、光学系(光学ローパスフィルタ121および撮像素子122)と、駆動/制御系とを有する。レンズユニット100の第1レンズ群101、絞り102、第2レンズ群103、フォーカスレンズ104と、カメラ本体120の光学ローパスフィルタ121は撮影光学系を構成する。
光学ローパスフィルタ121は、撮影画像の偽色やモアレを軽減する。撮像素子122はCMOSイメージセンサと周辺回路で構成され、横方向m画素、縦方向n画素(n,mは2以上の整数)が配置される。本実施形態の撮像素子122は、瞳分割機能を有し、画像データを用いた位相差AFが可能である。画像処理回路124は、撮像素子122が出力する画像データから、位相差AF用のデータと、表示、記録、およびコントラストAF(TVAF)用の画像データを生成する。
駆動/制御系は、センサ駆動回路123、画像処理回路124、カメラMPU125、表示器126、操作スイッチ群127、メモリ128、位相差AF部129、TVAF部130を有する。
センサ駆動回路123は、撮像素子122の動作を制御するとともに、取得した画像信号をA/D変換してカメラMPU125に送信する。画像処理回路124は、撮像素子122が取得した画像データに対し、例えばγ変換、ホワイトバランス調整処理、色補間処理、圧縮符号化処理など、デジタルカメラで行われる一般的な画像処理を行う。また、画像処理回路124は位相差AF用の信号も生成する。
カメラMPU(プロセッサ)125は、カメラ本体120に係る全ての演算、制御を行い、センサ駆動回路123、画像処理回路124、表示器126、操作スイッチ群127、メモリ128、位相差AF部129、TVAF部130を制御する。カメラMPU125はマウントMの信号線を介してレンズMPU117と接続され、レンズMPU117とコマンドやデータを通信する。カメラMPU125はレンズMPU117に対し、レンズ位置の取得要求や、所定の駆動量での絞り、フォーカスレンズ、ズーム駆動要求や、レンズユニット100に固有の光学情報の取得要求などを発行する。カメラMPU125には、カメラ動作を制御するプログラムを格納したROM125a、変数を記憶するRAM125b、諸パラメータを記憶するEEPROM125cが内蔵されている。
表示器126はLCDなどから構成され、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の合焦状態表示画像などを表示する。操作スイッチ群127は、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。本実施形態の記録手段としてのメモリ128は、着脱可能なフラッシュメモリで、撮影済み画像を記録する。
位相差AF部129は、画像処理回路124により得られる焦点検出用データを用いて位相差検出方式で焦点検出処理を行う。より具体的には、画像処理回路124が、撮影光学系の一対の瞳領域を通過する光束で形成される一対の像データを焦点検出用データとして生成し、位相差AF部129はこの一対の像データのずれ量に基づいて焦点ずれ量を検出する。このように、本実施形態の位相差AF部129は、専用のAFセンサを用いず、撮像素子122の出力に基づく位相差AF(撮像面位相差AF)を行う。位相差AF部129の動作については後で詳細に説明する。
TVAF部130は、画像処理回路124が生成するTVAF用評価値(画像データのコントラスト情報)に基づいてコントラスト方式の焦点検出処理を行う。コントラスト方式の焦点検出処理は、フォーカスレンズ104を移動して評価値がピークとなるフォーカスレンズ位置を合焦位置として検出する。
このように、本実施形態のデジタルカメラは位相差AFとTVAFの両方を実行可能であり、状況に応じて選択的に使用したり、組み合わせて使用したりすることができる。
(焦点検出動作の説明:位相差AF)
以下、位相差AF部129およびTVAF部130の動作についてさらに説明する。
最初に、位相差AF部129の動作について説明する。
図3(a)は本実施形態における撮像素子122の画素配列を示した図で、2次元C−MOSエリアセンサの縦(Y方向)6行と横(X方向)8列の範囲を、レンズユニット100側から観察した状態を示している。撮像素子122にはベイヤー配列のカラーフィルタが設けられ、奇数行の画素には、左から順に緑(G)と赤(R)のカラーフィルタが交互に、偶数行の画素には、左から順に青(B)と緑(G)のカラーフィルタが交互に配置されている。画素211において、円211iはオンチップマイクロレンズを表し、オンチップマイクロレンズの内側に配置された複数の矩形211a,211bはそれぞれ光電変換部である。
本実施形態の撮像素子122は、すべての画素の光電変換部がX方向に2分割され、個々の光電変換部の光電変換信号と、光電変換信号の和が独立して読み出し可能である。また、光電変換信号の和から一方の光電変換部の光電変換信号を減じることで、他方の光電変換部の光電変換信号に相当する信号を得ることができる。個々の光電変換部における光電変換信号は位相差AF用のデータとして用いたり、3D(3-Dimensional)画像を構成する視差画像の生成に用いたりすることもできる。また、光電変換信号の和は、通常の撮影画像データとして用いることができる。
ここで、位相差AFを行なう場合の画素信号について説明する。後述するように、本実施形態においては、図3(a)のマイクロレンズ211iと、分割された光電変換部211a,211bで撮影光学系の射出光束を瞳分割する。そして、同一画素行に配置された所定範囲内の複数の画素211について、光電変換部211aの出力をつなぎ合わせて編成したものをAF用A像、光電変換部211bの出力をつなぎ合わせて編成したものをAF用B像とする。光電変換部211a、211bの出力は、カラーフィルタの単位配列に含まれる緑、赤、青、緑の出力を加算して算出した疑似的な輝度(Y)信号を用いる。但し、赤、青、緑の色ごとに、AF用A像、B像を編成してもよい。このように生成したAF用A像とB像の相対的な像ずれ量を相関演算により検出することで、所定領域の焦点ずれ量(デフォーカス量)を検出することができる。本実施形態では、一方の光電変換部の出力と全光電変換部の出力の和を撮像素子122から読み出すものとする。例えば光電変換部211aの出力と、光電変換部211a,211bの出力の和とが読み出される場合、光電変換部211bの出力は和から光電変換部211aの出力を減じることで取得する。これにより、AF用A像とB像の両方を得ることができ、位相差AFが実現できる。このような撮像素子は、特開2004−134867号公報に開示されるように公知であるため、これ以上の詳細に関する説明は省略する。
図3(b)は本実施形態の撮像素子122の読み出し回路の構成例を示した図である。151は水平走査回路、153は垂直走査回路である。そして各画素の境界部には、水平走査ライン152a及び152bと、垂直走査ライン154a及び154bが配線され、各光電変換部はこれらの走査ラインを介して信号が外部に読み出される。
なお、本実施形態の撮像素子は上述の画素内の読み出し方法に加え、以下の2種類の読み出しモードを有する。第1の読み出しモードは全画素読み出しモードと称するもので、高精細静止画を撮像するためのモードである。この場合は、全画素の信号が読み出される。
第2の読み出しモードは間引き読み出しモードと称するもので、動画記録、もしくはプレビュー画像の表示のみを行なうためのモードである。この場合に必要な画素数は全画素よりも少ないため、画素群はX方向及びY方向ともに所定比率に間引いた画素のみ読み出す。また、高速に読み出す必要がある場合にも、同様に間引き読み出しモードを用いる。X方向に間引く際には、信号の加算を行いS/Nの改善を図り、Y方向に対する間引きは、間引かれる行の信号出力を無視する。位相差AFおよびコントラストAFも、通常、第2の読み出しモードで読み出された信号に基づいて行われる。
図4は、本実施形態の撮像装置において、撮影光学系の射出瞳面と、像高ゼロすなわち像面中央近傍に配置された撮像素子の光電変換部の共役関係を説明する図である。撮像素子内の光電変換部と撮影光学系の射出瞳面は、オンチップマイクロレンズによって共役関係となるように設計される。そして撮影光学系の射出瞳は、一般的に光量調節用の虹彩絞りが置かれる面とほぼ一致する。一方、本実施形態の撮影光学系は変倍機能を有したズームレンズであるが、光学タイプによっては変倍操作を行なうと、射出瞳の像面からの距離や大きさが変化する。図4では、レンズユニット100の焦点距離が広角端と望遠端の中央にある状態を示している。この状態における射出瞳距離Zepを標準値として、オンチップマイクロレンズの形状や、像高(X,Y座標)に応じた偏心パラメータの最適設計がなされる。
図4(a)において、101は第1レンズ群、101bは第1レンズ群を保持する鏡筒部材、105は第3レンズ群、104bはフォーカスレンズ104を保持する鏡筒部材である。102は絞りで、102aは絞り開放時の開口径を規定する開口板、102bは絞り込み時の開口径を調節するための絞り羽根である。なお、撮影光学系を通過する光束の制限部材として作用する101b、102a、102b、及び104bは、像面から観察した場合の光学的な虚像を示している。また、絞り102の近傍における合成開口をレンズの射出瞳と定義し、前述したように像面からの距離をZepとしている。
画素211は像面中央近傍に配置されており、本実施形態では、中央画素と呼ぶ。中央画素211は、最下層より、光電変換部211a,211b、配線層211e〜211g、カラーフィルタ211h、及びオンチップマイクロレンズ211iの各部材で構成される。そして2つの光電変換部はオンチップマイクロレンズ211iによって撮影光学系の射出瞳面に投影される。換言すれば、撮影光学系の射出瞳が、オンチップマイクロレンズ211iを介して、光電変換部の表面に投影される。
図4(b)は、撮影光学系の射出瞳面上における、光電変換部の投影像を示したもので、光電変換部211a及び211bに対する投影像は各々EP1a及びEP1bとなる。また本実施形態では、撮像素子は、2つの光電変換部211aと211bのいずれか一方の出力と、両方の和の出力を得ることができる画素を有している。両方の和の出力は、撮影光学系のほぼ全瞳領域である投影像EP1a、EP1bの両方の領域を通過した光束を光電変換したものである。
図4(a)で、撮影光学系を通過する光束の最外部をLで示すと、光束Lは、絞りの開口板102aで規制されており、投影像EP1a及びEP1bは撮影光学系でケラレがほぼ発生していない。図4(b)では、図4(a)の光束Lを、TLで示している。TLで示す円の内部に、光電変換部の投影像EP1a、EP1bの大部分が含まれていることからも、ケラレがほぼ発生していないことがわかる。光束Lは、絞りの開口板102aでのみ制限されているため、TLは、102aと言い換えることができる。この際、像面中央では各投影像EP1aないしEP1bのけられ状態は光軸に対して対称となり、各光電変換部211a及び211bが受光する光量は等しい。
位相差AFを行う場合、カメラMPU125は撮像素子122から上述した2種類の出力を読み出すようにセンサ駆動回路123を制御する。そして、カメラMPU125は画像処理回路124に対して焦点検出領域の情報を与え、焦点検出領域内に含まれる画素の出力から、AF用A像およびB像のデータを生成して位相差AF部129に供給するよう命令する。画像処理回路124はこの命令に従ってAF用A像およびB像のデータを生成して位相差AF部129に出力する。画像処理回路124はまた、TVAF部130に対してRAW画像データを供給する。
以上説明した様に、撮像素子122は位相差AFおよびコントラストAFの両方について、焦点検出装置の一部を構成している。
なお、ここでは一例として水平方向に射出瞳を2分割する構成を説明したが、撮像素子一部の画素については垂直方向に射出瞳を2分割する構成としてもよい。また、水平および垂直の両方向に射出瞳を分割する構成としてもよい。垂直方向に射出瞳を分割する画素を設けることにより、水平だけでなく垂直方向の被写体のコントラストに対応した位相差AFが可能となる。
(焦点検出動作の説明:コントラストAF)
次に、図5を用いて、コントラストAF(TVAF)について説明する。コントラストAFは、カメラMPU125とTVAF部130が連携してフォーカスレンズの駆動と評価値の算出を繰り返し行うことで実現される。
画像処理回路124からRAW画像データがTVAF部130に入力されると、AF評価用信号処理回路401で、ベイヤー配列信号からの緑(G)信号の抽出と、低輝度成分を強調して高輝度成分を抑圧するガンマ補正処理が施される。本実施形態では、TVAFを緑(G)信号で行う場合を説明するが、赤(R)、青(B)、緑(G)の全ての信号を用いてもよい。また、RGB全色用いて輝度(Y)信号を生成してもよい。AF評価用信号処理回路401で生成される出力信号は、用いられた信号の種類によらず、以後の説明では、輝度信号Yと呼ぶ。
なお、カメラMPU125から、領域設定回路413に焦点検出領域が設定されているものとする。領域設定回路413は、設定された領域内の信号を選択するゲート信号を生成する。ゲート信号は、ラインピーク検出回路402、水平積分回路403、ライン最小値検出回路404、ラインピーク検出回路409、垂直積分回路406、410垂直ピーク検出回路405、407、411の各回路に入力される。また、各焦点評価値が焦点検出領域内の輝度信号Yで生成されるように、輝度信号Yが各回路に入力するタイミングが制御される。なお、領域設定回路413には、焦点検出領域に合わせて複数の領域が設定可能である。
Yピーク評価値の算出方法について説明する。ガンマ補正された輝度信号Yはラインピーク検出回路402へ入力され、領域設定回路413に設定された焦点検出領域内で水平ラインごとのYラインピーク値が求められる。ラインピーク検出回路402の出力は垂直ピーク検出回路405において焦点検出領域内で垂直方向にピークホールドされ、Yピーク評価値が生成される。Yピーク評価値は、高輝度被写体や低照度被写体の判定に有効な指標である。
Y積分評価値の算出方法について説明する。ガンマ補正された輝度信号Yは、水平積分回路403へ入力され、焦点検出領域内で水平ラインごとにYの積分値が求められる。更に、水平積分回路403の出力は垂直積分回路406において焦点検出領域内で垂直方向に積分されて、Y積分評価値が生成される。Y積分評価値は、焦点検出領域内全体の明るさを判断する指標として用いることができる。
Max−Min評価値の算出方法について説明する。ガンマ補正された輝度信号Yは、ラインピーク検出回路402に入力され、焦点検出領域内で水平ラインごとのYラインピーク値が求められる。また、ガンマ補正された輝度信号Yは、ライン最小値検出回路404に入力され、焦点検出領域内で水平ラインごとにYの最小値が検出される。検出された水平ラインごとのYのラインピーク値及び最小値は減算器に入力され、(ラインピーク値−最小値)が垂直ピーク検出回路407に入力される。垂直ピーク検出回路407は焦点検出領域内で垂直方向にピークホールドを行い、Max−Min評価値を生成する。Max−Min評価値は、低コントラスト・高コントラストの判定に有効な指標である。
領域ピーク評価値の算出方法について説明する。ガンマ補正された輝度信号Yは、BPF408に通すことによって特定の周波数成分が抽出され焦点信号が生成される。この焦点信号はラインピーク検出回路409へ入力され、焦点検出領域内で水平ラインごとのラインピーク値が求められる。ラインピーク値は、垂直ピーク検出回路411によって焦点検出領域内でピークホールドされ、領域ピーク評価値が生成される。領域ピーク評価値は、焦点検出領域内で被写体が移動しても変化が少ないので、合焦状態から再度合焦点を探す処理に移行するかどうかを判定する再起動判定に有効な指標である。
全ライン積分評価値の算出方法について説明する。領域ピーク評価値と同様に、ラインピーク検出回路409は、焦点検出領域内で水平ラインごとのラインピーク値を求める。次に、ラインピーク値を垂直積分回路410に入力し、焦点検出領域内で垂直方向に全水平走査ライン数について積分して全ライン積分評価値を生成する。全ライン積分評価値は、積分の効果でダイナミックレンジが広く、感度が高いので、主要なAF評価値である。従って、本実施形態では単に焦点評価値と記載した場合は全ライン積分評価値を意味する。
カメラMPU125のAF制御部151は上述したそれぞれの焦点評価値を取得し、レンズMPU117を通じてフォーカスレンズ104を光軸方向に沿って所定方向に所定量移動させる。そして、新たに得られた画像データに基づいて上述した各種の評価値を算出し、全ライン積分評価値が最大値となるフォーカスレンズ位置を検出する。
本実施形態では、各種のAF用評価値を水平ライン方向および垂直ライン方向で算出する。これにより、水平、垂直の直交する2方向の被写体のコントラスト情報に対して焦点検出を行うことができる。
(焦点検出領域の説明)
図6は、撮影範囲内における焦点検出領域の例を示す図である。上述の通り、位相差AFおよびコントラストAFのいずれも、焦点検出領域に含まれる画素から得られた信号に基づいて行われる。図6において、点線で示す長方形は撮像素子122の画素が形成された撮影範囲217を示す。撮影範囲217には位相差AF用の焦点検出領域218ah、218bh、218chが設定されている。本実施形態では、位相差AF用の焦点検出領域218ah、218bh、218chを撮影範囲217の中央部と左右2箇所の計3箇所に設定している。また、TVAF用の焦点検出領域219a、219b、219cが、位相差AF用の焦点検出領域218ah、218bh、218chの1つを包含する形で設定されている。なお、図6は焦点検出領域の設定例であり、数、位置および大きさは図示したものに限定されない。
(焦点検出処理の流れの説明)
次に、図1Aおよび1Bを参照して、本実施形態のデジタルカメラにおける自動焦点検出(AF)動作について説明する。
AF処理の概要を説明した後、詳細な説明を行う。本実施形態でカメラMPU125はまず、焦点検出領域218ah、218bh、218chのそれぞれについて、位相差AFを適用して焦点ずれ量(デフォーカス量)と、デフォーカス量の信頼性とを求める。焦点検出領域218ah、218bh、218chの全てで所定の信頼性を有するデフォーカス量が得られていれば、カメラMPU125はデフォーカス量に基づいて最至近の被写体の合焦位置にフォーカスレンズ104を移動させる。
一方、所定の信頼性を有するデフォーカス量が得られなかった焦点検出領域が存在する場合、カメラMPU125は、その焦点検出領域を包含するコントラストAF用の焦点検出領域について焦点評価値を取得する。カメラMPU125は、焦点評価値の変化とフォーカスレンズ104の位置の関係とに基づいて、位相差AFで得られたデフォーカス量に対応する被写体距離より至近側に被写体が存在するか判定する。そして、より至近側に被写体が存在すると判定された場合、焦点評価値の変化に基づく方向にフォーカスレンズ104を駆動する。
なお、以前に焦点評価値が得られていない場合には焦点評価値の変化量を求めることができない。その場合、カメラMPU125は予め決められたデフォーカス量よりも大きく、かつ所定の信頼性を有するデフォーカス量が得られた焦点検出領域が存在する場合にはその中の最至近の被写体に合焦するようにフォーカスレンズ104を駆動する。所定の信頼性を有するデフォーカス量が得られていない場合、及び、予め決められたデフォーカス量よりも大きなデフォーカス量が得られていない場合、カメラMPU125はデフォーカス量に関係の無い所定量フォーカスレンズ104を駆動させる。これは、小さいデフォーカス量に基づいてフォーカスレンズ104を駆動した場合、次の焦点検出時に焦点評価値の変化を検出することが難しい可能性が高いからである。
いずれかの方法により焦点検出を終えると、カメラMPU125は各種の補正値を算出し、焦点検出結果を補正する。そして、カメラMPU125は補正後の焦点検出結果に基づいてフォーカスレンズ104を駆動する。
以下、上述したAF処理の詳細を、図1Aおよび図1Bに示すフローチャートを用いて説明する。以下のAF処理動作は、他の主体が明記されている場合を除き、カメラMPU125が主体となって実行される。また、カメラMPU125がレンズMPU117にコマンド等を送信することによってレンズユニット100の駆動や制御を行う場合、説明を簡潔にするために動作主体をカメラMPU125として記載する場合がある。
S1でカメラMPU125は焦点検出領域を設定する。ここでは、位相差AF用、コントラストAF用とも、図に示したような3か所の焦点検出領域が設定されるものとする。
S2において、カメラMPU125は、RAM125b内の至近判定フラグを1に設定する。
S3で、カメラMPU125は、撮像素子122を露光して画像信号を読み出し、画像処理回路124に位相差AF用の焦点検出領域218ah、218bh、218ch内の画像データに基づく位相差AF用の像信号を生成させる。また、画像処理回路124が生成したRAW画像データをTVAF部130に供給させ、TVAF部130でTVAF用の焦点検出領域219a、219b、219c内の画素データに基づく評価値を算出させる。なお、位相差AF用の像信号を生成する前に、画像処理回路124において撮影レンズのレンズ枠などによる光束のケラレによる射出瞳の非対称性を補正する処理(特開2010−117679号公報参照)を適用してもよい。TVAF部130が算出した焦点評価値は、カメラMPU125内のRAM125bに記憶される。
S4において、カメラMPU125は、信頼性のある焦点評価値のピーク(極大値)が検出されたか否かを判定する。信頼性のあるピークが検出された場合、カメラMPU125は、焦点検出処理を終えるために処理をS20に進める。なお、焦点評価値のピークの信頼性の算出方法に制限はないが、例えば、特開2010−78810号公報の図10から図13で説明されているような方法を用いればよい。具体的には、検出されたピークが山の頂点かどうかを、焦点評価値の最大値と最小値の差、一定値(SlopeThr)以上の傾きで傾斜している部分の長さ、および傾斜している部分の勾配をそれぞれの閾値と比較して判断する。全ての閾値を満たしていればピークは信頼性があると判定することができる。
本実施形態では、位相差AFとコントラストAFを併用している。そのため、同一の焦点検出領域や他の焦点検出領域で、より至近側の被写体の存在が確認されている場合には、信頼性のある焦点評価値ピークが検出された際であっても、焦点検出を終えずに処理をS5に進めてもよい。ただし、この場合、信頼性のある焦点評価値ピークに対応するフォーカスレンズ104の位置を記憶しておき、S5以降の処理で信頼性のある焦点検出結果が得られなかった場合に、記憶したフォーカスレンズ104位置を焦点検出結果とする。
S5において、位相差AF部129は、焦点検出領域218ch、218ah,218bhごとに、画像処理回路124から供給された一対の像信号のずれ量(位相差)を算出し、位相差を予め記憶されている換算係数を用いてデフォーカス量に変換する。ここでは、算出されたデフォーカス量の信頼性も判定し、所定の信頼性を有すると判定された焦点検出領域のデフォーカス量のみを、以後のAF処理で用いる。レンズ枠などによるケラレの影響により、デフォーカス量が大きくなるにつれて、一対の像信号間で検出される位相差は、より多くの誤差を含むようになる。そのため、得られたデフォーカス量が閾値より大きい場合、一対の像信号の形状の一致度が低い場合、像信号のコントラストが低い場合には、得られたデフォーカス量は所定の信頼性を有さない(信頼性が低い)と判定することができる。以下、得られたデフォーカス量が所定の信頼性を有すると判定された場合に「デフォーカス量が算出できた」と表現する。また、デフォーカス量が何らかの理由で算出できなかった場合や、デフォーカス量の信頼性が低いと判定された場合には「デフォーカス量が算出できない」と表現する。
S6でカメラMPU125は、S1で設定した位相差AF用の焦点検出領域218ah、218bh、218chの全てでデフォーカス量が算出できたか否か調べる。全ての焦点検出領域でデフォーカス量が算出できている場合、カメラMPU125は処理をS20に進め、算出されたデフォーカス量の中で、最も至近側にある被写体を示すデフォーカス量が算出された焦点検出領域に対して、縦横BP補正値(BP1)を算出する。ここで、最も至近側の被写体を選択する理由は、一般に、撮影者がピントを合わせたい被写体は、至近側に存在することが多いためである。また、縦横BP補正値(BP1)は、水平方向の被写体のコントラストに対して焦点検出を行った場合と、垂直方向の被写体のコントラストに対して焦点検出を行った場合の焦点検出結果の差を補正する値である。
一般的な被写体は、水平方向、垂直方向ともにコントラストを有しており、撮影された画像のピント状態の評価も、水平方向、垂直方向の両方向のコントラストを鑑みてなされる。一方で、上述の位相差検出方式のAFのように水平方向のみの焦点検出を行う場合、水平方向の焦点検出結果と撮影画像の水平方向、垂直方向の両方向のピント状態には誤差を生じる。この誤差は、撮影光学系の非点収差などにより発生する。縦横BP補正値(BP1)は、その誤差を補正するための補正値で、選択された焦点検出領域、フォーカスレンズ104の位置、ズーム状態を示す第1レンズ群101の位置などを考慮して算出される。算出方法の詳細については後述する。
S21でカメラMPU125は、S20で補正値算出対象となった焦点検出領域に対して、垂直方向もしくは水平方向のコントラスト情報を用いて、色BP補正値(BP2)を算出する。色BP補正値(BP2)は、撮影光学系の色収差により発生するもので、焦点検出に用いる信号の色のバランスと撮影画像もしくは現像された画像に用いる信号の色のバランスとの差により生じる。例えば、本実施形態のコントラストAFでは、焦点評価値を緑(G)のカラーフィルタを有する画素(緑画素)出力に基づいて生成するため、主に緑色の波長の合焦位置を検出することになる。しかし、撮影画像は、RGB全色を用いて生成されるため、赤(R)や青(B)の合焦位置が緑(G)と異なる場合(軸上色収差が存在する場合)、焦点評価値による焦点検出結果とずれ(誤差)を生じる。その誤差を、補正するための補正値が、色BP補正値(BP2)である。色BP補正値(BP2)の算出方法の詳細は、後述する。
S22でカメラMPU125は、補正対象である焦点検出領域に対して、垂直方向もしくは水平方向で緑信号もしくは輝度信号Yのコントラスト情報を用いて、ある特定の空間周波数BP補正値(BP3)を算出する。空間周波数BP補正値(BP3)は、撮影光学系の主に球面収差により発生するもので、焦点検出に用いる信号の評価周波数(帯域)と撮影画像を鑑賞する際の評価周波数(帯域)の差によって発生する。上述の通り焦点検出時の画像信号は第2のモードで撮像素子から読み出されているため、出力信号が加算や間引きされている。そのため、第1の読み出しモードで読み出された全画素の信号を用いて生成される撮影画像に対して、焦点検出に用いる出力信号は評価帯域が低くなる。その評価帯域の差により発生する焦点検出のずれを補正するのが空間周波数BP補正値(BP3)である。空間周波数BP補正値(BP3)の算出方法の詳細は、後述する。
S23でカメラMPU125は、算出された3種の補正値(BP1、BP2、BP3)を用いて以下の式(1)により焦点検出結果DEF_Bを補正し、補正後の焦点検出結果DEF_Aを算出する。
DEF_A=DEF_B+BP1+BP2+BP3 (1)
本実施形態では、焦点検出結果を補正するための補正値を3段階に分けて、縦横(S20)、色(S21)、空間周波数(S22)の順番に、計算する。
まず、撮影画像の鑑賞時の評価が縦横両方向のコントラスト情報を用いられるのに対し、焦点検出は1方向のコントラスト情報を用いることに起因する誤差を、縦横BP補正値(BP1)として算出する。
次に、縦横BPの影響を切り離して、1方向のコントラスト情報において、撮影画像に用いられる信号の色と焦点検出時に用いられる信号の色による合焦位置の差を、色BP補正値(BP2)として算出する。
さらに、1方向のコントラスト情報で、緑もしくは輝度信号などのある特定の色に関して、撮影画像の鑑賞時と焦点検出時の評価帯域の差により発生する合焦位置の差を空間周波数BP補正値(BP3)として算出する。
このように、3種類の誤差を切り分けて算出することにより、演算量の低減、レンズもしくはカメラに記憶するデータ容量の低減を図っている。
S24でカメラMPU125は、レンズMPU117を通じてフォーカスレンズ104を、式(1)で算出された補正後のデフォーカス量DEF_Aに基づいて駆動する。
S25でカメラMPU125は、フォーカスレンズ104の駆動に用いたデフォーカス量を算出した焦点検出領域を表す表示(AF枠表示)を、表示器126で例えばライブビュー画像に重畳表示させて、AF処理を終了する。
一方、S6でデフォーカス量が算出できなかった焦点検出領域が存在した場合、カメラMPU125は処理を図1BのS7に進める。S7でカメラMPU125は、至近判定フラグが1であるか否かを判定する。至近判定フラグが1なのは、AF動作が始まってからフォーカスレンズ駆動が一度も行われていない場合である。フォーカスレンズ駆動が行われていれば至近判定フラグは0となる。至近判定フラグが1である場合、カメラMPU125は、処理をS8に進める。
S8でカメラMPU125は、全ての焦点検出領域でデフォーカス量を算出できなかった場合、もしくは、算出されたデフォーカス量のうち、最も至近側の被写体の存在を示すデフォーカス量が所定の閾値A以下の場合には、処理をS9に進める。S9でカメラMPU125は、至近側に予め決められた量、フォーカスレンズを駆動する。
ここでS8でYesの場合に、所定量のレンズ駆動を行う理由を説明する。まず、複数の焦点検出領域の中で、デフォーカス量が算出できた領域が無い場合とは、現時点では、ピント合わせを行うべき被写体が見つかっていない場合である。そのため、合焦不能であると判断する前に、全ての焦点検出領域に対して、ピント合わせを行うべき被写体の存在を確認するために、所定量のレンズ駆動を行い、後述する焦点評価値の変化を判定できるようにする。また、算出されたデフォーカス量の中で最も至近側の被写体の存在を示すデフォーカス量が所定の閾値A以下の場合とは、現時点で、ほぼ合焦状態の焦点検出領域が存在している場合である。このような状況では、デフォーカス量が算出できなかった焦点検出領域に、より至近側に、現時点では検出されていない被写体がある可能性を確認するために、所定量のレンズ駆動を行い、後述する焦点評価値の変化を判定できるようにする。
なお、S9でフォーカスレンズを駆動する所定量は、撮影光学系のF値やレンズ駆動量に対する撮像面上でのピント移動量の敏感度を鑑みて定めればよい。
一方で、S8でNoの場合、すなわち、算出されたデフォーカス量の中で最も至近側の被写体の存在を示すデフォーカス量が所定の閾値Aより大きい場合には、S10に進む。この場合には、デフォーカス量が算出できた焦点検出領域は存在するものの、その焦点検出領域は合焦状態ではない場合である。そのため、S10でカメラMPU125は、算出されたデフォーカス量の中で最も至近側の被写体の存在を示すデフォーカス量に基づき、レンズ駆動を行う。
S9もしくはS10にてレンズ駆動を行った後、カメラMPU125は処理をS11に進め、至近判定フラグを0に設定して、図1AのS3に処理を戻す。
S7で、至近判定フラグが1でない(0である)場合、カメラMPU125は処理をS12に進める。S12でカメラMPU125は、デフォーカス量が算出できなかった焦点検出領域に対応したTVAF用の焦点検出領域の焦点評価値が、レンズ駆動前後で、所定の閾値B以上変化したか否かを判断する。焦点評価値は増加する場合も減少する場合もあるが、S12では焦点評価値の変化量の絶対値が所定の閾値B以上であるか否かを判断する。
ここで、焦点評価値の変化量の絶対値が所定の閾値B以上である場合とは、デフォーカス量は算出できないものの、焦点評価値の増減により、被写体のボケ状態の変化を検出できたことを意味している。そのため、本実施形態では、位相差AFによるデフォーカス量が検出できない場合でも、焦点評価値の増減に基づいて被写体の存在を判定し、AF処理を継続する。これにより、デフォーカス量が大きく、位相差AFでは検出できない被写体に対して、焦点調節を行うことができる。
ここで、判定に用いられる所定の閾値Bは、レンズ駆動量に応じて変更する。レンズ駆動量が大きい場合は、小さい場合よりも閾値Bに大きい値を設定する。これは、被写体が存在する場合には、レンズ駆動量の増加に応じて、焦点評価値の変化量も増加するためである。これらのレンズ駆動量ごとの閾値Bは、EEPROM125cに記憶されている。
焦点評価値の変化量の絶対値が閾値B以上である場合、カメラMPU125は処理をS13に進め、焦点評価値の変化量が閾値B以上ある焦点検出領域が、無限遠側被写体の存在を示す焦点検出領域のみであるか否かを判定する。焦点検出領域が無限遠側被写体の存在を示す場合とは、レンズ駆動の駆動方向が至近方向で焦点評価値が減少、もしくは、レンズ駆動の駆動方向が無限遠方向で焦点評価値が増加した場合である。
焦点評価値の変化量が閾値B以上である焦点検出領域が、無限遠側被写体の存在を示す焦点検出領域のみでない場合、カメラMPU125は処理をS14に進め、至近側に所定量のレンズ駆動を行う。これは、焦点評価値の変化量が閾値B以上ある焦点検出領域の中に、至近側被写体の存在を示す焦点検出領域があるためである。なお、至近側を優先する理由は上述のとおりである。
一方、S13において、焦点評価値の変化量が閾値B以上ある焦点検出領域が、無限遠側被写体の存在を示す焦点検出領域のみである場合、カメラMPU125は処理をS15に進める。S15でカメラMPU125は、デフォーカス量が算出できた焦点検出領域が存在するか否かを判定する。デフォーカス量が算出できた焦点検出領域が存在する場合(S15でYes)には、焦点評価値による無限遠側被写体の存在よりも、位相差AFの結果を優先するため、カメラMPU125は、処理を図1AのS20に進める。
デフォーカス量が算出できた焦点検出領域が存在しない場合(S15でNo)には、被写体の存在を示す情報が、焦点評価値の変化のみである。そのため、カメラMPU125は、焦点評価の変化に基づいて、S16で無限遠側に所定量のレンズ駆動を行い、処理を図1AのS3に戻す。
S14及びS16で行うレンズ駆動の所定量は、位相差AFで検出可能なデフォーカス量を鑑みて決めればよい。被写体によって検出可能なデフォーカス量は異なるが、焦点検出不可能な状態からのレンズ駆動で、被写体を検出できずに通り過ぎてしまうことがないようなレンズ駆動量を予め設定しておく。
焦点評価値の変化量の絶対値が所定の閾値B未満である場合(S12でNo)、カメラMPU125は処理をS17に進め、デフォーカス量が算出できた焦点検出領域の有無を判定する。デフォーカス量が算出できた焦点検出領域が無い場合、カメラMPU125は、処理をS18に進め、予め定められた定点にレンズを駆動した後、さらに処理をS19に進め、表示器126に非合焦表示を行ってAF処理を終了する。これは、デフォーカス量が算出できた焦点検出領域が無く、レンズ駆動の前後で焦点評価値の変化がある焦点検出領域も無い場合である。このような場合、被写体の存在を示す情報が全く無いため、カメラMPU125は合焦不能と判定してAF処理を終了する。
一方、S17で、デフォーカス量が算出できた焦点検出領域が有る場合、カメラMPU125は処理を図1AのS20に進め、検出されたデフォーカス量の補正を行い(S20〜S23)、S24で合焦位置へフォーカスレンズ104を駆動する。その後、カメラMPU125はS25で表示器126に合焦表示を行い、AF処理を終了する。
(縦横BP補正値の算出方法)
次に、図7から図8(b)を用いて、図1のS20で行う縦横BP補正値(BP1)の算出方法について説明する。図7は、縦横BP補正値(BP1)の算出処理の詳細を示すフローチャートである。
S100で、カメラMPU125は縦横BP補正情報を取得する。縦横BP補正情報は、水平方向(第1の方向)の合焦位置に対する垂直方向(第2の方向)の合焦位置の差分情報である。本実施形態において縦横BP補正情報はレンズユニット100のレンズメモリ118に予め記憶されており、カメラMPU125は、レンズMPU117に要求して取得するものとする。しかし、カメラRAM125bの不揮発性領域に、レンズユニットの識別情報と対応付けて記憶されていてもよい。
図8(a)に、縦横BP補正情報の例を示す。ここでは、図6の中央の焦点検出領域219a、218ahに対応した縦横BP補正情報の例を示しているが、他の焦点検出領域219c、218chおよび219b、218bhについても縦横BP補正情報を記憶している。ただし、撮影光学系の光軸を挟んで対称な位置に存在する焦点検出領域の焦点検出補正値は設計上は等しい。本実施形態において、焦点検出領域219c、218chと219b、218bhとはこのような対象関係を満たすため、一方についてのみ縦横BP補正情報を記憶してもよい。また、焦点検出領域の位置によって補正値が大きく変化しない場合には、共通の値として記憶してもよい。
図8(a)に示す例では、撮影光学系のズーム位置(画角)とフォーカスレンズ位置(合焦距離)を8つのゾーンに分割し、ゾーンごとに焦点検出補正値BP111〜BP188を記憶している。分割ゾーン数が多いほど撮影光学系の第1レンズ群101の位置およびフォーカスレンズ104の位置に応じた高精度な補正値が得られる。また、縦横BP補正情報は、コントラストAF、位相差AFの両方に用いることができる。
S100でカメラMPU125は、補正対象となっている焦点検出結果に応じたズーム位置、フォーカスレンズ位置に対応した補正値を取得する。
S101でカメラMPU125は、補正対象となっている焦点検出領域において、水平方向、垂直方向のいずれの方向に対しても信頼性のある焦点検出結果が得られているかを判定する。焦点検出結果の信頼性の判定の方法については、位相差AFについてもコントラストAFについても上述した通りである。本実施形態の位相差AFは水平方向の焦点検出しか行っていないため、水平方向、垂直方向の両方向に信頼性のある焦点検出結果が得られるのはコントラストAFである。そのため、縦横BP補正値に関する以後の説明は、コントラストAFを想定した説明を行うが、位相差AFの焦点検出を水平、垂直の両方向で行う場合も、同様の処理を行えばよい。S101で、水平方向、垂直方向のいずれの焦点検出結果も信頼性があると判定された場合、カメラMPU125は、処理をS102に進める。
S102でカメラMPU125は、水平方向の焦点検出結果と垂直方向の焦点検出結果の差が、妥当であるか否かを判定する。これは、遠い距離の被写体と近い距離の被写体を焦点検出領域内に含んだ際に生じる遠近競合の問題に対応するために行う処理である。例えば、遠い被写体が水平方向にコントラストを有し、近い被写体が垂直方向にコントラストを有するような場合、撮影光学系の非点収差などにより発生する誤差よりも絶対値が大きかったり、符号が反対の焦点検出結果の差が生じたりする場合がある。カメラMPU125は、水平方向の焦点検出結果と垂直方向の焦点検出結果の差が予め定めた判定値Cより大きい場合には差が妥当でない(遠近競合している)と判定する。そして、より至近側の焦点検出結果を示す方向として水平方向もしくは垂直方向を選択し、処理をS104に進める。なお、判定値Cは、上述の理由から、収差などで発生しうる差を大きく超える値を一意に決めてもよいし、S100で得られた補正情報を用いて設定してもよい。
S102で水平方向の焦点検出結果と垂直方向の焦点検出結果の差が妥当であると判定された場合、カメラMPU125は、処理をS106に進める。
一方で、S101で水平方向、もしくは垂直方向の一方向にのみ信頼性が有る場合や、S102で水平方向もしくは垂直方向の一方向のみが選択された場合、カメラMPU125は処理をS104に進める。S104でカメラMPU125は焦点検出結果の方向選択を行う。信頼性のある焦点検出結果を算出した方向や、遠近競合判定で、より至近側にある被写体に対応した焦点検出結果を算出した方向を選択する。
次にカメラMPU125は、S105で、水平方向、垂直方向の重み付けが可能であるか否かを判定する。S105が実行される場合、焦点評価値の信頼性や遠近競合の観点で、水平方向、垂直方向の両方向に対して信頼性のある焦点検出結果が得られていないが、縦横BP補正値を算出するための判定を改めて行う。この理由を、図8(b)を用いて、詳細に説明する。
図8(b)は、選択された焦点検出領域のフォーカスレンズ104の位置と焦点評価値の関係例を示す図である。図中の曲線E_h、E_vは、コントラストAFで検出された水平方向の焦点評価値と垂直方向の焦点評価値の変化を示す。また、LP1、LP2、LP3は、それぞれフォーカスレンズ位置を示す。図8(b)では、水平方向の焦点評価値E_hから信頼性のある焦点検出結果としてLP3が得られ、垂直方向の焦点評価値E_vから信頼性のある焦点検出結果としてLP1が得られた場合を示している。LP1とLP3とが大きく異なっているため遠近競合状態であると判定され、より至近側の焦点検出結果である水平方向の焦点検出結果LP3がS104で選択される。
このような状況で、S105でカメラMPU125は、選択されている水平方向の焦点検出結果LP3近傍に、垂直方向の焦点検出結果が存在しないか否かを判定する。図8(b)のような状況ではLP2が存在するため、カメラMPU125は、水平、垂直方向の重み付けが可能であると判定して処理をS106に進め、焦点検出結果LP3の補正値を、焦点検出結果LP2の影響を考慮に入れて算出する。
S100において縦横BP補正情報として図8(a)の1要素であるBP1_Bを取得しており、図8(b)におけるLP3における水平方向の焦点評価値がE_hp、LP2における垂直方向の焦点評価値がE_vpであるとする。この場合、S106でカメラMPU125は、焦点評価値の合計に対する、補正する方向と直交する方向における焦点評価値の割合に基づき、縦横BP補正値BP1を以下の式(2)に従って算出する。
BP1=BP1_B×E_vp/(E_vp+E_hp)×(+1) (2)
本実施形態では、水平方向の焦点検出結果に対する補正値を算出するため、式(2)を用いて補正値BP1を算出するが、垂直方向の焦点検出結果を補正する場合には、以下の式(3)で算出することができる。
BP1=BP1_B×E_hp/(E_vp+E_hp)×(−1) (3)
S102で水平方向の焦点検出結果と垂直方向の焦点検出結果の差が妥当であると判定された場合、至近側の焦点検出結果が水平方向の検出結果であれば式(2)を、垂直方向の検出結果であれば式(3)を用いて補正値BP1を算出する。
式(2)、式(3)から自明であるように、焦点評価値が大きいという情報を、被写体に含まれるコントラスト情報が多いと判定して、縦横BP補正値(BP1)を算出する。上述の通り、縦横BP補正情報は、
(垂直方向にのみコントラスト情報をもつ被写体の焦点検出位置)−(水平方向にのみコントラスト情報を持つ被写体の焦点検出位置)
である。そのため、水平方向の焦点検出結果を補正する補正値BP1と垂直方向の焦点検出結果を補正する補正値BP1の符号は反対となる。S106の処理を終えるとカメラMPU125は、縦横BP補正値算出処理を終了する。
一方、選択されている水平方向の焦点検出結果LP3近傍に、垂直方向の焦点検出結果が存在しないとS105で判定された場合、カメラMPU125は処理をS103に進める。S103でカメラMPU125は、被写体に含まれるコントラスト情報が概ね1方向のみであると判断されるため、BP1=0とし、縦横BP補正値算出処理を終了する。
このように、本実施形態では、異なる方向における被写体のコントラスト情報に応じて補正値を算出するため、被写体のパターンに応じた高精度な補正値算出を行うことができる。なお、図8(b)では、被写体が遠近競合している場合について説明したが、水平方向と垂直方向に1つずつ極大値が検出されており、片方の焦点検出結果に信頼性が無い場合も、同様の考え方で補正値を算出する。
ただし、S106での補正値算出方法はこれに限らない。例えば、本実施形態の位相差AFのように、水平方向のみ焦点検出が行える場合には、被写体の水平方向と垂直方向のコントラストの情報量は同量であると仮定して、補正値を算出してもよい。その場合には、上述の式(2)、式(3)において、E_hp=E_vp=1を代入することにより補正値を算出することができる。このような処理を行うことにより、補正精度は落ちるが、補正値演算の負荷を減らすことができる。
上述の説明では、コントラストAFの焦点検出結果に対して説明したが、位相差AFの焦点検出結果に対しても同様の処理を行うことが可能である。補正値算出の際の重み付けの係数として、位相差AFの相関演算で算出される相関量の変化量を用いればよい。これは、被写体の明暗差が大きい場合や明暗差のあるエッジの数が多い場合など、被写体のコントラスト情報が多ければ多いほど、相関量の変化量も大きくなることを利用している。同様の関係が得られる評価値であれば、相関量の変化量に限らず、種々の評価値を用いてよい。
このように、縦横BP補正値を用いて焦点検出結果を補正することにより、被写体の方向ごとのコントラスト情報の量によらず、高精度な焦点検出を行うことができる。また、水平方向、垂直方向の補正値を図8(a)に示したような共通の補正情報を用いて算出しているため、方向ごとに各々の補正値を記憶する場合に比べて、補正情報の記憶容量を低減することができる。
また、方向ごとの焦点検出結果が大きく異なる場合には、これらの焦点検出結果を用いた縦横BP補正値の算出を行わないことにより、遠近競合の影響を低減することができる。さらに、遠近競合が想定される場合においても、方向ごとの焦点評価値の大小により補正値の重みづけを行うことにより、より高精度な補正を行うことができる。
(色BP補正値の算出方法)
次に、図9(a)および図9を用いて、図1のS21で行う色BP補正値(BP2)の算出方法について説明する。図9(a)は、色BP補正値(BP2)の算出処理の詳細を示すフローチャートである。
S200で、カメラMPU125は色BP補正情報を取得する。色BP補正情報は、緑(G)の信号を用いて検出される合焦位置に対する他の色(赤(R)、青(B))の信号を用いて検出される合焦位置の差分情報である。本実施形態において色BP補正情報はレンズユニット100のレンズメモリ118に予め記憶されており、カメラMPU125は、レンズMPU117に要求して取得するものとするが、カメラRAM125bの不揮発性領域に記憶されていてもよい。
分割ゾーン数が多いほど撮影光学系の第1レンズ群101の位置およびフォーカスレンズ104の位置に応じた高精度な補正値が得られる。また、色BP補正情報は、コントラストAF、位相差AFの両方に用いることができる。
S200でカメラMPU125は、補正対象となっている焦点検出結果に応じたズーム位置、フォーカスレンズ位置に対応した補正値を取得する。
S201でカメラMPU125は、色BP補正値を算出する。S200で、図9(b)の1要素としてBP_R、図9(c)の1要素としてBP_Bを取得している場合、カメラMPU125は、色BP補正値BP2を以下の式(4)に従って算出する。
BP2=K_R×BP_R+K_B×BP_B (4)
ここで、K_RおよびK_Bは、各色の補正情報に対する係数である。被写体に含まれる緑(G)情報に対する赤(R)や青(B)の情報の大小関係と相関がある値で、赤い色を多く含む被写体に対しては、K_Rが大きな値を取り、青い色を多く含む被写体に対しては、K_Bが大きな値を取る。緑色を多く含む被写体に対しては、K_R、K_B共に小さい値を取る。K_R、K_Bは、被写体として代表的な分光情報に基づき、予め設定しておけばよい。被写体の分光情報を検出できる場合には、被写体の分光情報に応じてK_R、K_Bを設定すればよい。S202で色BP補正値の算出を終えると、カメラMPU125は、色BP補正値算出処理を終了する。
なお、本実施形態では、補正値を図8(a)や図9のように焦点検出領域ごとにテーブル形式で記憶するものとしたが、補正値の記憶方法については、これに限らない。例えば、撮像素子と撮影光学系の光軸との交点を原点とし、撮像装置の水平方向、垂直方向をX軸、Y軸とした座標を設定し、焦点検出領域の中心座標における補正値をXとYの関数で求めてもよい。この場合、焦点検出補正値として記憶すべき情報量を削減することができる。
また、本実施形態では、縦横BP補正情報や色BP補正情報を用いて算出する焦点検出に用いる補正値を、被写体のパターンの持つ空間周波数情報によらないものとして算出した。そのため、記憶するべき補正情報の量を増やすことなく高精度な補正を行うことができる。しかしながら、補正値の算出方法は、これに限らない。後述する空間周波数BP補正値の算出方法と同様に、空間周波数ごとの縦横BP補正情報や色BP補正情報を用いて、被写体の空間周波数成分に合わせた補正値を算出してもよい。
(空間周波数BP補正値の算出方法)
次に、図10(a)から図10(c)を用いて、図1のS22で行う空間周波数BP補正値(BP3)の算出方法について説明する。図10(a)は、空間周波数BP補正値(BP3)の算出処理の詳細を示すフローチャートである。
S300で、カメラMPU125は空間周波数BP補正情報を取得する。空間周波数BP補正情報は、被写体の空間周波数ごとの撮影光学系の結像位置に関する情報である。本実施形態において空間周波数BP補正情報はレンズユニット100のレンズメモリ118に予め記憶されており、カメラMPU125は、レンズMPU117に要求して取得するものとするが、カメラRAM125bの不揮発性領域に記憶されていてもよい。
撮影光学系のデフォーカスMTF(Modulation Transfer Function)を示す図10(b)を用いて、空間周波数BP補正情報の例を説明する。図10(b)の横軸はフォーカスレンズ104の位置を、縦軸はMTFの強度を示している。図10(b)に描かれている4種の曲線は、空間周波数ごとのMTF曲線で、MTF1、MTF2、MTF3、MTF4の順に、空間周波数が低い方から高い方に変化した場合を示している。空間周波数F1(lp/mm)のMTF曲線がMTF1と対応し、同様に、空間周波数F2,F3,F4(lp/mm)とMTF2、MTF3、MTF4が対応する。また、LP4、LP5、LP、LPは、各デフォーカスMTF曲線の極大値に対応するフォーカスレンズ104位置を示している。なお、記憶されている空間周波数BP補正情報は図10(b)の曲線を離散的にサンプリングしたものである。一例として本実施形態では、1つのMTF曲線に対して10個のフォーカスレンズ位置に対してMTFデータがサンプリングされており、例えば、MTF1に対しては、MTF1(n)(1≦n≦10)として10個のデータを記憶している。
空間周波数BP補正情報は、縦横BP補正情報や色BP補正情報と同様、焦点検出領域の位置ごとに撮影光学系のズーム位置(画角)とフォーカスレンズ位置(合焦距離)を8つのゾーンに分割し、ゾーンごとに記憶する。分割ゾーン数が多いほど撮影光学系の第1レンズ群101の位置およびフォーカスレンズ104の位置に応じた高精度な補正値が得られる。また、空間周波数BP補正情報は、コントラストAF、位相差AFの両方に用いることができる。
S300でカメラMPU125は、補正対象となっている焦点検出結果に応じたズーム位置、フォーカスレンズ位置に対応した補正値を取得する。
S301でカメラMPU125は、補正対象となっている焦点検出領域において、コントラストAFや位相差AFを行う際に用いられる信号の帯域を算出する。本実施形態でカメラMPU125は、被写体、撮影光学系、撮像素子のサンプリング周波数、評価に用いるデジタルフィルタの影響を鑑みて、AF評価帯域を算出する。AF評価帯域の算出方法は、後述する。
次に、S302でカメラMPU125は、撮影画像に用いられる信号の帯域を算出する。S302のAF評価帯域の算出と同様にカメラMPU125は、被写体、撮影光学系、および撮像素子の周波数特性、撮影画像の鑑賞者の評価帯域の影響を鑑みて、撮影画像評価帯域を算出する。
図11を用いて、S301、S302で行うAF評価帯域(第2の評価帯域)、撮影画像評価帯域(第1の評価帯域)の算出について説明する。図11は、いずれも空間周波数ごとの強度を示しており、横軸に空間周波数、縦軸に強度を示している。
図11(a)は、被写体の空間周波数特性(I)を示している。横軸上のF1、F2,F3、F4は、図10(b)のMTF曲線(MTF1〜MTF4)と対応した空間周波数である。また、Nqは、撮像素子122の画素ピッチによりきまるナイキスト周波数を示している。F1からF4とNqについては、以後説明する図11(b)から図11(f)にも同様に示している。本実施形態では、被写体の空間周波数特性(I)は、事前に記憶した代表値を用いる。図11(a)では、被写体の空間周波数特性(I)は連続した曲線で描かれているが、空間周波数F1,F2,F3,F4に対応した離散値I(n)(1≦n≦4)を有する。
また、本実施形態では、被写体の空間周波数特性として予め記憶された代表値を用いたが、焦点検出を行う被写体に応じて、用いる被写体の空間周波数特性を変更してもよい。撮影した画像信号にFFT処理などを適用することにより、被写体の空間周波数情報(パワースペクトル)を得ることができる。この場合、演算処理が増加するが、実際に焦点検出する被写体に応じた補正値を算出できるため、高精度な焦点検出が可能となる。また、より簡易的に、被写体のコントラスト情報の大小によって、予め記憶された数種の空間周波数特性を使い分けてもよい。
図11(b)は、撮影光学系の空間周波数特性(O)である。この情報は、レンズMPU117を通じて得てもよいし、カメラ内のRAM125bに記憶しておいてもよい。記憶する情報は、デフォーカス状態ごとの空間周波数特性でもよいし、合焦時の空間周波数特性のみでもよい。空間周波数BP補正値は合焦近傍で算出するため、合焦時の空間周波数特性を用いれば、高精度に補正を行うことができる。ただし、演算負荷は増えるものの、デフォーカス状態ごとの空間周波数特性を用いると、より高精度に焦点調節を行うことができる。どのデフォーカス状態の空間周波数特性を用いるかについては、位相差AFにより得られるデフォーカス量を用いて選択すればよい。
図11(b)で撮影光学系の空間周波数特性(O)は連続した曲線で描かれているが、空間周波数F1,F2,F3,F4に対応した離散値O(n)(1≦n≦4)を有する。
図11(c)は、光学ローパスフィルタ121の空間周波数特性(L)である。この情報は、カメラ内のRAM125bに記憶されている。図11(c)では、光学ローパスフィルタ121の空間周波数特性(L)は、連続した曲線で描かれているが、空間周波数F1,F2,F3,F4に対応した離散値L(n)(1≦n≦4)を有する。
図11(d)は、信号生成による空間周波数特性(M1,M2)である。上述の通り、本実施形態の撮像素子は2種類の読み出しモードを有する。第1の読み出しモード、すなわち全画素読み出しモードでは、M1として示すように、信号生成時に空間周波数特性が変わることはない。一方で、第2の読み出しモード、すなわち間引き読み出しモードの際には、M2で示すように信号生成時に空間周波数特性が変わる。上述の通り、X方向の間引きの際に信号の加算を行いS/Nの改善を図るため、加算によるローパス効果が発生する。図11(d)のM2は、第2の読み出しモードの際の信号生成時の空間周波数特性を示している。ここでは、間引きの影響は加味せず、加算によるローパス効果を示している。
図11(d)では、信号生成による空間周波数特性(M1,M2)が連続した曲線で描かれているが、空間周波数F1,F2,F3,F4に対応した離散値M1(n),M2(n)(1≦n≦4)を有する。
図11(e)は、撮影画像を鑑賞する際の空間周波数ごとの感度を示す空間周波数特性(D1)とAF評価信号の処理時に用いるデジタルフィルタの空間周波数特性(D2)を示している。撮影画像を鑑賞する際の空間周波数ごとの感度は、鑑賞者の個人差や、画像サイズや鑑賞距離、明るさなどの鑑賞環境などにより影響を受ける。本実施形態では、代表的な値として、鑑賞時の空間周波数ごとの感度を設定し、記憶している。
一方で、第2の読み出しモードの際には、間引きの影響で、信号の周波数成分の折り返しノイズ(エイリアシング)が発生する。その影響を加味して、デジタルフィルタの空間周波数特性を示したのがD2である。
図11(e)では、鑑賞時の空間周波数特性(D1)とデジタルフィルタの空間周波数特性(D2)は、曲線で描かれているが、空間周波数F1,F2,F3,F4に対応した離散値D1(n)、D2(n)(1≦n≦4)を有する。
以上のように、種々の情報を、カメラ、レンズのいずれかに記憶しておくことにより、カメラMPU125は撮影画像の評価帯域W1やAF評価帯域W2を以下の式(5),(6)に基づいて算出する。
W1(n)=I(n)×O(n)×L(n)×M1(n)×D1(n)(1≦n≦4) (5)
W2(n)=I(n)×O(n)×L(n)×M2(n)×D2(n)(1≦n≦4) (6)
図11(f)に、撮影画像の評価帯域W1(第1の評価帯域)とAF評価帯域W2(第2の評価帯域)を示す。式(5)や式(6)のような計算を行うことにより、撮影画像の合焦状態を決定する因子に対して、空間周波数毎に、どの程度の影響度合いを有するかを定量化することができる。同様に、焦点検出結果が有する誤差が、空間周波数毎に、どの程度の影響度合いを有するかを定量化することができる。
また、カメラ内に記憶する情報は、事前に計算されたW1やW2を記憶していてもよい。上述のように、補正の度に計算することにより、AF評価の際に用いるデジタルフィルタ等を変更した際に、柔軟に対応して補正値を算出できる。一方で、事前に記憶しておけば、式(5)や式(6)のような計算や各種データの記憶容量を削減することができる。
また、全ての計算を事前に終えておく必要はないため、例えば、撮影光学系と被写体の空間周波数特性のみは予め計算し、カメラ内に記憶することにより、データの記憶容量の低減や演算量の低減を行ってもよい。
図11では、説明を簡易にするため、4つの空間周波数(F1〜F4)に対応する離散値を用いて説明した。しかし、データを有する空間周波数の数は、多いほど、撮影画像やAFの評価帯域の空間周波数特性を正確に再現することができ、精度のよい補正値の算出を行うことができる。一方で、重みづけを行う空間周波数を少なくすることにより、演算量の低減を行うことができる。撮影画像の評価帯域とAF評価帯域の空間周波数特性を代表する空間周波数を各々1つずつ持ち、以後の演算を行ってもよい。
図10(a)に戻り、S303でカメラMPU125は、空間周波数BP補正値(BP3)を算出する。空間周波数BP補正値の算出を行うに際しカメラMPU125は、まず、撮影画像のデフォーカスMTF(C1)と焦点検出信号のデフォーカスMTF(C2)を算出する。第1および第2の結像位置情報であるC1,C2は、S300で得たデフォーカスMTF情報と、S301、S30で得た評価帯域W1,W2を用いて、以下の式(7)および式(8)に従って算出する(1≦n≦10)。
C1(n)=MTF1(n)×W1(1)+MTF2(n)×W1(2)+MTF3(n)×W1(3)+MTF4(n)×W1(4) (7)
C2(n)=MTF1(n)×W2(1)+MTF2(n)×W2(2)+MTF3(n)×W2(3)+MTF4(n)×W2(4) (8)
このように、図10(b)で示した空間周波数ごとのデフォーカスMTF情報を、S301、S302で算出した撮影画像やAFの評価帯域の重みづけに基づいて加算し、撮影画像のデフォーカスMTF(C1)とAFのデフォーカスMTF(C2)を得る。ここでの重み付け加算を行う際に使用するデフォーカスMTFは、各空間周波数(MTF1からMTF4)の最大値で正規化してから使用しても良い。デフォーカスMTFは一般的に、図10(b)に示すように空間周波数に応じて最大値が異なる。従って、同じ重みで加重加算した場合、図10(b)の例ではMTF1の影響が強くなってしまう。そのため、空間周波数ごとのデフォーカスMTFは、最大値で規格化した値を用いて加重加算することができる。
図10(c)に、得られた2つのデフォーカスMTFであるC1,C2を示している。横軸はフォーカスレンズ104の位置で、縦軸は、空間周波数毎に重み付け加算されたMTFの値となっている。カメラMPU125は、各々のMTF曲線の極大値位置を検出する。曲線C1の極大値と対応するフォーカスレンズ104の位置としてP_img(第1の結像位置)が検出される。曲線C2の極大値と対応するフォーカスレンズ104の位置としてP_AF(第2の結像位置)が検出される。
S303でカメラMPU125は、空間周波数BP補正値(BP3)を以下の式(9)により算出する。
BP3=P_AF−P_img (9)
式(9)により、撮影画像の合焦位置とAFで検出される合焦位置の間で発生しうる誤差を補正するための補正値を算出することができる。
上述したように撮影画像の合焦位置は、被写体、撮影光学系、および光学ローパスフィルタのそれぞれの空間周波数特性、信号生成時の空間周波数特性、鑑賞時の周波数ごとの感度を示す空間周波数特性や、撮影画像に施される画像処理などによって変化する。本実施形態では、撮影画像の生成過程に遡って空間周波数特性を算出することにより、高精度に撮影画像の合焦位置を算出することができる。例えば、撮影画像の記録サイズや、画像処理で行われる超解像処理、シャープネスなどによって、撮影画像の合焦位置を変更する。また、撮影画像の記録後に、どの程度の画像サイズや拡大率で鑑賞されるかや鑑賞する際の鑑賞距離などは、鑑賞者の評価帯域に影響を与える。そして、画像サイズが大きくなるほど、また、鑑賞距離が短くなるほど、鑑賞者の評価帯域を高周波成分に重きを置いた特性とすることで、撮影画像の合焦位置も変更される。
一方で、AFが検出する合焦位置も同様に、被写体、撮影光学系、および光学ローパスフィルタそれぞれの空間周波数特性、信号生成時の空間周波数特性、AF評価に用いるデジタルフィルタ空間周波数特性などにより変化する。本実施形態では、AFに用いられる信号が生成される過程に遡って空間周波数特性を算出することにより、高精度にAFが検出する合焦位置を算出することができる。例えば、第1の読み出しモードでAFを行う際にも柔軟に対応できる。その場合には、信号生成時の空間周波数特性を、第1の読み出しモードに対応した特性に変更して、重みづけ係数を算出すればよい。
また、本実施形態で説明した撮像装置は、レンズ交換式一眼レフカメラであるため、レンズユニット100の交換が可能である。レンズユニット100が交換された場合、レンズMPU117は各空間周波数に対応したデフォーカスMTF情報を、カメラ本体120に送信する。そして、カメラMPU125が、撮影画像の合焦位置やAFが検出する合焦位置を算出するので、交換レンズ毎に高精度な補正値の算出を行うことができる。レンズユニット100は、デフォーカスMTF情報だけでなく、撮影光学系の空間周波数特性などの情報もカメラ本体120に送信してもよい。その情報の活用方法は、上述のとおりである。
また、同様に、カメラ本体120を交換した場合には、画素ピッチや光学ローパスフィルタの特性などが変わる場合がある。上述の通り、そのような場合でも、カメラ本体120の特性に合わせた補正値が算出されるため、高精度に補正を行うことができる。
上述の説明では、補正値の計算をカメラMPU125で行ったが、レンズMPU117で行ってもよい。その場合には、カメラMPU125から、レンズMPU117に対して、図11を用いて説明した各種情報を送信し、レンズMPU117がデフォーカスMTF情報などを用いて補正値を算出してもよい。この場合、図1のS24で、カメラMPU125から送信された合焦位置に対して、レンズMPU117が補正を施して、レンズ駆動を行えばよい。
本実施形態では、焦点検出に用いる信号の特性(縦横、色、空間周波数帯域)に着目して、AF用の補正値を算出している。そのため、AFの方式によらず、同様の方法で、補正値の算出を行うことができる。AF方式毎に、補正方法、補正に用いるデータを有する必要がないため、データの記憶容量、演算負荷の低減を行うことができる。
●(第2の実施形態)
次に、本発明の第2の実施形態について説明する。第1の実施形態との主な違いは、空間周波数BP補正値の算出方法が異なる点である。第1の実施形態では、撮影光学系の空間周波数ごとの特性を表す値としてデフォーカスMTF情報を用いた。しかしながら、デフォーカスMTF情報は、データ量が多く、記憶容量、演算負荷が大きくなるため、第2の実施形態では、デフォーカスMTFの極大値情報を用いて空間周波数BP補正値を算出する。これにより、レンズメモリ118もしくはRAM125bの容量を節約し、レンズ−カメラ間の通信量の低減、カメラMPU125で行う演算負荷の低減などが実現できる。
なお、撮像装置のブロック図(図2)、各焦点検出方式の説明図(図3(a)から5)、焦点検出領域の説明図(図6)、焦点検出処理および各種BP補正値算出処理のフローチャート(図1、図7、図9(a))は、本実施形態においても流用する。また、空間周波数BP補正値算出処理のフローチャート(図10(a))および各評価帯域の説明図(図11)についても流用する。
本実施形態における空間周波数BP補正値(BP3)の算出方法を、図12を用いて説明する。
S300でカメラMPU125は空間周波数BP補正情報を取得する。
図12は、撮影光学系の特性である空間周波数ごとのデフォーカスMTFの極大値を示すフォーカスレンズ104位置を示している。図10(b)に示した離散的な空間周波数F1からF4について、デフォーカスMTFがピーク(極大値)となるフォーカスレンズ位置LP4、LP5、LP6、LP7が縦軸に示されている。本実施形態では、このLP4〜LP7を、MTF_P(n)(1≦n≦4)としてレンズメモリ118またはRAM125bに記憶する。記憶されている情報が、焦点検出領域の位置、ズーム位置やフォーカスレンズ位置に対応していることは、第1の実施形態と同様である。
第2の実施形態では、図10(a)に示した空間周波数BP補正値処理のS300で、カメラMPU125は、補正対象となっている焦点検出結果に応じたズーム位置、フォーカスレンズ位置に対応した補正値を取得する。
S301、S302でカメラMPU125は、第1の実施形態と同様の処理を行う。
S303でカメラMPU125は、空間周波数BP補正値(BP3)を算出する。空間周波数BP補正値の算出を行うに際し、カメラMPU125はまず、撮影画像の合焦位置(P_img)とAFが検出する合焦位置(P_AF)を、以下の式(10)および(11)に従って算出する。算出には、S300で得たデフォーカスMTF情報MTF_P(n)と、S301、S302で得た評価帯域W1,W2を用いる。
P_img=MTF_P(1)×W1(1)+MTF_P(2)×W1(2)+MTF_P(3)×W1(3)+MTF_P(4)×W1(4) (10)
P_AF=MTF_P(1)×W2(1)+MTF_P(2)×W2(2)+MTF_P(3)×W2(3)+MTF_P(4)×W2(4) (11)
つまり、図12で示した空間周波数ごとのデフォーカスMTFの極大値情報MTF_P(n)を、S301、S302で算出した撮影画像やAFの評価帯域W1,W2で重みづけ加算する。それにより、撮影画像の合焦位置(P_img)とAFが検出する合焦位置(P_AF)を算出している。
次にカメラMPU125は、空間周波数BP補正値(BP3)を、第1の実施形態と同様に、以下の式(9)により算出する。
BP3=P_AF−P_img (9)
本実施形態では、空間周波数BP補正値をより簡便に算出することができる。本実施形態では、空間周波数BP補正値の精度は第1の実施形態より若干劣るが、空間周波数BP補正値を算出するために記憶しておく情報量の削減、レンズ−カメラ間の通信量の削減、カメラMPU125で行う演算負荷の低減が実現できる。
●(第3の実施形態)
次に、本発明の第3の実施形態について説明する。本実施形態も空間周波数BP補正値の算出方法が上述の実施形態と異なる。本実施形態では、空間周波数BP補正値を算出する必要性がない場合には算出しないことにより、空間周波数BP補正値の精度を低下させずに、レンズ−カメラ間の通信量の低減やカメラMPU125で行う演算負荷を低減する。
なお、撮像装置のブロック図(図2)、各焦点検出方式の説明図(図3(a)から)、焦点検出領域の説明図(図6)、焦点検出処理および各種BP補正値算出処理のフローチャート(図1、図7、図9(a))は、本実施形態においても流用する。また、空間周波数BP補正値算出処理に関する図(図10(b)〜図10(c))についても流用する。
本実施形態における空間周波数BP補正値(BP3)の算出方法を、図13のフローチャートを用いて説明する。図13において、図10(a)と同様の処理は同じ参照数字を付して重複する説明を省略する。
S3000でカメラMPU125は、空間周波数BP補正値を算出する必要があるか否かを判定する。第1の実施形態で説明したことからわかる通り、撮影画像の評価帯域W1とAF評価帯域W2が似ているほど、空間周波数BP補正値は小さくなる。そのため、本実施形態では、2つの評価帯域の差が空間周波数BP補正値を算出する必要がない程度に小さいと判定される場合(例えば差が予め定められた閾値より小さい場合)には、補正値の算出を省略する。
具体的には、2つの評価帯域の差が十分小さくなる条件を満たす場合に、補正値の算出を省略する。例えば、AFに用いる信号も第1の読み出しモードで読み出された信号である場合には、撮影画像の評価帯域とAF評価帯域は等しくなる。さらに、撮影画像を鑑賞する際の空間周波数ごとの感度を示す空間周波数特性と類似の空間周波数特性のデジタルフィルタをAF評価信号の処理時に用いる場合には、鑑賞時の空間周波数特性とデジタルフィルタの空間周波数特性が等しくなる。このような状況は、表示器126に表示する画像を拡大して表示する場合などに発生する。
また、同様に、撮影画像が第2の読み出しモードで読み出された信号で生成される場合にも撮影画像の評価帯域とAF評価帯域が等しくなることが想定される。このような状況は、撮影画像の記録画像サイズを小さく設定している場合などに、発生する。
S3000でカメラMPU125は、このような、予め定められた条件のいずれかが満たされる場合に、補正値の算出が不要と判定し、処理をS3001に進める。
S3001でカメラMPU125は、補正値の算出を行わないため、BP3に0を代入し、空間周波数BP補正値(BP3)の算出処理を終了する。
一方、S3000で、補正値の算出が必要であると判定された場合、カメラMPU125は、S300〜S303を第1の実施形態(または第2の実施形態)と同様に実施する。
このように、本実施形態では、空間周波数BP補正値の算出が不要と判定された場合には補正値の算出を省略するので、補正値の算出用に記憶しておくデータ量は削減できないが、補正値算出時のデータ通信量や演算負荷を低減することができる。なお、第2の実施形態と組み合わせることも可能であり、その場合は補正値の算出用に記憶しておくデータ量の削減はもちろん、補正値算出時のデータ通信量や演算負荷を一層低減することができる。
本実施形態では、空間周波数BP補正値の省略について説明したが、縦横BP補正値や色BP補正値についても不要と判定できれば省略することができる。例えば、焦点検出を垂直方向、水平方向の両方のコントラストを考慮して行う場合は、縦横BP補正値の算出を省略してもよい。また、撮影画像に用いる色信号と、焦点検出に用いる色信号が等しい場合は、色BP補正値の算出を省略してもよい。
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
100…レンズユニット、104…フォーカスレンズ、113…フォーカスアクチュエータ、117…レンズMPU、118…レンズメモリ、120…カメラ本体、122…撮像素子、125…カメラMPU、129…位相差AF部、130…TVAF部

Claims (15)

  1. 撮像素子から得られる信号を用いて撮影光学系の自動焦点検出を実行可能な撮像装置であって、
    それぞれが異なる周波数帯域に対応した、前記撮影光学系の複数の結像位置に関する情報を、第1の複数の重みおよび第3の複数の重みで加重加算した第1の結像位置情報と、第2の複数の重みおよび前記の複数の重みで加重加算した第2の結像位置情報とを取得する取得手段と、
    前記第1の結像位置情報と前記第2の結像位置情報との比較結果によって、前記自動焦点検出の結果を補正する補正手段と、
    前記補正された前記自動焦点検出の結果に基づいて前記撮影光学系が有するフォーカスレンズの位置を制御する制御手段と、を有し
    前記第1の複数の重みは、ピント状態を評価するための周波数帯域である第1の評価帯域に対応し、該第1の評価帯域は、撮影画像の特性に関する帯域であり前記第2の複数の重みは、ピント状態を評価するための周波数帯域である第2の評価帯域に対応し、該第2の評価帯域は、前記自動焦点検出のために用いられる信号の特性に関する帯域であり、
    前記第3の複数の重みは周波数帯域ごとに異なる重みであり、周波数帯域が低くなるほど小さくなることを特徴とする撮像装置。
  2. 前記補正手段は、前記第1の結像位置情報と前記第2の結像位置情報との差によって、前記自動焦点検出の結果を補正することを特徴とする請求項1に記載の撮像装置。
  3. 前記撮影光学系の結像位置に関する情報、前記第1の結像位置情報、および前記第2の結像位置情報が、前記撮影光学系のデフォーカスMTFとフォーカスレンズ位置との関係を示す情報であることを特徴とする請求項1または2に記載の撮像装置。
  4. 前記撮影光学系の結像位置に関する情報が、前記撮影光学系のデフォーカスMTFの極大値とフォーカスレンズ位置との関係を示す情報であることを特徴とする請求項3に記載の撮像装置。
  5. 撮像素子から得られる信号を用いて撮影光学系の自動焦点検出を実行可能な撮像装置であって、
    それぞれが異なる周波数帯域に対応した、前記撮影光学系の複数の結像位置に関する情報を、第1の複数の重みで加重加算した第1の結像位置情報と、第2の複数の重みで加重加算した第2の結像位置情報とを取得する取得手段と、
    前記第1の結像位置情報と前記第2の結像位置情報との比較結果によって、前記自動焦点検出の結果を補正する補正手段と、
    前記補正された前記自動焦点検出の結果に基づいて前記撮影光学系が有するフォーカスレンズの位置を制御する制御手段と、を有し
    前記第1の複数の重みは、ピント状態を評価するための周波数帯域である第1の評価帯域に対応し、該第1の評価帯域は、撮影画像の特性に関する帯域であり、前記第2の複数の重みは、ピント状態を評価するための周波数帯域である第2の評価帯域に対応し、該第2の評価帯域は、前記自動焦点検出のために用いられる信号の特性に関する帯域であり、
    前記撮影光学系の結像位置に関する情報が、正規化されたデフォーカスMTFとフォーカスレンズ位置との関係と示す情報であることを特徴とする撮像装置。
  6. 前記第1の複数の重みのそれぞれが前記異なる周波数帯域の1つに対応し、前記第2の複数の重みのそれぞれが前記異なる周波数帯域の1つに対応することを特徴とする請求項1から5のいずれか1項に記載の撮像装置。
  7. 前記第2の複数の重みが、前記自動焦点検出に用いる評価信号の処理時に用いるデジタルフィルタの空間周波数特性に基づくことを特徴とする請求項1から6のいずれか1項に記載の撮像装置。
  8. 前記第1の複数の重みが、画像を鑑賞する際の空間周波数ごとの感度を示す空間周波数特性に基づくことを特徴とする請求項1から7のいずれか1項に記載の撮像装置。
  9. 前記第1の複数の重みおよび前記第2の複数の重みが、被写体の空間周波数特性、前記撮影光学系の空間周波数特性、前記撮像素子に設けられた光学ローパスフィルタの空間周波数特性、および前記撮像素子から信号を生成する際の空間周波数特性の1つ以上にさらに基づくことを特徴とする請求項7または8に記載の撮像装置。
  10. 前記撮像素子から信号を生成する際の空間周波数特性が、間引き読み出しの有無に応じた空間周波数特性であることを特徴とする請求項9に記載の撮像装置。
  11. 前記撮影光学系の空間周波数特性が、前記撮像素子の画素ピッチに応じて定まる空間周波数に対応する空間周波数特性であることを特徴とする請求項9または10に記載の撮像装置。
  12. 前記第1の評価帯域と前記第2の評価帯域の差が予め定められた閾値より小さい場合、前記補正手段は前記補正を行わないことを特徴とする請求項1から11のいずれか1項に記載の撮像装置。
  13. 前記第3の複数の重みは、空間周波数ごとのデフォーカスMTFを最大値で規格化した値であることを特徴とする請求項1からのいずれか1項に記載の撮像装置。
  14. 撮像素子から得られる信号を用いて撮影光学系の自動焦点検出を実行可能な撮像装置の制御方法であって、
    それぞれが異なる周波数帯域に対応した、前記撮影光学系の複数の結像位置に関する情報を、第1の複数の重みおよび第3の複数の重みで加重加算した第1の結像位置情報と、第2の複数の重みおよび前記の複数の重みで加重加算した第2の結像位置情報とを取得する取得工程と、
    前記第1の結像位置情報と前記第2の結像位置情報との比較結果によって、前記自動焦点検出の結果を補正する補正工程と、
    前記補正された前記自動焦点検出の結果に基づいて前記撮影光学系が有するフォーカスレンズの位置を制御する制御工程と、を有し
    前記第1の複数の重みは、ピント状態を評価するための周波数帯域である第1の評価帯域に対応し、該第1の評価帯域は、撮影画像の特性に関する帯域であり
    前記第2の複数の重みは、ピント状態を評価するための周波数帯域である第2の評価帯域に対応し、該第2の評価帯域は、前記自動焦点検出のために用いられる信号の特性に関する帯域であり、
    前記第3の複数の重みは周波数帯域ごとに異なる重みであり、周波数帯域が低くなるほど小さくなることを特徴とする撮像装置の制御方法。
  15. 撮像素子から得られる信号を用いて撮影光学系の自動焦点検出を実行可能な撮像装置の制御方法であって、
    それぞれが異なる周波数帯域に対応した、前記撮影光学系の複数の結像位置に関する情報を、第1の複数の重みで加重加算した第1の結像位置情報と、第2の複数の重みで加重加算した第2の結像位置情報とを取得する取得工程と、
    前記第1の結像位置情報と前記第2の結像位置情報との比較結果によって、前記自動焦点検出の結果を補正する補正工程と、
    前記補正された前記自動焦点検出の結果に基づいて前記撮影光学系が有するフォーカスレンズの位置を制御する制御工程と、を有し
    前記第1の複数の重みは、ピント状態を評価するための周波数帯域である第1の評価帯域に対応し、該第1の評価帯域は、撮影画像の特性に関する帯域であり、前記第2の複数の重みは、ピント状態を評価するための周波数帯域である第2の評価帯域に対応し、該第2の評価帯域は、前記自動焦点検出のために用いられる信号の特性に関する帯域であり、
    前記撮影光学系の結像位置に関する情報が、正規化されたデフォーカスMTFとフォーカスレンズ位置との関係と示す情報であることを特徴とする撮像装置の制御方法。
JP2014138017A 2014-07-03 2014-07-03 撮像装置およびその制御方法 Active JP6478496B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2014138017A JP6478496B2 (ja) 2014-07-03 2014-07-03 撮像装置およびその制御方法
TW104119282A TWI548272B (zh) 2014-07-03 2015-06-15 影像擷取設備和用於控制影像擷取設備的方法
EP15172640.3A EP2963492A1 (en) 2014-07-03 2015-06-18 Image capture apparatus and method for controlling the same
BR102015016072-0A BR102015016072B1 (pt) 2014-07-03 2015-07-02 Aparelho de captura de imagem e método para controlar o mesmo
RU2017119391A RU2670591C1 (ru) 2014-07-03 2015-07-02 Устройство для съемки изображений и способ управления устройством для съемки изображений
US14/790,580 US9641769B2 (en) 2014-07-03 2015-07-02 Image capture apparatus and method for controlling the same
RU2015126537A RU2622461C2 (ru) 2014-07-03 2015-07-02 Устройство для съемки изображений и способ управления устройством для съемки изображений
CN201910129046.6A CN109981945B (zh) 2014-07-03 2015-07-03 摄像光学系统
CN201510389126.7A CN105323441B (zh) 2014-07-03 2015-07-03 摄像设备和摄像设备的控制方法
RU2018136261A RU2696372C1 (ru) 2014-07-03 2018-10-15 Устройство для съемки изображений и способ управления устройством для съемки изображений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014138017A JP6478496B2 (ja) 2014-07-03 2014-07-03 撮像装置およびその制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019017252A Division JP6744933B2 (ja) 2019-02-01 2019-02-01 レンズ部およびその制御方法

Publications (3)

Publication Number Publication Date
JP2016014839A JP2016014839A (ja) 2016-01-28
JP2016014839A5 JP2016014839A5 (ja) 2017-08-17
JP6478496B2 true JP6478496B2 (ja) 2019-03-06

Family

ID=53442600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138017A Active JP6478496B2 (ja) 2014-07-03 2014-07-03 撮像装置およびその制御方法

Country Status (7)

Country Link
US (1) US9641769B2 (ja)
EP (1) EP2963492A1 (ja)
JP (1) JP6478496B2 (ja)
CN (2) CN109981945B (ja)
BR (1) BR102015016072B1 (ja)
RU (3) RU2622461C2 (ja)
TW (1) TWI548272B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6429546B2 (ja) 2014-09-11 2018-11-28 キヤノン株式会社 撮像装置、制御方法、プログラム、および、記憶媒体
TWI554098B (zh) * 2014-10-07 2016-10-11 緯創資通股份有限公司 錄影裝置與錄影方法
JP6381434B2 (ja) * 2014-12-16 2018-08-29 キヤノン株式会社 フォーカス制御装置、光学機器およびフォーカス制御方法
JP6486288B2 (ja) * 2016-02-09 2019-03-20 キヤノン株式会社 撮像装置、制御方法、プログラム、記憶媒体
CN106111553B (zh) * 2016-06-24 2019-06-18 珠海市广浩捷精密机械有限公司 一种摄像头模组全自动测试流水线
TWI621831B (zh) * 2016-12-26 2018-04-21 聚晶半導體股份有限公司 影像擷取裝置與其相位對焦的校正方法
JP6987524B2 (ja) * 2017-04-24 2022-01-05 キヤノン株式会社 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
TWI637350B (zh) * 2018-01-09 2018-10-01 緯創資通股份有限公司 產生視差圖的方法及其影像處理裝置與系統
JP2020020991A (ja) * 2018-08-02 2020-02-06 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、方法およびプログラム
JP7289621B2 (ja) * 2018-09-21 2023-06-12 キヤノン株式会社 制御装置、撮像装置、制御方法、および、プログラム
JP7251095B2 (ja) * 2018-10-22 2023-04-04 セイコーエプソン株式会社 位置検出装置、表示装置、表示システム、及び、位置検出方法
CN112394426A (zh) * 2019-08-13 2021-02-23 巴奇尼资本私人有限公司 光学模组及其制造方法与焊接光学模组于电路板的方法
CN110472341B (zh) * 2019-08-16 2022-12-23 重庆大学 一种针对船用柴油机零部件制造过程的绿色综合评价方法
CN118301473A (zh) * 2022-04-15 2024-07-05 深圳市道通智能航空技术股份有限公司 对焦方法、对焦装置、电子设备及无人机

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107990A (ja) 1986-05-14 1988-05-12 Nippon Shinyaku Co Ltd キノリンカルボン酸誘導体
DE3905619C2 (de) * 1988-02-23 2000-04-13 Olympus Optical Co Bildeingabe-/Ausgabevorrichtung
US6031218A (en) * 1992-10-05 2000-02-29 Logitech, Inc. System and method for generating band-limited quasi-sinusoidal signals
JPH09297259A (ja) * 1996-04-30 1997-11-18 Nikon Corp 焦点検出装置
AU3992100A (en) * 1999-03-18 2000-10-04 Cellavision Ab A chromatically uncompensated optical system for composing colour images
US6590612B1 (en) * 1999-03-18 2003-07-08 Cellavision Ab Optical system and method for composing color images from chromatically non-compensated optics
US6441855B1 (en) * 2000-05-09 2002-08-27 Eastman Kodak Company Focusing device
JP2004134867A (ja) 2002-10-08 2004-04-30 Canon Inc 固体撮像装置、その駆動方法、及び撮像システム
US7515765B1 (en) * 2004-01-30 2009-04-07 Apple Inc. Image sharpness management
KR20060132940A (ko) * 2004-03-15 2006-12-22 1...리미티드 카메라 오토 포커스
US7764844B2 (en) * 2004-09-10 2010-07-27 Eastman Kodak Company Determining sharpness predictors for a digital image
US20060204861A1 (en) * 2005-03-14 2006-09-14 Eyal Ben-Eliezer Optical mask for all-optical extended depth-of-field for imaging systems under incoherent illumination
JP4641494B2 (ja) * 2005-11-28 2011-03-02 キヤノン株式会社 光学機器
JP2007192859A (ja) * 2006-01-17 2007-08-02 Sony Corp 合焦制御装置、及び撮像装置
JP5087945B2 (ja) * 2007-02-16 2012-12-05 株式会社ニコン ズームレンズと、これを有する光学装置
JP4582423B2 (ja) * 2007-04-20 2010-11-17 富士フイルム株式会社 撮像装置、画像処理装置、撮像方法、及び画像処理方法
US8259216B2 (en) * 2007-08-29 2012-09-04 Panasonic Corporation Interchangeable lens camera system having autofocusing function
JP5088118B2 (ja) * 2007-12-07 2012-12-05 株式会社ニコン 焦点調節装置
JP2010078681A (ja) * 2008-09-24 2010-04-08 Canon Inc 自動焦点調整装置および方法、並びにプログラム
JP5153542B2 (ja) 2008-09-25 2013-02-27 キヤノン株式会社 自動焦点調節装置および焦点調節方法
JP5237059B2 (ja) 2008-11-14 2013-07-17 キヤノン株式会社 焦点検出装置及び方法、及び撮像装置
KR20100077878A (ko) * 2008-12-29 2010-07-08 삼성전자주식회사 초점검출장치 및 이를 구비하는 촬상장치
KR101579737B1 (ko) * 2010-01-05 2015-12-23 삼성전자주식회사 자동초점 조절 장치 및 카메라 시스템
JP5331721B2 (ja) * 2010-02-02 2013-10-30 アズビル株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP5757099B2 (ja) * 2010-02-15 2015-07-29 株式会社ニコン 焦点調節装置、及び焦点調節プログラム
US8330852B2 (en) * 2010-04-30 2012-12-11 Eastman Kodak Company Range measurement using symmetric coded apertures
US8705801B2 (en) * 2010-06-17 2014-04-22 Panasonic Corporation Distance estimation device, distance estimation method, integrated circuit, and computer program
JP2012088691A (ja) * 2010-09-22 2012-05-10 Fujifilm Corp 撮像レンズ、撮像装置、および情報端末装置
WO2012132870A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 焦点拡張光学系及びEDoF撮像システム
JP2013029656A (ja) * 2011-07-28 2013-02-07 Sanyo Electric Co Ltd 撮像装置
EP3267677B1 (en) * 2011-08-24 2019-08-28 Fujifilm Corporation Imaging device
JP2014102290A (ja) * 2012-11-16 2014-06-05 Canon Inc 自動焦点調整装置
JP6313685B2 (ja) * 2014-05-01 2018-04-18 キヤノン株式会社 撮像装置およびその制御方法

Also Published As

Publication number Publication date
RU2015126537A (ru) 2017-01-11
RU2670591C1 (ru) 2018-10-23
CN109981945A (zh) 2019-07-05
BR102015016072B1 (pt) 2021-07-20
US20160006948A1 (en) 2016-01-07
CN105323441B (zh) 2019-03-05
EP2963492A1 (en) 2016-01-06
RU2622461C2 (ru) 2017-06-15
RU2696372C1 (ru) 2019-08-01
CN105323441A (zh) 2016-02-10
TW201603572A (zh) 2016-01-16
BR102015016072A2 (pt) 2016-01-05
US9641769B2 (en) 2017-05-02
CN109981945B (zh) 2021-10-22
TWI548272B (zh) 2016-09-01
JP2016014839A (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
KR102159544B1 (ko) 초점 검출장치, 초점 검출방법, 및 렌즈유닛
JP6478496B2 (ja) 撮像装置およびその制御方法
US10313578B2 (en) Image capturing apparatus and method for controlling image capturing apparatus
JP6478457B2 (ja) 焦点調節装置及び焦点調節方法
JP6429546B2 (ja) 撮像装置、制御方法、プログラム、および、記憶媒体
JP6486288B2 (ja) 撮像装置、制御方法、プログラム、記憶媒体
JP6484004B2 (ja) 撮像装置およびその制御方法、および撮影光学系およびその制御方法
JP2018021971A (ja) 焦点検出方法および撮像装置
JP6484003B2 (ja) 撮像装置およびその制御方法、および撮影光学系
JP6744933B2 (ja) レンズ部およびその制御方法
JP6686239B1 (ja) レンズ部、送信装置、及び受信装置
JP6686191B2 (ja) 焦点検出装置、撮像装置、及び焦点検出方法
JP6415054B2 (ja) 撮像装置及び撮像方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R151 Written notification of patent or utility model registration

Ref document number: 6478496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151