JP6477346B2 - Coil wire - Google Patents

Coil wire Download PDF

Info

Publication number
JP6477346B2
JP6477346B2 JP2015156761A JP2015156761A JP6477346B2 JP 6477346 B2 JP6477346 B2 JP 6477346B2 JP 2015156761 A JP2015156761 A JP 2015156761A JP 2015156761 A JP2015156761 A JP 2015156761A JP 6477346 B2 JP6477346 B2 JP 6477346B2
Authority
JP
Japan
Prior art keywords
wire
magnetic
coil
layer
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015156761A
Other languages
Japanese (ja)
Other versions
JP2017037896A (en
Inventor
亮 丹治
亮 丹治
和宏 後藤
和宏 後藤
鉄也 桑原
鉄也 桑原
慎一 飯塚
慎一 飯塚
有吉 剛
剛 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015156761A priority Critical patent/JP6477346B2/en
Priority to PCT/JP2015/073426 priority patent/WO2016027867A1/en
Publication of JP2017037896A publication Critical patent/JP2017037896A/en
Application granted granted Critical
Publication of JP6477346B2 publication Critical patent/JP6477346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Non-Insulated Conductors (AREA)
  • Windings For Motors And Generators (AREA)

Description

本発明は、コイルに用いられる線材に関する。特に、周囲の交番磁界による渦電流を低減して、低損失なコイルを形成できるコイル用線材に関する。   The present invention relates to a wire used for a coil. In particular, the present invention relates to a coil wire material that can form a low-loss coil by reducing eddy currents caused by surrounding alternating magnetic fields.

各種の電気機器の一部品として、コイルが利用されている。コイルを備える電気機器としては、例えばモータ、トランス(変圧器)、リアクトルなどが挙げられる。一般に、コイルは、導体線を有する巻線を螺旋状に巻回することによって形成される。巻線は、エナメル線といった、導体線の上に絶縁層を備えるものが代表的である。   A coil is used as one part of various electric devices. Examples of the electric device including the coil include a motor, a transformer (transformer), a reactor, and the like. Generally, a coil is formed by winding a winding having a conductor wire in a spiral shape. The winding is typically an enameled wire that has an insulating layer on a conductor wire.

特許文献1は、ニッケルめっき銅線を芯材とし、その外周に密着層、絶縁層を順に備える絶縁電線を開示している。   Patent document 1 is disclosing the insulated wire which uses nickel plating copper wire as a core material, and equips the outer periphery with an adhesion layer and an insulating layer in order.

特開平07−296643号公報Japanese Patent Application Laid-Open No. 07-296643

コイルに用いられる線材には、低損失なコイルを形成できることが望まれる。   It is desired that a low-loss coil can be formed in the wire used for the coil.

例えば、小型化や高占積率などの目的から隣り合うターン間の間隔が狭いコイルでは、各ターンをつくる導体線同士が近接配置される。このようなコイルに交流電流を流すと、ある導体線Aに近接する別の導体線Bがつくる磁界からの磁束が導体線Aに鎖交して、導体線Aに渦電流が生じ得る。近年、各種の電気機器、例えばモータなどの高性能化・高効率化に伴い大電流化が進んでいる。大電流化に伴い発生する交番磁界も増大し、導体線に生じる渦電流も増大し得る。   For example, in a coil in which the interval between adjacent turns is narrow for the purpose of downsizing and high space factor, the conductor wires forming each turn are arranged close to each other. When an alternating current is passed through such a coil, a magnetic flux from a magnetic field generated by another conductor wire B close to a certain conductor wire A may be linked to the conductor wire A, and an eddy current may be generated in the conductor wire A. In recent years, with the increase in performance and efficiency of various electric devices such as motors, the increase in current has progressed. The alternating magnetic field generated with the increase in current also increases, and the eddy current generated in the conductor wire can also increase.

上述のように近接する導体線や漏れ磁束などに基づく周囲の交番磁界からの磁束によって導体線に渦電流が生じて渦電流量が多くなると、導体線に生じる渦電流損が大きくなり、コイルの損失の増大を招く。そのため、コイル用線材には、周囲の交番磁界による渦電流を低減できることが望まれる。   As described above, when the eddy current is generated in the conductor wire due to the magnetic flux from the surrounding alternating magnetic field based on the adjacent conductor wire or leakage magnetic flux, and the amount of eddy current increases, the eddy current loss generated in the conductor wire increases, Increases loss. Therefore, it is desirable for the coil wire material to be able to reduce eddy currents due to the surrounding alternating magnetic field.

また、絶縁層を備える場合には、導体線に割れなどの表面欠陥などが存在すると、この欠陥に起因して絶縁層が適切に形成されず、絶縁不良個所が生じて歩留りの低下を招く。従って、コイル使用時の渦電流を低減できる上に、絶縁性、製造性にも優れるコイル用線材が望まれる。   In the case where an insulating layer is provided, if there is a surface defect such as a crack in the conductor wire, the insulating layer is not properly formed due to this defect, resulting in a defective portion of insulation and a decrease in yield. Accordingly, a coil wire that can reduce eddy current when using the coil and is excellent in insulation and manufacturability is desired.

更に、コイルに成形する際の曲げ加工が行い易く、コイル成形性に優れるコイル用線材が望ましい。曲げ加工などが行い易い線材であれば、コイル成形後、スプリングバックによる変形を小さくし易く、寸法精度、形状精度に優れるコイルを形成できて、コイルの製造性にも優れる。   Furthermore, it is desirable to use a coil wire that is easy to bend when being formed into a coil and has excellent coil formability. If the wire is easy to bend and the like, it is easy to reduce deformation due to the springback after the coil is formed, and a coil having excellent dimensional accuracy and shape accuracy can be formed, and the productivity of the coil is also excellent.

そこで、本発明の目的の一つは、周囲の交番磁界による渦電流を低減して、低損失なコイルを形成できるコイル用線材を提供することにある。   Accordingly, one of the objects of the present invention is to provide a coil wire that can form a low-loss coil by reducing eddy currents caused by surrounding alternating magnetic fields.

本発明の一態様に係るコイル用線材は、導体線と、前記導体線の外周に磁性材料によって形成された磁性体層とを備え、前記磁性体層は、炭素鋼によって形成された鋼含有層を備える。   A coil wire according to an aspect of the present invention includes a conductor wire and a magnetic layer formed of a magnetic material on an outer periphery of the conductor wire, and the magnetic layer is a steel-containing layer formed of carbon steel. Is provided.

上記のコイル用線材は、周囲の交番磁界による渦電流を低減して、低損失なコイルを形成できる。   The coil wire described above can reduce eddy currents due to the surrounding alternating magnetic field and form a low-loss coil.

実施形態1に係るコイル用線材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the wire material for coils which concerns on Embodiment 1. FIG. 実施形態2に係るコイル用線材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the wire material for coils which concerns on Embodiment 2. 実施形態3に係るコイル用線材(丸線)と、その製造方法の一例を説明する工程説明図である。It is process explanatory drawing explaining an example of the manufacturing method for the wire material for coils (round wire) concerning Embodiment 3. FIG. 実施形態3に係るコイル用線材(角線)と、その製造方法の一例を説明する工程説明図である。It is process explanatory drawing explaining an example of the wire for coils (square wire) which concerns on Embodiment 3, and its manufacturing method. 試験例1で損失の測定に用いた測定回路を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a measurement circuit used for loss measurement in Test Example 1.

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係るコイル用線材は、導体線と、上記導体線の外周に磁性材料によって形成された磁性体層とを備え、上記磁性体層は、炭素鋼によって形成された鋼含有層を備える。 (1) A coil wire according to an aspect of the present invention includes a conductor wire and a magnetic layer formed of a magnetic material on an outer periphery of the conductor wire, and the magnetic layer is formed of carbon steel. A steel-containing layer is provided.

上記のコイル用線材は、以下の理由により、周囲の交番磁界による渦電流を低減して、渦電流に起因する損失を低減でき、低損失なコイルを形成できる。   The coil wire described above can reduce eddy currents due to the surrounding alternating magnetic field for the following reasons, reduce loss due to eddy currents, and form a low-loss coil.

上記のコイル用線材は、銅などの一般に導電性に優れるものの非磁性である金属から構成される導体線の外周に、磁性材料から構成される磁性体層を備えるため、コイルを形成した場合に周囲の交番磁界からの磁束が磁性体層に流れて、導体線に鎖交し得る磁束を減らすことができる。磁性体層が実質的に磁性材料のみから構成されて磁性成分を十分に備えることからも、上記磁束が磁性体層に通過し易い。このように磁性体層は、周囲の交番磁界から導体線への磁束を遮蔽する磁気シールドとして機能する。   When the coil wire is formed, the coil wire material is provided with a magnetic layer made of a magnetic material on the outer periphery of a conductor wire made of a non-magnetic metal although generally excellent in conductivity such as copper. Magnetic flux from the surrounding alternating magnetic field flows through the magnetic layer, and the magnetic flux that can be linked to the conductor wire can be reduced. Since the magnetic layer is substantially made of only a magnetic material and has a sufficient magnetic component, the magnetic flux easily passes through the magnetic layer. Thus, the magnetic layer functions as a magnetic shield that shields the magnetic flux from the surrounding alternating magnetic field to the conductor wire.

特に、上記のコイル用線材では磁性体層に炭素鋼から構成される鋼含有層を備える。炭素鋼は、飽和磁束密度が高いため周囲の交番磁界からの磁束を十分に流せて、導体線に鎖交し得る磁束を効果的に低減でき、導体線に生じる渦電流を低減できる。また、炭素鋼は、比抵抗が純鉄よりも高く、鋼含有層自体に生じる渦電流を低減できる。
このように導体線だけでなく、磁性体層に生じ得る渦電流を低減できるからである。
In particular, the coil wire described above includes a steel-containing layer made of carbon steel in the magnetic layer. Since carbon steel has a high saturation magnetic flux density, the magnetic flux from the surrounding alternating magnetic field can be sufficiently flowed, the magnetic flux that can be linked to the conductor wire can be effectively reduced, and the eddy current generated in the conductor wire can be reduced. Carbon steel has a higher specific resistance than pure iron and can reduce eddy currents generated in the steel-containing layer itself.
This is because the eddy current that can be generated not only in the conductor wire but also in the magnetic layer can be reduced.

また、上記のコイル用線材は、以下の理由により製造性に優れる。
炭素鋼は、溶接を行った場合にブローホールが形成され難く、水素脆化などの脆化も生じ難い。そのため、後述するように溶接を利用して鋼含有層を形成する場合にブローホールや脆化に起因する割れなどの欠陥の発生を低減できて表面性状に優れる磁性体層を形成できる。表面性状に優れる磁性体層の外周に絶縁層を形成する場合には、ピンホールやフクレなどの欠陥の発生を低減できて、絶縁層を良好に形成でき、絶縁性に優れるコイル用線材とすることができる。
このように磁性体層だけでなく、絶縁層をも良好に形成でき、歩留りの低下を低減できるからである。
Moreover, said wire for coils is excellent in manufacturability for the following reasons.
When carbon steel is welded, blow holes are not easily formed, and embrittlement such as hydrogen embrittlement hardly occurs. Therefore, when forming a steel content layer using welding so that it may mention later, generation of defects, such as a crack resulting from a blowhole or embrittlement, can be reduced, and a magnetic layer excellent in surface properties can be formed. When an insulating layer is formed on the outer periphery of a magnetic layer having excellent surface properties, the occurrence of defects such as pinholes and blisters can be reduced, the insulating layer can be formed satisfactorily, and a coil wire with excellent insulating properties can be obtained. be able to.
This is because not only the magnetic layer but also the insulating layer can be satisfactorily formed, and the yield reduction can be reduced.

更に、上記のコイル用線材は、以下の理由によりコイルの製造性にも優れる。
炭素鋼は曲げ加工などの塑性加工性に優れており、上記のコイル用線材は、コイルの形成に必要な力が小さくてよく、容易に巻回できる。また、巻回に必要な力が小さければ、巻回後の線材に残存する応力も小さくなり、スプリングバックが生じ難く、寸法精度、形状精度に優れるコイルを成形できる。
このようにコイルを良好に形成でき、歩留まりの低下を低減できるからである。
Furthermore, the coil wire described above is excellent in coil manufacturability for the following reasons.
Carbon steel is excellent in plastic workability such as bending, and the above-described coil wire may have a small force required for forming the coil and can be easily wound. Moreover, if the force required for winding is small, the stress remaining in the wire after winding is also small, and it is difficult to produce a springback, and a coil having excellent dimensional accuracy and shape accuracy can be formed.
This is because the coil can be formed satisfactorily in this way, and the yield reduction can be reduced.

(2)上記のコイル用線材の一例として、上記炭素鋼における炭素と、リンと、硫黄との合計含有量が0超0.3質量%以下である形態が挙げられる。 (2) As an example of said coil wire, the form whose total content of carbon in the said carbon steel, phosphorus, and sulfur is more than 0 and 0.3 mass% or less is mentioned.

炭素、リン、及び硫黄の合計含有量が上記の範囲を満たす炭素鋼は溶接時にブローホールや脆化などが生じ難い。従って、上記の形態は、渦電流を低減できて低損失なコイルを形成できる上に、表面性状に優れる磁性体層や健全な絶縁層を形成し易く、製造性により優れる。 Carbon steel in which the total content of carbon, phosphorus, and sulfur satisfies the above range hardly causes blowholes or embrittlement during welding. Therefore, the above-described embodiment can reduce eddy currents and form a low-loss coil, and can easily form a magnetic layer and a sound insulating layer having excellent surface properties, and is excellent in manufacturability.

(3)上記のコイル用線材の一例として、上記磁性体層が、上記導体線の軸方向に直交する断面において周方向にみて、厚さが異なる厚肉部と薄肉部とを有する不均一層を備え、上記薄肉部の最小厚さに対する上記厚肉部の最大厚さの比(以下、厚さ比と呼ぶことがある)が1.1以上である形態が挙げられる。 (3) As an example of the coil wire, the magnetic layer includes a non-uniform layer having a thick portion and a thin portion having different thicknesses in the circumferential direction in a cross section orthogonal to the axial direction of the conductor wire. And the ratio of the maximum thickness of the thick part to the minimum thickness of the thin part (hereinafter sometimes referred to as the thickness ratio) is 1.1 or more.

コイルには、周囲の交番磁束からの磁束をその他の領域に比較して受け易い領域(以下、鎖交領域と呼ぶことがある)が存在し得る。上記形態は、不均一層のうち、厚肉部を上記鎖交領域に配置でき、導体線に鎖交し得る磁束をより確実に低減できる。また、磁性材料が金属である場合でも、不均一層は薄肉部を備えるため、均一的な厚さでかつ厚肉部と同じ厚さを有する磁性体層を備える場合に比較して、不均一層自体に生じ得る渦電流を低減できる。特に、不均一層が比較的高抵抗である炭素鋼から構成されていれば(不均一層が鋼含有層であれば)、不均一層自体に生じ得る渦電流をより一層低減し易い。従って、上記形態は、導体線と磁性体層との双方について周囲の交番磁束に起因する渦電流を低減でき、より低損失なコイルを形成できる。その他、上記形態は、磁性体層の構成材料の低減、この低減による軽量化などの効果を奏する。   The coil may have a region (hereinafter sometimes referred to as a linkage region) that is more susceptible to magnetic flux from the surrounding alternating magnetic flux than other regions. The said form can arrange | position a thick part in the said linkage area | region among nonuniform layers, and can reduce more reliably the magnetic flux which can be linked to a conductor wire. Even when the magnetic material is a metal, the non-uniform layer has a thin portion. Therefore, the non-uniform layer has a non-uniform thickness as compared with a case where a magnetic layer having a uniform thickness and the same thickness as the thick portion is provided. The eddy current that can be generated in one layer can be reduced. In particular, if the non-uniform layer is made of carbon steel having a relatively high resistance (if the non-uniform layer is a steel-containing layer), it is easier to further reduce eddy currents that can be generated in the non-uniform layer itself. Therefore, the said form can reduce the eddy current resulting from the surrounding alternating magnetic flux about both a conductor wire and a magnetic body layer, and can form a coil with lower loss. In addition, the said form has effects, such as reduction of the constituent material of a magnetic body layer and weight reduction by this reduction.

(4)上記のコイル用線材の一例として、上記導体線と上記磁性体層とを合わせた断面積に対する上記磁性体層の断面積の比率(以下、面積比と呼ぶことがある)が3%以上40%以下である形態が挙げられる。 (4) As an example of the coil wire, the ratio of the cross-sectional area of the magnetic layer to the cross-sectional area of the conductor wire and the magnetic layer (hereinafter sometimes referred to as area ratio) is 3%. The form which is 40% or less is mentioned above.

上記形態は、磁路断面積を十分に備えて磁性体層に周囲の交番磁界からの磁束を流し易く、導体線に鎖交し得る磁束を十分に低減できる。かつ、上記形態は、磁性体層が厚過ぎないため、線材の大径化を抑制できる上に曲げ加工などを行い易い。従って、上記形態は、渦電流を低減できて低損失なコイル、特に小型なコイルを形成できる上に、コイルを形成し易く、コイルの製造性にも優れる。   The said form is equipped with magnetic path cross-sectional area enough, and can easily flow the magnetic flux from the surrounding alternating magnetic field to a magnetic body layer, and can fully reduce the magnetic flux which can be linked with a conductor wire. And since the magnetic body layer is not too thick, the said form can suppress a diameter increase of a wire, and is easy to perform a bending process. Therefore, the above-mentioned form can reduce eddy current and form a low-loss coil, particularly a small coil, and can easily form a coil, and is excellent in coil manufacturability.

(5)上記のコイル用線材の一例として、上記磁性体層の飽和磁束密度をBs、上記コイル用線材の最大幅をw、上記磁性体層の厚さをtとするとき、Bs×(t/w)≧0.01Tを満たす形態が挙げられる。 (5) As an example of the coil wire, when the saturation magnetic flux density of the magnetic layer is Bs, the maximum width of the coil wire is w, and the thickness of the magnetic layer is t, Bs × (t / W) A form satisfying ≧ 0.01T is mentioned.

Bs×(t/w)が大きいほど、磁気シールド効果が高く、導体線に発生する損失の抑制効果が高くなる傾向がある。上記形態は、Bs×(t/w)が0.01T以上であり、より低損失なコイルを形成できる。   The larger Bs × (t / w), the higher the magnetic shielding effect and the higher the effect of suppressing loss generated in the conductor wire. In the above embodiment, Bs × (t / w) is 0.01T or more, and a coil with lower loss can be formed.

(6)上記のコイル用線材の一例として、上記導体線を構成する金属の平均結晶粒径が200μm以下である形態が挙げられる。 (6) As an example of said coil wire, the form whose average crystal grain diameter of the metal which comprises the said conductor wire is 200 micrometers or less is mentioned.

上記形態は、導体線が強度(0.2%耐力など)や靭性(破断伸びなど)といった機械的特性に優れており、耐へたり性や、曲げ加工などの加工性に優れる。従って、上記形態は、渦電流を低減できて低損失なコイルを形成できる上に、コイルを形成し易く、コイルの製造性にも優れる。   In the above form, the conductor wire is excellent in mechanical properties such as strength (0.2% yield strength, etc.) and toughness (break elongation, etc.), and is excellent in sag resistance and workability such as bending. Therefore, the above-mentioned form can reduce eddy current and form a low-loss coil, and can easily form a coil, and is excellent in coil manufacturability.

(7)上記のコイル用線材の一例として、0.2%耐力が60MPa以上であり、破断伸びが5%以上である形態が挙げられる。 (7) As an example of said coil wire rod, the form whose 0.2% yield strength is 60 Mpa or more and whose breaking elongation is 5% or more is mentioned.

上記形態は、高強度でありながら伸びも高く、耐へたり性や、曲げ加工などの加工性に優れる。従って、上記形態は、渦電流を低減できて低損失なコイルを形成できる上に、コイルを形成し易く、コイルの製造性にも優れる。   Although the said form is high intensity | strength, it is also high in elongation, and is excellent in sag-resistance and workability, such as a bending process. Therefore, the above-mentioned form can reduce eddy current and form a low-loss coil, and can easily form a coil, and is excellent in coil manufacturability.

(8)上記のコイル用線材の一例として、上記導体線の外周に絶縁層を備える形態が挙げられる。 (8) As an example of the coil wire, there may be mentioned a form in which an insulating layer is provided on the outer periphery of the conductor wire.

磁性体層の外周に絶縁層を備える場合には近接するコイル用線材間に介在する絶縁層によってこれらの線材間を絶縁できる。導体線と磁性体層との間に絶縁層を備える場合には導体線と磁性体層との間に介在する絶縁層によって、導体線と磁性体層とを絶縁できる。従って、上記形態は、磁性体層自体に生じた渦電流が近接するコイル用線材や下層の導体線に流れることを絶縁層によって防止できて、より低損失なコイルを形成できる。また、磁性体層が鋼含有層であれば表面性状に優れるため、この鋼含有層の上に絶縁層を良好に形成でき、上記形態は、製造性にも優れる。   When an insulating layer is provided on the outer periphery of the magnetic layer, these wires can be insulated by an insulating layer interposed between adjacent coil wires. When an insulating layer is provided between the conductor wire and the magnetic layer, the conductor wire and the magnetic layer can be insulated by the insulating layer interposed between the conductor wire and the magnetic layer. Therefore, the said form can prevent an eddy current produced in the magnetic layer itself from flowing to the adjacent coil wire or the lower conductor wire by the insulating layer, and can form a lower loss coil. In addition, since the surface properties are excellent if the magnetic layer is a steel-containing layer, an insulating layer can be satisfactorily formed on the steel-containing layer, and the above form is also excellent in manufacturability.

[本発明の実施形態の詳細]
以下、図1〜図4を適宜参照して、本発明の実施形態に係るコイル用線材の具体例を説明する。図中、同一符号は同一名称物を示す。図1〜図4は、コイル用線材10などを導体線11などの軸方向に直交する平面で切断した横断面を示す。図1〜図4は、分かり易いように磁性体層12などを厚く誇張して示す。図3の下図,図4の下図に示す厚肉部12a,薄肉部12bの形成領域、各部12a,12bの厚さは例示である。
[Details of the embodiment of the present invention]
Hereinafter, specific examples of the coil wire according to the embodiment of the present invention will be described with reference to FIGS. In the figure, the same reference numerals indicate the same names. 1 to 4 show cross sections obtained by cutting the coil wire 10 and the like along a plane perpendicular to the axial direction of the conductor wire 11 and the like. 1 to 4 show the magnetic layer 12 and the like exaggerated thickly for easy understanding. The formation regions of the thick portion 12a and the thin portion 12b and the thicknesses of the portions 12a and 12b shown in the lower diagram of FIG. 3 and the lower diagram of FIG. 4 are examples.

(コイル用線材)
・概要
実施形態に係るコイル用線材10は、図1,図2,図3の下図、図4の下図などに示すように、導体線11と、導体線11を覆うように導体線11の外周に磁性材料によって形成された磁性体層12とを備える。以下に具体例を示す。その他の具体例は後述する。
図1に示す実施形態1に係るコイル用線材10は、導体線11と、磁性体層12とを備える例である。
図2に示す実施形態2に係るコイル用線材10は、導体線11と、磁性体層12と、更に導体線11の外周に形成された絶縁層13とを備える例である。
図3,図4に示す実施形態3に係るコイル用線材10は、導体線11と、磁性体層12とを備え、コイル用線材10の横断面において磁性体層12をコイル用線材10の周方向にみると、磁性体層12の厚さが異なっている。
(Coil wire)
Outline The coil wire 10 according to the embodiment includes a conductor wire 11 and an outer periphery of the conductor wire 11 so as to cover the conductor wire 11 as shown in the lower diagrams of FIGS. And a magnetic layer 12 made of a magnetic material. Specific examples are shown below. Other specific examples will be described later.
A coil wire 10 according to the first embodiment shown in FIG. 1 is an example including a conductor wire 11 and a magnetic layer 12.
The coil wire 10 according to the second embodiment shown in FIG. 2 is an example including a conductor wire 11, a magnetic layer 12, and an insulating layer 13 formed on the outer periphery of the conductor wire 11.
A coil wire 10 according to Embodiment 3 shown in FIGS. 3 and 4 includes a conductor wire 11 and a magnetic layer 12, and the magnetic layer 12 is arranged around the coil wire 10 in a cross section of the coil wire 10. When viewed in the direction, the thickness of the magnetic layer 12 is different.

実施形態に係るコイル用線材10は、磁性体層12が炭素鋼を含む鋼含有層を備えることを特徴の一つとする。以下、構成要素ごとに詳細に説明する。   The coil wire 10 according to the embodiment is characterized in that the magnetic layer 12 includes a steel-containing layer containing carbon steel. Hereinafter, each component will be described in detail.

・導体線
導体線11は、コイル用線材10において主として電流が流れる部分である。
-Conductor wire The conductor wire 11 is a part through which a current mainly flows in the coil wire 10.

・・組成
導体線11の構成材料は、金属、特に導電性に優れる金属である銅、銅合金、アルミニウム及びアルミニウム合金から選択される少なくとも1種の金属を含むことが好ましい。上記に列挙した金属を含む導体線11は、導電率が高く、電気抵抗も小さいため、所定の電流を低損失で流せる。低損失化の観点からは銅又は銅合金が好ましく、軽量化の観点からはアルミニウム又はアルミニウム合金が好ましい。上記に列挙した金属は、一般に非磁性材である。
.. Composition It is preferable that the constituent material of the conductor wire 11 includes at least one metal selected from metals, particularly copper, copper alloys, aluminum, and aluminum alloys, which are excellent in conductivity. The conductor wire 11 including the metal listed above has a high conductivity and a small electric resistance, so that a predetermined current can flow with a low loss. From the viewpoint of reducing the loss, copper or a copper alloy is preferable, and from the viewpoint of reducing the weight, aluminum or an aluminum alloy is preferable. The metals listed above are generally non-magnetic materials.

ここでの「銅」とは、Cuを99.9質量%以上含有する純銅である。具体的にはタフピッチ銅、脱酸銅(例、リン脱酸銅)、無酸素銅(OFC)が挙げられる。
ここでの「銅合金」とは、Cuを50質量%以上、好ましくは90質量%以上含有し、Cu以外の添加元素を含有する銅基合金である。銅合金の添加元素は、例えばSn,Zr,Fe,Zn,Ag,Cr,P,Si,Mn,Ti,Mg,Niなどが挙げられる。
ここでの「アルミニウム」とは、Alを99質量%以上含有する純アルミニウムである。
ここでの「アルミニウム合金」とは、Alを50質量%以上、好ましくは90質量%以上含有し、Al以外の添加元素を含有するアルミニウム基合金である。アルミニウム合金の添加元素は、例えばSi,Cu,Mg,Zn,Fe,Mn,Ni,Ti,Cr,Ca,Zr,Liなどが挙げられる。
その他、不可避不純物を含み得る。
より高い導電率を確保する観点からは、銅(純銅)が好ましい。
Here, “copper” is pure copper containing 99.9% by mass or more of Cu. Specific examples include tough pitch copper, deoxidized copper (eg, phosphorus deoxidized copper), and oxygen-free copper (OFC).
The “copper alloy” herein is a copper-based alloy containing 50% by mass or more, preferably 90% by mass or more of Cu, and containing an additive element other than Cu. Examples of the additive element of the copper alloy include Sn, Zr, Fe, Zn, Ag, Cr, P, Si, Mn, Ti, Mg, and Ni.
Here, “aluminum” is pure aluminum containing 99 mass% or more of Al.
Here, the “aluminum alloy” is an aluminum-based alloy containing 50% by mass or more, preferably 90% by mass or more of Al and containing an additive element other than Al. Examples of the additive element of the aluminum alloy include Si, Cu, Mg, Zn, Fe, Mn, Ni, Ti, Cr, Ca, Zr, and Li.
In addition, inevitable impurities may be included.
From the viewpoint of securing higher conductivity, copper (pure copper) is preferable.

上記添加元素の含有量は、所望の導電率が得られる範囲で、添加元素の種類に応じて適宜設定するとよい。添加元素の合計含有量は、例えば0.1質量%以上30質量%以下、更に0.1質量%以上5.0質量%以下が挙げられる。導電率を高くする観点からは添加元素の含有量は少ない方が好ましい。添加元素の含有量が多いと強度などに優れる。   The content of the additive element may be set as appropriate depending on the type of the additive element as long as desired conductivity is obtained. The total content of additive elements is, for example, 0.1% by mass or more and 30% by mass or less, and further 0.1% by mass or more and 5.0% by mass or less. From the viewpoint of increasing the electrical conductivity, it is preferable that the content of the additive element is small. When the content of the additive element is large, the strength and the like are excellent.

導体線11は、酸素及び水素の含有量が少ないことが好ましい。導体線11の外周直上に磁性体層12を備えて、導体線11と磁性体層12とが直接接触している場合に導体線11が酸素や水素を多く含有していると、この酸素や水素が磁性体層12中に拡散して、磁性体層12の延性や磁気的特性が損なわれる恐れがあるからである。
導体線11の酸素含有量は、質量割合で例えば50ppm以下、更に10ppm以下が好ましい。導体線11の水素含有量は、質量割合で例えば10ppm以下、更に5ppm以下が好ましい。酸素含有量の測定には、例えば、赤外分光法が利用できる。水素含有量の測定には、例えば、不活性ガス融解法が利用できる。その他、不活性ガス融解−赤外線吸収法などが挙げられる。
The conductor wire 11 preferably has a low oxygen and hydrogen content. When the magnetic layer 12 is provided immediately above the outer periphery of the conductor wire 11 and the conductor wire 11 and the magnetic layer 12 are in direct contact, if the conductor wire 11 contains a large amount of oxygen or hydrogen, This is because hydrogen may diffuse into the magnetic layer 12 and the ductility and magnetic characteristics of the magnetic layer 12 may be impaired.
The oxygen content of the conductor wire 11 is preferably 50 ppm or less, and more preferably 10 ppm or less, by mass ratio. The hydrogen content of the conductor wire 11 is preferably 10 ppm or less, and more preferably 5 ppm or less, by mass ratio. For the measurement of the oxygen content, for example, infrared spectroscopy can be used. For measurement of the hydrogen content, for example, an inert gas melting method can be used. In addition, an inert gas melting-infrared absorption method and the like can be mentioned.

導電率、低損失、延性、磁性体層12の特性維持などを考慮すると、導体線11の構成材料は、純銅、特に純銅のなかでも酸素や水素などの不純物をほとんど含まず、純度が最も高い無酸素銅が好ましい。   In consideration of conductivity, low loss, ductility, maintenance of the characteristics of the magnetic layer 12, and the like, the constituent material of the conductor wire 11 does not contain impurities such as oxygen and hydrogen among pure copper, particularly pure copper, and has the highest purity. Oxygen-free copper is preferred.

・・組織
導体線11を構成する金属が微細な結晶組織を有すると機械的特性に優れて好ましい。例えば、導体線11を構成する金属の平均結晶粒径が200μm以下を満たすことが挙げられる。上記平均結晶粒径が200μm以下であれば、0.2%耐力や破断伸びなどが高い導体線11とすることができる。上記平均結晶粒径が小さいほど機械的特性に優れ、上限値が100μm以下、更に80μm以下、70μm以下である形態が挙げられる。上記平均結晶粒径の下限は特に問わない。製造上の観点から、上記平均結晶粒径は例えば1μm以上である。
.. Structure It is preferable that the metal constituting the conductor wire 11 has a fine crystal structure because of excellent mechanical properties. For example, the average crystal grain size of the metal constituting the conductor wire 11 is 200 μm or less. When the average crystal grain size is 200 μm or less, a conductor wire 11 having a high 0.2% proof stress, breaking elongation and the like can be obtained. The smaller the average grain size is, the better the mechanical properties are, and the upper limit is 100 μm or less, further 80 μm or less, 70 μm or less. The lower limit of the average crystal grain size is not particularly limited. From the viewpoint of production, the average crystal grain size is, for example, 1 μm or more.

ここでの「平均結晶粒径」は、JIS H 0501(1986年)に規定された「伸銅品結晶粒度試験方法」に記載の切断法に準拠して測定した平均結晶粒度である。平均結晶粒径は、コイル用線材10の横断面をとり、この横断面における導体線11の結晶組織を顕微鏡で観察することで測定する。   Here, the “average crystal grain size” is an average crystal grain size measured in accordance with the cutting method described in “Method for testing grain size of copper products” defined in JIS H 0501 (1986). The average crystal grain size is measured by taking a cross section of the coil wire 10 and observing the crystal structure of the conductor wire 11 in the cross section with a microscope.

・・形状
導体線11の形状は、特に限定されない。例えば、導体線11は、横断面形状が円形状(図1,図2)、楕円形状(図3の下図)、レーストラック形状、六角形状や四角形状といった多角形状(図4の下図)など種々の形状が挙げられる。導体線11の外形は、製造条件にもよるが、代表的には、コイル用線材10の外形に類似した形状をとる。
-Shape The shape of the conductor wire 11 is not particularly limited. For example, the conductor wire 11 has various cross-sectional shapes such as a circular shape (FIGS. 1 and 2), an elliptical shape (the lower diagram in FIG. 3), a racetrack shape, a polygonal shape such as a hexagonal shape or a rectangular shape (the lower diagram in FIG. 4). The shape is mentioned. The outer shape of the conductor wire 11 is typically a shape similar to the outer shape of the coil wire 10, although it depends on manufacturing conditions.

・・大きさ
導体線11の横断面積は、例えば電流値に応じて適宜選択できる。例えば2A以上といった大電流を流す用途では、上記横断面積は0.4mm以上、更に0.5mm以上、0.8mm以上が挙げられる。低電流用途では、上記横断面積は0.4mm未満、更に0.3mm以下が挙げられる。上記横断面積の上限は特に問わないが、50mm以下であれば曲げ易く加工性に優れる上に、比較的細いため占積率が高いコイルを形成できる。
導体線11が丸線の場合に導体線11の直径φは、0.5mm以上8mm以下程度が挙げられる。
導体線11が平角線などの角線や楕円線などの場合に導体線11の長辺の長さは0.5mm以上10mm以下程度、短辺の長さは0.2mm以上5mm以下程度が挙げられる。
-Size The cross-sectional area of the conductor wire 11 can be appropriately selected according to the current value, for example. For example, in applications where a large current of 2 A or more flows, the cross-sectional area is 0.4 mm 2 or more, further 0.5 mm 2 or more, 0.8 mm 2 or more. For low current applications, the cross-sectional area is less than 0.4 mm 2 , and further 0.3 mm 2 or less. The upper limit of the cross-sectional area is not particularly limited, but if it is 50 mm 2 or less, it is easy to bend and excellent in workability, and a coil having a high space factor can be formed because it is relatively thin.
When the conductor wire 11 is a round wire, the diameter φ of the conductor wire 11 is about 0.5 mm or more and 8 mm or less.
When the conductor wire 11 is a rectangular wire such as a flat wire or an elliptical wire, the length of the long side of the conductor wire 11 is about 0.5 mm to 10 mm and the length of the short side is about 0.2 mm to 5 mm. It is done.

・・導電率
導体線11は導電率が高いほど低損失で電流を流せて好ましい。具体的な導電率は、70%IACS以上、更に80%IACS以上、90%IACS以上が挙げられる。
.. Electrical conductivity The higher the electrical conductivity of the conductor wire 11, the lower the loss and the better the current can flow. Specific conductivity includes 70% IACS or more, 80% IACS or more, 90% IACS or more.

・磁性体層
磁性体層12は、磁性材料によって形成されて、周囲の交番磁界からの磁束が導体線11に通過することを阻止、低減する磁気シールドとして主に機能する。周囲の交番磁界がコイル用線材10に印加された際に交番磁界からの磁束が磁性体層12に流れることで、導体線11に鎖交する磁束を減らすことができる。
Magnetic Layer The magnetic layer 12 is formed of a magnetic material, and mainly functions as a magnetic shield that prevents and reduces the magnetic flux from the surrounding alternating magnetic field from passing through the conductor wire 11. When a surrounding alternating magnetic field is applied to the coil wire 10, the magnetic flux from the alternating magnetic field flows to the magnetic layer 12, whereby the magnetic flux interlinking with the conductor wire 11 can be reduced.

・・組成
磁性体層12の構成材料は、磁性材料、特に軟磁性材料とする。高い磁気シールド効果が期待できる強磁性体が好ましく、比透磁率や飽和磁束密度が高い鉄系材料がより好ましい。また、比抵抗が高い鉄系材料であれば、磁性体層12自体に生じる渦電流を低減できる。そこで、実施形態のコイル用線材10では、磁性体層12に、飽和磁束密度が高く、比抵抗が比較的高い鉄系材料である炭素鋼によって形成された鋼含有層を備える。
.. Composition The constituent material of the magnetic layer 12 is a magnetic material, particularly a soft magnetic material. Ferromagnetic materials that can be expected to have a high magnetic shielding effect are preferable, and iron-based materials with high relative permeability and high saturation magnetic flux density are more preferable. Moreover, if it is an iron-type material with a high specific resistance, the eddy current which arises in magnetic body layer 12 itself can be reduced. Therefore, in the coil wire 10 according to the embodiment, the magnetic layer 12 includes a steel-containing layer formed of carbon steel, which is an iron-based material having a high saturation magnetic flux density and a relatively high specific resistance.

ここでの「炭素鋼」とは、炭素(C)を0超2質量%以下程度の範囲で含有し、その他、珪素(Si)、マンガン(Mn)、リン(P)、硫黄(S)などを微量に含有する鉄基合金である。例えば、JIS G 3141(2011年)、JIS G 3118(2010年)などに規定される低炭素鋼(代表的にはC:0.15質量%以下)や中炭素鋼(代表的にはC:0.30質量%以下、Si:0.15質量%〜0.4質量%)などが挙げられる。Mn、P、Sの含有量(質量%)は、例えば、以下が挙げられる。
Mn量:1.20%以下、P量:0.100%以下、S量:0.040%以下
“Carbon steel” as used herein contains carbon (C) in a range of more than 0 to about 2% by mass, and in addition, silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), etc. Is an iron-based alloy containing a small amount of. For example, low carbon steel (typically C: 0.15 mass% or less) or medium carbon steel (typically C :) specified in JIS G 3141 (2011), JIS G 3118 (2010), etc. 0.30 mass% or less, Si: 0.15 mass% to 0.4 mass%) and the like. Examples of the content (% by mass) of Mn, P, and S include the following.
Mn amount: 1.20% or less, P amount: 0.100% or less, S amount: 0.040% or less

特に、炭素鋼における炭素と、リンと、硫黄との合計含有量が少ないと、鋼含有層の形成に溶接を行う場合にブローホールや水素脆化などの脆化が生じ難いため、表面性状に優れる鋼含有層を形成し易く、コイル用線材10の製造性に優れる。また、鋼含有層の外周に絶縁層13を形成する場合に絶縁層13を良好に形成でき、絶縁層13を備えるコイル用線材10の製造性にも優れる。上記合計含有量は、少ないほどブローホールや脆化などが生じ難く、0.6質量%以下、更に0.5質量%以下が好ましい。良好な絶縁層13の形成を考慮すると、上記合計含有量は0超0.3質量%以下が好ましく、0.2質量%以下、更に0.15質量%以下がより好ましい。上記合計含有量が所望の範囲を満たすように、例えば精錬などを行って、鋼含有層の形成に用いる炭素鋼材の成分調整、特にリンや硫黄の低減を行うとよい。   In particular, if the total content of carbon, phosphorus, and sulfur in carbon steel is low, embrittlement such as blowholes or hydrogen embrittlement is unlikely to occur when welding is performed to form a steel-containing layer. It is easy to form an excellent steel-containing layer, and the productivity of the coil wire 10 is excellent. Moreover, when forming the insulating layer 13 in the outer periphery of a steel containing layer, the insulating layer 13 can be formed favorably and it is excellent also in the manufacturability of the coil wire rod 10 provided with the insulating layer 13. As the total content is smaller, blowholes and embrittlement are less likely to occur, and it is preferably 0.6% by mass or less, and more preferably 0.5% by mass or less. Considering the formation of a good insulating layer 13, the total content is preferably more than 0 and not more than 0.3% by mass, more preferably not more than 0.2% by mass, and further preferably not more than 0.15% by mass. For example, refining or the like is performed so that the total content satisfies a desired range to adjust the components of the carbon steel material used for forming the steel-containing layer, in particular, to reduce phosphorus and sulfur.

・・構造
コイル用線材10は、磁性体層12を一層のみ備え、この一層が鋼含有層である単層構造の形態(図1〜図4)の他、絶縁層13(中間絶縁層)を介して複数の磁性体層12を備え、複数の磁性体層12のいずれも鋼含有層である形態(図示せず)、複数の磁性体層12として、少なくとも一層の鋼含有層と、残部が炭素鋼以外の磁性材料から構成される層とを備える形態(図示せず)が挙げられる。炭素鋼以外の磁性材料は、上述のように鉄系材料が好ましい。例えば、透磁率が高い鉄系材料からなる高μ層であれば、周囲の交番磁界からの磁束が通過し易く、飽和磁束密度が高い鉄系材料からなる高Bs層であれば、周囲の交番磁界からの磁束が十分に通過でき、比抵抗が高い鉄系材料からなる高電気抵抗層であれば、この層自身に発生する渦電流を低減できる。
..Structure The coil wire 10 includes only one magnetic layer 12, and the insulating layer 13 (intermediate insulating layer) is provided in addition to the single-layer structure (FIGS. 1 to 4) in which this layer is a steel-containing layer. A plurality of magnetic layers 12 are provided, and each of the plurality of magnetic layers 12 is a steel-containing layer (not shown), and as the plurality of magnetic layers 12, at least one steel-containing layer and the remainder are The form (not shown) provided with the layer comprised from magnetic materials other than carbon steel is mentioned. The magnetic material other than carbon steel is preferably an iron-based material as described above. For example, if it is a high μ layer made of an iron-based material having a high magnetic permeability, magnetic flux from the surrounding alternating magnetic field easily passes, and if it is a high Bs layer made of an iron-based material having a high saturation magnetic flux density, the surrounding alternating If it is a high electrical resistance layer made of an iron-based material that can sufficiently pass magnetic flux from a magnetic field, eddy currents generated in this layer itself can be reduced.

絶縁層13を介さずに、異なる磁性材料からなる層が2層以上積層された多層構造の磁性体層12を備えることができる。多層のうち、少なくとも一層に鋼含有層を含むことができる。例えば、多層構造の磁性体層12として、磁性体層12のうち内側の領域が鋼含有層であり、表面側の領域が酸化鉄層である形態が挙げられる。   The magnetic layer 12 having a multilayer structure in which two or more layers made of different magnetic materials are stacked can be provided without using the insulating layer 13. Of the multiple layers, at least one layer may include a steel-containing layer. For example, as the magnetic layer 12 having a multilayer structure, a form in which the inner region of the magnetic layer 12 is a steel-containing layer and the region on the surface side is an iron oxide layer.

・・その他の磁性材料
ここでの「鉄系材料」とは、Feを含有する金属やFeを含有する化合物などである。具体的には、鉄、炭素鋼を除く鉄系合金、及び鉄系化合物から選択される少なくとも1種の軟磁性材料が挙げられる。
ここでの「鉄」とは、Feを99.8質量%以上含有する純鉄である。
鉄系合金は、例えば、パーマロイ(Fe−Ni合金)、パーメンジュール(Fe−Co合金)、珪素鋼(Fe−Si合金)、鉄系アモルファス合金、センダスト(Fe−Si−Al合金)などが挙げられる。パーメンジュールやパーマロイ、珪素鋼、鉄系アモルファス合金などは、比抵抗が大きい鉄系材料である(例えば20μΩ・cm以上)。
鉄系化合物は、例えばフェライト(Fe)やFeO,Feといった鉄酸化物(酸化鉄)などが挙げられる。
鉄系以外の磁性材料として、Coを含むコバルト系材料(純金属、合金など)、Niを含むニッケル系材料(純金属、合金など)などの軟磁性材料が挙げられる。
.. Other Magnetic Materials The “iron-based material” here is a metal containing Fe, a compound containing Fe, or the like. Specific examples include at least one soft magnetic material selected from iron, iron-based alloys excluding carbon steel, and iron-based compounds.
Here, “iron” is pure iron containing 99.8% by mass or more of Fe.
Examples of iron-based alloys include permalloy (Fe-Ni alloy), permendur (Fe-Co alloy), silicon steel (Fe-Si alloy), iron-based amorphous alloy, Sendust (Fe-Si-Al alloy), and the like. Can be mentioned. Permendur, permalloy, silicon steel, iron-based amorphous alloy, and the like are iron-based materials having a large specific resistance (for example, 20 μΩ · cm or more).
Examples of the iron compound include iron oxide (iron oxide) such as ferrite (Fe 2 O 3 ), FeO, and Fe 3 O 4 .
Examples of magnetic materials other than iron-based materials include soft magnetic materials such as cobalt-based materials containing Co (pure metals, alloys, etc.) and nickel-containing materials containing Ni (pure metals, alloys, etc.).

磁性体層12を構成する鉄系材料(上述の炭素鋼を含む鉄系合金、鉄、鉄系化合物など)の酸素含有量及び水素含有量も少ない方が好ましい。酸素や水素の含有量が多過ぎる鉄系材料で磁性体層12が形成されると、上述のように磁性体層12の延性や磁気的特性が損なわれたりする他、後述するように磁性体層12の形成にあたり、鉄系材料からなるテープなどを用いて溶接する場合にブローホールやその他の溶接不良などが生じたりする恐れがあるからである。磁性体層12を構成する鉄系材料の酸素含有量は、質量割合で例えば50ppm以下、10ppm以下が好ましい。磁性体層12を構成する鉄系材料の水素含有量は、質量割合で例えば10ppm以下、5ppm以下が好ましい。酸素含有量、水素含有量の測定方法は、導体線11で述べた方法を利用できる。   It is preferable that the oxygen content and the hydrogen content of the iron-based material (iron-based alloy including carbon steel, iron, iron-based compound, etc.) constituting the magnetic layer 12 are also small. If the magnetic layer 12 is formed of an iron-based material having an excessive oxygen or hydrogen content, the ductility and magnetic properties of the magnetic layer 12 are impaired as described above, and the magnetic body 12 will be described later. This is because, when the layer 12 is formed, when welding is performed using a tape made of an iron-based material, blow holes or other welding defects may occur. The oxygen content of the iron-based material constituting the magnetic layer 12 is preferably, for example, 50 ppm or less and 10 ppm or less by mass ratio. The hydrogen content of the iron-based material constituting the magnetic layer 12 is preferably, for example, 10 ppm or less and 5 ppm or less by mass ratio. As a method for measuring the oxygen content and the hydrogen content, the method described for the conductor wire 11 can be used.

・・磁気的特性
磁性体層12の飽和磁束密度が高いほど、磁性体層12の磁気飽和を抑制し易く、磁性体層12に周囲の交番磁界からの磁束をより多く流せて、導体線11に鎖交し得る磁束をより低減できて好ましい。具体的な飽和磁束密度は、0.5T以上が挙げられ、更に1.0T以上、1.5T以上、1.8T以上、2.0T以上がより好ましい。複数の磁性体層12(多層構造を含む)を備える場合には、いずれの層の飽和磁束密度も高いことが好ましい。鋼含有層の飽和磁束密度は、例えば1.5T以上である。
.. Magnetic characteristics The higher the saturation magnetic flux density of the magnetic layer 12, the more easily the magnetic saturation of the magnetic layer 12 is suppressed, and more magnetic flux from the surrounding alternating magnetic field can flow through the magnetic layer 12. The magnetic flux that can be linked to each other can be further reduced, which is preferable. Specific examples of the saturation magnetic flux density include 0.5T or more, and more preferably 1.0T or more, 1.5T or more, 1.8T or more, and 2.0T or more. When a plurality of magnetic layers 12 (including a multilayer structure) are provided, it is preferable that the saturation magnetic flux density of any layer is high. The saturation magnetic flux density of the steel-containing layer is, for example, 1.5T or more.

・・電気的特性
磁性体層12の電気抵抗が大きいほど、磁性体層12自体に渦電流が発生し難く、渦電流損を低減できて好ましい。鋼含有層の比抵抗は、10μΩ・cm以上、更に12μΩ・cm以上が挙げられる。炭素鋼以外の鉄系材料からなる磁性体層の比抵抗は、例えば、20μΩ・cm以上が挙げられる。複数の磁性体層12(多層構造を含む)を備える場合には、いずれの層も比抵抗が高いことが好ましい。
.. Electrical characteristics It is preferable that the electrical resistance of the magnetic layer 12 is larger because eddy currents are less likely to occur in the magnetic layer 12 itself, and eddy current loss can be reduced. Specific resistance of the steel-containing layer is 10 μΩ · cm or more, and further 12 μΩ · cm or more. The specific resistance of the magnetic layer made of an iron-based material other than carbon steel is, for example, 20 μΩ · cm or more. When a plurality of magnetic layers 12 (including a multilayer structure) are provided, it is preferable that all layers have high specific resistance.

・・面積比
コイル用線材10の横断面における磁性体層12の面積割合が大きいほど、磁路断面積を十分に確保できて磁性体層12の磁気飽和を抑制できる。その結果、磁性体層12に周囲の交番磁界からの磁束を十分に流せて、高い磁気シールド効果が期待できる。
上記面積割合がある程度小さければ、磁性体層12自体に生じ得る渦電流を低減できる上に、大径化の抑制、良好な加工性などが期待できる。
磁気シールド効果、磁性体層12自体での渦電流損の増大抑制などを考慮すると、導体線11と磁性体層12とを合わせた断面積に対する磁性体層12の断面積の比率(面積比)は3%以上40%以下であることが好ましい。面積比は、5%以上30%以下、更に10%以上25%以下がより好ましい。複数の磁性体層12(多層構造を含む)を備える場合には、「磁性体層12の断面積」とは、複数の磁性体層12の断面積の合計とする。
.. Area ratio The larger the area ratio of the magnetic layer 12 in the cross section of the coil wire 10, the more sufficient the magnetic path cross-sectional area can be secured and the magnetic saturation of the magnetic layer 12 can be suppressed. As a result, a magnetic flux from the surrounding alternating magnetic field can be sufficiently passed through the magnetic layer 12, and a high magnetic shielding effect can be expected.
If the area ratio is small to some extent, an eddy current that can be generated in the magnetic layer 12 itself can be reduced, and further, suppression of an increase in diameter and good workability can be expected.
Considering the magnetic shield effect and the suppression of increase in eddy current loss in the magnetic layer 12 itself, the ratio (area ratio) of the sectional area of the magnetic layer 12 to the combined sectional area of the conductor wire 11 and the magnetic layer 12 Is preferably 3% or more and 40% or less. The area ratio is preferably 5% to 30%, more preferably 10% to 25%. When a plurality of magnetic layers 12 (including a multilayer structure) are provided, the “cross-sectional area of the magnetic layer 12” is the sum of the cross-sectional areas of the plurality of magnetic layers 12.

・・不均一層
図3,図4に示す実施形態3のコイル用線材10は、磁性体層12として、コイル用線材10の横断面において導体線11の周面に対する厚さが異なる厚肉部12aと薄肉部12bとを有する不均一層を備える。この不均一層を備えるコイル用線材10によって形成されたコイルは、厚肉部12aが存在する箇所と、薄肉部12bが存在する箇所とを備えるといえる。厚肉部12aが存在する箇所を、コイルにおいて周囲の交番磁界からの磁束を他の領域よりも受け易い鎖交領域に配置されるようにコイルを形成すれば、この不均一層による磁気シールド効果を良好に得られる。かつ、薄肉部12bによって磁性体層12の構成材料の削減、コイル用線材10の小径化、重量の低減による軽量化を図ることができる上に、磁性体層12の具備による剛性の増大を抑制して曲げ加工などを容易に行える。そのため、実施形態3のコイル用線材10は、コイルを形成し易く、コイルの製造性にも優れる上に、スプリングバックを低減できてコイルの保形性にも優れる。
.. Non-uniform layer The coil wire 10 according to the third embodiment shown in FIGS. 3 and 4 is a thick portion having a thickness different from the circumferential surface of the conductor wire 11 in the cross section of the coil wire 10 as the magnetic layer 12. A non-uniform layer having 12a and a thin portion 12b is provided. It can be said that the coil formed of the coil wire rod 10 having the non-uniform layer includes a portion where the thick portion 12a exists and a portion where the thin portion 12b exists. If the coil is formed so that the portion where the thick portion 12a exists is disposed in the interlinkage region where the magnetic flux from the surrounding alternating magnetic field is more easily received than the other regions in the coil, the magnetic shielding effect by this non-uniform layer Can be obtained satisfactorily. In addition, the thin portion 12b can reduce the constituent material of the magnetic layer 12, reduce the diameter of the coil wire 10, reduce the weight, and suppress the increase in rigidity due to the provision of the magnetic layer 12. And can be easily bent. Therefore, the coil wire 10 according to the third embodiment is easy to form a coil, is excellent in the manufacturability of the coil, and can reduce the spring back and is excellent in the shape retention of the coil.

上記鎖交領域は、例えば、以下が挙げられる。
(a)一つのコイルを形成する1本の線材において、ターンをつくる線材同士が隣り合う側の領域
(b)複数のコイルが近接配置される場合に、各コイルにおいて隣り合う側の領域
(c)コイルに近接配置されて磁束(漏れ磁束を含む)を発生し得る部材、例えばコイルが配置される磁性コア、コイルに近接される磁石などがある場合に、コイルにおいてこれらの部材に近接する側の領域
Examples of the interlinking region include the following.
(A) In one wire forming one coil, a region on the side where the wires forming the turn are adjacent to each other (b) When a plurality of coils are arranged close to each other, a region on the adjacent side in each coil (c ) When there are members that can be arranged close to the coil to generate magnetic flux (including leakage magnetic flux), such as a magnetic core where the coil is placed, a magnet that is close to the coil, etc., the side of the coil that is close to these members Area

厚肉部12aが厚いほど磁気シールド効果を高められることから、薄肉部12bの最小厚さに対する厚肉部12aの最大厚さの比(厚さ比)が1.1以上であることが好ましい。厚さ比が1.2以上、更に1.4以上、1.5以上であれば、厚肉部12aに周囲の交番磁界からの磁束を十分に通過させて、磁気シールド効果をより高められる。厚肉部12aが厚過ぎると、厚肉部12aに生じる渦電流の増大や、コイル用線材10の加工性の低下などを招き易くなるため、厚さ比の上限は10以下程度、更に5以下程度が挙げられる。   Since the magnetic shielding effect is enhanced as the thick portion 12a is thicker, it is preferable that the ratio (thickness ratio) of the maximum thickness of the thick portion 12a to the minimum thickness of the thin portion 12b is 1.1 or more. If the thickness ratio is 1.2 or more, further 1.4 or more, 1.5 or more, the magnetic flux from the surrounding alternating magnetic field can be sufficiently passed through the thick portion 12a, and the magnetic shielding effect can be further enhanced. If the thick portion 12a is too thick, an increase in eddy current generated in the thick portion 12a and a decrease in workability of the coil wire 10 are likely to occur, so the upper limit of the thickness ratio is about 10 or less, and further 5 or less. Degree.

一つの磁性体層12における厚肉部12a、薄肉部12bの判別は、磁性体層12の平均厚さtaを基準として行う。平均厚さtaは以下のように求める。
コイル用線材10の横断面において、測定対象とする一つの磁性体層12の周方向に等間隔に少なくとも10点以上の厚さを測定し、10点以上の厚さの平均をこの磁性体層12の平均厚さtaとする。この測定点には、測定対象の磁性体層12のうち最大厚さtxと最小厚さtnとを含む。
平均厚さtaよりも厚さが厚い部分を厚肉部12aとし、平均厚さta以下の部分を薄肉部12bとし、両部12a,12bを有する磁性体層12を不均一層とする。厚肉部12aは、最大厚さtxをとる最も厚い部分を含む。薄肉部12bは最小厚さtnをとる最も薄い部分を含む。
The distinction between the thick part 12a and the thin part 12b in one magnetic layer 12 is performed based on the average thickness ta of the magnetic layer 12. The average thickness ta is obtained as follows.
In the cross section of the coil wire 10, at least 10 points of thickness are measured at equal intervals in the circumferential direction of one magnetic layer 12 to be measured, and the average of the thicknesses of 10 points or more is determined as the magnetic layer. The average thickness ta is 12. The measurement points include the maximum thickness tx and the minimum thickness tn of the magnetic layer 12 to be measured.
A portion having a thickness greater than the average thickness ta is a thick portion 12a, a portion having an average thickness ta or less is a thin portion 12b, and the magnetic layer 12 having both portions 12a and 12b is a non-uniform layer. The thick part 12a includes the thickest part having the maximum thickness tx. The thin portion 12b includes the thinnest portion having the minimum thickness tn.

コイル用線材10の横断面において、導体線11に対する厚肉部12aの存在位置、及び導体線11の周長に対する厚肉部12aの長さ割合は、上述のコイルの鎖交領域に厚肉部12aが配置されるように、上記鎖交領域や導体線11の形状などを考慮して選択するとよい。
上記厚肉部12aの長さ割合が大きいほど、上記鎖交領域に厚肉部12aを確実に配置できて、磁気シールド効果を良好に得られる。上記鎖交領域が小さく、厚肉部12aの長さ割合が小さくてよい場合には、極一部のみが厚く、大半が均一的な厚さである不均一層を備えると、磁性体層12自体に生じ得る渦電流を低減できる上に、曲げ加工などが行い易いコイル用線材10とすることができる。
In the cross section of the coil wire 10, the position of the thick portion 12 a with respect to the conductor wire 11 and the length ratio of the thick portion 12 a to the circumferential length of the conductor wire 11 are the thick portions in the interlinkage region of the coil described above. It may be selected in consideration of the interlinking region and the shape of the conductor wire 11 so that 12a is arranged.
As the length ratio of the thick part 12a is larger, the thick part 12a can be surely arranged in the interlinkage region, and the magnetic shield effect can be obtained better. In the case where the interlinkage region is small and the length ratio of the thick portion 12a may be small, if the magnetic layer 12 is provided with a non-uniform layer in which only a very small portion is thick and most of the thickness is uniform. In addition to reducing eddy currents that can occur in the coil itself, the coil wire 10 can be easily bent.

コイル用線材10の横断面において、導体線11の全周に亘って磁性体層12が存在しており、即ち環状又は枠状の磁性体層12を備える場合に、この磁性体層12が不均一層であれば、その周方向の一部が厚肉部12aであり、残部が薄肉部12bである。   In the cross section of the coil wire 10, the magnetic layer 12 is present over the entire circumference of the conductor wire 11, that is, when the magnetic layer 12 is provided with an annular or frame-like magnetic layer 12, If it is a uniform layer, a part in the circumferential direction is the thick part 12a, and the remaining part is the thin part 12b.

又は、コイル用線材10の横断面において、導体線11の周方向の一部に磁性体層12が存在しておらず、導体線11の外周面が露出した露出領域を備える形態とすることができる。例えば、図3に示す導体線11に対して、C字状の磁性体層12を備える形態が挙げられる。露出領域を備える形態は、磁性体層12自体に生じ得る渦電流を低減でき、より低損失なコイル用線材10とすることができる。また、この形態は、磁性体層12による剛性の向上を低減して曲げ加工などが行い易いと期待される。この磁性体層12の厚さは、その全域に亘って均一的である形態、導体線11の周方向にみて厚さが異なる形態とすることができる。後者の形態は、露出領域と、厚肉部12aと薄肉部12bとを有する不均一層を備える形態といえる。鋼含有層は、このような不均一層とすることができる。   Alternatively, in the cross-section of the coil wire 10, the magnetic body layer 12 is not present in a part of the conductor wire 11 in the circumferential direction, and an exposed region in which the outer peripheral surface of the conductor wire 11 is exposed is provided. it can. For example, the form provided with the C-shaped magnetic body layer 12 with respect to the conductor wire 11 shown in FIG. 3 is mentioned. The form including the exposed region can reduce the eddy current that can be generated in the magnetic layer 12 itself, and can be a coil wire 10 with lower loss. Further, this form is expected to be easy to bend by reducing the improvement in rigidity due to the magnetic layer 12. The thickness of the magnetic layer 12 can be uniform throughout the entire region, or different in thickness from the circumferential direction of the conductor wire 11. It can be said that the latter form is a form provided with the nonuniform layer which has an exposed area | region and the thick part 12a and the thin part 12b. The steel-containing layer can be such a non-uniform layer.

・・厚さ
一つの磁性体層12の平均厚さtaは、例えば10μm超300μm以下、更に30μm以上200μm以下が挙げられる。一つの磁性体層12の最大厚さtxは、例えば10μm超300μm以下、更に30μm以上250μm以下、更に200μm以下が挙げられ、最小厚さtnは、例えば最大厚さtxの2/3以下程度、又は、0μm超270μm以下、更に27μm以上180μm以下が挙げられる。
磁性体層12の厚さが導体線11の周方向にみて均一的な形態(図1,図2)では、磁性体層12の最大厚さtxと最小厚さtnと平均厚さtaとが実質的に等しい。
.. Thickness The average thickness ta of one magnetic layer 12 is, for example, more than 10 μm and not more than 300 μm, and more preferably not less than 30 μm and not more than 200 μm. The maximum thickness tx of one magnetic layer 12 is, for example, more than 10 μm and not more than 300 μm, further not less than 30 μm and not more than 250 μm, and further not more than 200 μm. The minimum thickness tn is, for example, about 2/3 or less of the maximum thickness tx, Or more than 0 micrometer and 270 micrometers or less, Furthermore, 27 micrometers or more and 180 micrometers or less are mentioned.
When the thickness of the magnetic layer 12 is uniform in the circumferential direction of the conductor wire 11 (FIGS. 1 and 2), the maximum thickness tx, the minimum thickness tn, and the average thickness ta of the magnetic layer 12 are as follows. Substantially equal.

・その他の特性、構成など
・・(Bs×(t/w))
コイル用線材10は、磁性体層12の飽和磁束密度をBs、コイル用線材10の最大幅をw、磁性体層12の厚さをtとするとき、Bs×(t/w)≧0.01Tを満たすことが好ましい。コイル用線材10の最大幅wが大きいと、導体線11の最大幅も大きい傾向にあり、導体線11における周囲の交番磁界からの磁束が鎖交し得る領域が大きくなり易い。磁性体層12の飽和磁束密度Bsがある程度大きければ磁気飽和し難く、磁性体層12に周囲の交番磁界からの磁束を十分に流せて、磁性体層12の厚さtがある程度小さく薄くても、導体線11に鎖交し得る磁束を低減できる。磁性体層12が薄い場合には、コイル用線材10の小径化、薄肉化を図ることができる。又は、磁性体層12の厚さtがある程度大きければ飽和磁束密度Bsがある程度小さくても、磁性体層12に上記磁束を十分に流せて、導体線11に鎖交し得る磁束を低減できる。この場合、例えば、磁性体層12を構成する磁性材料の選択の自由度を高められる。
-Other characteristics, configuration, etc.-(Bs x (t / w))
In the coil wire 10, Bs × (t / w) ≧ 0..., Where Bs is the saturation magnetic flux density of the magnetic layer 12, w is the maximum width of the coil wire 10, and t is the thickness of the magnetic layer 12. It is preferable to satisfy 01T. When the maximum width w of the coil wire 10 is large, the maximum width of the conductor wire 11 also tends to be large, and the region where the magnetic flux from the surrounding alternating magnetic field in the conductor wire 11 can be linked easily increases. If the saturation magnetic flux density Bs of the magnetic layer 12 is large to some extent, magnetic saturation is difficult, and even if the magnetic layer 12 can be sufficiently supplied with magnetic flux from the surrounding alternating magnetic field and the thickness t of the magnetic layer 12 is small to a certain degree, it is thin. The magnetic flux that can be linked to the conductor wire 11 can be reduced. When the magnetic layer 12 is thin, the coil wire 10 can be reduced in diameter and thickness. Alternatively, if the thickness t of the magnetic layer 12 is large to some extent, even if the saturation magnetic flux density Bs is small to some extent, the magnetic flux can be sufficiently passed through the magnetic layer 12 and the magnetic flux that can be linked to the conductor wire 11 can be reduced. In this case, for example, the degree of freedom in selecting the magnetic material constituting the magnetic layer 12 can be increased.

飽和磁束密度Bs及び厚さtの双方が大きければ、導体線11に鎖交し得る磁束を更に低減でき、より低損失なコイル用線材10とすることができる。つまり、Bs×(t/w)の値が大きいほど、導体線11の損失の低減効果を高められる傾向にある。従って、Bs×(t/w)は、0.02T以上、更に0.05T以上、0.1T以上がより好ましい。
「コイル用線材の最大幅」は、例えばコイル用線材10の横断面形状が円形(丸線)の場合は直径、楕円の場合は長径、矩形(平角線など)の場合は長辺の長さである。
「磁性体層の厚さ」は、コイル用線材10の横断面において測定した上述の磁性体層12の平均厚さtaである。
複数の磁性体層12(多層構造を含む)を備える場合には、Bs×(t/w)の「t」は、各層の平均厚さtaの合計厚さとする。Bs×(t/w)の飽和磁束密度「Bs」は、各層の飽和磁束密度のうち、最小値をとる層の値とする。
If both the saturation magnetic flux density Bs and the thickness t are large, the magnetic flux that can be linked to the conductor wire 11 can be further reduced, and the coil wire 10 with lower loss can be obtained. That is, as the value of Bs × (t / w) is larger, the loss reduction effect of the conductor wire 11 tends to be enhanced. Therefore, Bs × (t / w) is more preferably 0.02T or more, further 0.05T or more, and 0.1T or more.
The “maximum width of the coil wire” is, for example, a diameter when the cross-sectional shape of the coil wire 10 is a circle (round wire), a long diameter when it is an ellipse, and a long side length when it is a rectangle (such as a flat wire). It is.
“The thickness of the magnetic layer” is the average thickness ta of the magnetic layer 12 measured in the cross section of the coil wire 10.
When a plurality of magnetic layers 12 (including a multilayer structure) are provided, “t” of Bs × (t / w) is the total thickness of the average thickness ta of each layer. The saturation magnetic flux density “Bs” of Bs × (t / w) is the value of the layer that takes the minimum value among the saturation magnetic flux density of each layer.

・・機械的特性
コイル用線材10は、コイル成形時に割れたり破断したり過度に変形したりし難いこと、コイル使用時にへたり難いことなどが望まれる。このようなコイル用線材10として、0.2%耐力が60MPa以上であり、破断伸びが5%以上であるものが好ましい。0.2%耐力や破断伸びが高いほど機械的特性に優れて、コイルの製造時に曲げ加工などを行い易く、コイルの使用時にへたり難くなる。そのため、0.2%耐力は70MPa以上、更に80MPa以上がより好ましく、破断伸びは10%以上、更に15%以上がより好ましい。
.. Mechanical properties It is desired that the coil wire 10 is difficult to crack, break or excessively deform when forming a coil, and does not easily sag when using a coil. As such a coil wire 10, one having a 0.2% proof stress of 60 MPa or more and a breaking elongation of 5% or more is preferable. The higher the 0.2% proof stress and the elongation at break, the better the mechanical properties, the easier it is to perform bending during coil manufacture, and the more difficult it is to sag when using the coil. Therefore, the 0.2% proof stress is 70 MPa or more, more preferably 80 MPa or more, and the elongation at break is 10% or more, more preferably 15% or more.

・・形状
コイル用線材10の形状は、特に限定されない。例えば、コイル用線材10は、横断面形状が円形状(図1〜図3)、楕円形状、レーストラック形状、六角形状や四角形状といった多角形状(図4)など種々の形状の線材とすることができる。コイル用線材10の外形は、導体線11の外形に相似した形状(図1,図2)の場合や、導体線11の外形とは異なる場合(図3,図4)がある。
-Shape The shape of the coil wire 10 is not particularly limited. For example, the coil wire 10 has various cross-sectional shapes such as a circular shape (FIGS. 1 to 3), an elliptical shape, a race track shape, a polygonal shape (FIG. 4) such as a hexagonal shape or a rectangular shape (FIG. 4). Can do. The outer shape of the coil wire 10 may be similar to the outer shape of the conductor wire 11 (FIGS. 1 and 2) or may be different from the outer shape of the conductor wire 11 (FIGS. 3 and 4).

・・絶縁層
コイル用線材10は、導体線11の外周に絶縁層13を備えることができる。絶縁層13を、磁性体層12の外周(径方向外側)に備える形態α(以下、この絶縁層を外側絶縁層と呼ぶことがある、図示せず)、導体線11と磁性体層12との間に備える形態β(以下、この絶縁層を介在絶縁層と呼ぶことがある、図2)、外側絶縁層と介在絶縁層との双方を備える形態γ(図示せず)、上述のように複数の磁性体層12を備える場合に磁性体層12間に中間絶縁層を備える形態δが挙げられる。代表的には、形態α,γでは外側絶縁層が、形態βでは磁性体層12がコイル用線材10の最外層を形成する。
.. Insulating layer The coil wire 10 can include an insulating layer 13 on the outer periphery of the conductor wire 11. Form α (hereinafter, this insulating layer may be referred to as an outer insulating layer, not shown) including the insulating layer 13 on the outer periphery (radially outer side) of the magnetic layer 12, the conductor wire 11, the magnetic layer 12, and Form β (hereinafter, this insulating layer may be referred to as an intervening insulating layer, FIG. 2), Form γ (not shown) including both the outer insulating layer and the intervening insulating layer, as described above In the case where a plurality of magnetic layers 12 are provided, a form δ including an intermediate insulating layer between the magnetic layers 12 is exemplified. Typically, in the forms α and γ, the outer insulating layer forms the outer layer, and in the form β, the magnetic layer 12 forms the outermost layer of the coil wire 10.

外側絶縁層を備えるコイル用線材10で形成されたコイルは、外側絶縁層によって、ターン間の絶縁、コイルとその周囲部材との絶縁を図ることができる。また、外側絶縁層は、上述の露出領域を覆うこともできる。
介在絶縁層や中間絶縁層を備えるコイル用線材10で形成されたコイルは、これら絶縁層によって、導体線11と磁性体層12との間の絶縁、磁性体層12間の絶縁を図ることができる。そのため、磁性体層12自体に渦電流が生じても、この渦電流が導体線11や下層の別の磁性体層12に流れることを抑制できて低損失なコイルとすることができる。
The coil formed of the coil wire rod 10 having the outer insulating layer can achieve insulation between turns and insulation between the coil and its surrounding members by the outer insulating layer. The outer insulating layer can also cover the above-described exposed region.
The coil formed of the coil wire material 10 including the intervening insulating layer and the intermediate insulating layer can achieve insulation between the conductor wire 11 and the magnetic layer 12 and insulation between the magnetic layers 12 by these insulating layers. it can. Therefore, even if an eddy current is generated in the magnetic layer 12 itself, the eddy current can be prevented from flowing into the conductor wire 11 or another magnetic layer 12 below, and a low-loss coil can be obtained.

絶縁層13の構成材料は、絶縁性樹脂が挙げられる。具体的には、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリテトラフルオロエチレン樹脂などが挙げられるが、その限りではない。
絶縁層13は、単層構造又は2層以上の多層構造とすることができる。多層構造の場合には各層の材質を異ならせることもできる。
絶縁層13の厚さは、導体線11に流れる電流の大きさなどに応じて適宜選択できる。例えば、絶縁層13の厚さは、5μm以上500μm以下、更に5μm以上100μm以下が挙げられる。特に下限値は30μm以上、50μm以上が挙げられる。
The constituent material of the insulating layer 13 is an insulating resin. Specifically, polyimide resin, polyamideimide resin, polyesterimide resin, polyurethane resin, polyester resin, polyolefin resin, polyamide resin, polyethersulfone resin, polyphenylene sulfide resin, polyetheretherketone resin, polytetrafluoroethylene resin, etc. But not necessarily.
The insulating layer 13 can have a single layer structure or a multilayer structure of two or more layers. In the case of a multilayer structure, the material of each layer can be made different.
The thickness of the insulating layer 13 can be appropriately selected according to the magnitude of the current flowing through the conductor wire 11. For example, the thickness of the insulating layer 13 is 5 μm or more and 500 μm or less, and further 5 μm or more and 100 μm or less. Particularly, the lower limit is 30 μm or more and 50 μm or more.

・・その他の構成層
コイル用線材10は、その最外層に潤滑層(図示せず)を備えたり、導体線11又は磁性体層12と絶縁層13(介在絶縁層、外側絶縁層、中間絶縁層)との間に密着層(図示せず)を備えたりすることなどができる。潤滑性向上剤などの添加剤を配合した潤滑層を備えると潤滑性を高められる。密着性向上剤などの添加剤を配合した密着層を備えると絶縁層13との密着性を高められる。
又は、絶縁層13のうち、コイル用線材10の最外層を形成する外側絶縁層を、潤滑性向上剤などの添加剤を配合して形成したり、絶縁層13に密着性向上剤などの添加剤を配合したりすることなどができる。
.. Other constituent layers The coil wire 10 is provided with a lubricating layer (not shown) in the outermost layer, or the conductor wire 11 or the magnetic layer 12 and the insulating layer 13 (intervening insulating layer, outer insulating layer, intermediate insulating layer) An adhesion layer (not shown) may be provided between the two layers. Lubricity can be improved by providing a lubricating layer containing additives such as a lubricity improver. Adhesion with the insulating layer 13 can be improved by providing an adhesion layer containing an additive such as an adhesion improver.
Alternatively, of the insulating layer 13, an outer insulating layer that forms the outermost layer of the coil wire 10 is formed by blending an additive such as a lubricity improver, or an adhesion improver or the like is added to the insulating layer 13. It is possible to mix an agent.

潤滑性向上剤は、例えば、流動パラフィン、固形パラフィンなどのパラフィン類、各種ワックスや、ポリエチレン樹脂、フッ素樹脂、シリコーン樹脂などの潤滑剤が挙げられる。
潤滑層の構成材料は、上記潤滑剤をバインダ樹脂で結着したものが挙げられる。バインダ樹脂は、例えば絶縁層13の項で述べた絶縁性樹脂が挙げられる。潤滑層の構成材料は、パラフィン又はワックスを添加して潤滑性を付与したアミドイミド樹脂が好ましい。
密着性向上剤は、例えば、アセチレン類(1−ヘキシンなど)、アルキノール類(プロパルギルアルコール、1−ヘキシン−3−オールなど)、アルデヒド類(ベンズアルデヒド、桂皮アルデヒドなど)、アミン類(ラウリルアミン、N,N´−ジメチルセチルアミン、トリメチルセチルアンモニウムプロミドなど)、メルカプタン類(セチルメルカプタン、2−メルカプトイミダゾール、5−アミノ−1,3,4−チアジアゾール−2−チオールなど)、チオ尿素類(チオ尿素、フェニルチオ尿素など)、メラミンなどが挙げられる。
これらの中でも密着性向上効果が大きいものは、メルカプタン類のうち、2−メルカプトイミダゾールである。
Examples of the lubricity improver include paraffins such as liquid paraffin and solid paraffin, various waxes, and lubricants such as polyethylene resin, fluororesin, and silicone resin.
Examples of the constituent material of the lubricating layer include those obtained by binding the lubricant with a binder resin. Examples of the binder resin include the insulating resin described in the section of the insulating layer 13. The constituent material of the lubricating layer is preferably an amide-imide resin to which lubricity is imparted by adding paraffin or wax.
Adhesion improvers include, for example, acetylenes (such as 1-hexyne), alkynols (such as propargyl alcohol and 1-hexyn-3-ol), aldehydes (such as benzaldehyde and cinnamic aldehyde), and amines (laurylamine, N , N′-dimethylcetylamine, trimethylcetylammonium promide, etc.), mercaptans (eg cetyl mercaptan, 2-mercaptoimidazole, 5-amino-1,3,4-thiadiazole-2-thiol), thioureas (thio) Urea, phenylthiourea, etc.) and melamine.
Among these mercaptans, 2-mercaptoimidazole has a great effect of improving adhesion.

(コイル用線材の効果)
実施形態のコイル用線材10は、導体線11の外周に磁性体層12を備えるため、周囲の交番磁界からの磁束が磁性体層12を流れて、導体線11に鎖交しようとする磁束を低減できる。特に、コイル用線材10では、磁性体層12が炭素鋼から形成された鋼含有層を備えるため、磁気シールド効果を良好に発揮することができる上に、鋼含有層自体に生じ得る渦電流を少なくできる。従って、コイル用線材10は、周囲の交番磁界によって導体線11及び磁性体層12自体に生じ得る渦電流を低減して、低損失なコイルを形成できる。このようなコイル用線材10は、例えばモータなどの各種の電気機器に備えるコイルに好適に利用できる。
(Effect of coil wire)
Since the coil wire 10 according to the embodiment includes the magnetic layer 12 on the outer periphery of the conductor wire 11, the magnetic flux from the surrounding alternating magnetic field flows through the magnetic layer 12 and the magnetic flux to be linked to the conductor wire 11 is generated. Can be reduced. In particular, in the coil wire 10, since the magnetic layer 12 includes a steel-containing layer formed of carbon steel, the magnetic shield effect can be satisfactorily exhibited, and an eddy current that can be generated in the steel-containing layer itself is generated. Less. Therefore, the coil wire 10 can form a low-loss coil by reducing the eddy current that can be generated in the conductor wire 11 and the magnetic layer 12 itself by the surrounding alternating magnetic field. Such a coil wire 10 can be suitably used for a coil provided in various electric devices such as a motor.

また、実施形態のコイル用線材10は、鋼含有層の形成に溶接を利用する場合に、溶接に起因する欠陥の発生を低減できて表面性状に優れる鋼含有層を備えられる。絶縁層13を備えるコイル用線材10である場合に、表面性状に優れる鋼含有層の外周に絶縁層13を良好に形成できるため、ピンホールやフクレなどの欠陥の発生を低減でき、絶縁性に優れるコイル用線材10とすることができる。上記欠陥の低減によって歩留りの低下を低減できることから、実施形態のコイル用線材10は、製造性にも優れる。   Moreover, the wire 10 for coils of embodiment is equipped with the steel containing layer which can reduce generation | occurrence | production of the defect resulting from welding and is excellent in surface property, when using welding for formation of a steel containing layer. In the case of the coil wire rod 10 provided with the insulating layer 13, since the insulating layer 13 can be satisfactorily formed on the outer periphery of the steel-containing layer having excellent surface properties, the occurrence of defects such as pinholes and blisters can be reduced, and the insulating property It can be set as the coil wire 10 which is excellent. Since the reduction in yield can be reduced by reducing the defects, the coil wire 10 according to the embodiment is excellent in manufacturability.

更に、実施形態のコイル用線材10は、鋼含有層を備えるものの、曲げ加工が行い易いため、巻回に必要な力が小さくてよく、コイル成形後にスプリングバックが生じ難い。そのため、実施形態のコイル用線材10は、寸法精度、形状精度に優れるコイルを形成できてコイルの製造性にも優れる。その他、炭素鋼は、純鉄や高機能磁性材料に比べて低コストであるため、実施形態のコイル用線材10は、磁性体層12に鋼含有層を備えることで経済性にも優れる。   Furthermore, although the coil wire 10 according to the embodiment includes a steel-containing layer, it is easy to bend, and therefore, a force required for winding may be small, and a springback hardly occurs after coil forming. Therefore, the coil wire rod 10 of the embodiment can form a coil having excellent dimensional accuracy and shape accuracy, and is excellent in coil manufacturability. In addition, since carbon steel is less expensive than pure iron or a highly functional magnetic material, the coil wire 10 according to the embodiment is excellent in economic efficiency by including a steel-containing layer in the magnetic layer 12.

(コイル用線材の製造方法)
コイル用線材10の製造方法として、例えば、以下の嵌合法を利用できる。
・嵌合法
ここでの嵌合法とは、最終的に導体線11となる素材線材を用意し、素材線材に磁性材料からなる部材(以下、磁性部材と呼ぶことがある)を嵌合した状態で、伸線や圧延などの塑性加工を行う方法である。磁性部材が最終的に磁性体層12となる。
(Manufacturing method of coil wire)
As a manufacturing method of the coil wire rod 10, for example, the following fitting method can be used.
-Fitting method Here, the fitting method refers to a state in which a material wire that will eventually become the conductor wire 11 is prepared, and a member made of a magnetic material (hereinafter also referred to as a magnetic member) is fitted to the material wire. It is a method of performing plastic working such as wire drawing and rolling. The magnetic member finally becomes the magnetic layer 12.

(準備工程)素材線材の周囲に磁性部材を配置して、素材線材の外周を磁性部材で覆った準備材を作製する工程。
(嵌合工程)準備材に塑性加工を施して締め付け、素材線材の外周に磁性部材を嵌合した複合材を作製する工程。
(加工工程)複合材が所定の線径となるまで複合材に塑性加工を施して、導体線の外周に磁性体層を形成する工程。
(Preparation process) The process which arrange | positions a magnetic member around a raw material wire, and produces the preparatory material which covered the outer periphery of the raw material wire with the magnetic member.
(Fitting process) A process of producing a composite material in which the preparation material is subjected to plastic working and tightened, and a magnetic member is fitted to the outer periphery of the material wire.
(Processing step) A step of forming a magnetic layer on the outer periphery of the conductor wire by subjecting the composite material to plastic working until the composite material has a predetermined wire diameter.

・・準備工程
準備工程において素材線材の外周に磁性部材を配置するには、例えば以下が挙げられる。
(s)磁性材料から構成されるテープやシート、線材を素材線材の周囲に巻く。
(p)磁性材料から構成されるパイプの中に素材線材を挿通する。
(w)磁性材料から構成される線材を素材線材の周囲に軸方向に沿って縦添えする。
素材線材の外周に上述の磁性部材を配置した後、必要に応じて、磁性部材同士の端面や、素材線材と磁性部材とを溶接やロウ付けによって接合すると、次の嵌合工程が行い易い。特に、鋼含有層を形成する場合には、(s)テープなどを巻回して溶接によって固定する、という方法が好適に利用できる。
-Preparation process In order to arrange a magnetic member on the outer periphery of a raw material wire in a preparation process, the following is mentioned, for example.
(S) A tape, a sheet, or a wire made of a magnetic material is wound around the material wire.
(P) A material wire is inserted into a pipe made of a magnetic material.
(W) A wire composed of a magnetic material is vertically attached around the material wire along the axial direction.
After the above-described magnetic member is disposed on the outer periphery of the material wire, the following fitting process is easily performed by joining the end surfaces of the magnetic members or the material wire and the magnetic member by welding or brazing as necessary. In particular, when a steel-containing layer is formed, a method of winding (s) a tape or the like and fixing it by welding can be suitably used.

コイル用線材における最終的な磁性体層の厚さや厚さ比、磁性体層の面積比は、例えば、準備する上述の磁性部材の厚さを調整したり、加工工程での加工度(減面率)を調整したり、断面形状を調整したりすること等で変えられる。所望の厚さ、厚さ比、面積比などを満たす磁性体層が得られるように、導体線の横断面形状、加工度、加工状態などを考慮して、準備する磁性部材の大きさ(厚さなど)を選択するとよい。   For example, the thickness and thickness ratio of the magnetic layer and the area ratio of the magnetic layer in the coil wire can be adjusted by adjusting the thickness of the magnetic member described above, Rate) or by adjusting the cross-sectional shape. The size (thickness) of the magnetic member to be prepared in consideration of the cross-sectional shape of the conductor wire, the degree of processing, the processing state, etc. so as to obtain a magnetic layer satisfying the desired thickness, thickness ratio, area ratio, etc. Etc.).

素材線材は、代表的には、鋳造⇒熱間加工(圧延、鍛造、押出)⇒冷間加工(圧延、伸線)、適宜熱処理といった工程によって製造できる。
テープ、シート、線材、パイプといった磁性部材は公知の方法によって製造できる。
The material wire can be typically manufactured by a process of casting ⇒ hot working (rolling, forging, extrusion) ⇒ cold working (rolling, wire drawing), and appropriate heat treatment.
Magnetic members such as tapes, sheets, wires, and pipes can be manufactured by known methods.

・・嵌合工程
嵌合工程では、磁性部材を径方向外方から締め付けて、素材線材と磁性部材とを嵌合して一体化する。締付の塑性加工は伸線や圧延などが挙げられる。
.. Fitting process In the fitting process, the magnetic member is tightened from outside in the radial direction, and the material wire and the magnetic member are fitted and integrated. Examples of the plastic processing for tightening include wire drawing and rolling.

・・加工工程
加工工程では、素材線材や磁性部材が所定の大きさ(断面積、厚さなど)、形状となるように伸線や圧延といった塑性加工を行う。周方向にみて肉厚が異なるパイプを利用することもできる。
.. Machining process In the machining process, plastic working such as wire drawing and rolling is performed so that the material wire and magnetic member have a predetermined size (cross-sectional area, thickness, etc.) and shape. Pipes with different wall thicknesses in the circumferential direction can also be used.

厚肉部と薄肉部とを備える不均一層を備えるコイル用線材(図3,図4参照)を製造する場合には、加工工程で、磁性部材が特定の厚さ比を満たすと共に、導体線の特定の領域(コイルの鎖交領域に対応する領域)に特定の厚さの部分を有する磁性体層(不均一層)となるように、加工状態を調整することが挙げられる。   When manufacturing a wire for a coil (see FIGS. 3 and 4) including a non-uniform layer including a thick part and a thin part, the magnetic member satisfies a specific thickness ratio and is a conductor wire in the processing step. The processing state may be adjusted so that a magnetic layer (non-uniform layer) having a specific thickness in a specific region (region corresponding to the interlinkage region of the coil) is obtained.

例えば、伸線ダイスの形状を変更したり、圧延条件(圧延回数、各パスの圧下率、各パスに用いる圧延ロールの溝形状など)を調整したりして、断面形状を調整すること等が挙げられる。具体的には、図3の上図に示すように丸線の素材線材21の外周に円環状の磁性部材22を備える複合材30を用意し、適宜な形状の伸線ダイスや孔ダイスなどを用いて、外形が楕円状の加工材40を形成し(図3の中図)、この加工材40を円形の伸線ダイスで伸線することで、外形が円形のコイル用線材10を形成することが挙げられる。この丸線のコイル用線材10は、図3の下図に示すように、楕円状の導体線11を有し、導体線11の長径の端部近くの領域に薄肉部12bを有し、その他の領域に厚肉部12aを有する磁性体層12を備える。このように不均一層を備える丸線のコイル用線材10を形成する場合には、中間加工段階で楕円状などとしておき、最終的な加工で円形状に成形することが挙げられる。   For example, by changing the shape of the wire drawing die, adjusting the rolling conditions (number of rolling operations, rolling reduction of each pass, groove shape of the rolling roll used for each pass, etc.), adjusting the cross-sectional shape, etc. Can be mentioned. Specifically, as shown in the upper diagram of FIG. 3, a composite material 30 including an annular magnetic member 22 is prepared on the outer periphery of a round wire 21, and a wire drawing die or a hole die having an appropriate shape is prepared. In this way, a workpiece 40 having an elliptical outer shape is formed (middle of FIG. 3), and the workpiece 40 is drawn with a circular wire drawing die to form a coil wire 10 having a circular outer shape. Can be mentioned. As shown in the lower diagram of FIG. 3, the coil wire 10 of the round wire has an elliptical conductor wire 11, a thin portion 12 b in a region near the end of the long diameter of the conductor wire 11, The magnetic layer 12 having the thick portion 12a is provided in the region. Thus, when forming the coil wire 10 of the round wire provided with a non-uniform | heterogenous layer, it makes it oval shape etc. in an intermediate process stage, and shape | molds in a circular shape by final process.

又は、図4の上図に示すように矩形線の素材線材21の外周に矩形枠状の磁性部材22を備える複合材30を用意し、対向する二面の中間部を押圧するように圧延を行って各面の中間部が凹んだ異形の加工材40を形成し(図4の中図)、この加工材40に角線加工の圧延を行って、外形が矩形のコイル用線材10を形成することが挙げられる。この角線のコイル用線材10は、図4の下図に示すように、多角形状の導体線11を有し、導体線11における上下方向の中間部近くの領域に薄肉部12bを有し、その他の領域に厚肉部12aを有する磁性体層12を備える。コイル用線材10を角線とする場合に導体線11の短辺と長辺との比(縦横比)に応じて加工を行うことで、不均一層を備えるコイル用線材10を製造できる場合がある。   Alternatively, as shown in the upper diagram of FIG. 4, a composite material 30 including a rectangular frame-shaped magnetic member 22 is prepared on the outer periphery of a rectangular material wire 21, and rolling is performed so as to press an intermediate portion between two opposing surfaces. Then, a deformed workpiece 40 in which the middle part of each surface is recessed is formed (middle figure in FIG. 4), and the workpiece 40 is subjected to square wire rolling to form a coil wire 10 having a rectangular outer shape. To do. As shown in the lower diagram of FIG. 4, the rectangular coil wire 10 has a polygonal conductor wire 11, a thin wire portion 12 b in a region near the middle portion in the vertical direction of the conductor wire 11, and the other The magnetic layer 12 having the thick portion 12a is provided in the region. When the coil wire 10 is a square wire, the coil wire 10 having a non-uniform layer may be manufactured by processing according to the ratio of the short side to the long side (aspect ratio) of the conductor wire 11. is there.

加工工程では、最終線径や最終形状となるまで加工を繰り返し行うことができる。この場合、必要に応じて、加工と加工との間に熱処理を行う中間熱処理工程を備えることができる。熱処理によって、加工対象を軟化させられて、次の加工を行い易くできる。
加工工程の後に熱処理を行う最終熱処理工程を備えることができる。最終熱処理工程では、軟化によるコイル成形性の改善を図りつつ、導体線の結晶粒径の粗大化を抑制するなどの観点から、熱処理の温度は例えば150℃以上900℃以下、熱処理の時間は例えば1秒以上10時間以下とすることが挙げられる。導体線を銅線とする場合には、最終熱処理の温度を500℃以下とすると平均結晶粒径を200μm以下にし易い。導体線の組成や加工度などを考慮して、上記の範囲から熱処理条件を選択するとよい。
In the processing step, the processing can be repeated until the final wire diameter or final shape is reached. In this case, if necessary, an intermediate heat treatment step for performing a heat treatment between the processing can be provided. The object to be processed is softened by the heat treatment, and the next processing can be easily performed.
A final heat treatment step for performing a heat treatment after the processing step can be provided. In the final heat treatment step, the heat treatment temperature is, for example, 150 ° C. or more and 900 ° C. or less, and the heat treatment time is, for example, from the viewpoint of suppressing the coarsening of the crystal grain size of the conductor wire while improving coil formability by softening. It may be set to 1 second or more and 10 hours or less. When the conductor wire is a copper wire, the average crystal grain size can be easily set to 200 μm or less when the temperature of the final heat treatment is 500 ° C. or less. The heat treatment conditions may be selected from the above range in consideration of the composition of the conductor wire and the degree of processing.

・その他の方法
上述の磁性部材の利用に代えて、各種のめっき法によって素材線材の外周に形成した磁性材料からなるめっき層を利用することができる。加工工程は上述の嵌合法と同様である。
厚肉部と薄肉部とを備える不均一層を備えるコイル用線材の製造にめっき法を利用することができる。この場合、所定の線径及び形状の導体線を用意し、導体線の所定の領域にマスキングを行ってめっきを行った後、マスキングを除去してから再度めっきを行うことで、めっき層の厚さを調整できる。
Other methods Instead of using the magnetic member described above, a plating layer made of a magnetic material formed on the outer periphery of the material wire by various plating methods can be used. The processing steps are the same as those described above.
A plating method can be used for manufacturing a wire for a coil including a non-uniform layer including a thick portion and a thin portion. In this case, a conductor wire having a predetermined wire diameter and shape is prepared, masking is performed on a predetermined region of the conductor wire and plating is performed. You can adjust the height.

・絶縁工程
導体線11の外周に絶縁層13を備えるコイル用線材10を製造する場合には、素材線材の外周、導体線11の外周、磁性体層12の外周などに絶縁層を形成する絶縁工程を備えることができる。絶縁層の形成は、例えば、上述の絶縁層13の項で説明した絶縁性樹脂を塗布した後、焼き付けることが挙げられる。
-Insulation process When manufacturing the coil wire 10 provided with the insulating layer 13 on the outer periphery of the conductor wire 11, the insulating layer is formed on the outer periphery of the material wire, the outer periphery of the conductor wire 11, the outer periphery of the magnetic layer 12, etc. A process can be provided. For example, the insulating layer may be formed by applying the insulating resin described in the section of the insulating layer 13 and then baking it.

[実施例1]
導体線の外周に磁性材料から構成される磁性体層を備え、更に磁性体層の外周に絶縁層(外側絶縁層)を備えるコイル用線材であって、磁性体層の材質が異なるものについて、通電時の損失を調べた。
[Example 1]
A coil wire comprising a magnetic layer composed of a magnetic material on the outer periphery of a conductor wire, and further comprising an insulating layer (outer insulating layer) on the outer periphery of the magnetic layer, wherein the material of the magnetic layer is different. The loss during energization was investigated.

この試験では、素材線材として無酸素銅からなる銅線と、表1に示す各種の鉄系材料(炭素鋼、純鉄、パーマロイ、パーメンジュール)から構成される磁性部材とを用意し、嵌合法によってコイル用線材を作製する。用意した鉄系材料(以下のテープ)はいずれも、酸素含有量が10ppm以下、水素含有量が5ppm以下である。各含有量の測定には、不活性ガス融解−赤外線吸収法を用いる。   In this test, a copper wire made of oxygen-free copper and a magnetic member made of various iron-based materials (carbon steel, pure iron, permalloy, permendur) shown in Table 1 were prepared and fitted. A coil wire is produced by a legal method. All of the prepared iron-based materials (the following tapes) have an oxygen content of 10 ppm or less and a hydrogen content of 5 ppm or less. For the measurement of each content, an inert gas melting-infrared absorption method is used.

試料の作製手順の概略は以下の通りである。
直径φ11.5mmの無酸素銅からなる銅線と、上述の鉄系材料からなり、適宜な厚さのテープとを用意し、銅線の外周にテープを巻回して溶接によって固定して準備材を作製する。
上記準備材を伸線ダイスに通して伸線加工を施して締め付け、複合材を作製する。
上記複合材に適宜な形状、大きさの伸線ダイスや圧延ローラを用いて、線材の形状及び大きさが表1に示す形状及び大きさ(長径、短径)となるまで伸線加工、圧延加工を施す。
形状(外形)が楕円である線材は、楕円用の伸線ダイスを用いた伸線加工や、孔型ロールを用いた圧延加工を行う過程を含む。
加工工程では、所定の形状(外形)、大きさとなるまで伸線又は圧延を繰り返す場合には、適宜なパス後に中間熱処理を行い、加工と熱処理とを繰り返し行う。
得られた銅線と鉄系材料からなる被覆とを備える被覆線材に最終熱処理を施した後、絶縁層(厚さ50μm)を形成する。絶縁層は、最終熱処理後の線材の表面にポリアミドイミド樹脂の絶縁塗料を塗布、焼き付けして形成する。
以上の工程を経て、導体線(銅線)の全周に亘ってその表面に鉄系材料からなる環状又は枠状の磁性体層を備え、磁性体層の外周に絶縁層を備えるコイル用線材が得られる。
The outline of the sample preparation procedure is as follows.
Prepare a copper wire made of oxygen-free copper with a diameter of 11.5 mm and the above-mentioned iron-based material, and a tape with an appropriate thickness. The tape is wound around the outer periphery of the copper wire and fixed by welding. Is made.
The above-mentioned preparation material is passed through a wire drawing die, drawn and tightened to produce a composite material.
Using a wire drawing die or a rolling roller having an appropriate shape and size for the composite material, the wire material is drawn and rolled until the shape and size of the wire becomes the shape and size (major axis and minor axis) shown in Table 1 Apply processing.
A wire having an ellipse in shape (outer shape) includes a process of drawing using an ellipse drawing die and rolling using a hole roll.
In the processing step, when wire drawing or rolling is repeated until a predetermined shape (outer shape) and size are obtained, intermediate heat treatment is performed after an appropriate pass, and processing and heat treatment are repeated.
After the final heat treatment is performed on the obtained coated wire including the copper wire and the coating made of the iron-based material, an insulating layer (thickness: 50 μm) is formed. The insulating layer is formed by applying and baking a polyamide-imide resin insulating paint on the surface of the wire after the final heat treatment.
Through the above steps, the wire for a coil is provided with an annular or frame-like magnetic body layer made of an iron-based material on the entire surface of the conductor wire (copper wire) and an insulating layer on the outer periphery of the magnetic body layer. Is obtained.

鉄系材料のテープとして厚さが異なる複数種のものを用意して、磁性体層の厚さ及び面積比をある程度調整する。この試験では、テープの厚さは0.8mm〜2.0mm程度である。
試料No.1−2〜1−4,1−12〜1−14,1−22〜1−24,1−32〜1−34,1−112〜1−114,1−132〜1−134(以下、これらの試料を不均一厚さ試料群と呼ぶことがある)については、伸線ダイスの形状の選択、圧延条件の調整などを行って磁性体層の厚さを調整する。この試験では、後述の損失の測定にあたり、導体線の外周面において磁束に対して実質的に平行に配置される領域に設けられる磁性体層の厚さが他の領域の磁性体層の厚さよりも厚くなるように調整する。
最終熱処理の温度は、200℃以上500℃以下の範囲から選択して、導体線を構成する純銅の平均結晶粒径を調整する。上記の温度範囲では、温度が低いほど平均結晶粒径が小さい傾向にある。
A plurality of types of iron-based material tapes having different thicknesses are prepared, and the thickness and area ratio of the magnetic layer are adjusted to some extent. In this test, the thickness of the tape is about 0.8 mm to 2.0 mm.
Sample No. 1-2 to 1-4, 1-12 to 1-14, 1-22 to 1-24, 1-32 to 1-34, 1-112 to 1-114, 1-132 to 1-134 (hereinafter, For these samples), the thickness of the magnetic layer is adjusted by selecting the shape of the wire drawing dies and adjusting the rolling conditions. In this test, when measuring the loss described later, the thickness of the magnetic layer provided in the region disposed substantially parallel to the magnetic flux on the outer peripheral surface of the conductor wire is larger than the thickness of the magnetic layer in the other region. Adjust to be thicker.
The temperature of the final heat treatment is selected from the range of 200 ° C. or more and 500 ° C. or less, and the average crystal grain size of pure copper constituting the conductor wire is adjusted. In the above temperature range, the average crystal grain size tends to be smaller as the temperature is lower.

用意した各試料について行う評価は、以下の通りである。
(形状、大きさの測定)
各試料のコイル用線材の横断面を光学顕微鏡で観察し、撮影した顕微鏡写真から、コイル用線材(但し、絶縁層は除く)の大きさ、磁性体層の周方向に等間隔に16点以上測定した厚さの平均値ta、磁性体層の最大厚さtx、最小厚さtnを測定する。
各試料のコイル用線材の大きさは、短辺の長さ及び長辺の長さで示す。形状が円である丸線(直径)及び正方形状である角線では、長辺の長さと短辺の長さとが等しい。形状が楕円である楕円線では、長径を長辺、短径を短辺とする。
磁性体層の最大厚さtxと最小厚さtnとから厚さ比(=tx/tn)を求める。厚さ比が1.0である試料No.1−1,1−11,1−21,1−31,1−101,1−111,1−131,1−135はいずれも、磁性体層の厚さがその全周に亘って均一的であることを意味する。これらの試料(以下、均一厚さ試料群と呼ぶことがある)は、導体線の周方向の全周に亘って、均一的な厚さの磁性体層を備える。
コイル用線材について、絶縁層を除いた導体線と磁性体層との合計断面積に対する磁性体層の断面積の比率(面積比)を求めた。面積比は、顕微鏡写真を画像処理して、材質に基づいて導体線及び磁性体層を抽出し、合計断面積と、磁性体層の断面積とをそれぞれ求めて算出する。画像処理には市販の処理装置を利用できる。
各試料のコイル用線材について、線材の形状、長辺の長さ(mm)及び短辺の長さ(mm)、磁性体層の材質、最大厚さtx(μm)、厚さ比、面積比(%)を表1に示す。
なお、いずれの試料のコイル用線材も、上記横断面において、導体線の全周を覆うように環状又は枠状の磁性体層を備える。
Evaluation performed for each prepared sample is as follows.
(Measurement of shape and size)
Observe the cross-section of the coil wire rod of each sample with an optical microscope. From the photographed micrograph, the size of the coil wire rod (excluding the insulating layer), 16 points or more at equal intervals in the circumferential direction of the magnetic layer The average value ta of the measured thickness, the maximum thickness tx of the magnetic layer, and the minimum thickness tn are measured.
The magnitude | size of the wire material for coils of each sample is shown by the length of a short side, and the length of a long side. In a round line (diameter) having a circular shape and a square line having a square shape, the length of the long side is equal to the length of the short side. In the case of an elliptical line, the major axis is the long side and the minor axis is the short side.
A thickness ratio (= tx / tn) is obtained from the maximum thickness tx and the minimum thickness tn of the magnetic layer. Sample No. with a thickness ratio of 1.0. In all of 1-1, 1-11, 1-21, 1-31, 1-101, 1-111, 1-131, and 1-135, the thickness of the magnetic layer is uniform over the entire circumference. It means that. These samples (hereinafter sometimes referred to as a uniform thickness sample group) include a magnetic layer having a uniform thickness over the entire circumference of the conductor wire.
For the coil wire, the ratio (area ratio) of the cross-sectional area of the magnetic layer to the total cross-sectional area of the conductor wire and the magnetic layer excluding the insulating layer was determined. The area ratio is calculated by performing image processing on the micrograph, extracting the conductor wire and the magnetic layer based on the material, and obtaining the total cross-sectional area and the cross-sectional area of the magnetic layer, respectively. A commercially available processing apparatus can be used for image processing.
For the coil wire of each sample, the shape of the wire, the length of the long side (mm) and the length of the short side (mm), the material of the magnetic layer, the maximum thickness tx (μm), the thickness ratio, the area ratio (%) Is shown in Table 1.
In addition, the coil wire of any sample is provided with an annular or frame-like magnetic body layer so as to cover the entire circumference of the conductor wire in the cross section.

(成分分析)
鉄系材料に炭素鋼を用いた試料について、磁性体層を構成する炭素鋼の成分を調べ、炭素鋼中の炭素、リン、硫黄の合計含有量(質量%)を表1に示す。炭素鋼以外の材料についても調べた結果を表1に示す。ここでは成分分析にICP発光分光分析法を利用したが、その他、原子吸光光度法などが利用できる。
(Component analysis)
With respect to the sample using carbon steel as the iron-based material, the components of the carbon steel constituting the magnetic layer were examined, and the total content (mass%) of carbon, phosphorus and sulfur in the carbon steel is shown in Table 1. Table 1 shows the results of examining materials other than carbon steel. Here, ICP emission spectroscopic analysis is used for component analysis, but atomic absorption spectrophotometry can also be used.

(飽和磁束密度の測定)
振動試料型磁力計(理研電子株式会社製,BHV−5)を用いて磁束密度−磁場曲線を測定し、各試料のコイル用線材の飽和磁束密度を求めて、測定した値を用いて磁性体層の飽和磁束密度を求める。飽和磁束密度は、測定した磁化Mを、磁性体層の体積で除することで求められる。飽和磁束密度(T)を表1に示す。
また、求めた飽和磁束密度をBs、コイル用線材の最大幅(ここでは長辺)をw、磁性体層の厚さ(ここでは平均値ta)をtとしてBs×(t/w)を求め、その結果を表1に示す。
(Measurement of saturation magnetic flux density)
The magnetic flux density-magnetic field curve was measured using a vibrating sample magnetometer (BHV-5, manufactured by Riken Denshi Co., Ltd.), the saturation magnetic flux density of the coil wire of each sample was obtained, and the measured value was used as a magnetic material. Find the saturation flux density of the layer. The saturation magnetic flux density is obtained by dividing the measured magnetization M by the volume of the magnetic layer. Table 1 shows the saturation magnetic flux density (T).
Further, Bs × (t / w) is obtained by assuming that the obtained saturation magnetic flux density is Bs, the maximum width (here, long side) of the coil wire is w, and the thickness of the magnetic layer (here, average value ta) is t. The results are shown in Table 1.

(比抵抗の測定)
各試料のコイル用線材について、磁性体層の比抵抗(μΩ・cm)を、四端子法を利用して測定し、その結果を表1に示す。ここでは、測定用の試験片は、上述の鉄系材料のテープから切り出した長さ150mmのリボンを用いる。各試料の磁性体層から試験片を切り出してもよい。
(Measurement of specific resistance)
For the coil wire of each sample, the specific resistance (μΩ · cm) of the magnetic layer was measured using a four-terminal method, and the results are shown in Table 1. Here, as the test piece for measurement, a ribbon having a length of 150 mm cut out from the tape of the iron-based material described above is used. A test piece may be cut out from the magnetic layer of each sample.

(硬さの測定)
各試料のコイル用線材について、磁性体層のビッカース硬さHvを測定し、その結果を表1に示す。ここでは、測定用の試験片は、各試料の磁性体層から切り出したが、上述の鉄系材料のテープを切り出して利用することができる。硬さの測定には、市販のビッカース硬さ試験機を利用できる。
(Measurement of hardness)
For the coil wire of each sample, the Vickers hardness Hv of the magnetic layer was measured, and the results are shown in Table 1. Here, although the test specimen for measurement was cut out from the magnetic layer of each sample, the above-described iron-based material tape can be cut out and used. A commercially available Vickers hardness tester can be used for the measurement of hardness.

(損失の測定)
図5に示す測定回路を構成し、この測定回路を用いて各試料のコイル用線材の損失を求める。図5に示す測定回路100は、ギャップ111が形成されたC字状の磁性コア110と、磁性コア110に巻回された1次コイル121及び2次コイル122と、信号発生器131を有するB−Hアナライザ130とを備える。
(Measurement of loss)
The measurement circuit shown in FIG. 5 is configured, and the loss of the coil wire of each sample is obtained using this measurement circuit. A measurement circuit 100 shown in FIG. 5 includes a C-shaped magnetic core 110 having a gap 111 formed therein, a primary coil 121 and a secondary coil 122 wound around the magnetic core 110, and a signal generator 131. -H analyzer 130 is provided.

コイル用線材の損失の測定は、次のように行う。
コイル用線材を短冊に切断した測定試料Sを磁性コア110のギャップ111に挿入する。図5に示すように測定試料Sの長辺が、磁性コア110を通過する磁束(ここでは上下方向)に平行するように、測定試料Sをギャップ111に挿入する。
B−Hアナライザ130の信号発生器131から励磁信号を発生させ、増幅器132を介して1次コイル121に励磁電流iを流し、ギャップ111に交流磁界を発生させる。交流磁界の測定周波数、磁束密度を変えたときに抵抗133に流れる励磁電流iと2次コイル122の両端に生じた誘起電圧Vとを測定して得られる交流抵抗成分から、測定系の損失を求める。
ここでは、各試料のコイル用線材における導体線と材質・形状・サイズが実質的に同じで、磁性体層を有さない銅線のみからなる比較試料を用意し、同様にして各比較試料の損失も測定しておく。そして、各試料のコイル用線材の損失は、比較試料における損失を100として、これに対する相対値(%)で評価し、その結果を表1に示す。
The loss of the coil wire is measured as follows.
The measurement sample S obtained by cutting the coil wire into strips is inserted into the gap 111 of the magnetic core 110. As shown in FIG. 5, the measurement sample S is inserted into the gap 111 so that the long side of the measurement sample S is parallel to the magnetic flux passing through the magnetic core 110 (here, the vertical direction).
An excitation signal is generated from the signal generator 131 of the BH analyzer 130, an excitation current i 1 is passed through the primary coil 121 via the amplifier 132, and an alternating magnetic field is generated in the gap 111. From the AC resistance component obtained by measuring the exciting current i 1 flowing through the resistor 133 and the induced voltage V 2 generated at both ends of the secondary coil 122 when the measurement frequency and magnetic flux density of the AC magnetic field are changed, Find the loss.
Here, a comparative sample consisting only of a copper wire having substantially the same material, shape and size as the conductor wire in the coil wire of each sample and having no magnetic layer is prepared. Also measure the loss. The loss of the coil wire of each sample was evaluated as a relative value (%) with respect to 100 as the loss in the comparative sample, and the results are shown in Table 1.

(平均結晶粒径の測定)
各試料のコイル用線材の横断面を光学顕微鏡で観察して、平均結晶粒径(μm)を求める。ここでは、上記横断面をエッチングして、導体線の断面から結晶組織を露出させて、顕微鏡写真(倍率:25倍〜200倍)を取得する。この顕微鏡写真に対して、JIS H 0501(1986年)に規定された「伸銅品結晶粒度試験方法」に記載の切断法に基づいて平均結晶粒度を測定する。この平均結晶粒度を導体線の平均結晶粒径とし、その結果を表1に示す。
(Measurement of average crystal grain size)
The cross section of the coil wire of each sample is observed with an optical microscope to determine the average crystal grain size (μm). Here, the cross section is etched to expose the crystal structure from the cross section of the conductor wire, and a micrograph (magnification: 25 to 200 times) is obtained. For this micrograph, the average grain size is measured based on the cutting method described in “Method for testing grain size of drawn copper products” defined in JIS H 0501 (1986). This average crystal grain size is defined as the average crystal grain size of the conductor wire, and the results are shown in Table 1.

(引張試験)
各試料のコイル用線材について、引張試験機(株式会社島津製作所製,AG−5000D)を用いて引張試験を行って応力−ひずみ曲線を測定し、0.2%耐力(MPa)と破断伸び(%)とを求め、その結果を表1に示す。この引張試験におけるチャック間距離は250mm、クロスヘッド速度は50mm/minである。
(Tensile test)
The coil wire of each sample was subjected to a tensile test using a tensile testing machine (manufactured by Shimadzu Corporation, AG-5000D) to measure a stress-strain curve, and 0.2% proof stress (MPa) and elongation at break ( %) And the results are shown in Table 1. The distance between chucks in this tensile test is 250 mm, and the crosshead speed is 50 mm / min.

(絶縁性)
各試料のコイル用線材について、絶縁層の絶縁性を調べ、その結果を表1に示す。
ここでは、送線されるコイル用線材の途中の適宜な位置であってコイル用線材近傍に電極を配置して、コイル用線材に電圧を印加して通電回数をカウントする。絶縁層に欠陥がある場合にはコイル用線材の導体線と電極との間で通電され、欠陥が多いほど通電回数が多くなる。従って通電回数を欠点の個数とみなせる。送線量(ton)に対する通電回数を検査欠点(個/t)とし、表1に示す。なお、コイル用線材は接地している。
(Insulation)
For the coil wire of each sample, the insulating properties of the insulating layer were examined, and the results are shown in Table 1.
Here, an electrode is disposed at an appropriate position in the middle of the coil wire to be sent and in the vicinity of the coil wire, voltage is applied to the coil wire, and the number of energizations is counted. When there is a defect in the insulating layer, a current is applied between the conductor wire of the coil wire and the electrode, and the number of energizations increases as the number of defects increases. Therefore, the number of energizations can be regarded as the number of defects. Table 1 shows the number of energizations with respect to the dose (ton) as inspection defects (pieces / t). The coil wire is grounded.

Figure 0006477346
Figure 0006477346

各試料のコイル用線材について、最大厚さtxなどの測定に用いた上述の光学顕微鏡の顕微鏡写真を用いて調べたところ、不均一厚さ試料群はいずれも、平均厚さtaよりも厚さが厚い厚肉部と、平均厚さta以下の薄肉部との双方を有しており、磁性体層を周方向にみると厚さが異なっているといえる。   When the coil wire of each sample was examined using the above-mentioned micrograph of the optical microscope used for measuring the maximum thickness tx, etc., all the non-uniform thickness sample groups were thicker than the average thickness ta. Has a thick portion and a thin portion having an average thickness ta or less, and it can be said that the thickness is different when the magnetic layer is viewed in the circumferential direction.

表1に示すように、磁性体層を備えることで、磁性体層を有しない比較試料よりも低損失であることが分かる。ここではいずれの試料のコイル用線材も、磁性体層を有しない場合の損失の半分以下程度であり、1/4以下程度である試料も多い。特に、磁性体層に炭素鋼を含む鋼含有層を備える試料No.1−1〜1−4,1−11〜1−14,1−21〜1−24,1−31〜1−34のコイル用線材は、純鉄層を備える試料No.1−101やパーマロイ層を備える試料No.1−111〜1−114と比較して、より低損失である。この理由は、純鉄よりも比抵抗が高いことで鋼含有層自体に生じる渦電流を低減でき、パーマロイよりも飽和磁束密度が高いことで鋼含有層に磁束を十分に流せて、導体線に生じる渦電流を低減できたため、と考えられる。   As shown in Table 1, it can be seen that by providing the magnetic layer, the loss is lower than that of the comparative sample having no magnetic layer. Here, the coil wire material of any sample is about half or less of the loss when there is no magnetic layer, and many samples are about 1/4 or less. In particular, Sample No. provided with a steel-containing layer containing carbon steel in the magnetic layer. The coil wires of 1-1 to 1-4, 1-11 to 1-14, 1-21 to 1-24, and 1-31 to 1-34 are sample Nos. Provided with pure iron layers. 1-101 and Sample No. with permalloy layer. Compared with 1-111 to 1-114, the loss is lower. The reason for this is that eddy currents generated in the steel-containing layer itself can be reduced because the specific resistance is higher than that of pure iron, and the saturation magnetic flux density is higher than that of permalloy, so that a sufficient amount of magnetic flux can be passed through the steel-containing layer, and This is probably because the generated eddy current was reduced.

また、炭素鋼はパーマロイやパーメンジュールと比較して硬さが低いことが分かる。そのため、上記鋼含有層を備える試料のコイル用線材は、曲げ加工を行い易く、コイル成形性に優れるといえる。一方、パーメンジュール層を備える試料No.1−131〜1−134のコイル用線材は、低損失であるものの硬く、コイル成形性の点で、上記鋼含有層を備える線材に劣るといえる。   It can also be seen that carbon steel has lower hardness than permalloy or permendur. Therefore, it can be said that the sample coil wire provided with the steel-containing layer is easy to bend and has excellent coil formability. On the other hand, Sample No. provided with a permendur layer. It can be said that the wire materials for coils 1-131 to 1-134 are low in loss but hard and inferior to the wire materials including the steel-containing layer in terms of coil formability.

上記鋼含有層を備える試料のコイル用線材のうち、特に、炭素鋼中の炭素、リン、硫黄の合計量が少ないと、好ましくは0.3質量%以下であると、絶縁層を備える場合に絶縁性にも優れることが分かる。この理由は、溶接時にブローホールや水素脆化などの脆化が生じ難く、表面性状に優れる準備材を形成でき、最終的に絶縁層の形成前の素材も表面性状に優れていたため、絶縁層にピンホールやフクレなどの発生を低減できたため、と考えられる。   Among the coil wire rods of the sample including the steel-containing layer, in particular, when the total amount of carbon, phosphorus and sulfur in the carbon steel is small, preferably 0.3% by mass or less, when the insulating layer is provided. It turns out that it is excellent also in insulation. The reason for this is that it is difficult to cause embrittlement such as blowholes and hydrogen embrittlement during welding, and it is possible to form a preparatory material with excellent surface properties. This is probably because the occurrence of pinholes and blisters was reduced.

これらのことから、上記鋼含有層を備える試料のコイル用線材は、低損失なコイルを形成できる上に、コイルの製造性にも優れると期待される。また、絶縁層を備える場合には、コイルの絶縁性にも優れると期待される。   From these facts, the sample coil wire provided with the steel-containing layer is expected to form a low-loss coil and to be excellent in coil manufacturability. In addition, when the insulating layer is provided, it is expected that the insulating property of the coil is excellent.

その他、同じ成分の磁性体層を備える場合には、厚肉部と薄肉部とを備えて、その最小厚さと最大厚さとの比(厚さ比)が1.1以上を満たすと、厚さ比が1.0である場合、即ち磁性体層の全域に亘って厚さが均一的である場合に比較して、損失を更に低減できることが分かる。また、厚さ比がより大きいほど(例えば1.5以上)、損失を更に低減できることが分かる。更に、均一厚さ試料群の磁性体層の厚さと、厚肉部を備える試料の最大厚さとがほぼ同程度である場合でも、厚肉部を備える試料の方が損失を低減できるといえる。   In addition, in the case where a magnetic layer of the same component is provided, the thickness is provided when the ratio between the minimum thickness and the maximum thickness (thickness ratio) satisfies 1.1 or more. It can be seen that the loss can be further reduced when the ratio is 1.0, that is, when the thickness is uniform over the entire area of the magnetic layer. It can also be seen that the loss can be further reduced as the thickness ratio increases (for example, 1.5 or more). Furthermore, even when the thickness of the magnetic layer of the uniform thickness sample group is approximately the same as the maximum thickness of the sample having the thick portion, it can be said that the loss is reduced in the sample having the thick portion.

このような結果が得られた理由として、以下が考えられる。
・ 厚肉部が磁束に平行に配置されることで磁路断面積を十分に大きく確保でき、この厚肉部に磁束を十分に流せて、導体線に流れようとする磁束を低減できたこと
・ 薄肉部を備えることで、磁性体層自体に生じ得る渦電流を低減できたこと
・ 磁性体層の面積比が3%以上40%以下を満たすこと、Bs×(t/w)≧0.01T以上、更に0.1T以上を満たすことで、導体線に対して磁性体層を十分に有することができたこと
The reason why such a result was obtained is as follows.
・ By arranging the thick part parallel to the magnetic flux, the cross-sectional area of the magnetic path can be secured sufficiently large, and the magnetic flux flowing through the thick part can be reduced sufficiently to reduce the magnetic flux that flows through the conductor wire. The provision of the thin portion reduced the eddy current that can occur in the magnetic layer itself. The area ratio of the magnetic layer satisfies 3% to 40%, and Bs × (t / w) ≧ 0. By satisfying 01T or more, and further 0.1T or more, it was possible to have a sufficient magnetic layer for the conductor wire.

その他、導体線の平均結晶粒径が200μm以下であると、0.2%耐力が60MPa以上、かつ破断伸びが5%以上、ここでは更に10%以上であり、優れた機械的特性を有していることが分かる。平均結晶粒径が150μm以下であれば、0.2%耐力が80MPa以上であり、90MPa以上である試料も多い。平均結晶粒径が100μm以下であれば、0.2%耐力が100MPa以上、平均結晶粒径が70μm以下であれば、0.2%耐力が120MPa以上であり、更に高強度である。また、この試験では、破断伸びが10%以上である。従って、より高強度でありながら、伸びにも優れることが分かる。   In addition, when the average crystal grain size of the conductor wire is 200 μm or less, the 0.2% proof stress is 60 MPa or more, the elongation at break is 5% or more, and further 10% or more here, and has excellent mechanical properties. I understand that If the average crystal grain size is 150 μm or less, the 0.2% proof stress is 80 MPa or more, and many samples have 90 MPa or more. If the average crystal grain size is 100 μm or less, the 0.2% proof stress is 100 MPa or more, and if the average crystal grain size is 70 μm or less, the 0.2% proof stress is 120 MPa or more, which is higher strength. In this test, the elongation at break is 10% or more. Therefore, it can be seen that it is excellent in elongation while having higher strength.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The present invention is not limited to these exemplifications, but is defined by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

本発明のコイル用線材は、モータ、トランス(変圧器)、リアクトル、IHヒータ(誘導加熱装置)などに備えるコイルに利用できる。   The coil wire of the present invention can be used for coils provided in motors, transformers (transformers), reactors, IH heaters (induction heating devices), and the like.

10 コイル用線材
11 導体線 12 磁性体層 13 絶縁層
12a 厚肉部 12b 薄肉部
21 素材線材 22 磁性部材 30 複合材 40 加工材
S 測定試料(コイル用線材)
100 測定回路
110 磁性コア 111 ギャップ 121 1次コイル 122 2次コイル
130 B−Hアナライザ 131 信号発生器 132 増幅器 133 抵抗
DESCRIPTION OF SYMBOLS 10 Coil wire 11 Conductor wire 12 Magnetic layer 13 Insulating layer 12a Thick part 12b Thin part 21 Material wire 22 Magnetic member 30 Composite material 40 Work material S Measurement sample (Coil wire)
DESCRIPTION OF SYMBOLS 100 Measurement circuit 110 Magnetic core 111 Gap 121 Primary coil 122 Secondary coil 130 BH analyzer 131 Signal generator 132 Amplifier 133 Resistance

Claims (7)

導体線と、
前記導体線の外周に磁性材料によって形成された磁性体層とを備え、
前記磁性体層は、炭素鋼によって形成された鋼含有層を備え
前記鋼含有層は、前記導体線の軸方向に直交する断面において周方向にみて、厚さが異なる厚肉部と薄肉部とを有する不均一層を備え、
前記薄肉部の最小厚さに対する前記厚肉部の最大厚さの比が1.1以上であるコイル用線材。
A conductor wire;
A magnetic layer formed of a magnetic material on the outer periphery of the conductor wire,
The magnetic layer includes a steel-containing layer formed of carbon steel ,
The steel-containing layer includes a non-uniform layer having a thick portion and a thin portion having different thicknesses in a circumferential direction in a cross section perpendicular to the axial direction of the conductor wire,
Maximum thickness ratio is 1.1 or more der Ru wire coil of the thick portion to the minimum thickness of the thin portion.
前記炭素鋼における炭素と、リンと、硫黄との合計含有量が0超0.3質量%以下である請求項1に記載のコイル用線材。 The coil wire according to claim 1, wherein the total content of carbon, phosphorus, and sulfur in the carbon steel is more than 0 and 0.3 mass% or less. 前記導体線と前記磁性体層とを合わせた断面積に対する前記磁性体層の断面積の比率が3%以上40%以下である請求項1又は請求項に記載のコイル用線材。 The magnetic layer coil wire according to claim 1 or claim 2 ratio of cross-sectional area is 40% or less than 3% of the relative cross-sectional area combined with the magnetic layer and the conductor wire. 前記磁性体層の飽和磁束密度をBs、前記コイル用線材の最大幅をw、前記磁性体層の厚さをtとするとき、Bs×(t/w)≧0.01Tを満たす請求項1から請求項のいずれか1項に記載のコイル用線材。 2. The saturation magnetic flux density of the magnetic layer is Bs, the maximum width of the coil wire is w, and the thickness of the magnetic layer is t, Bs × (t / w) ≧ 0.01T is satisfied. The coil wire according to any one of claims 3 to 4 . 前記導体線を構成する金属の平均結晶粒径が200μm以下である請求項1から請求項のいずれか1項に記載のコイル用線材。 Coil wire according to any one of claims 1 to 4 average crystal grain size of the metal constituting the conductor wire is 200μm or less. 0.2%耐力が60MPa以上であり、破断伸びが5%以上である請求項1から請求項のいずれか1項に記載のコイル用線材。 0.2% proof stress of not less than 60 MPa, the coil wire as claimed in any one of claims 5 breaking elongation of 5% or more. 前記導体線の外周に絶縁層を備える請求項1から請求項のいずれか1項に記載のコイル用線材。 Coil wire according to any one of claims 1 to 6 comprising an insulating layer on the outer periphery of the conductor wire.
JP2015156761A 2014-08-22 2015-08-07 Coil wire Active JP6477346B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015156761A JP6477346B2 (en) 2015-08-07 2015-08-07 Coil wire
PCT/JP2015/073426 WO2016027867A1 (en) 2014-08-22 2015-08-20 Wire material for coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156761A JP6477346B2 (en) 2015-08-07 2015-08-07 Coil wire

Publications (2)

Publication Number Publication Date
JP2017037896A JP2017037896A (en) 2017-02-16
JP6477346B2 true JP6477346B2 (en) 2019-03-06

Family

ID=58049289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156761A Active JP6477346B2 (en) 2014-08-22 2015-08-07 Coil wire

Country Status (1)

Country Link
JP (1) JP6477346B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6360930B1 (en) * 2017-03-03 2018-07-18 株式会社フジクラ Electric wire and manufacturing method thereof
JP6379243B1 (en) * 2017-03-10 2018-08-22 株式会社フジクラ Electric wire and manufacturing method thereof
JP7082785B2 (en) * 2017-10-23 2022-06-09 国立大学法人信州大学 Transmission coil parts for non-contact power supply, their manufacturing method, and non-contact power supply equipment
JP7407700B2 (en) 2018-03-30 2024-01-04 古河電気工業株式会社 Carbon nanotube-coated wire for coils, coil using carbon nanotube-coated wire for coils, and method for manufacturing carbon nanotube-coated wire coils
CN114157228B (en) 2020-09-30 2023-11-17 晶科能源股份有限公司 Photovoltaic frame and photovoltaic module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015426Y2 (en) * 1979-03-20 1985-05-15 アルプス電気株式会社 Armature coil of coreless motor
JP4223701B2 (en) * 2001-08-10 2009-02-12 株式会社神戸製鋼所 Soft magnetic low carbon steel material excellent in machinability and magnetic properties and method for producing the same, and method for producing soft magnetic low carbon steel parts using the steel material
JP4223726B2 (en) * 2002-02-06 2009-02-12 株式会社神戸製鋼所 Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JP4464889B2 (en) * 2005-08-11 2010-05-19 株式会社神戸製鋼所 Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
JP2012033386A (en) * 2010-07-30 2012-02-16 Nec Tokin Corp Electric wire, winding wire and electric component
WO2013046399A1 (en) * 2011-09-29 2013-04-04 古河電気工業株式会社 Electromagnet wire rod and coil
JP6212946B2 (en) * 2013-05-16 2017-10-18 アイシン精機株式会社 Aluminum alloy wire excellent in bendability and manufacturing method thereof
JP5957428B2 (en) * 2013-09-25 2016-07-27 株式会社フジクラ High frequency electric wire and manufacturing method thereof
JP2015135870A (en) * 2014-01-16 2015-07-27 富士通株式会社 Inductor device and manufacturing method for inductor device

Also Published As

Publication number Publication date
JP2017037896A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6477346B2 (en) Coil wire
JP6382726B2 (en) Coil conductor wire and coil wire
JP2016046522A (en) Wiring material for coil
US8987600B2 (en) Electric wire and coil
JP4879373B2 (en) High frequency electric wire and high frequency coil
KR101768546B1 (en) High-frequency wire and high-frequency coil
JP2016189459A (en) Wiring material for coil, electric wire for coil, and method of manufacturing electric wire for coil
AU2014400108A1 (en) Molten Al plated steel wire as well as stranded wire and manufacturing method therefor
JP6781647B2 (en) Manufacturing method of iron core for magnetic circuit and iron core for magnetic circuit
JP2017037897A (en) Wire for coil
JP2007012745A (en) Dust core and manufacturing method thereof
JP2016046090A (en) Coil wire
WO2016027867A1 (en) Wire material for coil
JP6044093B2 (en) Fe-based metal plate and manufacturing method thereof
US20050266240A1 (en) High tensile nonmagnetic stainless steel wire for overhead electric conductor, low loss overhead electric conductor using the wire, and method of manufacturing the wire and overhead electric conductor
JP2022158722A (en) Magnetic material composite wire
JP2017174621A (en) Wire material for coil, wire for coil, manufacturing method of wire material for coil and manufacturing method of wire for coil
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
JP2013006207A (en) Method for manufacturing high-strength thick electric resistance welded steel pipe excellent in sour resistant property of electric resistance welded part
JP4795900B2 (en) Fe-Ni permalloy alloy
WO2022163290A1 (en) Composite wire and coated wire
JP2011068998A (en) Fe-Ni BASED PERMALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250