JP2013006207A - Method for manufacturing high-strength thick electric resistance welded steel pipe excellent in sour resistant property of electric resistance welded part - Google Patents

Method for manufacturing high-strength thick electric resistance welded steel pipe excellent in sour resistant property of electric resistance welded part Download PDF

Info

Publication number
JP2013006207A
JP2013006207A JP2011142049A JP2011142049A JP2013006207A JP 2013006207 A JP2013006207 A JP 2013006207A JP 2011142049 A JP2011142049 A JP 2011142049A JP 2011142049 A JP2011142049 A JP 2011142049A JP 2013006207 A JP2013006207 A JP 2013006207A
Authority
JP
Japan
Prior art keywords
less
electric resistance
erw
groove
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011142049A
Other languages
Japanese (ja)
Other versions
JP5799610B2 (en
Inventor
Hiroyasu Yokoyama
泰康 横山
Yoshitomo Okabe
能知 岡部
Shunsuke Toyoda
俊介 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011142049A priority Critical patent/JP5799610B2/en
Publication of JP2013006207A publication Critical patent/JP2013006207A/en
Application granted granted Critical
Publication of JP5799610B2 publication Critical patent/JP5799610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-strength thick electric resistance welded steel pipe excellent in a sour resistant property of an electric resistance welded part, wherein hydrogen induced cracking does not occur in the electric resistance welded part in HIC (Hydrogen Induced Cracking) test of the NACE regulation.SOLUTION: In the electric resistance welded part, by plastically deforming a welded end face, a welded end part shape just before electric resistance welding is formed in a groove shape having a taper-like pipe inner face side groove part 6 wherein a groove width is (1/7)t to (3/7)t from a parallel part 5 of the middle in a t direction to the pipe inner face side, with respect to a plate thickness t direction and wherein a groove angle is 15-45°, and a taper-like pipe outer face side groove part 7 wherein a groove width is (1/7)t to (3/7)t from the parallel part to the pipe outer side and wherein a groove angle is 15-45°, the equal circle diameter of each of oxides 1 in the electric resistance welded part is 20 μm or below, and the equal circle diameter of a cluster 2 that is a group wherein a plurality of oxides gather together at the nearest neighbor interval of 100 μm or below is 300 μm or below.

Description

本発明は、電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法に関し、詳しくは、電縫鋼管素材の被溶接端面形状を最適化することにより、電縫鋼管の溶接シーム部の酸化物単独及び集団の相等円直径を制限し、シーム部を起点とする水素誘起割れ(HIC)を抑制した、電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法に関する。   The present invention relates to a method for producing a high-strength thick-walled electric resistance welded steel pipe excellent in sour resistance of an electric resistance welded portion, and more specifically, by optimizing the welded end face shape of the electric resistance welded pipe material, High-strength thick-walled electric stitching with excellent sour resistance in ERW welds that limits the equivalent circle diameter of the oxide alone and in the weld seam and suppresses hydrogen-induced cracking (HIC) starting from the seam The present invention relates to a method for manufacturing a steel pipe.

ここで、「耐サワー特性に優れた」とは、電縫溶接部を含む試験片をNACE規定のsolutionA溶液に25℃で96時間浸漬するHIC試験に供し、該試験後、電縫溶接部の溶接シーム面に垂直に超音波探傷を行って測定した板厚方向割れ率(CTR)が1.5%未満であることを意味する。又、「高強度」とはAPI(American Petroleum Institute)規格グレードX65以上の強度を意味し、「厚肉」とは肉厚が10mm以上であることを意味する。   Here, “excellent sour resistance” means that a specimen including an ERW welded part is subjected to a HIC test that is immersed in a solution A solution specified by NACE at 25 ° C. for 96 hours. It means that the plate thickness direction crack ratio (CTR) measured by ultrasonic flaw detection perpendicular to the weld seam surface is less than 1.5%. “High strength” means strength of API (American Petroleum Institute) standard grade X65 or higher, and “thick” means that the thickness is 10 mm or more.

高強度厚肉ラインパイプ向け電縫鋼管では、従来、溶接部品質向上の観点から、経験に頼った入熱調整やVシェイプ角度調整などが行われてきた。これらにより、定性的には、高入熱、Vシェイプ角度の適正化(おおよそ2〜3度)により、溶接部品質の向上がなされてきた。しかし、このような経験に頼った調整では、必ずしも100%の耐サワー性能保証がなされることはなく、時に著しくHIC(水素誘起割れ)発生が認められ、これを抑制することができていなかった。   Conventionally, ERW steel pipes for high-strength, thick-line pipes have been subjected to heat input adjustment and V-shape angle adjustment depending on experience from the viewpoint of improving welded part quality. Qualitatively, the weld quality has been improved qualitatively by high heat input and proper V-shape angle (approximately 2 to 3 degrees). However, the adjustment based on such experience does not always guarantee 100% sour resistance performance, and sometimes significant HIC (hydrogen induced cracking) occurs and cannot be suppressed. .

一方、転炉で溶製し出鋼した溶鋼を真空脱ガス及び/又はMn,Si脱酸にて溶鋼中の酸素を250ppm以下とし、次いで合金組成がTi:10〜70重量%、残部:Fe,Mn,Siのうち1種又は2種以上及び不可避的不純物である合金を溶鋼に添加して、特定の鋼組成とした鋼を連続鋳造する耐サワー性の優れた高靭性電縫鋼管用鋼の製造方法が公知である(特許文献1参照)。これにより、鋼中にTi酸化物が主成分で粒径が200μm以下の酸化物系介在物のみを含有せしめ、以て電縫溶接部の耐サワー性を向上できるとしている。   On the other hand, the molten steel produced by melting in the converter is vacuum degassed and / or Mn, Si deoxidized so that the oxygen in the molten steel is 250 ppm or less, then the alloy composition is Ti: 10 to 70 wt%, the balance: Fe , Mn, Si, one or more types and alloys that are inevitable impurities are added to molten steel, and steel with a specific steel composition is continuously cast with high toughness for ERW steel pipes with excellent sour resistance Is known (see Patent Document 1). Thereby, it is said that only the oxide inclusions having a Ti oxide as a main component and a particle size of 200 μm or less are contained in the steel, so that the sour resistance of the ERW welded portion can be improved.

特許第3293024号公報Japanese Patent No. 3293024

上述した従来の定性的な溶接条件管理による電縫鋼管製造方法では、いまだ安定して優れた耐サワー特性を示す製品が得られるまでには至っていない。又、特許文献1の方法は、Ti含有鋼に限定され適用範囲が狭い憂いがある。これらの点が課題であった。
本発明は、上記課題を解決し、Ti含有の有無にかかわらず、NACE規定のHIC試験において電縫溶接部に水素誘起割れが発生しない、電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法を提供することを目的とする。
The conventional ERW steel pipe manufacturing method based on the qualitative welding condition management described above has not yet achieved a product that exhibits stable and excellent sour resistance properties. Moreover, there is a concern that the method of Patent Document 1 is limited to Ti-containing steel and its application range is narrow. These points were problems.
The present invention solves the above-mentioned problems, and does not generate hydrogen-induced cracks in the ERW welds in the NACE stipulated HIC test, regardless of whether or not Ti is contained. An object of the present invention is to provide a method for producing a meat-electrically welded steel pipe.

発明者らは、API規格X65,X70グレードの高強度厚肉ラインパイプ向け電縫鋼管のTi含有材とTi非含有材とについて電縫溶接の入熱条件及び被溶接端面開先形状条件を種々変更した電縫溶接実験を行い、電縫溶接部に残存した酸化物の形態(SEM観察による)と電縫溶接部の耐サワー特性(上記NACE規定のHIC試験成績)との関係を詳細に調査した。   The inventors have various heat input conditions for welded end faces and groove shape conditions for welded end faces of Ti-containing and non-Ti-containing materials of ERW steel pipes for high-strength thick line pipes of API standard X65 and X70 grades. Conduct a modified ERW welding experiment and investigate in detail the relationship between the form of oxide remaining in the ERW weld (by SEM observation) and the sour resistance of the ERW weld (HIC test results stipulated by the NACE) did.

その結果、Tiの有無によらず、電縫溶接部において、図2に示すように、酸化物1の個々の相等円直径が20μm以下であり、且つ、複数の酸化物が最隣接間隔100μm以下(但し、0μm超である)で寄り集まった集団であるクラスター2の相等円直径が300μm以下である場合に限り、水素誘起割れが発生しないという知見を得た。ここで、相等円直径とは、断面図において対象の図形と同一面積を有する円の直径である。対象が前記クラスターである場合、該クラスターの図形は、図1に示すとおり、前記酸化物の集団の最外接線3で囲まれた図形である。   As a result, regardless of the presence or absence of Ti, as shown in FIG. 2, the individual equivalent circular diameters of the oxide 1 are 20 μm or less, and a plurality of oxides have a spacing of 100 μm or less. It was found that hydrogen-induced cracking does not occur only when the equivalent circular diameter of cluster 2 which is a cluster gathered together (however, it is over 0 μm) is 300 μm or less. Here, the equivalent circular diameter is a diameter of a circle having the same area as the target figure in the cross-sectional view. When the object is the cluster, the cluster figure is a figure surrounded by the outermost tangent line 3 of the group of oxides as shown in FIG.

そして、上記の如き酸化物形態を達成するには、初期形状が帯板状である管素材を払い出してから、管状に成形し、形成したVシェイプの縁(帯幅端部に相当する被溶接端面である)同士を衝合するまでの間に、被溶接端面を塑性変形させて、電縫溶接直前の管素材10の被溶接端部形状を図1に示す開先形状とする事、即ち、板厚t方向に関して、t方向中間の平行部5から管内面側へは開先幅b=(1/7)t〜(3/7)t、開先角度a=15〜45°のテーパ状の管内面側開先部6、前記平行部5から管外側へは開先幅d=(1/7)t〜(3/7)t、開先角度c=15〜45°のテーパ状の管外面側開先部7を有する開先形状とする事が、極めて重要であるという知見を得て、本発明を成した。   In order to achieve the oxide form as described above, the tube material whose initial shape is a strip shape is dispensed, and then formed into a tubular shape, and the edge of the V shape formed (to be welded corresponding to the band width end) 1), the welded end faces are plastically deformed until they are brought into contact with each other, and the welded end shape of the tube blank 10 immediately before ERW welding is changed to the groove shape shown in FIG. With respect to the plate thickness t direction, a taper having a groove width b = (1/7) t to (3/7) t and a groove angle a = 15 to 45 ° from the parallel portion 5 in the middle of the t direction to the inner surface of the tube. The inner pipe-side groove portion 6 and the parallel portion 5 to the outer side of the pipe have a groove width d = (1/7) t to (3/7) t and a groove angle c = 15 to 45 °. The present invention has been made by obtaining the knowledge that it is extremely important to make the groove shape having the outer surface side groove portion 7 of the tube.

即ち本発明は、以下の通りである。
(1)初期形状が帯板状である管素材を払い出してから、管状に成形し、形成したVシェイプの縁である被溶接端面同士を衝合するまでの間に、被溶接端面を塑性変形させて、電縫溶接直前の被溶接端部形状を、板厚t方向に関して、t方向中間の平行部から管内面側へは開先幅が(1/7)t〜(3/7)t、開先角度が15〜45°のテーパ状の管内面側開先部、前記平行部から管外側へは開先幅が(1/7)t〜(3/7)t、開先角度が15〜45°のテーパ状の管外面側開先部を有する開先形状として、電縫溶接部中の酸化物の個々の相等円直径が20μm以下であり、且つ前記酸化物の複数個が最隣接間隔100μm以下で寄り集まった集団であるクラスターの相等円直径が300μm以下である電縫溶接部を得ることを特徴とする、電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。
(2)前記管素材は、質量%で、C:0.01〜0.15%、Si:0.005〜0.9%、Mn:0.2〜1.3%、P:0.01%以下、S:0.01%以下、Al:0.1%以下を含有し、残部がFe及び不可避的不純物であることを特徴とする上記(1)に記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。
(3)前記管素材は、質量%で、Cu:0.5%以下、Ni:0.5%以下の中から選ばれる1種または2種を含有することを特徴とする上記(2)に記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。
(4)前記管素材は、質量%で、Cr:3.0%以下、Mo:2.0%以下の中から選ばれる1種または2種を含有することを特徴とする上記(2)又は(3)に記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。
(5)前記管素材は、質量%で、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の中から選ばれる1種または2種以上を含有することを特徴とする上記(2)〜(4)の何れか1つに記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。
(6)前記管素材は、質量%で、Ca:0.005%以下を含有することを特徴とする上記(2)〜(5)の何れか1つに記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。
That is, the present invention is as follows.
(1) After the tube material having an initial shape of a strip plate is dispensed, the welded end surfaces are plastically deformed after being formed into a tubular shape and joining the welded end surfaces that are the edges of the formed V shape. In this case, the shape of the welded end immediately before the ERW welding has a groove width of (1/7) t to (3/7) t from the parallel part in the middle of the t direction to the inner surface of the pipe with respect to the thickness t direction. , A taper-shaped inner surface side groove portion with a groove angle of 15 to 45 °, a groove width from the parallel portion to the tube outer side is (1/7) t to (3/7) t, and the groove angle is As a groove shape having a taper tube outer surface side groove portion of 15 to 45 °, each equivalent circular diameter of the oxide in the ERW weld portion is 20 μm or less, and a plurality of the oxides are the largest. An electro-welded welded portion having an equivalent circular diameter of 300 μm or less, which is a cluster of clusters gathered at an adjacent interval of 100 μm or less, is obtained. Method of producing a high strength thick electric resistance welded steel pipe with excellent properties.
(2) The said pipe | tube raw material is the mass%, C: 0.01-0.15%, Si: 0.005-0.9%, Mn: 0.2-1.3%, P: 0.01 %, S: 0.01% or less, Al: 0.1% or less, the balance being Fe and inevitable impurities, sour resistance of the ERW weld as described in (1) above A manufacturing method for high strength thick-walled ERW steel pipes with excellent characteristics.
(3) In the above (2), the pipe material contains, by mass%, one or two kinds selected from Cu: 0.5% or less and Ni: 0.5% or less. The manufacturing method of the high intensity | strength thick-walled ERW steel pipe excellent in the sour-proof characteristic of the described ERW welding part.
(4) The above tube material (2) or (2), wherein the pipe material contains one or two kinds selected from Cr: 3.0% or less and Mo: 2.0% or less in mass%. The method for producing a high-strength thick-walled ERW steel pipe excellent in sour resistance of the ERW weld as described in (3).
(5) The tube material contains, by mass%, one or more selected from Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less. The method for producing a high-strength thick-walled electric-welded steel pipe excellent in sour-resistance characteristics of the ERW weld according to any one of (2) to (4) above.
(6) The tube material contains, by mass%, Ca: 0.005% or less, sour resistance of the ERW weld according to any one of (2) to (5) above A manufacturing method for high strength thick-walled ERW steel pipes with excellent characteristics.

本発明によれば、広い組成範囲で、NACE規定のHIC試験で電縫溶接部に水素誘起割れを発生しない、電縫溶接部の耐サワー特性に優れた高強度厚肉ラインパイプ向け電縫鋼管を提供できる。   According to the present invention, an ERW steel pipe for high-strength thick-walled line pipes with excellent sour resistance in an ERW welded part that does not generate hydrogen-induced cracks in an ERW welded part in a NACE-defined HIC test in a wide composition range. Can provide.

本発明の被溶接端面開先形状要件を示す断面図である。It is sectional drawing which shows the to-be-welded end face groove shape requirement of this invention. 本発明の酸化物形態要件の説明図である。It is explanatory drawing of the oxide form requirements of this invention.

[酸化物形態要件]
まず、本発明の酸化物形態要件について説明する。
発明者らの知見によれば、電縫溶接時に被溶接端面が酸化されて酸化物が生成するが、生成した酸化物は衝合圧接により押し出される溶鋼の流れに沿って排出される。このとき、全ての酸化物が排出されるのは困難で、一部が電縫溶接部中に残存するが、残存する酸化物の個々の相等円直径が20μmを超えるとその酸化物の個々がHICの起点となりうる。よって、電縫溶接部中の酸化物の個々の相等円直径が20μm以下である事に限定した。
[Oxide morphology requirements]
First, the oxide form requirements of the present invention will be described.
According to the knowledge of the inventors, the end face to be welded is oxidized and an oxide is generated at the time of ERW welding, but the generated oxide is discharged along the flow of molten steel pushed out by abutting pressure welding. At this time, it is difficult for all the oxides to be discharged, and some of the oxides remain in the ERW weld, but when the equivalent circular diameter of the remaining oxides exceeds 20 μm, It can be the starting point of HIC. Therefore, it was limited that each equivalent circular diameter of the oxide in the ERW welded portion was 20 μm or less.

又、電縫溶接部中に残存する酸化物は、不特定範囲に分散して存在する。分散した複数の酸化物が再隣接間隔100μm以下で寄り集まった集団は、あたかも1個の酸化物であるかのように振る舞い、HICの発生起点となる場合がある。この集団をクラスターと定義し、クラスターがHICの起点となる条件を上記電縫溶接実験で求めたところ、図2に示したように、クラスター2をなす酸化物1の集団の最外接線3で囲まれた領域の相等円直径(即ちクラスターの相等円直径)が300μm以下であれば、クラスターはHICの起点とならないことが分った。よって、クラスターの相等円直径が300μm以下である事に限定した。   In addition, the oxide remaining in the electric resistance welded portion is dispersed in an unspecified range. A group in which a plurality of dispersed oxides gather together at a re-adjacent interval of 100 μm or less behaves as if it is one oxide, and may become a starting point of HIC. This group is defined as a cluster, and the conditions under which the cluster becomes the starting point of HIC were determined by the above-mentioned ERW welding experiment. As shown in FIG. 2, the outermost tangent line 3 of the group of oxides 1 forming cluster 2 is obtained. It was found that if the equivalent circular diameter of the enclosed region (that is, the equivalent circular diameter of the cluster) was 300 μm or less, the cluster would not be the starting point of HIC. Therefore, the equivalent circular diameter of the cluster is limited to 300 μm or less.

ところで、肉厚10mm以上を「厚肉」として限定要件としたのは、肉厚10mm未満の場合、HICの影響が小さいためである。尤も、肉厚11.9mm未満ではHIC感受性が比較的小さく本発明のHIC抑制効果が目立たないため、本発明においては肉厚11.9mm以上が好ましい。
又、API規格グレードX65以上を「高強度」として限定要件としたのは、X65未満の低グレードの場合、HIC割れ感受性が低く、実用上問題なく耐サワー材が製造できているためである。
By the way, the reason why the thickness of 10 mm or more is defined as “thick” is that the influence of HIC is small when the thickness is less than 10 mm. However, if the thickness is less than 11.9 mm, the HIC sensitivity is relatively small and the HIC suppressing effect of the present invention is not noticeable. Therefore, in the present invention, the thickness is preferably 11.9 mm or more.
The reason why the API standard grade X65 or higher is defined as “high strength” is that the low grade of less than X65 has a low HIC cracking susceptibility, and a sour-resistant material can be produced without any practical problems.

[製造プロセス]
本発明では、基本的に、初期形状が帯板状である管素材を管状に成形し、形成したVシェイプの縁(帯幅端部に相当)同士を衝合して電縫溶接するというプロセスで造管を行う点では従来と同様であるが、従来では、電縫溶接部の管長さ方向の何処かの部位に相等円直径20μm超の酸化物又は相等円直径300μm超のクラスターが存在する。
[Manufacturing process]
In the present invention, basically, a tube material whose initial shape is a band plate shape is formed into a tubular shape, and the edges of the formed V shape (corresponding to the end portions of the band width) are brought into contact with each other and electro-welded. However, in the prior art, an oxide having an equivalent circular diameter of more than 20 μm or a cluster having an equivalent circular diameter of more than 300 μm exists at any part in the pipe length direction of the ERW weld. .

これに対し、本発明の製造方法によれば、図1に示した開先形状を採用したことで、電縫溶接時に溶鋼が酸化物を円滑に排出できて、電縫溶接部において上記酸化物形態要件を満たすことができる。管内面側の開先角度a、同側の開先幅b、管外面側の開先角度c、同側の開先幅dの計4つの因子のうち何れか1つでもその数値範囲が本発明範囲を逸脱すると、上記酸化物形態要件は満足されなくなり、耐サワー特性向上効果が得られない。   On the other hand, according to the manufacturing method of the present invention, the adoption of the groove shape shown in FIG. 1 allows the molten steel to smoothly discharge the oxide during the electric resistance welding, and the oxide in the electric resistance welding portion. Can meet the form requirements. The numerical range of any one of the four factors of the groove angle a on the tube inner surface side, the groove width b on the same side, the groove angle c on the tube outer surface side, and the groove width d on the same side is the actual value range. If it deviates from the scope of the invention, the oxide form requirement is not satisfied, and the effect of improving sour resistance cannot be obtained.

被溶接端部の開先加工は、塑性変形加工による。開先加工は、前記管状への成形を行うロール成形工程の終盤で行うことが、開先加工後のロール成形による開先形状の乱れを回避する観点から好ましく、その場合、塑性変形以外の方法(切削、研削など)は、造管ラインへの設備追加という不利を招く。塑性変形加工は、既設のロール成形用ロールを利用できるためかかる不利は生じない。最も好ましくは、ロール成形の最終段階であるフィンパス成形において、フィン形状を開先形状の雌型相当形状に調整したフィンロールを用いることである。   The groove processing of the welded end is performed by plastic deformation. The groove processing is preferably performed at the end of the roll forming step for forming into a tubular shape from the viewpoint of avoiding the disturbance of the groove shape due to roll forming after the groove processing. In that case, a method other than plastic deformation (Cutting, grinding, etc.) incurs the disadvantage of adding equipment to the pipe making line. The plastic deformation process does not cause such a disadvantage because an existing roll forming roll can be used. Most preferably, in fin pass forming, which is the final stage of roll forming, a fin roll whose fin shape is adjusted to a groove-shaped female die equivalent shape is used.

[化学組成]
本発明に係る電縫鋼管の製造方法において、化学組成(略して組成)は、ラインパイプ敷設時の総合的な低コスト化を考慮し、特に鋼管の輸送費低下を重要視している顧客の要求を考慮し、高強度(API規格X65級以上)を達成可能な組成を基本として設計された。個々の成分についての好適範囲限定理由を以下に述べる。組成の各成分含有量単位は質量%であり、%と略記される。母材部の組成は、管素材の溶製段階で調整される。溶接部の組成は、電縫溶接プロセスが合金元素の添加を伴わないものであるから、母材部の組成とほとんど変わらない。
(C:0.01〜0.15%) Cは炭化物として析出強化に寄与する元素であるが、0.01%未満では十分な強度が確保できず、一方、0.15%を超えるとパーライト、マルテンサイト等の第二相の組織分率が増加し必要な耐サワー特性の確保が困難となる。このため、C:0.01〜0.15%とする。なお、より好ましくは、C:0.02〜0.07%である。
(Si:0.005〜0.9%) Siは脱酸のため添加するが、0.005%未満では脱酸効果が十分でなく、一方、0.9%を超えると電縫溶接性を著しく劣化させるため、Si:0.005〜0.9%とする。
(Mn:0.2〜1.3%) Mnは強度、靭性を確保するため添加するが、0.2%未満ではその効果が十分でなく、一方、1.3%を超えると第二相分率が増加し、優れた耐サワー特性を確保し難いため、Mn:0.2〜1.3%とする。
(P:0.01%以下) Pは電縫溶接性を劣化させる元素であるが、0.01%以下であれば問題ないため、P:0.01%以下とする。
(S:0.01%以下) Sは一般的には鋼中においてはMnS介在物となり、HICの起点となるため少ないほどよい。尤も0.01%以下であれば問題ないため、S:0.01%以下とする。
(Al:0.1%以下) Alは脱酸剤として添加されるが、0.1%を超えると鋼の清浄度が低下し、靭性を劣化させるため、Al:0.1%以下とする。
[Chemical composition]
In the method for manufacturing an electric resistance welded steel pipe according to the present invention, the chemical composition (abbreviated composition) is taken into consideration by a customer who places importance on lowering the transportation cost of the steel pipe, considering the overall cost reduction when laying the line pipe. In consideration of requirements, it was designed based on a composition that can achieve high strength (API standard X65 grade or higher). The reasons for limiting the preferred ranges for the individual components will be described below. Each component content unit of the composition is mass% and is abbreviated as%. The composition of the base material part is adjusted at the melting stage of the tube material. The composition of the welded portion is almost the same as the composition of the base metal part because the electro-welding process does not involve the addition of alloying elements.
(C: 0.01 to 0.15%) C is an element that contributes to precipitation strengthening as a carbide, but if it is less than 0.01%, sufficient strength cannot be secured, while if it exceeds 0.15%, pearlite. In addition, the second-phase structure fraction such as martensite increases, making it difficult to ensure the required sour resistance. For this reason, C: 0.01 to 0.15%. In addition, More preferably, it is C: 0.02-0.07%.
(Si: 0.005 to 0.9%) Si is added for deoxidation, but if it is less than 0.005%, the deoxidation effect is not sufficient. Si: 0.005 to 0.9% is used for significant deterioration.
(Mn: 0.2 to 1.3%) Mn is added to ensure strength and toughness, but if it is less than 0.2%, the effect is not sufficient. Since the fraction increases and it is difficult to ensure excellent sour resistance, Mn: 0.2 to 1.3%.
(P: 0.01% or less) P is an element that deteriorates the electric resistance weldability, but if it is 0.01% or less, there is no problem, so P: 0.01% or less.
(S: 0.01% or less) In general, S is a MnS inclusion in steel, and it is better as it is smaller because it becomes the starting point of HIC. If it is 0.01% or less, there is no problem, so S: 0.01% or less.
(Al: 0.1% or less) Al is added as a deoxidizer, but if it exceeds 0.1%, the cleanliness of the steel decreases and the toughness deteriorates, so Al: 0.1% or less .

又、電縫鋼管の強度、耐サワー特性等をさらに改善する目的で、上記成分に加えてさらに、Cu:0.5%以下、Ni:0.5%以下の中から選ばれる1種または2種、Cr:3.0%以下、Mo:2.0%以下の中から選ばれる1種または2種、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の中から選ばれる1種または2種以上、Ca:0.005%以下、を選択して含有できる。
(Cu:0.5%以下) Cuは表層被膜生成による耐サワー特性の改善に有効であるが、0.5%を超えると管素材の製造性に問題が生じるため、Cu:0.5%以下とする。
(Ni:0.5%以下) Niは靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えると硬化第二相が生成し易くなり、HIC特性の劣化に繋がるため、Ni:0.5%以下とする。
(Cr:3.0%以下) CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、3.0%を超えると第二相が生成し易くなり、HIC特性を劣化させるため、Cr:3.0%以下とする。
(Mo:2.0%以下) MoはMn,Crと同様に低Cでも十分な強度を得るために有効な元素であるが、2.0%を超えると第二相が生成しやすくなり、HIC特性を劣化させるため、Mo:2.0%以下とする。
(Nb:0.1%以下) Nbは炭窒化物の微細析出と組織の微細粒化により強度と靭性を向上させるが、0.1%を超えると硬化した第二相が増加しやすくなり、HIC特性を著しく劣化させるため、Nb:0.1%以下とする。
(V:0.1%以下) VもNbと同様に炭窒化物の微細析出により強度上昇に寄与するが、0.1%を超えるとNbと同様に硬化した第二相分率が増加し、HIC特性が著しく劣化するため、V:0.1%以下とする。
(Ti:0.1%以下) TiもNb,Vと同様に炭窒化物の微細析出により強度上昇に寄与するが、0.1%を超えるとNbと同様に硬化した第二相分率が増加し、HIC特性が著しく劣化するため、Ti:0.1%以下とする。
(Ca:0.005%以下) Caは、HICの起点となり易い伸長したMnSの形態制御に必要な元素であるが、0.005%を超えて添加すると過剰なCa酸化物、硫化物が生成し、靭性劣化に繋がるため、Ca:0.005%以下とする。
For the purpose of further improving the strength, sour resistance, etc. of the electric resistance welded steel pipe, in addition to the above components, one or two selected from Cu: 0.5% or less and Ni: 0.5% or less Species, Cr: 3.0% or less, Mo: One or two selected from 2.0% or less, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% One or more selected from the following, Ca: 0.005% or less can be selected and contained.
(Cu: 0.5% or less) Cu is effective in improving the sour resistance by generating a surface layer coating, but if it exceeds 0.5%, a problem arises in the manufacturability of the tube material, so Cu: 0.5% The following.
(Ni: 0.5% or less) Ni is an element effective for improving toughness and increasing strength, but if it exceeds 0.5%, a hardened second phase is likely to be formed, leading to deterioration of HIC characteristics. Ni: 0.5% or less.
(Cr: 3.0% or less) Similar to Mn, Cr is an effective element for obtaining sufficient strength even at low C. However, if it exceeds 3.0%, the second phase is likely to be formed, and HIC characteristics Therefore, Cr: 3.0% or less.
(Mo: 2.0% or less) Mo is an element effective for obtaining sufficient strength even at low C as in Mn and Cr. However, if it exceeds 2.0%, the second phase is likely to be formed. In order to deteriorate the HIC characteristics, Mo: 2.0% or less.
(Nb: 0.1% or less) Nb improves strength and toughness by fine precipitation of carbonitride and fine graining of the structure, but when it exceeds 0.1%, the cured second phase tends to increase, In order to significantly deteriorate the HIC characteristics, Nb: 0.1% or less.
(V: 0.1% or less) V also contributes to an increase in strength by fine precipitation of carbonitrides in the same manner as Nb. However, if it exceeds 0.1%, the cured second phase fraction increases in the same manner as Nb. V: 0.1% or less because the HIC characteristics deteriorate significantly.
(Ti: 0.1% or less) Ti, like Nb and V, contributes to strength increase by fine precipitation of carbonitride, but if it exceeds 0.1%, the second phase fraction cured in the same manner as Nb Since it increases and the HIC characteristics are remarkably deteriorated, Ti: 0.1% or less.
(Ca: 0.005% or less) Ca is an element necessary for controlling the morphology of elongated MnS, which tends to be the starting point of HIC, but when added over 0.005%, excessive Ca oxide and sulfide are generated. And Ca: 0.005% or less because it leads to toughness deterioration.

上記成分を除いた残部はFe及び不可避的不純物である。不可避的不純物(Oやその他)は極力少量とすることが好ましい。   The balance excluding the above components is Fe and inevitable impurities. It is preferable that inevitable impurities (O and others) be as small as possible.

表1に組成、板厚、YS,TSを示す帯鋼(A〜I)を管素材に用い、被溶接端部開先条件を表2に示すとおり種々変化させて電縫溶接を行い、表3に外径、強度グレードを示す電縫鋼管を製造した。いずれの帯鋼も、鋼片を熱間圧延にて所定の板厚に圧延したのち、巻き取ってホットコイルにするという方法で製造された。
被溶接端部の開先加工は、電縫溶接直前のフインパス成形段階でフィンロールを用いた塑性変形加工により行った。
Table 1 uses steel strips (A to I) showing the composition, plate thickness, YS, and TS as pipe materials, and various conditions are changed as shown in Table 2 for welded end groove conditions. 3 produced an ERW steel pipe having an outer diameter and a strength grade. Each of the steel strips was manufactured by a method in which a steel slab was rolled to a predetermined plate thickness by hot rolling and then wound into a hot coil.
The groove processing of the welded end portion was performed by plastic deformation processing using a fin roll at the fin pass forming stage immediately before the ERW welding.

製造した電縫鋼管の電縫溶接部の耐サワー特性を、次のHIC試験により測定した板厚方向割れ率(CTR)で評価し、溶接部のCTRが1.5%未満であれば耐サワー特性は合格(○)、そうでなければ不合格(×)とした。
[HIC試験]
(試験片) 電縫溶接部中心位置(溶接シーム面の位置)を試験片幅方向中心にとった幅20mm、長さ(管長さ方向)100mmの全厚試験片である。
(試験方法) NACE規定のsolutionA溶液を用い、25℃で96時間浸漬した後、溶接シーム面に垂直に超音波探傷を行い、CTRを測定した。
Evaluate the sour resistance of the ERW welded part of the manufactured ERW steel pipe by the thickness direction crack rate (CTR) measured by the following HIC test. If the CTR of the welded part is less than 1.5%, sour resistance The characteristic was determined to be acceptable (◯), otherwise it was rejected (x).
[HIC test]
(Test piece) A full-thickness test piece having a width of 20 mm and a length (pipe length direction) of 100 mm, with the center position of the ERW welded portion (position of the weld seam surface) at the center of the test piece width direction.
(Test method) A solution A solution defined by NACE was used and immersed for 96 hours at 25 ° C, and then ultrasonic flaw detection was performed perpendicularly to the weld seam surface to measure CTR.

又、電縫溶接部中の酸化物形態を次の方法で調査した。
[酸化物形態調査方法]
溶接シーム面を被観察面として、SEM(走査電子顕微鏡)で、倍率を100〜1000倍、視野数を10視野以上にとって観察し、存在した酸化物の個々の相等円直径及びクラスターの相等円直径を測定した。
Moreover, the oxide form in the ERW weld was investigated by the following method.
[Oxide morphology survey method]
Using the welding seam surface as the surface to be observed, SEM (scanning electron microscope) is used to observe magnifications of 100 to 1000 times and the number of fields of view of 10 or more. Was measured.

これらの測定結果を表3に示す。表3中の各鋼管ごとの酸化物とクラスターの相等円直径の値はそれぞれ測定データの最大値である。
表3より、本発明例は何れも優れた耐サワー特性を示して合格であるのに対し、比較例は、酸化物及び/又はクラスターの相等円直径が本発明範囲を逸脱し、不合格である。
These measurement results are shown in Table 3. The value of the equivalent circle diameter of the oxide and cluster for each steel pipe in Table 3 is the maximum value of the measured data.
From Table 3, the examples of the present invention all show excellent sour resistance characteristics and pass, while the comparative examples show that the equivalent circular diameters of oxides and / or clusters deviate from the scope of the present invention and fail. is there.

Figure 2013006207
Figure 2013006207

Figure 2013006207
Figure 2013006207

Figure 2013006207
Figure 2013006207

1 酸化物
2 クラスター
3 最外接線
5 平行部
6 管内面側開先部
7 管外面側開先部
DESCRIPTION OF SYMBOLS 1 Oxide 2 Cluster 3 Outermost tangent 5 Parallel part 6 Pipe inner surface side groove part 7 Pipe outer surface side groove part

Claims (6)

初期形状が帯板状である管素材を払い出してから、管状に成形し、形成したVシェイプの縁である被溶接端面同士を衝合するまでの間に、被溶接端面を塑性変形させて、電縫溶接直前の被溶接端部形状を、板厚t方向に関して、t方向中間の平行部から管内面側へは開先幅が(1/7)t〜(3/7)t、開先角度が15〜45°のテーパ状の管内面側開先部、前記平行部から管外側へは開先幅が(1/7)t〜(3/7)t、開先角度が15〜45°のテーパ状の管外面側開先部を有する開先形状として、電縫溶接部中の酸化物の個々の相等円直径が20μm以下であり、且つ前記酸化物の複数個が最隣接間隔100μm以下で寄り集まった集団であるクラスターの相等円直径が300μm以下である電縫溶接部を得ることを特徴とする、電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。   After discharging the tube material whose initial shape is a strip shape, forming the tube shape and plastically deforming the welded end surfaces between the welded end surfaces that are the edges of the formed V shape, With respect to the thickness t direction, the shape of the welded end immediately before the electric-welding welding has a groove width of (1/7) t to (3/7) t from the parallel portion in the middle of the t direction to the pipe inner surface side. Tapered tube inner surface side groove portion with an angle of 15 to 45 °, groove width from the parallel portion to the tube outer side is (1/7) t to (3/7) t, and groove angle is 15 to 45 As a groove shape having a tapered outer tube side groove portion of °, each equivalent circular diameter of the oxide in the electric resistance welded portion is 20 μm or less, and a plurality of the oxides are 100 μm closest to each other. The sour resistance characteristic of ERW welds is obtained by obtaining ERW welds in which the cluster equivalent circle diameter is 300 μm or less. Method of manufacturing the excellent high-strength thick electric resistance welded steel pipe. 前記管素材は、質量%で、C:0.01〜0.15%、Si:0.005〜0.9%、Mn:0.2〜1.3%、P:0.01%以下、S:0.01%以下、Al:0.1%以下を含有し、残部がFe及び不可避的不純物であることを特徴とする請求項1に記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。   The tube material is mass%, C: 0.01 to 0.15%, Si: 0.005 to 0.9%, Mn: 0.2 to 1.3%, P: 0.01% or less, S: 0.01% or less, Al: 0.1% or less, with the balance being Fe and inevitable impurities, excellent sour resistance of the ERW weld according to claim 1 Manufacturing method of high strength thick wall ERW steel pipe. 前記管素材は、質量%で、Cu:0.5%以下、Ni:0.5%以下の中から選ばれる1種または2種を含有することを特徴とする請求項2に記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。   3. The electric sewing according to claim 2, wherein the pipe material contains one or two kinds selected from Cu: 0.5% or less and Ni: 0.5% or less by mass%. A method for manufacturing high-strength thick-walled ERW steel pipes with excellent sour-resistance characteristics at welds. 前記管素材は、質量%で、Cr:3.0%以下、Mo:2.0%以下の中から選ばれる1種または2種を含有することを特徴とする請求項2又は3に記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。   The said pipe | tube raw material contains the 1 type (s) or 2 types chosen from Cr: 3.0% or less and Mo: 2.0% or less by mass%. A method for manufacturing high-strength thick-walled ERW steel pipes with excellent sour-resistance characteristics for ERW welds 前記管素材は、質量%で、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の中から選ばれる1種または2種以上を含有することを特徴とする請求項2〜4の何れか1つに記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。   The tube material contains, by mass%, one or more selected from Nb: 0.1% or less, V: 0.1% or less, and Ti: 0.1% or less. The manufacturing method of the high intensity | strength thick wall ERW steel pipe excellent in the sour-proof characteristic of the ERW weld part as described in any one of Claims 2-4. 前記管素材は、質量%で、Ca:0.005%以下を含有することを特徴とする請求項2〜5の何れか1つに記載の電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法。   The said pipe | tube raw material contains the 0.005% or less of Ca by mass%, The high intensity | strength excellent in the sour-proof characteristic of the electric-welded welding part as described in any one of Claims 2-5 characterized by the above-mentioned. A method for manufacturing thick-walled electric resistance welded steel pipes.
JP2011142049A 2011-06-27 2011-06-27 Manufacturing method of high-strength, thick-walled ERW steel pipe with excellent sour resistance of ERW welds Active JP5799610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142049A JP5799610B2 (en) 2011-06-27 2011-06-27 Manufacturing method of high-strength, thick-walled ERW steel pipe with excellent sour resistance of ERW welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142049A JP5799610B2 (en) 2011-06-27 2011-06-27 Manufacturing method of high-strength, thick-walled ERW steel pipe with excellent sour resistance of ERW welds

Publications (2)

Publication Number Publication Date
JP2013006207A true JP2013006207A (en) 2013-01-10
JP5799610B2 JP5799610B2 (en) 2015-10-28

Family

ID=47674042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142049A Active JP5799610B2 (en) 2011-06-27 2011-06-27 Manufacturing method of high-strength, thick-walled ERW steel pipe with excellent sour resistance of ERW welds

Country Status (1)

Country Link
JP (1) JP5799610B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007112A (en) * 2011-06-27 2013-01-10 Jfe Steel Corp High-strength thick-walled electro-resistance-welded steel tube excelling in sour-proof property of electro-resistance-welded part
CN109047694A (en) * 2018-08-23 2018-12-21 江阴兴澄特种钢铁有限公司 A kind of economical HIC resistance pipeline steel plate X65MS and its manufacturing method of TMCP delivery
CN109047693A (en) * 2018-08-23 2018-12-21 江阴兴澄特种钢铁有限公司 A kind of economical HIC resistance pipeline steel plate X52MS and its manufacturing method of TMCP delivery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520552A (en) * 1976-05-28 1978-08-09 Nippon Kokan Kk Method of manufacturing thick high-strength steel pipe for low temperature service
JPS62274049A (en) * 1986-05-22 1987-11-28 Nippon Steel Corp Continuously-cast steel for resistance welded tube excellent in sour resistance and toughness at low temperature
JPH0941083A (en) * 1995-07-28 1997-02-10 Nkk Corp Resistance welded tube excellent in hic resistance and sscc resistance and its production
US20010052511A1 (en) * 2000-05-31 2001-12-20 L'air Liquide And La Soudure Autogene Francaise Application of a hybrid arc/laser process to the welding of pipe
JP2004346355A (en) * 2003-05-21 2004-12-09 Jfe Steel Kk Method for producing electroseamed steel pipe for high-strength line pipe excellent in hydrogen-crack resistance
JP2006063351A (en) * 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2007090415A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for consistently manufacturing electric resistance welded tube with excellent weld part characteristic
JP2008100277A (en) * 2006-10-23 2008-05-01 Jfe Steel Kk Method for producing low yield-ratio thick electric resistance welded pipe having weld zone excellent in toughness
JP2008240145A (en) * 2007-02-28 2008-10-09 Jfe Steel Kk Electric resistance welded steel pipe for line pipe excelling in weld part toughness
JP2009120899A (en) * 2007-11-14 2009-06-04 Sumitomo Metal Ind Ltd Steel for steel pipe excellent in sour resistance and production method therefor
JP2011025311A (en) * 2009-06-22 2011-02-10 Jfe Steel Corp Method for manufacturing electric resistance welded steel tube for high-strength thick-walled line pipe having excellent sour resistant characteristic of electric resistance welded part
JP2011026695A (en) * 2009-06-22 2011-02-10 Jfe Steel Corp Electroseamed steel pipe superior in sour resistance at electroseamed weld part for high-strength thick-wall line pipe

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520552A (en) * 1976-05-28 1978-08-09 Nippon Kokan Kk Method of manufacturing thick high-strength steel pipe for low temperature service
JPS62274049A (en) * 1986-05-22 1987-11-28 Nippon Steel Corp Continuously-cast steel for resistance welded tube excellent in sour resistance and toughness at low temperature
JPH0941083A (en) * 1995-07-28 1997-02-10 Nkk Corp Resistance welded tube excellent in hic resistance and sscc resistance and its production
US20010052511A1 (en) * 2000-05-31 2001-12-20 L'air Liquide And La Soudure Autogene Francaise Application of a hybrid arc/laser process to the welding of pipe
JP2004346355A (en) * 2003-05-21 2004-12-09 Jfe Steel Kk Method for producing electroseamed steel pipe for high-strength line pipe excellent in hydrogen-crack resistance
JP2006063351A (en) * 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2007090415A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Method for consistently manufacturing electric resistance welded tube with excellent weld part characteristic
JP2008100277A (en) * 2006-10-23 2008-05-01 Jfe Steel Kk Method for producing low yield-ratio thick electric resistance welded pipe having weld zone excellent in toughness
JP2008240145A (en) * 2007-02-28 2008-10-09 Jfe Steel Kk Electric resistance welded steel pipe for line pipe excelling in weld part toughness
JP2009120899A (en) * 2007-11-14 2009-06-04 Sumitomo Metal Ind Ltd Steel for steel pipe excellent in sour resistance and production method therefor
JP2011025311A (en) * 2009-06-22 2011-02-10 Jfe Steel Corp Method for manufacturing electric resistance welded steel tube for high-strength thick-walled line pipe having excellent sour resistant characteristic of electric resistance welded part
JP2011026695A (en) * 2009-06-22 2011-02-10 Jfe Steel Corp Electroseamed steel pipe superior in sour resistance at electroseamed weld part for high-strength thick-wall line pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007112A (en) * 2011-06-27 2013-01-10 Jfe Steel Corp High-strength thick-walled electro-resistance-welded steel tube excelling in sour-proof property of electro-resistance-welded part
CN109047694A (en) * 2018-08-23 2018-12-21 江阴兴澄特种钢铁有限公司 A kind of economical HIC resistance pipeline steel plate X65MS and its manufacturing method of TMCP delivery
CN109047693A (en) * 2018-08-23 2018-12-21 江阴兴澄特种钢铁有限公司 A kind of economical HIC resistance pipeline steel plate X52MS and its manufacturing method of TMCP delivery
CN109047694B (en) * 2018-08-23 2020-05-22 江阴兴澄特种钢铁有限公司 Economic HIC-resistant pipeline steel plate X65MS for TMCP delivery and manufacturing method thereof

Also Published As

Publication number Publication date
JP5799610B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
US10844993B2 (en) Electric-resistance-welded stainless clad steel pipe or tube
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
US11484927B2 (en) Clad welded pipe or tube and method of producing same
US9841124B2 (en) High-strength thick-walled electric resistance welded steel pipe having excellent low-temperature toughness and method of manufacturing the same
JP5176271B2 (en) Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same
JP6587041B1 (en) ERW steel pipe for line pipe
US9873164B2 (en) Electric resistance welded steel pipe or steel tube having excellent HIC resistance and low-temperature toughness in electric resistance welded part, and method for manufacturing the same
US11079045B2 (en) Electric resistance welded clad steel pipe or tube and method of producing same
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP2008240145A (en) Electric resistance welded steel pipe for line pipe excelling in weld part toughness
WO2013077356A1 (en) Weld metal having excellent temper embrittlement resistance
JP6008042B2 (en) Steel plate for thick-walled steel pipe, method for producing the same, and thick-walled high-strength steel pipe
JP5799610B2 (en) Manufacturing method of high-strength, thick-walled ERW steel pipe with excellent sour resistance of ERW welds
JP4687268B2 (en) Manufacturing method of ERW steel pipe for high-strength thick-walled pipe with excellent weld toughness
JP4466320B2 (en) Manufacturing method of low yield ratio ERW steel pipe for line pipe
JP2011025311A (en) Method for manufacturing electric resistance welded steel tube for high-strength thick-walled line pipe having excellent sour resistant characteristic of electric resistance welded part
JP5796370B2 (en) High-strength, thick-walled ERW steel pipe with excellent sour resistance in ERW welds
JP4506933B2 (en) Steel material suitable for large heat input welding for steel frames
JP2020045537A (en) Ti-CONTAINING Fe-Ni-Cr ALLOY EXCELLENT IN SLIT CUT SURFACE QUALITY AND MANUFACTURING METHOD THEREFOR
JP2011026695A (en) Electroseamed steel pipe superior in sour resistance at electroseamed weld part for high-strength thick-wall line pipe
JP2013217901A (en) Method for evaluating hic sensitivity of steel material and method for manufacturing thick steel plate excellent in hic resistance
JP2013147751A (en) Electric resistance welded steel tube for heat treatment excellent in flatness
JP5870561B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
WO2017209282A1 (en) Method for producing tig welded stainless steel tube, tig welded stainless steel tube, and tig welded stainless member

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5799610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250