JP6476746B2 - STORAGE DEVICE, POWER SUPPLY MODULE, AND METHOD FOR MANUFACTURING STORAGE DEVICE - Google Patents

STORAGE DEVICE, POWER SUPPLY MODULE, AND METHOD FOR MANUFACTURING STORAGE DEVICE Download PDF

Info

Publication number
JP6476746B2
JP6476746B2 JP2014218259A JP2014218259A JP6476746B2 JP 6476746 B2 JP6476746 B2 JP 6476746B2 JP 2014218259 A JP2014218259 A JP 2014218259A JP 2014218259 A JP2014218259 A JP 2014218259A JP 6476746 B2 JP6476746 B2 JP 6476746B2
Authority
JP
Japan
Prior art keywords
electrode body
electrode
current collector
storage element
laminated portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014218259A
Other languages
Japanese (ja)
Other versions
JP2016085875A (en
Inventor
尚人 竹林
尚人 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2014218259A priority Critical patent/JP6476746B2/en
Publication of JP2016085875A publication Critical patent/JP2016085875A/en
Application granted granted Critical
Publication of JP6476746B2 publication Critical patent/JP6476746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、例えば電池、キャパシタ等の蓄電素子及びその製造方法、並びに電源モジュールに関する。   The present invention relates to, for example, a storage element such as a battery or a capacitor, a method of manufacturing the same, and a power supply module.

電池は、携帯電話、IT機器などの電子機器の電源として広く普及している。さらに近年においては、リチウムイオン二次電池に代表される非水電解質二次電池は、高エネルギー密度であることから、電気自動車などの産業用大型電気機器への応用も進められている。   Batteries are widely used as power sources of electronic devices such as mobile phones and IT devices. Furthermore, in recent years, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density, and their application to industrial large-sized electric devices such as electric vehicles is also promoted.

非水電解質二次電池は、一般に金属製の収納容器の内部に、微多孔膜のセパレータで離隔された正負の極板を重ね合わせてなる電極体と、収納容器の外部に設けられた電極端子と電極体とを電気的に接続する集電体と、非水電解液とが封入された構成を有する。   A non-aqueous electrolyte secondary battery generally comprises an electrode body formed by superposing positive and negative electrode plates separated by a microporous membrane separator inside a metal storage container, and an electrode terminal provided outside the storage container. And a current collector electrically connecting the electrode body to the electrode body, and a non-aqueous electrolyte solution.

このような非水電解質二次電池において、電極体と集電体とを接合する技術としては、超音波溶接が広く用いられるところ、電池の高出力化、生産性の向上等に対応すべく、従来、汎用される抵抗溶接による接合が提案されている(例えば特許文献1、(0005)〜(0010)等を参照)。   In such non-aqueous electrolyte secondary batteries, ultrasonic welding is widely used as a technique for joining the electrode body and the current collector, and in order to cope with the increase in output of the battery, the improvement of productivity, etc. Conventionally, bonding by resistance welding, which is widely used, has been proposed (see, for example, Patent Document 1, (0005) to (0010), etc.).

特許5100281号公報Patent No. 5100281

しかしながら、集電体と電極体との接合に抵抗溶接を用いることには、以下のような課題があった。すなわち、集電体と電極体を強固に接合するには接合部(以下、ナゲットと称する)の面積(接合面における断面積)を大きくする必要があるが、抵抗溶接は溶融するチリ、残渣等(以下、スパッタと称する)の飛散を伴い、ナゲットの面積の拡大は飛散するスパッタの量を増大させ、電極体の品質に影響を与えることとなっていた。   However, using resistance welding for joining the current collector and the electrode assembly has the following problems. That is, in order to firmly bond the current collector and the electrode body, it is necessary to increase the area (cross-sectional area at the bonding surface) of the bonding portion (hereinafter referred to as nugget). Along with the spattering (hereinafter referred to as "sputtering"), the expansion of the area of the nugget increases the amount of spattering, which affects the quality of the electrode body.

本発明は、上記の課題に鑑みてなされたものであり、スパッタの影響を低減して電極体と集電体の良好な接合を実現することが可能な蓄電素子及びそれを用いた電源モジュール、並びに蓄電素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a storage element capable of achieving good bonding between an electrode body and a current collector by reducing the influence of sputtering, and a power supply module using the same. And it aims at providing the manufacturing method of an electrical storage element.

上記の目的を達成するために、本発明の第1の側面は、
電極体と、
前記電極体に溶接により接合される集電体とを備え、
前記集電体と前記電極体との接合部の位置が、前記集電体の、前記電極体との対向面にて前記集電体の中心軸から前記電極体の端寄りに偏心している、蓄電素子である。
In order to achieve the above object, the first aspect of the present invention is
Electrode body,
And a current collector joined to the electrode body by welding.
The position of the bonding portion between the current collector and the electrode body is eccentric to the end face of the electrode body from the central axis of the current collector on the surface of the current collector facing the electrode body. It is a storage element.

本発明の第2の側面は、
前記接合部は、前記集電体の、前記電極体との前記対向面の長辺に沿った方向に延在している形状を有する、
本発明の第1の側面の蓄電素子である。
The second aspect of the present invention is
The bonding portion has a shape extending in a direction along a long side of the facing surface of the current collector to the electrode body.
It is an electrical storage element of the 1st side of this invention.

本発明の第3の側面は、
前記接合部は複数であって、前記電極体との前記対向面に沿って配列されている、
本発明の第1又は第2の側面の蓄電素子である。
The third aspect of the present invention is
The plurality of junctions are arranged along the opposing surface to the electrode body.
It is a storage element of the 1st or 2nd side of the present invention.

本発明の第4の側面は、
配列された複数の前記接合部は、中央から両端にかけて前記電極体の端寄りに偏心して配置されている、
本発明の第3の側面の蓄電素子である。
The fourth aspect of the present invention is
The plurality of arranged junctions are eccentrically disposed near the end of the electrode body from the center to both ends,
It is a storage element of the 3rd side of the present invention.

本発明の第5の側面は、
電極体と、
前記電極体に溶接により接合される集電体とを備え、
前記集電体の、前記電極体との接合部には突起が形成されており、
前記突起の先端は、前記集電体の前記電極体との対向面の中心軸から前記電極体の端寄りに偏心している、蓄電素子である。
The fifth aspect of the present invention is
Electrode body,
And a current collector joined to the electrode body by welding.
A protrusion is formed at a junction of the current collector with the electrode body,
The tip of the protrusion is an electric storage element which is eccentric from the central axis of the surface of the current collector facing the electrode body to the end of the electrode body.

本発明の第6の側面は、
前記突起の底面の中心は、前記集電体の、前記電極体との対向面の中心軸上に位置している、
本発明の第5の側面の蓄電素子である。
The sixth aspect of the present invention is
The center of the bottom surface of the protrusion is located on the central axis of the surface of the current collector facing the electrode body.
It is a storage element of the 5th side of the present invention.

本発明の第7の側面は、
前記突起は、前記集電体の、前記電極体との前記対向面に沿った突条を形成している、
本発明の第5又は第6の側面の蓄電素子である。
The seventh aspect of the present invention is
The protrusion forms a ridge along the opposing surface of the current collector with the electrode body.
It is an electrical storage element of the 5th or 6th side of this invention.

本発明の第8の側面は、
前記電極体の前記集電体と反対側にて前記電極体に接合される保護部材を備えている、
本発明の第1から第7のいずれかの側面の蓄電素子である。
The eighth aspect of the present invention is
And a protective member joined to the electrode body on the side opposite to the current collector of the electrode body.
It is a storage element according to any one of the first to seventh aspects of the present invention.

本発明の第9の側面は、
本発明の第1から第8のいずれかの側面の蓄電素子を少なくとも1つ含む複数の蓄電素子を備えた、
電源モジュールである。
The ninth aspect of the present invention is
A plurality of storage elements including at least one storage element according to any one of the first to eighth aspects of the present invention,
It is a power supply module.

本発明の第10の側面は、
電極体に、溶接により集電体を接合する工程を備えた蓄電素子の製造方法であって、
前記接合の工程を、前記集電体と前記電極体の接合面の位置を、前記集電体の、前記電極体との対向面にて前記集電体の中心軸から前記電極体の端寄りに偏心させることにより行う、
蓄電素子の製造方法である。
The tenth aspect of the present invention is
A method of manufacturing a storage element, comprising the step of joining a current collector to an electrode body by welding.
In the bonding step, the position of the bonding surface of the current collector and the electrode assembly is the end surface of the electrode assembly from the central axis of the current collector on the surface of the current collector facing the electrode assembly. By making it eccentric to
It is a manufacturing method of an electrical storage element.

以上のような本発明は、スパッタの影響を低減して電極体と集電体の良好な接合を実現することが可能になるという効果を奏する。   The present invention as described above has an effect that it becomes possible to reduce the influence of sputtering and to achieve good bonding of the electrode body and the current collector.

本発明の実施の形態1に係る二次電池の構成を示す分解斜視図An exploded perspective view showing a configuration of a secondary battery according to Embodiment 1 of the present invention 本発明の実施の形態1に係る二次電池の構成を示す側面図A side view showing a configuration of a secondary battery according to Embodiment 1 of the present invention 本発明の実施の形態1に係る二次電池の要部を示す正面図Front view showing the main parts of the secondary battery according to Embodiment 1 of the present invention 本発明の実施の形態1に係る二次電池における電極体と集電体の接合方法を説明するための図The figure for demonstrating the joining method of the electrode body and collector in the secondary battery which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る二次電池における電極体と集電体の接合状態を説明するための断面図Sectional view for illustrating a bonding state of an electrode body and a current collector in a secondary battery according to Embodiment 1 of the present invention 本発明の実施の形態1に係る二次電池における電極体と集電体の接合状態を説明するための平面図A plan view for explaining a bonding state of an electrode body and a current collector in a secondary battery according to Embodiment 1 of the present invention 本発明の実施の形態1に係る二次電池の他の構成例を説明するための図The figure for demonstrating the other structural example of the secondary battery which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る二次電池の他の構成例を説明するための図The figure for demonstrating the other structural example of the secondary battery which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る二次電池における電極体と集電体の接合を説明するための図The figure for demonstrating the joining of the electrode body and collector in the secondary battery concerning Embodiment 2 of this invention. 本発明の実施の形態2に係る二次電池の構成例を説明するための図A diagram for describing a configuration example of a secondary battery according to a second embodiment of the present invention 本発明の実施の形態2に係る二次電池の他の構成例を説明するための図The figure for demonstrating the other structural example of the secondary battery which concerns on Embodiment 2 of this invention. 本発明の実施の形態に係る二次電池の他の構成例を示す図The figure which shows the other structural example of the secondary battery which concerns on embodiment of this invention.

以下、非水電解質二次電池を例にして本発明を説明する。まず、実施の形態1について、図面を参照しながら説明する。   Hereinafter, the present invention will be described by taking a non-aqueous electrolyte secondary battery as an example. First, Embodiment 1 will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1に係る非水電解質二次電池1の構成を、一部を分解した状態で模式的に示す斜視図であり、図2は非水電解質二次電池1の内部を示す側面図である。
Embodiment 1
FIG. 1 is a perspective view schematically showing the configuration of the non-aqueous electrolyte secondary battery 1 according to Embodiment 1 of the present invention in a partially disassembled state, and FIG. 2 is a non-aqueous electrolyte secondary battery 1 It is a side view showing the inside of.

図1及び2に示すように、非水電解質二次電池1は、アルミニウム製の開口箱状の容器本体10と、容器本体10の開口10xを封止する、容器本体と同一材料製の板状の蓋部20とから構成される外形が六面体状の収納容器を外装として備える。   As shown in FIGS. 1 and 2, the non-aqueous electrolyte secondary battery 1 is a plate made of the same material as the container body, which seals the opening box-shaped container body 10 made of aluminum and the opening 10x of the container body 10. A storage container having a hexahedral outer shape configured by the lid portion 20 of the present invention is provided as an outer package.

なお、収納容器の各辺は、図1に示す直交座標をなすX軸、Y軸及びZ軸にそれぞれ平行に位置している。次に、非水電解質二次電池1の内部構成を説明するため、容器本体10は、図1中においては破線により輪郭のみ示した。同様の理由により、容器本体10及び蓋部20は、図2中においては図中のZ−X平面に平行な面で切断した要部断面図として示した。   Each side of the storage container is positioned parallel to the X axis, the Y axis, and the Z axis which make orthogonal coordinates shown in FIG. Next, in order to explain the internal configuration of the non-aqueous electrolyte secondary battery 1, the container main body 10 is shown only by a broken line in FIG. For the same reason, the container main body 10 and the lid portion 20 are shown in FIG. 2 as principal part sectional views cut in a plane parallel to the Z-X plane in the drawing.

容器本体10の内部空間10zには、電極体11が配置されている。電極体11は、帯状の極板である正極板と負極板とを、セパレータを介して、図中Y軸に平行な軸を巻回軸として長円筒形に巻回した構成を有する。なお、正負の極板を巻き終えた後もセパレータのみ巻回することにより、最外周はセパレータで覆われた構成になっている。正負の各極板は金属箔を基材として、その表面に活物質を含む合剤層が形成されている。   An electrode body 11 is disposed in the internal space 10z of the container body 10. The electrode body 11 has a configuration in which a positive electrode plate and a negative electrode plate, which are strip-like electrode plates, are wound in an elongated cylindrical shape with an axis parallel to the Y axis in the figure as a winding axis via a separator. The outermost periphery is covered with the separator by winding only the separator even after the positive and negative electrode plates have been wound. Each positive and negative electrode plate uses a metal foil as a base material, and on the surface thereof, a mixture layer containing an active material is formed.

負極板は、例えば帯状の銅箔の表面に負極活物質を含む合剤層を形成させて構成される。正極板は、例えば帯状のアルミニウム箔の表面に正極活物質を含む合剤層を形成させて構成される。正極板及び負極板は巻回された状態において、巻回軸方向の両端の異なる方向に位置を所定量ずらして配置されており、電極体11の両端において、それぞれ所定の幅でセパレータ112cから突出している。更に、各電極の突出している部分は合剤層が形成されておらず、基材である金属箔が露出している。   The negative electrode plate is formed, for example, by forming a mixture layer containing a negative electrode active material on the surface of a strip-shaped copper foil. The positive electrode plate is configured, for example, by forming a mixture layer containing a positive electrode active material on the surface of a strip-like aluminum foil. The positive electrode plate and the negative electrode plate are arranged in the winding axial direction at different positions in different directions in the winding axis direction, and protrude from the separator 112 c with a predetermined width at each end of the electrode body 11. ing. Furthermore, the mixture layer is not formed in the protruding portion of each electrode, and the metal foil as the substrate is exposed.

言い換えると、電極体11は、巻回軸方向の一方の端部では正極板の金属箔が単体で重なりあった状態で露出し、他方の端部では負極板の金属箔が単体で重なりあった状態で露出し、それぞれ極板積層部111として両端に位置している。以下、極板積層部111の、図中Y軸方向から見た部分を電極体11の端面11cとして定める。   In other words, the electrode body 11 was exposed in a state in which the metal foils of the positive electrode plate were overlapped alone at one end in the winding axis direction, and the metal foils of the negative electrode were overlapped alone at the other end It is exposed in the state, and is located at both ends as the electrode plate lamination part 111 respectively. Hereinafter, a portion of the electrode plate lamination portion 111 as viewed in the Y-axis direction in the drawing is defined as the end surface 11 c of the electrode body 11.

なお、図1においては、極板積層部111として負極側の金属箔が露出した側の構成のみ符号を付して説明するが、正極側の極板積層部111も金属の材質を除いて同様の構成を有する。又、説明のため、電極体11は蓋部20と分離し、容器本体10から半ば抜き出された状態として示した。   In addition, in FIG. 1, although only the structure which attached | subjected the metal foil of the negative electrode side exposed as the electrode plate laminated part 111 is attached and demonstrated a code | symbol, the electrode plate laminated part 111 at the positive electrode side is also the same except metal material. The structure of Further, for the purpose of explanation, the electrode body 11 is shown as being separated from the lid portion 20 and partially extracted from the container main body 10.

極板積層部111は集電体12に接続される。集電体12は、正極板及び負極板の基材金属と同じ金属材料から作成され、蓋部20の裏面20yに固定された、外形矩形の平板状の基台部12aと、基台部12aの図中Y軸方向に沿った長辺側の側面から屈曲し、図中Z軸方向に沿って容器本体10の内底10yに向かって延出した一対の平板状の脚部12bとを有する。基台部12aには、後述する外側パッキン21a及び電極端子22の接続棒22bが挿入される貫通孔12a1が開口されている。なお、接続棒22bについては図3に示している。一対の脚部12bは電極体11の極板積層部111を挟み込むように配置され、後述する抵抗溶接により電極体11と接合される。   The electrode plate laminate portion 111 is connected to the current collector 12. The current collector 12 is made of the same metal material as the base metal of the positive electrode plate and the negative electrode plate, and is fixed to the back surface 20y of the lid 20. The flat rectangular base portion 12a having a rectangular shape and the base portion 12a And a pair of flat plate-like legs 12b extending toward the inner bottom 10y of the container main body 10 along the Z-axis direction. . A through hole 12a1 into which a connection rod 22b of an outer packing 21a and an electrode terminal 22 described later is inserted is opened in the base portion 12a. The connecting rod 22b is shown in FIG. The pair of leg portions 12 b is disposed so as to sandwich the electrode plate laminated portion 111 of the electrode body 11, and is joined to the electrode body 11 by resistance welding described later.

より詳しくは、金属箔が重なり合った部分である極板積層部111は、電極体11の巻回中心から電極体11の厚み方向(X方向)に半分ずつ分けられて、分けられた一方が一対の脚部12bの一方に接合され、分けられた他方が一対の脚部12bの他方に接合されている。   More specifically, the electrode plate laminate portion 111, which is a portion where metal foils overlap, is divided in half in the thickness direction (X direction) of the electrode body 11 from the winding center of the electrode body 11, and one of the divided ones is a pair The other divided part is joined to the other of the pair of legs 12b.

電極体11の厚み方向に分けられた極板積層部111を間に挟んで脚部12bと対向する位置には、集電体12と同種の金属製板状部品であるカバー13が配置され、抵抗溶接により電極体11と接合される。極板積層部111を構成する金属箔は、厚みが極薄いために損傷しやすく、カバー13は極板積層部111の表面を保護する機能を持っている。   A cover 13 which is a metallic plate-like component of the same type as the current collector 12 is disposed at a position facing the leg portion 12b with the electrode plate laminated portion 111 divided in the thickness direction of the electrode body 11 interposed therebetween. It is joined to the electrode body 11 by resistance welding. The metal foil constituting the electrode plate laminated portion 111 is easily damaged because the thickness is extremely thin, and the cover 13 has a function of protecting the surface of the electrode plate laminated portion 111.

一方、図3に示すように、蓋部20の表面20x側には、外部接続用の電極端子22が設けられている。電極端子22は、表面が露出する外形矩形の中継板22aと、中継板22aの裏面から図中Z軸方向に沿って容器本体10の内底10yに向かって延出した円筒状の接続棒22bとを有する金属製の部材である。   On the other hand, as shown in FIG. 3, an electrode terminal 22 for external connection is provided on the surface 20 x side of the lid 20. The electrode terminal 22 has a rectangular relay plate 22a whose surface is exposed, and a cylindrical connecting rod 22b extending from the back surface of the relay plate 22a toward the inner bottom 10y of the container body 10 along the Z-axis direction in the drawing. And a metal member having

電極端子22の接続棒22bは、集電体12の基台部12aとかしめや圧着等の周知の技術的手段により結合されることにより、集電体12と電気的、機械的に接続される。なお、本実施の形態1においては一例としてかしめにより固定されるものとし、接続棒22bの先端はかしめ端22xを形成して基台部12aに圧接している。これにより、電極体11から収納容器の外部に電気が取り出される。   The connection rod 22b of the electrode terminal 22 is electrically and mechanically connected to the current collector 12 by being joined to the base 12a of the current collector 12 by known technical means such as caulking or pressure bonding. . In the first embodiment, the connection rod 22b is fixed by caulking as an example, and the tip end of the connecting rod 22b forms a caulking end 22x and is in pressure contact with the base portion 12a. Thus, electricity is extracted from the electrode body 11 to the outside of the storage container.

なお、電極端子22において中継板22aと接続棒22bとは、図中には一体化した態様にて示したが、正極側においては一体成形された部品として作成され、負極側においては各々が独立した部材としての中継板22a及び接続棒22bが圧入等の手段により組み合わされた部品として作成されるものとしてもよい。   Although the relay plate 22a and the connecting rod 22b in the electrode terminal 22 are shown as being integrated in the figure, they are formed as an integrally molded component on the positive electrode side and each is independent on the negative electrode side. The relay plate 22a and the connecting rod 22b as the members may be formed as a combined component by means such as press fitting.

電極端子22と集電体12の基台部12aは、絶縁体である合成樹脂材料製の外側パッキン21a及び内側パッキン21bによって収納容器と絶縁されている。外側パッキン21aは蓋部20の表面20x上に配置され、蓋部20と電極端子22とを絶縁している。内側パッキン21bは蓋部20の裏面20yに配置され、蓋部20と集電体12の基台部12aとを絶縁している。   The electrode terminal 22 and the base portion 12a of the current collector 12 are insulated from the storage container by an outer packing 21a and an inner packing 21b made of synthetic resin material which is an insulator. The outer packing 21 a is disposed on the surface 20 x of the lid 20 and insulates the lid 20 from the electrode terminal 22. The inner packing 21 b is disposed on the back surface 20 y of the lid 20 and insulates the lid 20 from the base 12 a of the current collector 12.

蓋部20には、容器本体10とレーザ溶接等により封止された後に電解液を注入するための注入口が設けられており、電解液注入後、封止栓23により封止される。   The lid portion 20 is provided with an injection port for injecting an electrolytic solution after being sealed with the container body 10 by laser welding or the like, and sealed by a sealing plug 23 after the electrolytic solution is injected.

次に、図3の要部拡大図を更に参照して、非水電解質二次電池1における集電体12、外側パッキン21a及び内側パッキン21b、並びに電極端子22近傍の構成を説明する。   Next, the configuration of the current collector 12, the outer packing 21a and the inner packing 21b, and the vicinity of the electrode terminal 22 in the non-aqueous electrolyte secondary battery 1 will be described with further reference to the enlarged view of the main part in FIG.

外側パッキン21aは蓋部20及び電極端子22の中継板22aに挟まれるとともに、電極端子22の外形に対応して、一部は電極端子22の接続棒22bの周囲を囲む筒状の形状を有する。内側パッキン21bは、基台部12aの貫通孔12a1と同軸であって、蓋部20及び集電体12の基台部12aに挟まれるとともに、外側パッキン21aの筒状の部分ごと電極端子22の接続棒22bを貫通させる貫通孔を有する。   The outer packing 21a is sandwiched between the lid portion 20 and the relay plate 22a of the electrode terminal 22, and has a cylindrical shape partially surrounding the connection rod 22b of the electrode terminal 22 corresponding to the outer shape of the electrode terminal 22. . The inner packing 21b is coaxial with the through hole 12a1 of the base portion 12a, and is sandwiched between the lid portion 20 and the base portion 12a of the current collector 12, and the cylindrical portion of the outer packing 21a It has a through hole through which the connecting rod 22b passes.

これにより、外側パッキン21a及び内側パッキン21bは一体的に組み合わされた状態で集電体12と電極端子22とにより締結されて、導電路を収納容器から絶縁するとともに、導電路と収納容器との間の空間、隙間を閉塞して、収納容器内部からの電解液の漏出を防いでいる。なお、図3中において、蓋部20、外側パッキン21a及び内側パッキン21bは断面図として示し、電極端子22は透視したものとして示した。   As a result, the outer packing 21a and the inner packing 21b are fastened together by the current collector 12 and the electrode terminal 22 in an integrally combined state to insulate the conductive path from the storage container, and the conductive path and the storage container The space between them and the gap are closed to prevent leakage of the electrolyte from inside the storage container. In addition, in FIG. 3, the cover part 20, the outer packing 21a, and the inner packing 21b were shown as sectional drawing, and the electrode terminal 22 was shown as what was seen through.

次に、集電体12の一対の脚部12bは、図1に示すように、外形長円筒形状の電極体11の極板積層部111の両側面を挟むように配置される。極板積層部111において、脚部12bに挟まれ当接する表面は、一対の脚部12bと平行をなす、一対の平坦面として形成されている。   Next, as shown in FIG. 1, the pair of leg portions 12 b of the current collector 12 is disposed so as to sandwich both side surfaces of the electrode plate laminated portion 111 of the electrode body 11 having an outer shape elongated cylindrical shape. In the electrode plate laminate portion 111, the surfaces sandwiched between and in contact with the legs 12b are formed as a pair of flat surfaces parallel to the pair of legs 12b.

さらに一対の脚部12bは、図3に示すように、極板積層部111との対向面Fにて抵抗溶接によりナゲットN1を形成するよう溶接されることにより、電極体11に接合されている。カバー13と極板積層部111との接合も脚部12bの場合と同様に行われ、カバー13は、極板積層部111の、図中死角となる内側の平坦面に沿って配置され、図3の対向面Fに対応する対向面上にて、極板積層部111と抵抗溶接される。   Furthermore, as shown in FIG. 3, the pair of leg portions 12b is joined to the electrode body 11 by welding so as to form a nugget N1 by resistance welding on the surface F facing the electrode plate laminated portion 111. . Joining of the cover 13 and the electrode plate laminated portion 111 is also performed in the same manner as in the case of the leg portion 12b, and the cover 13 is disposed along the flat surface inside the electrode plate laminated portion 111 which becomes the dead angle in the figure. The electrode plate laminated portion 111 is resistance-welded on the opposing surface corresponding to the opposing surface F of FIG.

このとき、実作業としては、脚部12bと極板積層部111とカバー13との接合は同時作業として行われる。なお、図3において対向面F及びナゲットN1は死角となるため、模式的に輪郭を点線により示した。これは以下の説明においても同様である。   At this time, as an actual operation, joining of the leg portion 12b, the electrode plate laminated portion 111 and the cover 13 is performed simultaneously. In addition, since the opposing surface F and the nugget N1 become a dead angle in FIG. 3, the outline was schematically shown by a dotted line. The same applies to the following description.

以上の構成において、非水電解質二次電池1は本発明の蓄電素子に相当し、電極体11は本発明の電極体に相当する。集電体12は本発明の集電体に相当する。カバー13は本発明の保護部材に相当する。ナゲットN1は本発明の接合部に相当する。対向面Fは本発明の対向面に相当する。   In the above configuration, the non-aqueous electrolyte secondary battery 1 corresponds to the storage element of the present invention, and the electrode assembly 11 corresponds to the electrode assembly of the present invention. The current collector 12 corresponds to the current collector of the present invention. The cover 13 corresponds to the protection member of the present invention. The nugget N1 corresponds to the joint of the present invention. The facing surface F corresponds to the facing surface of the present invention.

このような構成を有する本実施の形態1による非水電解質二次電池1は、集電体12と電極体11の極板積層部111との抵抗溶接による接合に際して、ナゲットN1が、脚部12bの対向面Fの幅方向中心から電極体11の端面11c側に偏心した位置に形成されるようにしたことを特徴とする。   In the non-aqueous electrolyte secondary battery 1 according to Embodiment 1 having such a configuration, the nugget N1 includes the leg 12b in the joint by resistance welding between the current collector 12 and the electrode plate laminated portion 111 of the electrode body 11. It is characterized in that it is formed at a position eccentric to the end face 11c side of the electrode body 11 from the center in the width direction of the facing face F.

図4は、図2の領域RのA−A直線による模式的断面図であり、本実施の形態1の非水電解質二次電池1における集電体12と電極体11の極板積層部111との接合工程を説明する図である。以下、図4を更に参照して説明を行うとともに、これにより本発明の蓄電素子の製造方法の一実施の形態について説明を行う。   FIG. 4 is a schematic cross-sectional view of the region R of FIG. 2 taken along the line A-A, and shows the electrode plate laminate portion 111 of the current collector 12 and the electrode body 11 in the non-aqueous electrolyte secondary battery 1 of the first embodiment. It is a figure explaining the joining process with. Hereinafter, while demonstrating with reference to FIG. 4, while demonstrating one Embodiment of the manufacturing method of the electrical storage element of this invention by this, it demonstrates.

図4に示すように、長円筒形状の電極体11は、正負各極の合剤層が形成されず正極板又は負極板の基材である金属箔が積層されてなる極板積層部111と、電池反応を生ずる電極体本体部112とから構成される。電極体本体部112は、正極側の基材に正極合剤層112a1が形成された正極本体部112a及び負極側の基材に負極合剤層112b1が形成された負極本体部112bが、間にセパレータ112cを介した状態で積層されている。   As shown in FIG. 4, the long cylindrical electrode body 11 does not have a mixture layer of positive and negative electrodes and is formed with an electrode plate laminated portion 111 formed by laminating metal foils as a base material of a positive electrode plate or a negative electrode plate. , And an electrode body main part 112 which causes a battery reaction. The electrode body main portion 112 has a positive electrode main body portion 112a in which the positive electrode mixture layer 112a1 is formed on the positive electrode side base material, and a negative electrode main body portion 112b in which the negative electrode mixture layer 112b1 is formed on the negative electrode side base material. It laminates in the state which intervened separator 112c.

なお、図中においては極板積層部111は各極板間に隙間を有するものとして示したが、これは説明の便宜のための模式的表示であり、実際の状態を正確に反映するものではない。   In addition, although the electrode plate lamination | stacking part 111 was shown as what has a clearance gap between each electrode plate in the figure, this is a schematic display for the facilities of description, and in what reflects an actual condition correctly Absent.

極板積層部111の最外周面に集電体12の脚部12bが配置され、極板積層部111の最内周面にカバー13が配置される。カバー13の図中Y軸方向における寸法は脚部12bと同一であり、カバー13と脚部12bとにより極板積層部111が挟持される。なお、カバー13の巻回軸方向(Y方向)の配置位置は脚部12bと同じ位置にしている。   The leg portion 12 b of the current collector 12 is disposed on the outermost circumferential surface of the electrode plate lamination portion 111, and the cover 13 is disposed on the innermost circumferential surface of the electrode plate lamination portion 111. The dimension of the cover 13 in the Y-axis direction in the drawing is the same as that of the leg 12b, and the electrode plate laminated portion 111 is held between the cover 13 and the leg 12b. The arrangement position of the cover 13 in the winding axial direction (Y direction) is the same as that of the leg 12 b.

次に、脚部12bに対して図中矢印の方向に沿って溶接電極100aを当接させ、カバー13に対して図中矢印の方向に沿って溶接電極100bを当接させ、脚部12bとカバー13が極板積層部111を押圧した状態で溶接電極間に電流を通ずることにより抵抗溶接を行う。   Next, welding electrode 100a is abutted against leg 12b along the direction of the arrow in the figure, and welding electrode 100b is abutted against cover 13 along the direction of the arrow in the figure, and leg 12b and Resistance welding is performed by passing an electric current between the welding electrodes in a state where the cover 13 presses the electrode plate laminated portion 111.

本実施の形態1においては、図4に示すように、溶接電極100a及び100bを、脚部12b及びカバー13のそれぞれの幅方向(Y方向)の中心から電極体11の端面11c寄りにシフトした位置Cn上に沿って当接させることにより、脚部12bが、極板積層部111との対向面Fの幅方向の中心線Cよりも電極体11の端面11c寄りに偏心した位置Cnにて抵抗溶接されるようにしている。同様に、カバー13が、極板積層部111との対向面の中心線Cよりも電極体11の端面11c寄りに偏心した位置Cnにて抵抗溶接されるようにしている。   In the first embodiment, as shown in FIG. 4, welding electrodes 100a and 100b are shifted from the center in the width direction (Y direction) of leg 12b and cover 13 toward end face 11c of electrode body 11. By abutting along the position Cn, at the position Cn, the leg portion 12b is offset closer to the end face 11c of the electrode body 11 than the center line C in the width direction of the facing surface F with the electrode plate laminated portion 111. It is made to be resistance welded. Similarly, the cover 13 is resistance-welded at a position Cn eccentric to the end face 11 c of the electrode body 11 with respect to the center line C of the surface facing the electrode plate laminated portion 111.

これにより、図5に示すように、抵抗溶接後に形成されるナゲットN1は対向面F上において、中心線Cより端面11c寄りの位置Cn上、つまり電極体11の端面11c寄りに形成されることとなる。なお、以上の説明において、中心線Cは本発明の中心軸に相当する。   Thereby, as shown in FIG. 5, the nugget N1 formed after resistance welding is formed on the position Cn near the end face 11c from the center line C on the facing face F, that is, near the end face 11c of the electrode body 11. It becomes. In the above description, the central line C corresponds to the central axis of the present invention.

これにより以下の効果を奏する。すなわち、図6に示すように、従来、電極体11と集電体12の脚部12bとの接合は、対向面Fの中心線C上にて行われ、図6中のナゲットN0のように、対向面F上にて原点Oから等方的に広がる略円形状のナゲットを形成するように溶接されていた。   This produces the following effects. That is, as shown in FIG. 6, conventionally, bonding of the electrode body 11 and the leg portion 12b of the current collector 12 is performed on the center line C of the facing surface F, as in the nugget N0 in FIG. The welding is performed to form a substantially circular nugget that isotropically spreads from the origin O on the facing surface F.

しかしながら、電極体11と集電体12との接合強度を向上させるには、対向面F上におけるナゲットの面積を拡大する必要があるのに対し、抵抗溶接のように溶接時にスパッタの発生を伴う溶接において、ナゲットの電極体11側への幅、すなわち図中Y軸方向における寸法の拡大はスパッタの飛散量の増大に繋がり、電極体11の内部短絡等の品質を低下させる恐れがあった。   However, in order to improve the bonding strength between the electrode body 11 and the current collector 12, it is necessary to enlarge the area of the nugget on the facing surface F, while spattering occurs at the time of welding like resistance welding. In welding, the width of the nugget on the side of the electrode body 11, that is, the enlargement of the dimension in the Y-axis direction in the drawing leads to an increase in the amount of spatter scattering, which may deteriorate the quality of the electrode body 11 such as internal short circuit.

本実施の形態1においては、図6に示すナゲットN1が形成されるように、対向面Fの中心線Cから端面11c寄りにて溶接を行なうことにより、スパッタの飛散の向きを制御して、電極体11への影響を低減している。   In the first embodiment, welding is performed near the end face 11c from the center line C of the facing surface F so as to form the nugget N1 shown in FIG. The influence on the electrode body 11 is reduced.

すなわちスパッタは、ナゲットの形成に応じて当該ナゲットの周縁から等方的に生ずるが、このうち、図6中の白矢印d1にて示す、電極体11の中央部である電極体本体部112側へ飛散するものについては、電極体本体部112までの経路であるナゲットの位置から対向面Fの縁までの距離が、スパッタの飛散距離に対して拡大されている。さらにスパッタの飛散経路が対向面F内に含まれることから、スパッタの一部は対向面F内の空間に捕集されることとなるため、電極体本体部112へ達するものの割合が低減される。   That is, although sputtering occurs isotropically from the peripheral edge of the nugget according to the formation of the nugget, among these, the electrode body main part 112 side which is the central part of the electrode body 11 shown by the white arrow d1 in FIG. In the case of splashing, the distance from the position of the nugget, which is the path to the electrode body portion 112, to the edge of the facing surface F is enlarged relative to the spattering distance. Furthermore, since the spatter scattering path is included in the facing surface F, a part of the spatter is collected in the space in the facing surface F, so the ratio of those reaching the electrode body portion 112 is reduced. .

電極体本体部112の端部は、図4及び5に示すように、極板積層部111の層間と連通しており、スパッタが電極体本体部112の層間に侵入しやすい構成となっている。したがって、上記のように各方向へ飛散するスパッタについて、特に電極体本体部112への飛散を抑制することにより、電極体11の品質低下を効果的に防ぐことができる。   The end portion of the electrode body portion 112 communicates with the layer of the electrode plate laminated portion 111 as shown in FIGS. 4 and 5, so that sputtering is likely to intrude between the layers of the electrode body portion 112. . Therefore, it is possible to effectively prevent the quality deterioration of the electrode body 11 by suppressing the scattering to the electrode body main part 112, in particular, for the spatter scattering in each direction as described above.

一方、図中白矢印d2にて示す、電極体本体部112と逆向きになる端面11c側へ飛散するスパッタについては、電極体11から脱落するものが多く、電池の製造において実質的な影響を与えない。更に、対向面Fと直交する上下方向、すなわち図中Z軸方向に沿った白矢印d3及びd4に沿って飛散するスパッタについては、いずれも対向面F内であって、極板積層部111内の移動であるため、電極体本体部112への影響は軽微となる。   On the other hand, with regard to the spatter scattering toward the end face 11c opposite to the electrode body main part 112, as indicated by the white arrow d2 in the figure, there are many falling off from the electrode body 11, which substantially affects the manufacture of the battery. I will not give. Furthermore, as for the spatters scattered in the vertical direction orthogonal to the facing surface F, that is, along the white arrows d3 and d4 along the Z-axis direction in the figure, both in the facing surface F, in the electrode plate lamination portion 111 The effect on the electrode body portion 112 is minor.

この結果、ナゲットN1の面積の拡大に伴うスパッタの電極体11への影響を低減して抵抗溶接を行うことができ、電極体11と集電体12の脚部12bの良好な接合が可能となる。   As a result, resistance welding can be performed while reducing the influence of spattering on the electrode body 11 due to the expansion of the area of the nugget N1, and good joining of the electrode body 11 and the leg portion 12b of the current collector 12 is possible. Become.

なお、上記の説明においては、集電体の脚部12bと電極体11との接合を中心に述べたが、カバー13と極板積層部111との接合においても、対向面上におけるナゲットの位置が中心軸から偏心するよう抵抗溶接されることにより、スパッタの飛散方向が制御される。したがって、ナゲットの拡大に伴うスパッタの電極体本体部112への影響が低減され、電極体11とカバー13との良好な接合が可能となっている。   In the above description, the bonding of the leg portion 12b of the current collector and the electrode body 11 was mainly described, but also in the bonding of the cover 13 and the electrode plate laminated portion 111, the position of the nugget on the opposing surface The resistance welding direction of the spatter is controlled by resistance-welding so that Ec is eccentric from the central axis. Therefore, the influence of the spatter on the electrode body portion 112 due to the expansion of the nugget is reduced, and good bonding between the electrode body 11 and the cover 13 is possible.

更に、本実施の形態1は、ナゲットN1を、対向面Fの外形に沿って図中Z軸方向に沿った略長円形状としたことを特徴とする。これにより、スパッタの電極体本体部112側への飛散を抑制しつつ、ナゲットの面積を拡大することができ、電極体11と集電体12の脚部12bの更に強固な接合が可能となる。   Furthermore, the first embodiment is characterized in that the nugget N1 has a substantially oval shape along the external surface of the facing surface F and along the Z-axis direction in the drawing. This makes it possible to enlarge the area of the nugget while suppressing the scattering of the spatter to the electrode body portion 112 side, and further firm bonding of the electrode body 11 and the leg portion 12b of the current collector 12 becomes possible. .

なお、上記の説明においては、ナゲットN1の平面形状、すなわち対向面F上における外形は対向面Fの外形に沿った略長円形状であるとしたが、対向面Fの延伸方向に沿って扁平な形状であれば同様の効果を奏する。したがってナゲットN1の平面形状は矩形等の形状であってよく、対向面Fが矩形であればその長辺に沿った方向に延在した形状とすることが望ましい。この場合において、ナゲットN1の平面形状は、溶接電極を連続的に走査すること、又は溶接電極の平面形状を変更すること等の手法により調整することができる。   In the above description, the planar shape of the nugget N1, that is, the outer shape on the facing surface F is a substantially oval shape along the outer shape of the facing surface F, but the flat shape along the extending direction of the facing surface F If the shape is the same, the same effect can be obtained. Therefore, the planar shape of the nugget N1 may be rectangular or the like, and if the facing surface F is rectangular, it is desirable that the nugget N1 extend in the direction along the long side. In this case, the planar shape of the nugget N1 can be adjusted by a method such as scanning the welding electrode continuously or changing the planar shape of the welding electrode.

更に、図7に示すように、ナゲットN2のような弧状の平面形状を有する構成としてしてもよい。この場合、ナゲットN2は対向面Fの延伸方向(図中Z軸方向)に沿って扁平な形状を有し、且つ両端が端面11c寄りに湾曲していることにより、対向面Fの幅方向(図中Y軸方向)に広がりを有し、スパッタの飛散距離に対するナゲットN2から電極体本体部112までの距離を更に拡大している。   Furthermore, as shown in FIG. 7, it may be configured to have an arc-like planar shape like nugget N2. In this case, the nugget N2 has a flat shape along the extending direction of the facing surface F (the Z-axis direction in the figure), and both ends are curved toward the end face 11c. In the figure, it has a spread in the Y-axis direction), and the distance from the nugget N2 to the electrode body portion 112 with respect to the spattering distance is further enlarged.

これにより、電極体11と集電体12の接合部分の強度の更なる向上と、スパッタの電極体本体部112側への飛散の更なる効率的な抑制が可能となっている。   As a result, it is possible to further improve the strength of the bonding portion between the electrode body 11 and the current collector 12 and to suppress the spattering of the electrode body portion 112 more efficiently.

更に、図7においてナゲットN2の平面形状は弧状、すなわち湾曲した態様として示したが、くの字状等の屈曲した態様であるとしてもよい。要するに、脚部12bが延びる方向(Z軸方向)におけるナゲットの中心からZ軸方向両端に離れるにしたがって電極体11の端面11c寄りに変形する形状であれば、上記と同様の効果を奏する。   Furthermore, although the plane shape of the nugget N2 is shown as arc shape, ie, a curved aspect in FIG. 7, it may be a curved aspect such as a V shape. In short, the same effect as described above can be obtained as long as the shape is such that it is deformed closer to the end face 11c of the electrode body 11 as it moves away from the center of the nugget in the extension direction (Z axis direction) in the leg portion 12b.

また、上記の説明においては、ナゲットN1は対向面Fの外形に沿った略長円形状の平面形状であるとしたが、従来のナゲットN0同様円形状の平面形状であるとしてもよい。この場合において、対向面Fの延伸方向に沿って複数のナゲットを配列することがより好ましく、これにより、ナゲットN1と同様、ナゲットの面積の総計を増大することができ、電極体11と集電体12の脚部12bの更に強固な接合が可能となる。   In the above description, the nugget N1 has a substantially oval planar shape along the outer shape of the facing surface F. However, the nugget N1 may have a circular planar shape like the conventional nugget N0. In this case, it is more preferable to arrange a plurality of nuggets along the extension direction of the facing surface F, whereby the total area of the nuggets can be increased as in the nugget N1, and the electrode body 11 and the current collector are collected. A more rigid connection of the legs 12b of the body 12 is possible.

更に、図8に示すように、対向面Fの延伸方向に沿って配列される複数のナゲットN3a〜N3gが形成されるよう抵抗溶接を行う場合において、配列の中央に位置するナゲットN3aを最も対向面Fの中心線Cに近接され、中央から配列の両端へと連なるナゲットN3b及びN3c、ナゲットN3d及びN3e、並びにナゲットN3f及びN3gの各組について、中心線Cからの距離を徐々に大きくしつつ端面11c寄りに偏心して配置するようにしてもよい。   Furthermore, as shown in FIG. 8, when resistance welding is performed such that a plurality of nuggets N3a to N3g arranged along the extension direction of the opposing surface F are formed, the nugget N3a located at the center of the array is the most opposite For each set of nuggets N3b and N3c, nuggets N3d and N3e, and nuggets N3f and N3g adjacent to the centerline C of the plane F and continuing from the center to both ends of the array, the distance from the centerline C is gradually increased It may be arranged eccentrically near the end face 11c.

この場合、複数のナゲットN3a〜N3gは全体として、くの字状に配列されることとなり、且つ各ナゲットの面積の総計が増大することで図7のナゲットN2と同様の効果を奏する。さらにナゲットN2の場合よりも簡易な溶接の工程により接合を行うことができ、ひいては低コストで電池を作成することが可能となる。   In this case, the plurality of nuggets N3a to N3g are arranged in a square shape as a whole, and the total area of the nuggets is increased to provide the same effect as the nugget N2 of FIG. Furthermore, joining can be performed by a process of welding simpler than in the case of nugget N2, and hence it becomes possible to produce a battery at low cost.

なお、図7、図8等の構成は集電体12の脚部12bを例にとって説明したが、カバー13側も同様になっている。   The configurations shown in FIGS. 7 and 8 have been described taking the leg portion 12b of the current collector 12 as an example, but the cover 13 side is also the same.

(実施の形態2)
本発明の実施の形態2に係る非水電解質二次電池は、集電体12を除いて実施の形態1と同様の構成を有する。したがって説明には適宜図1及び2を参照し、同一又は相当する構成については、同一符号を付し詳細な説明は省略する。
Second Embodiment
The non-aqueous electrolyte secondary battery according to the second embodiment of the present invention has the same configuration as that of the first embodiment except for the current collector 12. Therefore, the description will be appropriately referred to with reference to FIGS. 1 and 2 and the same or corresponding components will be denoted by the same reference symbols and detailed description thereof will be omitted.

図9は本実施の形態2の非水電解質二次電池1における集電体12と電極体11の極板積層部111との接合工程を説明する図である。図9に示すように、図2の領域Rに対応する長円筒形状の電極体11の極板積層部111に接合される集電体12の脚部12bには、表面が凸に湾曲した突起12b1が形成されており、同様に、カバー13の表面にも突起13aが形成される。   FIG. 9 is a view for explaining a bonding process of the current collector 12 and the electrode plate laminated portion 111 of the electrode body 11 in the non-aqueous electrolyte secondary battery 1 of the second embodiment. As shown in FIG. 9, in the leg portion 12b of the current collector 12 joined to the electrode plate laminated portion 111 of the long cylindrical electrode body 11 corresponding to the region R in FIG. 12b1 is formed, and similarly, a protrusion 13a is formed on the surface of the cover 13.

突起12b1及び13aは抵抗溶接において電流が集中する部位となり、集電体12、カバー13及び極板積層部111の各部の電気抵抗が低い場合又は熱伝導率が高い場合であっても、強固な接合を実現することができる。   The protrusions 12b1 and 13a are portions where current concentrates in resistance welding, and are strong even when the electrical resistance of each part of the current collector 12, the cover 13 and the electrode plate laminated portion 111 is low or when the thermal conductivity is high. Bonding can be realized.

本実施の形態2においては、更に、突起12b1の底面の中心を、電極体11の極板積層部111との対向面Fの、幅方向の中心線Cに一致させる一方で、先端12sを、端面11c寄りに偏心させた位置Cs上に設けて、上記の底面の中心から偏心させたことを特徴とする。これにより、突起12b1の形状は、位置Csで示される線を間に挟んで図中右側が左側より急峻に変形した曲面を形成する。   In the second embodiment, the center of the bottom of the protrusion 12b1 is made to coincide with the center line C in the width direction of the surface F of the electrode body 11 facing the electrode plate laminated portion 111, while the tip 12s is It is provided on a position Cs eccentrically located near the end face 11c, and is eccentric from the center of the bottom surface. Thereby, the shape of the projection 12b1 forms a curved surface in which the right side in the drawing is deformed more sharply than the left side with the line indicated by the position Cs interposed therebetween.

カバー13の突起13aの配置は、突起12b1の配置と同様、中心線Cに一致させるとともに、突起13aの先端13sは、突起12b1の先端12sに対向するよう、突起12b1を通過する位置Cs上に設けた。   The arrangement of the projections 13a of the cover 13 coincides with the center line C, similarly to the arrangement of the projections 12b1, and the tip 13s of the projection 13a is on the position Cs passing the projection 12b1 so as to face the tip 12s of the projection 12b1. Provided.

このような脚部12b及びカバー13により抵抗溶接を行うと、これにより形成されるナゲットN4は先端12sを中心に形成される。その結果、ナゲットN4は対向面Fの中心線Cより端面11c寄りに偏心して形成されることとなる。カバー13と極板積層部111の裏面11b2との抵抗溶接も同様の位置にて行われる。なお、図9中においてナゲットN4は、説明の便宜のため、仮想的に脚部12b及びカバー13と接合していない状態で模式的に示した。   When resistance welding is performed by the leg portion 12b and the cover 13, the nugget N4 formed thereby is formed around the tip 12s. As a result, the nugget N4 is formed eccentrically closer to the end face 11c than the center line C of the facing face F. Resistance welding between the cover 13 and the back surface 11 b 2 of the electrode plate laminated portion 111 is also performed at the same position. In FIG. 9, the nugget N4 is schematically shown in a state where it is not virtually joined to the leg portion 12b and the cover 13 for the convenience of description.

このような本実施の形態2によれば、実施の形態1と同様、ナゲットN4が電極体11の端面11c寄りに偏心した位置に形成されるよう抵抗溶接が行われることとなる。したがって、溶接時に生ずるスパッタの飛散方向を制御して、スパッタの電極体本体部112側への飛散を抑制し、スパッタの影響を低減して、電極体11と集電体12の脚部12bの良好な接合が可能となる。   According to the second embodiment, as in the first embodiment, the resistance welding is performed such that the nugget N4 is formed at a position eccentric to the end face 11c of the electrode body 11. Therefore, the scattering direction of the spatter generated at the time of welding is controlled to suppress the scattering of the spatter to the electrode body portion 112 side, and the influence of the spatter is reduced, and the electrode body 11 and the leg portion 12b of the current collector 12 Good bonding is possible.

更に、本実施の形態においては、突起12b1及び13aの底面の中心の位置を、対向面Fの中心線C上に定めたことにより、従来の抵抗溶接と同様、溶接電極100a及び100bを、対向面Fの中心線C上に一致するよう位置決めして溶接を行うことができる。これにより、溶接電極の位置決めが容易となり、製造工程を複雑化することなく本発明を実施することが可能となる。   Furthermore, in the present embodiment, the positions of the centers of the bottom surfaces of the protrusions 12b1 and 13a are set on the center line C of the facing surface F, so that the welding electrodes 100a and 100b are opposed as in the conventional resistance welding. The welding can be performed by positioning so as to coincide with the center line C of the face F. Thereby, the positioning of the welding electrode is facilitated, and the present invention can be implemented without complicating the manufacturing process.

なお、突起12b1の対向面F上における平面形状については任意の形状、個数をとることができる。一例として、図10に示すものは、対向面Fの延伸方向に沿って配列される複数の突起12b1を、脚部12b上に設けた例である。対向面F上において、突起12b1は円形の底面を有し、底面の中心12oは、対向面Fの中心線C上に位置し、突起12b1の先端12sは、対向面Fの、電極体11の端面11c寄りに偏心した位置Cs上に設けられている。図中死角となるカバー13に設けた突起13aも同様の構成を有する。   In addition, about the planar shape on the opposing surface F of protrusion 12b1, arbitrary shapes and number can be taken. As an example, what is shown in FIG. 10 is an example which provided several protrusion 12b1 arranged along the extending | stretching direction of the opposing surface F on the leg part 12b. On the facing surface F, the protrusion 12b1 has a circular bottom, the center 12o of the bottom is located on the center line C of the facing surface F, and the tip 12s of the protrusion 12b1 is on the facing surface F of the electrode body 11 It is provided on a position Cs eccentric to the end face 11c. The projections 13a provided on the cover 13 which is a blind spot in the drawing have the same configuration.

この構成においては、突起12b1により形成されるナゲットの配置が対向面Fにおいて端面11c寄りとなり、且つ各ナゲットの面積の総計が増大することで、スパッタの電極体本体部112側への飛散を抑制するとともに、電極体11と集電体12の接合の強度を高めることが可能となっている。図10では突起12b1の底面の形状を示し、ナゲットの図示は省略した。   In this configuration, the arrangement of the nuggets formed by the projections 12b1 is closer to the end face 11c on the facing surface F, and the total area of the nuggets is increased, thereby suppressing the spatter from scattering to the electrode body portion 112. At the same time, it is possible to increase the bonding strength of the electrode body 11 and the current collector 12. In FIG. 10, the shape of the bottom of the protrusion 12b1 is shown, and the illustration of the nugget is omitted.

更に、図11に示す構成例は、対向面Fの延伸方向に沿って延伸する突起12b1を、脚部12b上に設けた例である。対向面F上における突起12b1の底面形状は長円形状であって、長手方向の中心線は対向面Fの中心線C上に位置する一方、図11に突起として示される突条12tは中心線Cに平行に延伸して形成され、電極体11の端面11c寄りに偏心した位置Cs上に設けられている。図中死角となるカバー13に設けた突起13aも同様の構成を有する。   Furthermore, the configuration example shown in FIG. 11 is an example in which a protrusion 12b1 extending along the extension direction of the facing surface F is provided on the leg 12b. The bottom shape of the protrusion 12b1 on the facing surface F is an oval shape, and the longitudinal center line is located on the center line C of the facing surface F, while the ridge 12t shown as a protrusion in FIG. It is formed extending in parallel to C, and is provided on a position Cs eccentric to the end face 11 c of the electrode body 11. The projections 13a provided on the cover 13 which is a blind spot in the drawing have the same configuration.

この構成も、突起12b1により形成されるナゲットは面積を拡大しつつ、配置が対向面Fにおいて端面11c寄りとなることにより、スパッタの電極体本体部112側への飛散を抑制するとともに、電極体11と集電体12の接合の強度を高めることが可能となっている。更に、ナゲットが単体で隙間無く構成されることにより、図9に示す構成よりも更に接合の強度を高めることができる。図11では突起12b1の底面の形状を示し、ナゲットの図示は省略した。   Also in this configuration, while the nugget formed by the protrusion 12b 1 expands the area, the arrangement becomes closer to the end face 11c on the opposing surface F, thereby suppressing the scattering of the sputter to the electrode body main part 112 side. It is possible to increase the strength of bonding between the current collector 11 and the current collector 12. Furthermore, by forming the nugget alone without gaps, the bonding strength can be further enhanced than the configuration shown in FIG. FIG. 11 shows the shape of the bottom of the protrusion 12b1, and the nugget is not shown.

なお、上記の説明においては、突起12b1の形状は、断面形状として頂点を有する形状であるとしたが、図12(a)に示すように、先端12sを平坦面として形成し、極板積層部111と面接触する構成としてもよい。突起12b1の形状が底面から先端12sへ向かって減少するように変形していれば抵抗溶接における電流集中の効果を保つことができ、且つ、先端が対向面Fの中心線Cよりも電極体11の端面11c寄りに位置していれば、本発明の効果を奏する。更に、先端12sが面接触することにより、溶接電極100aの当接時における極板積層部111と脚部12bとの位置ずれを抑制することが可能となる。   In the above description, the shape of the protrusion 12b1 is a cross-sectional shape having a vertex, but as shown in FIG. 12 (a), the tip 12s is formed as a flat surface, and the electrode plate laminated portion It may be configured to be in surface contact with 111. If the shape of the protrusion 12b1 is deformed so as to decrease from the bottom to the tip 12s, the effect of current concentration in resistance welding can be maintained, and the tip is closer to the electrode assembly 11 than the center line C of the facing surface F. If it is located near the end face 11c of the present invention, the effect of the present invention is exhibited. Furthermore, when the tip 12s is in surface contact, it is possible to suppress the positional deviation between the electrode plate laminated portion 111 and the leg 12b when the welding electrode 100a abuts.

更に、上記の説明においては、突起12b1の形状は、表面が凸に湾曲した曲面であるとしたが、図12(b)に示すように、表面が凹に湾曲した曲面であるとしてもよい。これにより、溶接中において、特に先端12s近傍における断面積の増大を抑制して先端12s近傍における電流の集中を持続し、ナゲットが精度良く位置決めされ、且つ効率的な溶接を行うことが可能となる。   Furthermore, in the above description, the shape of the protrusion 12b1 is a curved surface whose surface is curved in a convex shape, but as shown in FIG. 12B, the surface may be a curved surface having a concave surface. Thereby, during welding, the increase of the cross-sectional area especially in the vicinity of the tip 12s is suppressed, and concentration of the current in the vicinity of the tip 12s is maintained, and the nugget can be accurately positioned and welding can be performed efficiently. .

なお、上記の説明においては、集電体12の脚部12b側の突起12b1とカバー13の突起13aは、底面の形状及び先端12s又は13sの高さ(図中X軸方向の寸法)が同一であるとしたが、突起の形状、寸法は脚部12bとカバー13とで異ならせる構成としてもよい。   In the above description, the protrusion 12b1 on the leg 12b side of the current collector 12 and the protrusion 13a of the cover 13 have the same bottom shape and the same height (the dimension in the X-axis direction in the figure) of the tip 12s or 13s. However, the shape and size of the protrusion may be different between the leg 12 b and the cover 13.

以上説明した通り、本発明の各実施の形態の非水電解質二次電池によれば、スパッタの影響を低減して、ナゲットの面積を拡大して、電極体と集電体の良好な接合が可能となる。   As explained above, according to the non-aqueous electrolyte secondary battery of each embodiment of the present invention, the influence of sputtering is reduced, the area of the nugget is enlarged, and good bonding between the electrode body and the current collector is achieved. It becomes possible.

しかしながら、本発明は上記の各実施の形態に限定されるものではない。   However, the present invention is not limited to the above embodiments.

実施の形態2においては、カバー13と脚部12bの双方に突起12b1及び13aをそれぞれ形成する構成としたが、突起を脚部12b又はカバー13のいずれか一方にのみ形成する構成としてもよい。   In the second embodiment, the projections 12b1 and 13a are formed on both the cover 13 and the leg 12b, but the projections may be formed on only one of the leg 12b or the cover 13.

更に、電極体11と集電体12との接合においては、カバー13を省略して本発明を実施するものとしてもよい。極板積層部111に損傷等の不都合が生じなければ、カバー13を省略することができる。   Furthermore, in bonding the electrode body 11 and the current collector 12, the cover 13 may be omitted to practice the present invention. The cover 13 can be omitted if problems such as damage do not occur in the electrode plate lamination portion 111.

更に、本発明は上記の各実施の形態を組み合わせた態様として実現してもよい。具体的には、図12(c)に示すように、突起12b1の底面の中心を、対向面Fの中心線Cより電極体11の端面11c寄りの位置Cpに偏心させ、突起12b1の先端12sの位置を更に端面11c側に近接させる。これによりスパッタの電極体本体部112側への飛散を更に効率的に抑制して、電極体11と集電体12との良好な接合が可能となる。なお、図12(a)〜12(c)においては、電極体本体部112の内部構成は省略して示した。   Furthermore, the present invention may be realized as a combination of the above-described embodiments. Specifically, as shown in FIG. 12C, the center of the bottom surface of the protrusion 12b1 is eccentric to a position Cp closer to the end surface 11c of the electrode body 11 than the center line C of the opposing surface F, and the tip 12s of the protrusion 12b1 Is further brought closer to the end face 11c side. As a result, the scattering of the sputter to the electrode body portion 112 can be further efficiently suppressed, and a good bonding between the electrode body 11 and the current collector 12 can be achieved. 12 (a)-12 (c), the internal structure of the electrode body main part 112 was abbreviate | omitted and shown.

更に、上記の説明においては、電極体11は両端が筒状の極板積層部111として形成され長円筒形状の外形を有し、集電体12は脚部12bが筒形状の表面となる極板積層部111側から電極体11に接合されるものとしたが、本発明の電極体及び集電体、並びにこれらの接合はその具体的構成によって限定されるものではない。したがって、電極体は複数の正極板及び負極板を、間にセパレータを介して重ねて成る積層型の構成であってもよいし、集電体は電極体の極板積層部を表裏から挟持する等、任意の態様で接合されるものであってよい。更に、電極体11と集電体12との接合部としてのナゲットが形成される脚部12bの対向面は、電極体11の平坦面に対向している面であるとしたが、電極体11の長円筒形状における湾曲部分に対向する面としてもよい。   Furthermore, in the above description, the electrode body 11 has an elongated cylindrical outer shape formed as a tubular electrode plate laminated portion 111 at both ends, and the current collector 12 has an electrode whose leg 12 b is a cylindrical surface. Although the electrode assembly 11 is to be joined to the electrode assembly 11 from the side of the plate laminate portion 111, the electrode assembly and the current collector of the present invention, and their junctions are not limited by the specific configuration. Therefore, the electrode body may have a laminated structure in which a plurality of positive electrode plates and negative electrode plates are stacked with a separator interposed therebetween, and the current collector holds the electrode plate laminated portion of the electrode body from the front and the back. Etc. may be joined in any manner. Furthermore, although the opposing surface of the leg portion 12b on which the nugget as the bonding portion between the electrode body 11 and the current collector 12 is formed is the surface facing the flat surface of the electrode body 11, the electrode body 11 It may be a surface opposite to the curved portion in the long cylindrical shape.

更に、集電体は蓋部20に固定される基台部12a及び電極体11に接合される脚部12bから構成されるものとしたが、本発明の集電体は電極体と溶接により接合するものであれば、任意の構成であってよい。   Furthermore, although the current collector is composed of the base 12a fixed to the lid 20 and the leg 12b joined to the electrode body 11, the current collector of the present invention is joined to the electrode body by welding. It may have any configuration as long as it

更に、上記の説明においては、電極体11と集電体12との接合は抵抗溶接によるものとしたがとしたが、スパッタの発生を伴う溶接であれば、本発明はレーザ溶接、アーク溶接その他周知の溶接手法において実施してもよい。   Furthermore, in the above description, the connection between the electrode body 11 and the current collector 12 is resistance welding, but in the case of welding accompanied by the occurrence of spatter, the present invention relates to laser welding, arc welding, etc. You may implement in the well-known welding method.

更に、上記の説明においては、本発明の蓄電素子は、リチウムイオン二次電池に代表される非水電解質二次電池であるとしたが、電気化学反応により充放電可能な電池であれば、ニッケル水素電池その他各種の二次電池を用いてもよい。又、一次電池であってもよい。更に、電気二重層キャパシタその他各種のキャパシタであってもよい。要するに、本発明の蓄電素子は電極体と電解液を収納容器内に封入してなる電気を蓄積可能な素子であれば、起電力を発生させるための具体的な方式によって限定されるものではない。   Furthermore, in the above description, the storage element of the present invention is a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, but in the case of a battery that can be charged and discharged by an electrochemical reaction, nickel A hydrogen battery or any other secondary battery may be used. Also, it may be a primary battery. Furthermore, an electric double layer capacitor or various other capacitors may be used. In short, the storage element of the present invention is not limited by a specific method for generating an electromotive force as long as it is an element capable of storing electricity formed by sealing an electrode body and an electrolytic solution in a storage container. .

更に、上記の説明においては、単体の非水電解質二次電池を例に取ったが、本発明は、複数の蓄電素子において少なくとも一つの蓄電素子に本発明の蓄電素子を含んでなる、電源モジュールとして実現してもよい。   Furthermore, although a single non-aqueous electrolyte secondary battery has been taken as an example in the above description, the present invention relates to a power supply module including a plurality of storage elements and the storage element of the present invention in at least one storage element. It may be realized as

要するに、本発明は、その要旨を逸脱しない範囲内であれば、以上説明したものを含め、上記実施の形態に種々の変更を加えたものとして実施してもよい。   In short, the present invention may be implemented as various modifications to the above-described embodiment, including those described above, as long as the scope of the present invention is not deviated.

以上のような本発明は、スパッタの影響を低減して電極体と集電体との良好な接合を行うことが可能になる効果を有し、例えば二次電池のような蓄電素子において有用である。   The present invention as described above has the effect that it is possible to reduce the influence of sputtering and achieve a good bonding between the electrode body and the current collector, and is useful, for example, in a storage element such as a secondary battery. is there.

1 非水電解質二次電池
10 容器本体
10x 開口
10y 内底
10z 内部空間
11 電極体
11c 端面
12 集電体
12a 基台部
12b 脚部
12o 中心
13 カバー
20 蓋部
21a 外側パッキン
21b 内側パッキン
22 電極端子
22a 中継板
22b 接続棒
22x かしめ端
23 封止栓
100a,100b 溶接電極
111 極板積層部
112 電極体本体部
112a 正極本体部
112b 負極本体部
112a1 正極合剤層
112b1 負極合剤層
112c セパレータ
N1 ナゲット
DESCRIPTION OF SYMBOLS 1 nonaqueous electrolyte secondary battery 10 container body 10 x opening 10 y inner bottom 10 z inner space 11 electrode body 11 c end face 12 current collector 12 a base 12 b leg 12 o center 13 cover 20 lid 21 a outer packing 21 b inner packing 22 electrode terminal 22a relay plate 22b connecting rod 22x caulking end 23 sealing plug 100a, 100b welding electrode 111 electrode plate laminated portion 112 electrode body main portion 112a positive electrode main portion 112b negative electrode main portion 112a1 positive electrode mixture layer 112b1 negative electrode mixture layer 112c separator N1 nugget

Claims (9)

電極体と、
前記電極体に溶接により接合される集電体とを備え、
前記電極体は、極板が合剤層を介して重なり合う電極体本体部と、前記集電体に接合される極板積層部とを有し、
前記集電体と前記極板積層部との接合部の位置は、前記集電体の前記極板積層部との対向面において、前記電極体本体部から遠ざかる側に偏心しており、
前記接合部は複数であって、前記極板積層部との前記対向面に沿って配列されている、
蓄電素子。
Electrode body,
And a current collector joined to the electrode body by welding.
The electrode body has an electrode body main portion in which electrode plates overlap via a mixture layer, and an electrode plate laminated portion joined to the current collector.
Position of the junction between the collector and the electrode plate laminate unit Oite the opposing surfaces of the electrode plates laminated portion of the current collector, is eccentric to the side away from the electrode body part,
A plurality of the bonding portions are arranged along the facing surface to the electrode plate laminated portion.
Storage element.
前記接合部は、前記集電体の、前記電極体との前記対向面の長辺に沿った方向に延在している形状を有する、
請求項1に記載の蓄電素子。
The bonding portion has a shape extending in a direction along a long side of the facing surface of the current collector to the electrode body.
The storage element according to claim 1.
配列された複数の前記接合部の各々は、前記集電体の前記極板積層部との対向面において、中央から両端に向かうにつれて前記電極体本体部から遠ざかる側に偏心して配置されている、
請求項1又は2に記載の蓄電素子。
Each of the plurality of the joint portions arranged in, Oite the opposing surfaces of the electrode plates laminated portion of the current collector is disposed eccentrically on the side away from the electrode body portion toward both ends from the center Yes,
The storage element according to claim 1.
電極体と、
前記電極体に溶接により接合される集電体とを備え、
前記電極体は、極板が合剤層を介して重なり合う電極体本体部と、前記集電体に接合される極板積層部とを有し、
前記極板積層部の、前記電極体との接合部には突起が形成されており、
前記突起の先端は、前記集電体の前記極板積層部との対向面において、前記電極体本体部から遠ざかる側に偏心している、蓄電素子。
Electrode body,
And a current collector joined to the electrode body by welding.
The electrode body has an electrode body main portion in which electrode plates overlap via a mixture layer, and an electrode plate laminated portion joined to the current collector.
A protrusion is formed at a joint portion between the electrode plate laminated portion and the electrode body,
Tips of said projections, Oite the opposing surfaces of the electrode plates laminated portion of the current collector is eccentric to the side away from the electrode body part, the electric storage device.
前記突起の底面の中心は、前記集電体の前記極板積層部との対向面において、前記集電体の幅を二分する中心線上に位置している、
請求項4に記載の蓄電素子。
Center of the bottom surface of said projections, Oite the opposing surfaces of the electrode plates laminated portion of the current collector is positioned on the center line bisecting the width of the current collector,
The storage element according to claim 4.
前記突起は、前記集電体の、前記電極体との前記対向面に沿った突条を形成している、
請求項4又は5に記載の蓄電素子。
The protrusion forms a ridge along the opposing surface of the current collector with the electrode body.
The storage element according to claim 4 or 5.
前記電極体の前記集電体と反対側にて前記電極体に接合される保護部材を備えている、
請求項1から6のいずれかに記載の蓄電素子。
And a protective member joined to the electrode body on the side opposite to the current collector of the electrode body.
The storage element according to any one of claims 1 to 6.
請求項1から7のいずれかに記載の蓄電素子を少なくとも1つ含む複数の蓄電素子を備えた、
電源モジュール。
A plurality of storage elements including at least one storage element according to any one of claims 1 to 7,
Power supply module.
電極体に、溶接により集電体を接合する工程を備えた蓄電素子の製造方法であって、
前記電極体は、極板が合剤層を介して重なり合う電極体本体部と、前記集電体が接合される極板積層部とを有し、
前記接合の工程を、前記集電体と前記極板積層部の接合面の位置を、前記集電体の、前記極板積層部との対向面において、前記電極体本体部から遠ざかる側に偏心させることにより行い、
前記接合部は複数であって、前記電極体との前記対向面に沿って配列されるものである、
蓄電素子の製造方法。
A method of manufacturing a storage element, comprising the step of joining a current collector to an electrode body by welding.
The electrode body has an electrode body main portion in which electrode plates overlap via a mixture layer, and an electrode plate laminated portion to which the current collector is joined,
The process of the joining, the position of the joint surface of the electrode plates laminated portion and the current collector, the current collector, Oite the opposing surfaces of the electrode plate laminate portion, the side away from the electrode body portion By decentering the
The plurality of junctions are arranged along the opposing surface to the electrode body.
Method of manufacturing a storage element.
JP2014218259A 2014-10-27 2014-10-27 STORAGE DEVICE, POWER SUPPLY MODULE, AND METHOD FOR MANUFACTURING STORAGE DEVICE Active JP6476746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218259A JP6476746B2 (en) 2014-10-27 2014-10-27 STORAGE DEVICE, POWER SUPPLY MODULE, AND METHOD FOR MANUFACTURING STORAGE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218259A JP6476746B2 (en) 2014-10-27 2014-10-27 STORAGE DEVICE, POWER SUPPLY MODULE, AND METHOD FOR MANUFACTURING STORAGE DEVICE

Publications (2)

Publication Number Publication Date
JP2016085875A JP2016085875A (en) 2016-05-19
JP6476746B2 true JP6476746B2 (en) 2019-03-06

Family

ID=55972826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218259A Active JP6476746B2 (en) 2014-10-27 2014-10-27 STORAGE DEVICE, POWER SUPPLY MODULE, AND METHOD FOR MANUFACTURING STORAGE DEVICE

Country Status (1)

Country Link
JP (1) JP6476746B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582443B2 (en) * 2015-02-27 2019-10-02 三洋電機株式会社 Secondary battery and manufacturing method thereof
JP6550848B2 (en) * 2015-03-30 2019-07-31 三洋電機株式会社 Prismatic secondary battery
JP6427650B1 (en) 2017-11-21 2018-11-21 三菱電機インフォメーションシステムズ株式会社 Tracking device and tracking program
JPWO2021124797A1 (en) * 2019-12-19 2021-06-24
CN114830428A (en) 2019-12-19 2022-07-29 松下控股株式会社 Nonaqueous electrolyte secondary battery
JPWO2021186947A1 (en) 2020-03-17 2021-09-23

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100281B2 (en) * 2007-06-27 2012-12-19 三洋電機株式会社 Sealed battery and manufacturing method thereof
CN102969478B (en) * 2011-08-31 2016-06-29 株式会社杰士汤浅国际 Charge storage element
US20140023913A1 (en) * 2012-07-17 2014-01-23 Sanyo Electric Co., Ltd. Prismatic secondary battery
JP5981809B2 (en) * 2012-08-31 2016-08-31 日立オートモティブシステムズ株式会社 Prismatic secondary battery
JP6213036B2 (en) * 2013-08-13 2017-10-18 株式会社Gsユアサ Storage element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2016085875A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6476746B2 (en) STORAGE DEVICE, POWER SUPPLY MODULE, AND METHOD FOR MANUFACTURING STORAGE DEVICE
US9601725B2 (en) Energy storage element
KR102568341B1 (en) Energy storage device
US8530068B2 (en) Square battery and manufacturing method of the same
JP5342090B1 (en) Electricity storage element
KR20140104366A (en) Energy storage device and energy storage unit
JP2012243403A (en) Secondary battery
JP2018067381A (en) Power storage device
JP6156727B2 (en) Power storage element and power storage device
US11837700B2 (en) Energy storage device
JP2014199782A (en) Electricity storage element and pressure contact body
JP7056560B2 (en) Power storage element and manufacturing method of power storage element
JP2019071259A (en) Power storage element, and method for manufacturing the same
WO2017047278A1 (en) Secondary battery
JP2014207205A (en) Electricity storage element, power-supply module, and method for manufacturing electricity storage element
JP6926509B2 (en) Power storage device
JP6958165B2 (en) Power storage element
JP6285513B1 (en) Power storage module
JP7346856B2 (en) Energy storage element and its manufacturing method
WO2019116914A1 (en) Electricity storage element
JP2018107014A (en) Power storage element and method of manufacturing power storage element
JP7331573B2 (en) Storage element
JP7259261B2 (en) Storage element
US20220085469A1 (en) Terminal for secondary battery and secondary battery provided with the terminal
JP2023038811A (en) Power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6476746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150