JP6476081B2 - Metal resin bonding member and method for manufacturing the same - Google Patents

Metal resin bonding member and method for manufacturing the same Download PDF

Info

Publication number
JP6476081B2
JP6476081B2 JP2015128513A JP2015128513A JP6476081B2 JP 6476081 B2 JP6476081 B2 JP 6476081B2 JP 2015128513 A JP2015128513 A JP 2015128513A JP 2015128513 A JP2015128513 A JP 2015128513A JP 6476081 B2 JP6476081 B2 JP 6476081B2
Authority
JP
Japan
Prior art keywords
resin
metal
amorphous film
film
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015128513A
Other languages
Japanese (ja)
Other versions
JP2017007306A (en
Inventor
由香 山田
由香 山田
崇 伊関
崇 伊関
徳田 健一
健一 徳田
耕太郎 池田
耕太郎 池田
雅史 小泉
雅史 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2015128513A priority Critical patent/JP6476081B2/en
Publication of JP2017007306A publication Critical patent/JP2017007306A/en
Application granted granted Critical
Publication of JP6476081B2 publication Critical patent/JP6476081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、金属と樹脂を接合した金属樹脂接合部材とその製造方法に関する。   The present invention relates to a metal-resin joining member obtained by joining a metal and a resin and a method for manufacturing the same.

近年、自動車分野や航空機分野における軽量化ニーズ等に伴い、高信頼性の金属と樹脂の接合部材が求められている。また、電子機器やパワーデバイスの多くは、樹脂で封止されてパッケージ化されるため、配線層や筐体などの金属と封止樹脂との間でも、高温耐久性等に優れた接合が求められている。接着剤を用いた金属と樹脂の接合も考えられるが、接着剤の使用は経年劣化による剥離等を生じるため信頼性に欠け、また環境負荷物質である接着溶剤の使用等を伴うことも多いため、好ましくない。そこで、接着剤を用いないで金属と樹脂を接合する提案が種々なされており、例えば、下記の特許文献に関連する記載がある。   In recent years, with the need for weight reduction in the automobile field and the aircraft field, a highly reliable metal / resin joining member is required. In addition, since many electronic devices and power devices are sealed and packaged with resin, bonding with excellent high-temperature durability and the like is required even between the metal such as the wiring layer and the housing and the sealing resin. It has been. Joining metal and resin using an adhesive is also conceivable, but the use of an adhesive causes peeling due to deterioration over time, so it is not reliable and often involves the use of an adhesive solvent that is an environmentally hazardous substance. It is not preferable. Accordingly, various proposals have been made to join a metal and a resin without using an adhesive, and for example, there are descriptions related to the following patent documents.

特開2013−52671号公報JP 2013-52671 A 特許第5253416号公報Japanese Patent No. 5253416 特許第4776515号公報Japanese Patent No. 4776515 特許第4766176号公報Japanese Patent No. 4766176

特許文献1および特許文献2は、接合界面となる金属表面を粗面化し、いわゆるアンカー効果によって、金属と樹脂を物理的または機械的に接合することを提案している。アンカー効果によって高い接合強度を確保するには、相応な大きさの凹凸を確保することが必要となる。   Patent Document 1 and Patent Document 2 propose that a metal surface that becomes a bonding interface is roughened and a metal and a resin are physically or mechanically bonded by a so-called anchor effect. In order to secure a high joint strength by the anchor effect, it is necessary to secure unevenness of a suitable size.

特許文献3は、ビルドアップ多層プリント配線板を構成する導体金属と層間樹脂との密着性を向上させるために、特定のトリアジン化合物を用いて形成される密着層を導体金属の表面に設けることを提案している。このような方法は複雑な湿式プロセスを必要とし、種々の接合部材へ簡易に適用できない。   Patent Document 3 states that an adhesion layer formed using a specific triazine compound is provided on the surface of the conductor metal in order to improve the adhesion between the conductor metal constituting the build-up multilayer printed wiring board and the interlayer resin. is suggesting. Such a method requires a complicated wet process and cannot be easily applied to various joining members.

特許文献4は、ゴムとDLC膜で被覆された金属とを、そのDLC膜とゴムとの間で硫黄架橋またはパーオキサイド架橋させることにより接合することを提案している。この場合、化学的な結合力に起因した高い接合強度が得られると考えられる。しかし、特許文献4の接合方法は、金属に被覆された炭素主体のDLC膜([0019]、[0034]等)に対してゴムが架橋を生じる場合に適用範囲が限られる。   Patent Document 4 proposes joining rubber and a metal covered with a DLC film by sulfur crosslinking or peroxide crosslinking between the DLC film and the rubber. In this case, it is considered that a high bonding strength resulting from the chemical bonding force can be obtained. However, the bonding method of Patent Document 4 has a limited range of application when rubber is crosslinked with respect to a carbon-based DLC film ([0019], [0034], etc.) coated with metal.

本発明はこのような事情に鑑みて為されたものであり、種々の分野で比較的簡易に利用し得る金属樹脂接合部材と、その製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a metal resin bonding member that can be used relatively easily in various fields, and a method for manufacturing the same.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、従来とは異なるメカニズムによって金属と樹脂を強固に接合し得ることを見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   The present inventor has intensively studied to solve this problem, and as a result of repeated trial and error, it has been found that a metal and a resin can be firmly bonded by a mechanism different from the conventional one. By developing this result, the present invention described below has been completed.

《金属樹脂接合部材》
(1)本発明の金属樹脂接合部材は、非晶質膜で予め表面が被覆された金属体と、該非晶質膜への接合を介して該金属体接合された樹脂体とからなる金属樹脂接合部材であって、前記樹脂体は、官能基中または主鎖中にOまたはNを含み、前記非晶質膜は、該非晶質膜全体を100at%(単に「%」という。)として1〜40%およびC:20〜95%を含むと共に膜厚が0.01〜10μmであり、さらに、前記金属体側にある金属元素を含まないと共に該樹脂体の一部でもないことを特徴とする。
《Metal resin bonding member》
(1) metal-resin joint member of the present invention, the metal consisting of a metal body preliminarily surface covered with amorphous film, through the junction to the non AkiraTadashimaku joined to the metal member and resin member a resin bonding member, the resin body is seen containing an O or N in the functional group or in the main chain, wherein the amorphous film, the entire non-AkiraTadashimaku 100 atomic% (referred to simply as "%".) as, O: 1 to 40% and C: film thickness with containing 20-95% it is 0.01 to 10 [mu] m, further, not part of the resin body with no metal element in the metal side It is characterized by that.

(2)本発明の金属樹脂接合部材(単に「接合部材」という。)は、金属体と樹脂体が非晶質膜を介して強固に接合され、ドライプロセスにより比較的容易に製造可能であるため、適用範囲が広く、各種分野の様々な部材に利用され得る。 (2) The metal-resin joining member of the present invention (simply referred to as “joining member”) can be relatively easily manufactured by a dry process in which a metal body and a resin body are firmly joined via an amorphous film. Therefore, the application range is wide and it can be used for various members in various fields.

また非晶質膜が金属体と樹脂体の間で生じる拡散(特に金属体から樹脂体への金属元素の拡散)を抑止する遮蔽膜(バリヤー層)として機能する場合、その拡散に起因した接合界面の破壊や剥離も抑止される。こうして本発明の接合部材は、高い接合強度を長期に渡って維持する耐久性または信頼性に優れたものとなる。   In addition, when the amorphous film functions as a shielding film (barrier layer) that suppresses diffusion (particularly diffusion of metal elements from the metal body to the resin body) that occurs between the metal body and the resin body, bonding caused by the diffusion Interface destruction and peeling are also suppressed. Thus, the joining member of the present invention has excellent durability or reliability for maintaining high joining strength over a long period of time.

さらに、非晶質膜が金属体の酸化や腐食等を抑止する保護膜として機能する場合、本発明の接合部材は耐食性等にも優れたものとなる。   Furthermore, when the amorphous film functions as a protective film that suppresses oxidation or corrosion of the metal body, the bonding member of the present invention has excellent corrosion resistance and the like.

(3)ところで本発明の接合部材が、非晶質膜と樹脂体の間で高い接合強度を発揮するメカニズムは必ずしも定かではないが、本発明者が鋭意研究したところ、現状では次のように考えられる。 (3) By the way, although the mechanism by which the bonding member of the present invention exhibits high bonding strength between the amorphous film and the resin body is not necessarily clear, the present inventor has intensively studied. Conceivable.

本発明の接合部材は、従来のアンカー効果等のような物理的な結合力に依るまでもなく、高い接合強度を発揮する。このことから非晶質膜と樹脂体との間には化学的な結合力が生じていると考えられる。化学的な結合力を生じる要因(化学的要因)には、ファンデルワールス力、水素結合、共有結合等が考えられるが、接合強度が格段に大きいことから、非晶質膜と樹脂体の間では共有結合が生じていると考えられる。   The joining member of the present invention exhibits high joining strength without depending on the physical joining force such as the conventional anchor effect. From this, it is considered that a chemical bonding force is generated between the amorphous film and the resin body. Factors that cause chemical bond strength (chemical factors) include van der Waals force, hydrogen bond, and covalent bond, but since the bond strength is remarkably high, there is a gap between the amorphous film and the resin body. Then, it is thought that the covalent bond has arisen.

具体的にいうと、非晶質膜中に含まれるOまたはNが、非晶質膜を構成する主成分(例えばCまたはSi)と共有結合していると共に、樹脂体中の骨格(主鎖)または官能基を構成する元素(例えばC)と共有結合して、非晶質膜と樹脂体が強固に接合されていると考えられる。このような共有結合を生じるためには、非晶質膜中にOまたはNが含まれると共に、樹脂体がそのような非晶質膜と反応して共有結合を生じる樹脂からなる必要がある。   Specifically, O or N contained in the amorphous film is covalently bonded to a main component (for example, C or Si) constituting the amorphous film and a skeleton (main chain) in the resin body. ) Or an element constituting a functional group (for example, C), and the amorphous film and the resin body are considered to be firmly bonded. In order to generate such a covalent bond, it is necessary that the amorphous film contains O or N and the resin body is made of a resin that reacts with such an amorphous film to generate a covalent bond.

このような樹脂は、種々考えられるが、本発明者の調査研究によれば、少なくとも接合界面近傍の官能基中または主鎖中にOまたはNを含むものが好ましい。より具体的にいうと、例えば、主鎖に置換した官能基を有し、非晶質膜中のOまたはNを含む官能基(適宜、Oを含む官能基を「酸素官能基」、Nを含む官能基を「窒素官能基」という。)と直接的に共有結合を形成し得る樹脂(特定樹脂)である。   Various kinds of such resins are conceivable, but according to the research conducted by the present inventor, those containing at least O or N in the functional group or main chain in the vicinity of the bonding interface are preferable. More specifically, for example, a functional group substituted on the main chain, and a functional group containing O or N in the amorphous film (the functional group containing O is appropriately referred to as “oxygen functional group”, N It is a resin (specific resin) capable of directly forming a covalent bond with a functional group containing the nitrogen group).

いずれにしろ、官能基中または主鎖中にOまたはNを含む樹脂体と、OまたはNを含む非晶質膜とが界面で共有結合が生じることにより、本発明の接合部材は高い接合強度を発揮するようになったと考えられる。   In any case, the bonding member of the present invention has a high bonding strength because a covalent bond occurs at the interface between the resin body containing O or N in the functional group or main chain and the amorphous film containing O or N. It is thought that came to show.

《金属樹脂接合部材の製造方法》
本発明は接合部材としてのみならず、その製造方法としても把握できる。すなわち本発明は、非晶質膜で被覆された金属体の該非晶質膜上へ、軟化または溶融した樹脂を供給する供給工程と、該樹脂を固化させて樹脂体とする固化工程とを備え、上述した金属樹脂接合部材が得られることを特徴とする製造方法としても把握できる。また本発明は、非晶質膜を介して金属体と樹脂体を加熱しつつ加圧する圧着工程を備え、上述した金属樹脂接合部材が得られることを特徴とする金属樹脂接合部材の製造方法でもよい。
<< Production Method of Metal Resin Bonding Member >>
The present invention can be grasped not only as a joining member but also as a manufacturing method thereof. That is, the present invention includes a supply step of supplying a softened or molten resin onto a metal body coated with an amorphous film, and a solidification step of solidifying the resin to form a resin body. Also, it can be grasped as a manufacturing method characterized in that the above-described metal resin bonding member is obtained. The present invention also includes a method for manufacturing a metal resin bonding member, comprising a pressure bonding step of heating and pressing a metal body and a resin body through an amorphous film, and obtaining the above-described metal resin bonding member. Good.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

非晶質膜と樹脂体の間で共有結合を生じる反応を説明する模式図である。It is a schematic diagram explaining reaction which produces a covalent bond between an amorphous film and a resin body. 強度評価試験後の各試料の剥離面または破面を示す写真である。It is a photograph which shows the peeling surface or fracture surface of each sample after a strength evaluation test.

本明細書で説明する内容は、本発明の接合部材のみならず、その製造方法にも適宜該当し得る。製造方法に関する構成要素は、プロダクトバイプロセスクレームとして理解すれば物に関する構成要素ともなり得る。上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can be appropriately applied not only to the joining member of the present invention but also to the manufacturing method thereof. A component related to a manufacturing method can be a component related to an object if understood as a product-by-process claim. One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. Which embodiment is the best depends on the target, required performance, and the like.

《非晶質膜》
(1)本発明に係る非晶質膜はOまたはNを含む。OまたはNは、通常、非晶質膜単体中で、−OH(ヒドロキシ基)、−NH(イミノ基)、−NH (アミノ基)等の官能基として存在していると考えられる。このため非晶質膜は、多かれ少なかれ、OまたはNの終端等に結合するHを含むと考えられる。なお、原料ガス等の他、チャンバー内に含まれる僅かな水分等もHの供給源となり得る。
<Amorphous film>
(1) The amorphous film according to the present invention contains O or N. O or N is usually considered to exist as a functional group such as —OH (hydroxy group), —NH (imino group), —NH 2 (amino group) in an amorphous film alone. For this reason, the amorphous film is more or less considered to contain H bonded to O or N termination or the like. Note that, in addition to the source gas, a slight amount of moisture contained in the chamber can also serve as a H supply source.

非晶質膜は、O、N、H以外にも、種々の元素を含有し得る。例えば、非晶質膜はCまたはSiを含有していると、化学的に安定していて好ましい。これにより接合界面も安定化し、高い接合強度が長期的に維持され得る。また、このような非晶質膜で被覆された金属体は、優れた耐食性等を発揮し得る。特に、非晶質膜の主成分がCまたはSiであると、より好ましい。なお、ここでいう「主成分」とは、非晶質膜全体を100at%(適宜、単に「%」という。)として、当該元素の含有量が最も多いことを意味する。   In addition to O, N, and H, the amorphous film can contain various elements. For example, it is preferable that the amorphous film contains C or Si because it is chemically stable. As a result, the bonding interface is also stabilized, and high bonding strength can be maintained for a long time. In addition, a metal body coated with such an amorphous film can exhibit excellent corrosion resistance and the like. In particular, it is more preferable that the main component of the amorphous film is C or Si. Note that “main component” here means that the entire amorphous film is 100 at% (appropriately simply referred to as “%”), and the content of the element is the highest.

非晶質膜の構成元素または成分組成は種々考えられる。各元素は、例えば、非晶質膜全体を100at%として、N:0.1〜10%さらには0.2〜5%、O:1〜40%さらには5〜35%、H:5〜40%さらには10〜35%、C:20〜95%さらには25〜85%、Si:0.05〜45%さらには0.1〜30%のいずれかであるとよい。   Various constituent elements or component compositions of the amorphous film can be considered. Each element is, for example, N: 0.1 to 10%, further 0.2 to 5%, O: 1 to 40%, further 5 to 35%, H: It may be 40% or 10 to 35%, C: 20 to 95%, 25 to 85%, Si: 0.05 to 45%, or 0.1 to 30%.

非晶質膜の膜厚は、例えば、0.01〜10μm、0.1〜5μmさらには0.5〜3μm程度でよい。金属体と樹脂体の接合性、金属体の防食性等を確保できれば十分だからである。なお、非晶質膜は、金属体と樹脂体の接合界面にあれば十分であるが、金属体の他面にも保護膜等として非晶質膜が形成されていてもよい。   The film thickness of the amorphous film may be, for example, about 0.01 to 10 μm, 0.1 to 5 μm, and further about 0.5 to 3 μm. This is because it is sufficient to ensure the bondability between the metal body and the resin body and the corrosion resistance of the metal body. Note that it is sufficient that the amorphous film is at the bonding interface between the metal body and the resin body, but an amorphous film may be formed as a protective film or the like on the other surface of the metal body.

(2)非晶質膜は、種々の方法で成膜され得る。例えば、プラズマCVD法、イオンプレーティング法、スパッタリング法などにより成膜され得る。プラズマCVD法を用いると、金属体の形状等に関わらず、均一的な成膜が可能となり、また、複雑な成膜装置を用いる必要もないため、非晶質膜を低コストで成膜できる。なお、スパッタリング法等のPVD法を用いれば、指向性のある非晶質膜を容易に成膜できる。 (2) The amorphous film can be formed by various methods. For example, the film can be formed by a plasma CVD method, an ion plating method, a sputtering method, or the like. When the plasma CVD method is used, uniform film formation is possible regardless of the shape of the metal body, and an amorphous film can be formed at low cost because it is not necessary to use a complicated film formation apparatus. . If a PVD method such as a sputtering method is used, a directional amorphous film can be easily formed.

プラズマCVD法を用いる場合、例えば、金属体の成膜面を予めイオン衝撃法により粗面化(凹凸形成)処理しておくと好ましい。これにより金属体と非晶質膜の密着性を高めることができる。   In the case of using the plasma CVD method, for example, it is preferable that the film-formed surface of the metal body is previously roughened (irregular formation) by an ion bombardment method. Thereby, the adhesiveness of a metal body and an amorphous film can be improved.

プラズマCVD法は、例えば、次のようにしてなされる。基材を設置した容器(チャンバー)内を真空雰囲気とする。この容器内に前処理ガス(例えば、アルゴン(Ar)、水素(H)、窒素(N))を容器導入する。次に、グロー放電またはイオンビームにより金属体の表面にイオン衝撃を与える。こうして金属体の接合界面を粗面化する。その後、反応ガス(およびキャリアガス)を容器内へ導入し、放電によりプラズマを生成させて、粗面化した処理面に所望の非晶質膜を成膜する。 The plasma CVD method is performed as follows, for example. The inside of the container (chamber) in which the substrate is installed is set to a vacuum atmosphere. A pretreatment gas (for example, argon (Ar), hydrogen (H 2 ), nitrogen (N 2 )) is introduced into the container. Next, ion bombardment is applied to the surface of the metal body by glow discharge or ion beam. In this way, the bonding interface of the metal body is roughened. Thereafter, a reactive gas (and a carrier gas) is introduced into the container, plasma is generated by discharge, and a desired amorphous film is formed on the roughened processing surface.

例えば、Nを含む非晶質炭素膜(DLC−N膜)を形成する場合なら、炭素含有ガスと窒素ガスを含む反応ガスを用いるとよい。炭素含有ガスは、炭素環式化合物ガス、Nを含む複素環式化合物から選ばれる一種以上を用いるとよい。炭素環式化合物は、例えば、ベンゼン、トルエン、キシレン、ナフタレン等の芳香族炭化水素化合物である。Nを含む複素環式化合物は、例えば、アニリン、アゾベンゼン、ピリジン、ピラジン、ピロール、イミダゾールおよびピラゾール等である。さらに、窒素(N)の他、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン等の窒素化合物を複素環式化合物に混合してもよい。 For example, when an amorphous carbon film containing N (DLC-N film) is formed, a reactive gas containing a carbon-containing gas and a nitrogen gas may be used. As the carbon-containing gas, one or more selected from a carbocyclic compound gas and a heterocyclic compound containing N may be used. The carbocyclic compound is, for example, an aromatic hydrocarbon compound such as benzene, toluene, xylene, naphthalene. Examples of the heterocyclic compound containing N include aniline, azobenzene, pyridine, pyrazine, pyrrole, imidazole, and pyrazole. In addition to nitrogen (N 2 ), nitrogen compounds such as ammonia, methylamine, dimethylamine, and trimethylamine may be mixed with the heterocyclic compound.

Siを含む非晶質膜を形成する場合なら、反応ガスとして、フェニルシラン、フェニルメチルシラン等のSiを含む芳香族化合物ガスの他、Si(CH、Si(CHH、Si(CH)H、SiH、Si(OC、SiCl、SiH等の珪素化合物ガスを用いるとよい。 In the case of forming an amorphous film containing Si, as a reaction gas, in addition to an aromatic compound gas containing Si such as phenylsilane and phenylmethylsilane, Si (CH 3 ) 4 , Si (CH 3 ) 3 H, A silicon compound gas such as Si (CH 3 ) H 3 , SiH 4 , Si (OC 2 H 5 ) 4 , SiCl 4 , SiH 2 F 4 may be used.

反応ガスとともに導入するキャリアガスには、水素(H)、窒素(N)、アルゴン、酸素(O)を用いることができる。 Hydrogen (H 2 ), nitrogen (N 2 ), argon, or oxygen (O 2 ) can be used as a carrier gas introduced with the reaction gas.

非晶質膜は、表面に−OH、−NH、−NH 等の官能基を予め有することが好ましいが、これらの官能基は成膜後の非晶質膜が大気と反応してその表面に生成されたものでもよい。 The amorphous film preferably has a functional group such as —OH, —NH, and —NH 2 on the surface in advance, but these functional groups are formed on the surface of the amorphous film after the film reacts with the atmosphere. It may be generated.

《金属体》
本発明の接合部材は、非晶質膜を介して樹脂体と接合される。このため本発明に係る金属体は、非晶質膜の形成および密着性(耐剥離性)を確保できる限り、その材質、形態等を問わない。金属体は、例えば、純銅・銅合金、純チタン・チタン合金、純アルミニウム・アルミニウム合金、純鉄・鉄合金等のいずれの金属からなってもよい。
《Metal body》
The joining member of the present invention is joined to the resin body through an amorphous film. For this reason, the metal body which concerns on this invention does not ask | require the material, a form, etc. as long as formation of an amorphous film and adhesiveness (peeling resistance) can be ensured. The metal body may be made of any metal such as pure copper / copper alloy, pure titanium / titanium alloy, pure aluminum / aluminum alloy, and pure iron / iron alloy.

金属体と非晶質膜の密着性は、成膜前における機械的または化学的な前処理(例えば、スパッタリング、ショットピーニング、エッチング等)により高めることができる。非晶質膜を成膜する金属体の表面形態は問わないが、金属体の表面粗さまたは表面積を調整することにより、非晶質膜との密着性の向上を図れる。また非晶質膜の膜厚は、通常、高々数〜数十μmであるため、金属体の表面粗さを調整することにより、非晶質膜の表面粗さの調整または表面積の拡張等も可能となる。非晶質膜の表面粗さ等が適切に調整されると、非晶質膜と樹脂体との接合界面の面積が増大して、両者の接合強度の向上も図れる。この際、化学的な接合力(共有結合力)の他、物理的な接合力(アンカー効果)の寄与があってもよい。   The adhesion between the metal body and the amorphous film can be enhanced by mechanical or chemical pretreatment (for example, sputtering, shot peening, etching, etc.) before film formation. The surface form of the metal body on which the amorphous film is formed is not limited, but the adhesion to the amorphous film can be improved by adjusting the surface roughness or surface area of the metal body. Also, since the film thickness of the amorphous film is usually several to several tens of μm at most, adjusting the surface roughness of the metal body can adjust the surface roughness of the amorphous film or increase the surface area. It becomes possible. When the surface roughness and the like of the amorphous film are appropriately adjusted, the area of the bonding interface between the amorphous film and the resin body increases, and the bonding strength between the two can be improved. At this time, there may be a contribution of physical bonding force (anchor effect) in addition to chemical bonding force (covalent bonding force).

《樹脂体》
非晶質膜と強固に接合する樹脂体は、少なくとも金属体との接合界面近傍において、官能基中または主鎖中にOまたはNを含む樹脂からなるとよい。このような樹脂として、現状、次のような特定樹脂が考えられる。
<Resin body>
The resin body that is firmly bonded to the amorphous film may be made of a resin containing O or N in the functional group or main chain at least in the vicinity of the bonding interface with the metal body. As such a resin, the following specific resins can be considered at present.

特定樹脂は、主鎖に置換した官能基を有し、非晶質膜中のOまたはNを含む官能基(酸素官能基、酸素官能基)と直接的に共有結合を形成し得る樹脂である。例えば、エポキシ基若しくはイソシアネート基を有する樹脂、または無水マレイン酸を含む樹脂である。なお、本発明に係る樹脂体は、非晶質膜との反応(共有結合)を介して金属体と接合される。このため、ここでいう特定樹脂は金属体との接合前の状態を指す。例えば、樹脂体が特定樹脂の一つであるエポキシ樹脂からなる場合であれば、その樹脂体は金属体との接合前において、加熱・硬化前の状態を指す。このタイプの樹脂は、官能基のCが非晶質膜の表面に存在するルイス塩基(−OH、−NH、−NH等)により攻撃され、そのCと非晶質膜中のOまたはNとが共有結合をする。こうして共有結合が生じる反応例を、模式的に図1の(Ia)または(Ib)、(Ic)に示した。 The specific resin is a resin having a functional group substituted on the main chain and capable of directly forming a covalent bond with a functional group (oxygen functional group, oxygen functional group) containing O or N in the amorphous film. . For example, a resin having an epoxy group or an isocyanate group, or a resin containing maleic anhydride. The resin body according to the present invention is bonded to the metal body through a reaction (covalent bond) with the amorphous film. For this reason, the specific resin here refers to the state before joining to the metal body. For example, when the resin body is made of an epoxy resin which is one of the specific resins, the resin body indicates a state before heating and curing before joining with the metal body. This type of resin is attacked by a Lewis base (—OH, —NH, —NH 2, etc.) in which the functional group C exists on the surface of the amorphous film, and this C and O or N in the amorphous film And have a covalent bond. An example of a reaction in which a covalent bond thus occurs is schematically shown in (Ia), (Ib), or (Ic) of FIG.

なお、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフェニレンサルファイド(PPS)、ポリフッ化ビニリデン(PVDF)、フェノール樹脂、メラミン樹脂などの樹脂は、変性していないと、非晶質膜と接合(結合)し難い。しかし、それらの樹脂でも変性して、エポキシ基、イソシアネート基、無水マレイン酸などを有すると、上述した特定樹脂の場合と同様に非晶質膜と共有結合を形成して、強固に接合されるようになる。   In addition, if the resin such as polypropylene (PP), polyethylene (PE), polyphenylene sulfide (PPS), polyvinylidene fluoride (PVDF), phenol resin, melamine resin is not modified, it is bonded (bonded) to the amorphous film. It is hard to do. However, if these resins are also modified to have epoxy groups, isocyanate groups, maleic anhydride, etc., they form a covalent bond with the amorphous film as in the case of the specific resin described above, and are firmly bonded. It becomes like this.

《製造方法》
接合部材の製造方法は種々考えられる。例えば、非晶質膜で被覆された金属体を収容した成形型内へ、軟化または溶融した樹脂を注入し(供給工程)、その樹脂を冷却して固化させる(固化工程)。この場合、樹脂成形と接合が一工程でなされ、効率的である。樹脂成形は、例えば、射出成形、押出成形、ブロー成形、真空成形、トランスファー成形、圧縮成形等のいずれによりなされてもよい。接合部材の仕様、使用する樹脂の特性等に適した成形方法が適宜選択される。その他、接合部材は、非晶質膜を介して金属体と樹脂体を加圧さらには加熱することにより行ってもよい(圧着工程)。
"Production method"
Various methods for manufacturing the joining member are conceivable. For example, a softened or melted resin is injected into a mold containing a metal body covered with an amorphous film (supply process), and the resin is cooled and solidified (solidification process). In this case, resin molding and joining are performed in one step, which is efficient. The resin molding may be performed by any of injection molding, extrusion molding, blow molding, vacuum molding, transfer molding, compression molding, and the like. A molding method suitable for the specifications of the joining member, the characteristics of the resin to be used, and the like is appropriately selected. In addition, the joining member may be performed by pressurizing and heating the metal body and the resin body through an amorphous film (crimping step).

なお、非晶質膜と樹脂の接合は、非晶質膜の成膜後の短時間内(例えば、成膜後30分間以内)になされると好ましい。非晶質膜は、成膜後に大気中等で長時間曝されると、最表面近傍にあるOまたはN(酸素官能基または窒素官能基)の活性度が低下し、樹脂との共有結合性が低下し得る。   Note that the amorphous film and the resin are preferably bonded within a short time after the amorphous film is formed (for example, within 30 minutes after the film formation). When an amorphous film is exposed to the atmosphere for a long time after film formation, the activity of O or N (oxygen functional group or nitrogen functional group) in the vicinity of the outermost surface decreases, and the covalent bondability with the resin is reduced. Can be reduced.

《接合部材》
本発明の接合部材は、例えば、各種の電子機器、電池部品、及びそれらの筐体、コネクター等に用いられると、低コストで高い信頼性を確保できて好ましい。具体例を挙げると、配線金属(金属体)と封止樹脂(樹脂体)とを有する制御装置(ECU)やパワーモジュール等に、本発明の接合部材は好適である。その他、気密、防水、断熱を保持するためのシール部にも本発明の接合部材は好適である。
《Joint member》
The joining member of the present invention is preferably used, for example, in various electronic devices, battery components, and their casings, connectors, and the like, because high reliability can be secured at low cost. As a specific example, the joining member of the present invention is suitable for a control device (ECU) having a wiring metal (metal body) and a sealing resin (resin body), a power module, and the like. In addition, the joining member of the present invention is also suitable for a seal portion for maintaining airtightness, waterproofing and heat insulation.

種々の非晶質膜で被覆された金属と樹脂とを一体成形した接合体(供試材)を製造し、それぞれの接合強度を評価した。これらを通じて、本発明をより具体的に説明する。   A joined body (test material) obtained by integrally molding a metal and a resin covered with various amorphous films was manufactured, and the joint strength was evaluated. Through these, the present invention will be described more specifically.

[実施例1]
《非晶質膜の成膜》
金属体として無酸素銅板(三菱伸銅株式会社製)を用意した。この無酸素銅板(単に「銅板」という。)の表面に、プラズマCVD法により、表1に示す各種の非晶質膜を成膜した。具体的には、次のようにして成膜した。
[Example 1]
<Deposition of amorphous film>
An oxygen-free copper plate (manufactured by Mitsubishi Shindoh Co., Ltd.) was prepared as a metal body. Various amorphous films shown in Table 1 were formed on the surface of this oxygen-free copper plate (simply called “copper plate”) by plasma CVD. Specifically, the film was formed as follows.

銅板をチャンバー内にセットし、チャンバー内を真空排気した。このチャンバー内へ水素(H)とアルゴンを導入した。チャンバー内の銅板に直流電圧を印加し、放電を生じさせ、銅板をイオン衝撃により所定の成膜温度(400〜600℃)まで昇温させると共に粗面化した(前処理工程)。 A copper plate was set in the chamber, and the inside of the chamber was evacuated. Hydrogen (H 2 ) and argon were introduced into this chamber. A DC voltage was applied to the copper plate in the chamber to cause discharge, and the copper plate was heated to a predetermined film formation temperature (400 to 600 ° C.) by ion bombardment and roughened (pretreatment step).

次に、チャンバー内へ反応ガスを導入し、プラズマCVD法により成膜した。いずれの膜厚も200nm程度とした。反応ガスにはテトラメチルシラン、ピリジン、トルエン、テトラエトキシシランを用いた。反応ガスの種類または濃度を調整して、表1に示す各非晶質膜を成膜した。   Next, a reactive gas was introduced into the chamber and a film was formed by plasma CVD. All film thicknesses were about 200 nm. Tetramethylsilane, pyridine, toluene, and tetraethoxysilane were used as the reaction gas. Each amorphous film shown in Table 1 was formed by adjusting the kind or concentration of the reaction gas.

《膜分析》
各非晶質膜の表面近傍組成を次のようにして分析した。先ず、ダイナミックSIMS(二次イオン質量分析法)により、膜中のH量(平均値)を求めた。このH量を膜表面のH量とした。次に、膜中に含まれるC、N、OおよびSiをXPS(X線光電子分光法)により検出した。これらの検出結果と、先に求めたH量とに基づいて、膜中におけるC、N、OおよびSiの組成(原子比)を求めた。こうして特定した膜表面(最表面から数nm領域)における組成を表1に示した。
《Membrane analysis》
The composition near the surface of each amorphous film was analyzed as follows. First, the amount of H (average value) in the film was determined by dynamic SIMS (secondary ion mass spectrometry). This amount of H was taken as the amount of H on the film surface. Next, C, N, O and Si contained in the film were detected by XPS (X-ray photoelectron spectroscopy). Based on these detection results and the previously determined H amount, the composition (atomic ratio) of C, N, O and Si in the film was determined. Table 1 shows the composition of the film surface thus identified (a few nm region from the outermost surface).

表1から明らかなように、いずれの非晶質膜もOおよびHを含み、試料2および試料3はNも含んでいた。なお、各膜が非晶質膜であることは、別途行ったXRD(X線回折)により確認している。   As is clear from Table 1, all of the amorphous films contained O and H, and Sample 2 and Sample 3 also contained N. In addition, it is confirmed by XRD (X-ray diffraction) performed separately that each film is an amorphous film.

《接合部材の製造》
樹脂体の原料として、半導体封止用である未硬化状態のエポキシ樹脂(住友ベークライト株式会社製E500)を用意した。非晶質膜で被覆された銅板をインサート成形型(金型)内にセットした。金型および銅板を加熱して成形温度(170〜180℃)まで昇温した。金型内にセットした銅板の非晶質膜上へ175℃に加熱して溶融させたエポキシ樹脂を注入した後、冷却・固化させた。こうして銅板を被覆する非晶質膜上にプリンカップ状の樹脂体が成形・接合された供試材(接合部材)を得た。
<< Manufacture of joining members >>
An uncured epoxy resin (E500 manufactured by Sumitomo Bakelite Co., Ltd.) for semiconductor encapsulation was prepared as a raw material for the resin body. The copper plate coated with the amorphous film was set in an insert mold (mold). The mold and the copper plate were heated to raise the molding temperature (170 to 180 ° C.). An epoxy resin heated and melted at 175 ° C. was poured onto an amorphous film of a copper plate set in the mold, and then cooled and solidified. In this way, a test material (joining member) was obtained in which a pudding cup-shaped resin body was molded and joined on the amorphous film covering the copper plate.

《強度評価》
各供試材の接合強度を次のように測定した。樹脂体に治具を押し当てて、非晶質膜と樹脂体の間に剪断力を加える。接合界面で剥離するか、樹脂体が破壊されたときの剪断力を測定した。こうして得られた剪断力を、樹脂体と非晶質膜の接合面積で割って求めた剥離強度を表1に併せて示した。
<Strength evaluation>
The bonding strength of each test material was measured as follows. A jig is pressed against the resin body to apply a shearing force between the amorphous film and the resin body. The shearing force when peeling at the bonding interface or when the resin body was destroyed was measured. Table 1 also shows the peel strength obtained by dividing the shear force thus obtained by the bonding area between the resin body and the amorphous film.

いずれの場合も、樹脂体の凝集破壊が先に起こり、十分な接合強度が得られることが確認された。ちなみに、非晶質膜で被覆していない銅板(但し、自然に形成された酸化膜で被覆されている。)を用いて、同様に製作した供試材の剥離強度(接合強度)も測定した(比較例)。この比較例では、銅板と銅の酸化膜間で剥離することを確認した。   In either case, it was confirmed that cohesive failure of the resin body occurred first and sufficient bonding strength was obtained. By the way, using a copper plate not covered with an amorphous film (however, covered with a naturally formed oxide film), the peel strength (joint strength) of a similarly manufactured specimen was also measured. (Comparative example). In this comparative example, it was confirmed that peeling occurred between the copper plate and the copper oxide film.

以上から、OまたはNを含む非晶質膜を接合界面に介在させることにより、金属体と樹脂体を強固に接合し得ることが明らかとなった。   From the above, it has been clarified that the metal body and the resin body can be firmly bonded by interposing the amorphous film containing O or N at the bonding interface.

[実施例2]
《成膜および膜分析》
純チタン板(単に「Ti板」という。)の表面に、実施例1の場合と同様にして、厚さ15nm程度の非晶質薄膜を成膜した。この非晶質薄膜の表面近傍組成も、既述した方法により同様に分析した。その結果を表2に示す。
[Example 2]
<< Film formation and film analysis >>
An amorphous thin film having a thickness of about 15 nm was formed on the surface of a pure titanium plate (simply called “Ti plate”) in the same manner as in Example 1. The composition near the surface of this amorphous thin film was similarly analyzed by the method described above. The results are shown in Table 2.

表2から明らかなように、本実施例に係る非晶質薄膜もO、NおよびHを含んでいることが確認できた。なお、この膜が非晶質膜であることは、別途行ったXRD(X線回折)により確認している。   As is clear from Table 2, it was confirmed that the amorphous thin film according to this example also contains O, N, and H. Note that it is confirmed by XRD (X-ray diffraction) performed separately that this film is an amorphous film.

《接合部材の製造》
上記の非晶質薄膜によって被覆された2枚のTi板(40mm×10mm×厚さ0.6mm)で、無水マレイン酸含有ポリプロピレンシート(10mm×10mm×厚さ1.0mm/単に「PPシート」という。)を挟持した。この際、各非晶質薄膜とPPシートが接触するようにした。
<< Manufacture of joining members >>
Two Ti plates (40 mm × 10 mm × 0.6 mm thickness) coated with the above amorphous thin film, maleic anhydride-containing polypropylene sheet (10 mm × 10 mm × thickness 1.0 mm / simply “PP sheet”) ). At this time, each amorphous thin film was brought into contact with the PP sheet.

このような積層状態のTi板とPPシートを、各Ti板の外側面から2MPaで加圧した。この加圧は、150℃に加熱した大気雰囲気中で行った(圧着工程)。この処理を、全体に対する無水マレイン酸の含有量が異なる複数のPPシートに対して行った(試料21〜23)。   The laminated Ti plate and PP sheet were pressed at 2 MPa from the outer surface of each Ti plate. This pressurization was performed in an air atmosphere heated to 150 ° C. (compression bonding step). This treatment was performed on a plurality of PP sheets having different maleic anhydride contents relative to the whole (Samples 21 to 23).

《強度評価》
こうして得られた各供試材(接合部材)のTi板を両端側から20mm/minで引張り、剥離または破断したときの測定荷重から、各試料に係る接合強度(剪断強度)を求めた。このときの結果を表2に併せて示した。また、この強度評価試験後の各試料の様子を図2にそれぞれ示した。
<Strength evaluation>
The Ti plate of each test material (joining member) thus obtained was pulled at 20 mm / min from both ends, and the joining strength (shear strength) for each sample was determined from the measured load when it was peeled off or broken. The results at this time are also shown in Table 2. The state of each sample after this strength evaluation test is shown in FIG.

これらから、無水マレイン酸の含有量が適切であると、接合強度が大きくなり、破面が非晶質薄膜(金属体側)とPPシート(樹脂体側)との界面剥離から、PPシート(樹脂体)自体の凝集破壊へ移行することが明らかとなった。具体的にいうと、図2に示すように、試料21では片側(図2の左側)のTi板にPP残部が殆ど無く、非晶質薄膜とPPの間で界面剥離が生じていることがわかる。一方、試料22および試料23では、片側のTi板にPP残部が有り、PPシート自体が破壊(凝集破壊)していることがわかる。そして無水マレイン酸の含有量(比率)が多い試料23ほど、片側のTi板にPPが多く残っており、非晶質薄膜とPPシートの接合強度が高くなっていることがわかる。   Accordingly, when the content of maleic anhydride is appropriate, the bonding strength is increased, and the fracture surface is separated from the interface between the amorphous thin film (metal body side) and the PP sheet (resin body side), and the PP sheet (resin body). ) It became clear to shift to cohesive failure of itself. More specifically, as shown in FIG. 2, in the sample 21, there is almost no PP remaining on the Ti plate on one side (left side in FIG. 2), and interface peeling occurs between the amorphous thin film and PP. Recognize. On the other hand, in sample 22 and sample 23, it can be seen that there is PP remaining on the Ti plate on one side, and the PP sheet itself is broken (cohesive failure). It can be seen that the sample 23 having a higher content (ratio) of maleic anhydride has more PP remaining on the Ti plate on one side, and the bonding strength between the amorphous thin film and the PP sheet is higher.

以上のことから、樹脂体側に含まれるOと、金属体側を被覆する非晶質膜の表面に存在する酸素官能基または窒素官能基とが反応することにより、樹脂体と金属体が強固に接着されることが確認できた。   From the above, the resin body and the metal body are firmly bonded by the reaction between O contained on the resin body side and the oxygen functional group or nitrogen functional group present on the surface of the amorphous film covering the metal body side. It was confirmed that

Claims (9)

非晶質膜で予め表面が被覆された金属体と、該非晶質膜への接合を介して該金属体接合された樹脂体とからなる金属樹脂接合部材であって、
前記樹脂体は、官能基中または主鎖中にOまたはNを含み、
前記非晶質膜は、該非晶質膜全体を100at%(単に「%」という。)として1〜40%およびC:20〜95%を含むと共に膜厚が0.01〜10μmであり、さらに、前記金属体側にある金属元素を含まないと共に該樹脂体の一部でもないことを特徴とする金属樹脂接合部材。
A metal body preliminarily surface covered with amorphous film, a metal-resin joint member comprising a resin body which is joined to the metal body through a bonding to non AkiraTadashimaku,
The resin body is seen containing an O or N in the functional group or in the main chain,
The amorphous film, the entire non-AkiraTadashimaku as 100 atomic% (referred to simply as "%".), O: 1 to 40% and C: 20 to 95% at a film thickness 0.01~10μm with including And a metal resin bonding member characterized by not containing a metal element on the metal body side and not being a part of the resin body .
前記非晶質膜は、さらにN0.1〜10%含む請求項1に記載の金属樹脂接合部材。 The metal-resin bonding member according to claim 1, wherein the amorphous film further contains N 10 : 0.1 to 10%. 前記非晶質膜は、さらにH:5〜40%とSi:0.1〜30%とを含み、残部がCおよび不純物からなる請求項に記載の金属樹脂接合部材。
The metal-resin bonding member according to claim 2 , wherein the amorphous film further includes H: 5 to 40% and Si: 0.1 to 30%, and the balance is made of C and impurities .
前記非晶質膜は、さらにH:5〜40%を含み、残部がCおよび不純物からなる請求項に記載の金属樹脂接合部材。 The metal-resin bonding member according to claim 2 , wherein the amorphous film further includes H: 5 to 40%, and the balance is C and impurities . 前記非晶質膜により被覆される前記金属体の表面は、粗面化されている請求項1〜のいずれかに記載の金属樹脂接合部材。 The surface of the metal body is coated with amorphous film is metal-resin joint member according to any one of claims 1 to 4 which is roughened. 前記樹脂体は、エポキシ基若しくはイソシアネート基を有するかまたは無水マレイン酸を含む樹脂からなる請求項1〜5のいずれかに記載の金属樹脂接合部材。   The metal resin bonding member according to any one of claims 1 to 5, wherein the resin body is made of a resin having an epoxy group or an isocyanate group or containing maleic anhydride. 非晶質膜で被覆された金属体の該非晶質膜上へ、軟化または溶融した樹脂を供給する供給工程と、
該樹脂を固化させて樹脂体とする固化工程とを備え、
請求項1〜6のいずれかに記載の金属樹脂接合部材が得られることを特徴とする金属樹脂接合部材の製造方法。
A supply step of supplying a softened or melted resin onto the amorphous film of the metal body coated with the amorphous film;
A solidification step of solidifying the resin into a resin body,
A method for producing a metal resin bonded member, wherein the metal resin bonded member according to claim 1 is obtained.
非晶質膜を介して金属体と樹脂体を加熱しつつ加圧する圧着工程を備え、
請求項1〜6のいずれかに記載の金属樹脂接合部材が得られることを特徴とする金属樹脂接合部材の製造方法。
A pressure bonding step of pressing while heating the metal body and the resin body through the amorphous film,
A method for producing a metal resin bonded member, wherein the metal resin bonded member according to claim 1 is obtained.
前記非晶質膜は、真空雰囲気でなされるプラズマCVD法により前記金属体上に成膜されてなる請求項7または8に記載の金属樹脂接合部材の製造方法。   9. The method for manufacturing a metal resin bonded member according to claim 7, wherein the amorphous film is formed on the metal body by a plasma CVD method performed in a vacuum atmosphere.
JP2015128513A 2015-06-26 2015-06-26 Metal resin bonding member and method for manufacturing the same Active JP6476081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015128513A JP6476081B2 (en) 2015-06-26 2015-06-26 Metal resin bonding member and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015128513A JP6476081B2 (en) 2015-06-26 2015-06-26 Metal resin bonding member and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017007306A JP2017007306A (en) 2017-01-12
JP6476081B2 true JP6476081B2 (en) 2019-02-27

Family

ID=57760581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015128513A Active JP6476081B2 (en) 2015-06-26 2015-06-26 Metal resin bonding member and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6476081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798294B2 (en) * 2016-12-08 2020-12-09 株式会社豊田中央研究所 Semiconductor module and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032576B2 (en) * 1979-05-07 1985-07-29 東洋製罐株式会社 Method of laminating synthetic resin film on metal surface
JP4368228B2 (en) * 2004-03-22 2009-11-18 三菱アルミニウム株式会社 Polyester resin-coated aluminum alloy plate and method for producing the same
JP2009234217A (en) * 2008-03-28 2009-10-15 Tokai Rubber Ind Ltd Low permeation member for fuel and coolant and method of manufacturing the same
JP5560565B2 (en) * 2009-01-30 2014-07-30 豊田合成株式会社 Composite of metal and resin and method for producing the same
JP5234011B2 (en) * 2010-01-07 2013-07-10 豊田合成株式会社 Method for producing composite of metal and resin
JP6033059B2 (en) * 2012-11-30 2016-11-30 キヤノン株式会社 Intermediate transfer member and image forming apparatus using the same
JP6007137B2 (en) * 2013-03-14 2016-10-12 本田技研工業株式会社 Dissimilar material joined product and manufacturing method thereof
TWI630101B (en) * 2013-03-26 2018-07-21 Nippon Light Metal Company, Ltd. Metal resin joint body and its manufacturing method

Also Published As

Publication number Publication date
JP2017007306A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
KR101473021B1 (en) Multilayer body
TWI462836B (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method of producing the same, multilayer resin sheet having metal foil, and semiconductor device
WO2017094591A1 (en) Adhesive composition, sealing sheet, and sealed body
CN110001149B (en) Packaging material for battery
JP6814157B2 (en) Adhesive composition, encapsulation sheet, and encapsulant
WO2018047919A1 (en) Adhesive composition, sealing sheet, and sealed body
CN111479889B (en) Adhesive, laminate, battery packaging material, and battery
JP6353991B1 (en) Adhesive composition, sealing sheet, and sealing body
JP6512562B2 (en) Adhesive composition, sealing sheet, and sealing body
KR102308969B1 (en) Process for producing film for encapsulating parts
US20170133710A1 (en) Electrolyte layer for all-solid state battery and method of manufacturing all-solid state battery using the same
JPWO2018047422A1 (en) Gas barrier laminate and sealing body
JP2012245665A (en) Molding method
WO2018179458A1 (en) Gas barrier laminate, and sealing element
JP6476081B2 (en) Metal resin bonding member and method for manufacturing the same
JP2003071937A (en) Laminated body, method for manufacturing it, and multi- layer circuit board
WO2023145670A1 (en) Battery packaging material
JP2007211084A (en) Light-shielding film
EP2268732A2 (en) Flow controllable b-stageable composition
JP5233066B2 (en) Adhesive sheet for electronic materials
US10297470B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic-device package
CN112771123A (en) Resin composition, cured resin, and composite molded article
JP2008222815A (en) Adhesive composition and adhesive sheet using it
WO2023048067A1 (en) Cladding for power storage device, and power storage device using same
WO2018221510A1 (en) Sheet-shaped adhesive, gas-barrier laminate, and sealant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6476081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250