JP6475487B2 - Development method - Google Patents

Development method Download PDF

Info

Publication number
JP6475487B2
JP6475487B2 JP2014253079A JP2014253079A JP6475487B2 JP 6475487 B2 JP6475487 B2 JP 6475487B2 JP 2014253079 A JP2014253079 A JP 2014253079A JP 2014253079 A JP2014253079 A JP 2014253079A JP 6475487 B2 JP6475487 B2 JP 6475487B2
Authority
JP
Japan
Prior art keywords
substrate
developer
developing
discharge port
developing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014253079A
Other languages
Japanese (ja)
Other versions
JP2015099925A (en
Inventor
将彦 春本
将彦 春本
山口 晃
晃 山口
章博 久井
章博 久井
杉山 念
念 杉山
拓也 黒田
拓也 黒田
Original Assignee
株式会社Screenセミコンダクターソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenセミコンダクターソリューションズ filed Critical 株式会社Screenセミコンダクターソリューションズ
Priority to JP2014253079A priority Critical patent/JP6475487B2/en
Publication of JP2015099925A publication Critical patent/JP2015099925A/en
Application granted granted Critical
Publication of JP6475487B2 publication Critical patent/JP6475487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

この発明は、半導体基板、液晶表示装置用ガラス基板、フォトマスク用ガラス基板、光ディスク用基板等(以下、単に「基板」と称する)を現像する現像方法に係り、特に、現像液を効率よく基板に供給して現像液の消費量を抑制する技術に関する。   The present invention relates to a developing method for developing a semiconductor substrate, a glass substrate for a liquid crystal display device, a glass substrate for a photomask, a substrate for an optical disk, etc. (hereinafter simply referred to as “substrate”). The present invention relates to a technique for reducing the consumption of a developing solution by supplying to the developer.

従来、この種の装置として、基板を回転可能に保持するスピンチャックと、現像液を帯状に供給するスリットノズルと、このスリットノズルを移動させる移動機構と、を備えているものがある。この装置では、基板を回転させるとともにスリットノズルを移動させて帯状の現像液を螺旋状に基板に供給する。この装置によれば、基板上に現像液を液盛りして基板を現像する場合に比べて、現像液の消費量を低減することができる(例えば、特許文献1参照)。   Conventionally, this type of apparatus includes a spin chuck that rotatably holds a substrate, a slit nozzle that supplies a developer in a strip shape, and a moving mechanism that moves the slit nozzle. In this apparatus, the substrate is rotated and the slit nozzle is moved to supply the belt-like developer to the substrate in a spiral shape. According to this apparatus, the consumption of the developer can be reduced as compared with the case where the substrate is developed by depositing the developer on the substrate (see, for example, Patent Document 1).

特開2005−210059号公報Japanese Patent Laid-Open No. 2005-210059

しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
すなわち、スリットノズルに供給される現像液の流量が変動すると、スリットノズルから供給される現像液の幅は不安定になり易い。具体的には帯状の現像液が細く狭まったり、割れたりする。このような場合、基板上の所望の位置、範囲に現像液を着液させることが困難となり、たとえ螺旋状に現像液を供給しても基板全面に隙間なく現像液を供給できなくなるという不都合を招く。また、このような不都合を回避するため、余剰分を加えた量の現像液を供給することも考えられるが、この場合は現像液の消費量を十分に低減することはできない。
However, the conventional example having such a configuration has the following problems.
That is, when the flow rate of the developer supplied to the slit nozzle varies, the width of the developer supplied from the slit nozzle tends to become unstable. Specifically, the belt-like developer is narrowed or cracked. In such a case, it is difficult to apply the developer to a desired position and range on the substrate, and even if the developer is supplied in a spiral shape, the developer cannot be supplied to the entire surface of the substrate without any gap. Invite. In order to avoid such an inconvenience, it is conceivable to supply an excess amount of the developer, but in this case, the consumption of the developer cannot be sufficiently reduced.

この発明は、このような事情に鑑みてなされたものであって、現像液の消費量を抑制することができる現像方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a developing method capable of suppressing the consumption of the developer.

この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、本発明は、基板を現像する現像方法であって、回転保持手段によって基板を回転させるとともに、現像液供給手段に一列に並んで形成される複数の吐出口から現像液を基板に吐出させつつ、移動手段によって前記吐出口の並び方向を平面視で基板の中心に向かう一方向に保ったまま前記現像液供給手段を平面視で基板の略中心と周縁とにわたって移動させて、各吐出口から吐出された現像液を互いに分離したままで基板に着液させ、かつ、各吐出口から吐出された現像液をそれぞれ螺旋状に基板上に着液させて基板を現像する工程を含み、前記工程では、隣り合う吐出口から吐出された現像液が基板に着液する着液位置同士の間の基板面を、着液後に時間の経過とともに周囲に広がる現像液で覆う現像方法である。
In order to achieve such an object, the present invention has the following configuration.
That is, the present invention is a development method for developing a substrate, wherein the substrate is rotated by a rotation holding unit and the developer is discharged from a plurality of discharge ports formed in a line in the developer supply unit to the substrate. While the moving means keeps the direction in which the discharge ports are arranged in one direction toward the center of the substrate in plan view, the developer supply means is moved across the substantially center and the periphery of the substrate in plan view, thereby A step of developing the substrate by allowing the developer discharged from the liquid to land on the substrate while being separated from each other, and causing the developer discharged from each discharge port to be spirally deposited on the substrate and developing the substrate , The process is a developing method in which the substrate surface between the liquid deposition positions where the developer discharged from the adjacent discharge ports is deposited on the substrate is covered with a developer that spreads to the surroundings as time passes after the liquid is deposited .

[作用・効果]本発明によれば、現像液供給手段の各吐出口から吐出された現像液は、基板に着液するまで互いに分離したままである。このため、吐出口から基板面にかけて、流下する現像液の形状は現像液の流量変動によらず安定している。よって、現像液が基板に着液する位置、範囲も安定している。移動手段は、一列に並ぶ各吐出口の並び方向を平面視で基板の中心に向いた一方向に保った状態で、この一方向に現像液供給手段を移動して、現像液供給手段を平面視で基板の略中心と周縁とにわたって移動する。このような移動手段を回転保持手段とともに制御することで、各吐出口に応じた複数の螺旋形状の領域に現像液が供給される。この際、各吐出口は平面視で常に基板の中心を通る直線上にあり、基板の中心から各吐出口までの距離は一様に現像液供給手段が移動した距離に比例して増減する。よって、基板上における複数の螺旋形状の領域相互の位置関係を容易に制御することができる。これにより、基板全面に隙間なく、かつ、効率よく現像液を供給することができ、これにより現像液の消費量を抑制することができる。   [Operations and Effects] According to the present invention, the developer discharged from each discharge port of the developer supply means remains separated from each other until it reaches the substrate. For this reason, the shape of the developer flowing down from the discharge port to the substrate surface is stable regardless of the flow rate variation of the developer. Therefore, the position and range where the developer reaches the substrate is also stable. The moving means moves the developing solution supply means in this one direction while keeping the arrangement direction of the discharge ports arranged in a line in one direction facing the center of the substrate in plan view. Visually moves across the approximate center and periphery of the substrate. By controlling such moving means together with the rotation holding means, the developing solution is supplied to a plurality of spiral regions corresponding to the respective discharge ports. At this time, each ejection port is always on a straight line passing through the center of the substrate in plan view, and the distance from the center of the substrate to each ejection port is increased or decreased in proportion to the distance the developer supply means has moved. Therefore, the positional relationship between a plurality of spiral regions on the substrate can be easily controlled. As a result, the developer can be efficiently supplied to the entire surface of the substrate without any gaps, and thus the consumption of the developer can be suppressed.

本発明において、前記工程では、前記現像液供給手段を平面視で基板の略中心と周縁とにわたって移動させることによって、基板に隙間なく現像液を供給することが好ましい。In the present invention, in the step, it is preferable that the developer is supplied to the substrate without a gap by moving the developer supply means across a substantially center and a periphery of the substrate in a plan view.

本発明において、前記工程では、隣り合う吐出口から吐出された現像液が基板に着液する着液位置同士の間の基板面を、現像液が着液したときから基板が1回転するまでに、着液後に時間の経過とともに周囲に広がる現像液で覆うことが好ましい。In the present invention, in the step, the substrate surface between the landing positions where the developer discharged from the adjacent discharge ports is deposited on the substrate until the substrate makes one rotation after the developer has landed. It is preferable to cover with a developing solution spreading to the surroundings as time passes after the landing.

本発明において、前記工程では、隣り合う吐出口から吐出された現像液が基板に着液する着液位置同士の間の基板面を、着液後に時間の経過とともに基板の中心および基板の周縁の両方に向かって広がる現像液で覆うことが好ましい。In the present invention, in the step, the surface of the substrate between the landing positions where the developer discharged from the adjacent discharge ports is deposited on the substrate is changed between the center of the substrate and the peripheral edge of the substrate as time passes after the landing. It is preferable to cover with a developing solution spreading toward both.

本発明において、前記工程では、隣り合う吐出口から吐出された現像液が基板に着液する着液位置は、互いに離れていることが好ましい。In the present invention, in the step, it is preferable that the landing positions where the developer discharged from the adjacent discharge ports land on the substrate are separated from each other.

本発明において、前記工程では、隣り合う現像液の着液位置の軌跡同士を近接させて、これら軌跡と軌跡の間の基板面を着液後に広がる現像液で覆うように、前記回転保持手段と前記移動手段とは制御され、前記工程では、基板を1回転させる間に、前記現像液供給手段の移動方向に対して最後尾の吐出口は、1回転を開始する時点における先頭の吐出口の位置よりも移動方向下流側であってかつ互いに重ならない近接する位置まで移動し、前記工程では、各吐出口から基板上に現像液をそれぞれ螺旋状に着液させて基板を現像する際、基板の回転速度および前記現像液供給手段の移動速度はそれぞれ一定であり、前記工程では、基板上に着液した現像液が時間の経過とともに周囲に広がることによって、軌跡と軌跡の間の基板面は覆われることが好ましい。In the present invention, in the step, the rotation holding means is arranged so that the locus of the landing positions of the adjacent developing solutions are brought close to each other and the substrate surface between these loci is covered with the developing solution spreading after the landing. The moving means is controlled, and in the step, during the rotation of the substrate for one rotation, the rearmost discharge port with respect to the moving direction of the developer supply means is the first discharge port at the time of starting one rotation. The substrate moves to the adjacent position that is downstream of the position in the moving direction and does not overlap with each other. The rotational speed of the developer and the moving speed of the developer supply means are constant, and in the step, the developer surface deposited on the substrate spreads around as time passes, so that the substrate surface between the tracks is Covered Door is preferable.

基板を回転させつつ現像液供給手段を移動させることで、着液位置は螺旋状に連なる。この着液位置の軌跡同士を近接させることで、基板の全面に隙間なく現像液を確実に供給することができる。なお、隣り合う着液位置の軌跡は、それぞれ異なる2つの吐出口に応じたものである場合のほかに、同じ吐出口に応じたものである場合もある。   By moving the developer supply means while rotating the substrate, the liquid landing positions are spirally connected. By making the locus of the liquid landing position close to each other, the developer can be reliably supplied to the entire surface of the substrate without a gap. In addition, the locus | trajectory of an adjacent landing position may respond | correspond to the same discharge port other than the case where it respond | corresponds to two different discharge ports, respectively.

本発明において、前記吐出口から吐出された現像液は棒状に流下することが好ましい。現像液が基板に着液する位置や範囲を、現像液の供給流量によらず、好適に制御することができる。   In the present invention, it is preferable that the developer discharged from the discharge port flows down in a rod shape. The position and range where the developer reaches the substrate can be suitably controlled regardless of the supply flow rate of the developer.

本発明において、各吐出口は互いに近接して設けられていることが好ましい。基板に現像液を効率よく供給することができるので、現像液の消費量を抑制することができる。 In the present invention, it is preferable that each outlet is provided close to each other. Since the developer can be efficiently supplied to the substrate, the consumption of the developer can be suppressed.

本発明において、前記工程では、前記回転保持手段と前記移動手段とが制御されることにより、基板の回転速度と前記現像液供給手段の移動速度との関係が調整され、隣り合う現像液の着液位置の軌跡同士の間隔が制御されることが好ましい。簡易な制御によって、基板の全面に確実に現像液を供給させることができる。 In the present invention, in the step, the rotation holding means and the moving means are controlled to adjust the relationship between the rotation speed of the substrate and the moving speed of the developer supply means, and the adhering of the adjacent developer is performed. It is preferable that the interval between the locus of the liquid position is controlled. By simple control, the developer can be reliably supplied to the entire surface of the substrate.

本発明において、前記間隔は、予め設定されている所定値又は所定範囲内となるように制御されることが好ましい。好適に制御することができる。   In the present invention, the interval is preferably controlled to be within a predetermined value or a predetermined range. It can control suitably.

本発明において、各吐出口の直径は約1mmの円形であり、隣り合う吐出口の間はそれぞれ約3mm離れていることが好ましい。各吐出口から吐出された現像液はそれぞれ円柱状を呈して、分離したまま基板に着液させることができる。また、基板上に着液した現像液が広がって、異なる着液位置の現像液が基板上で合流することで、基板面に隙間なく現像液を供給することができる。   In the present invention, it is preferable that the diameter of each discharge port is a circle of about 1 mm, and the adjacent discharge ports are separated from each other by about 3 mm. The developer discharged from each discharge port has a cylindrical shape, and can be applied to the substrate while being separated. Further, the developer that has landed on the substrate spreads and the developers at different landing positions join together on the substrate, so that the developer can be supplied to the substrate surface without any gap.

本発明において、前記工程では、基板が1回転を開始する時点における前記先頭の吐出口と、基板が1回転する間に前記先頭の吐出口の位置に対して移動方向側へ移動させた前記最後尾の吐出口との間にあけられる間隔の距離Lは、着液後に時間の経過とともに周囲に広がる現像液によって、基板上に現像液が供給されない隙間が生じないような値に設定されていることが好ましい。In the present invention, in the step, the leading discharge port at the time when the substrate starts one rotation, and the last moved to the moving direction side with respect to the position of the leading discharge port while the substrate rotates once. The distance L between the tail and the discharge port of the tail is set to a value that does not cause a gap in which the developer is not supplied on the substrate due to the developer that spreads around as time passes after the landing. It is preferable.

本発明において、前記距離Lは、隣り合う吐出口同士の間隔に等しいことが好ましい。In the present invention, the distance L is preferably equal to the interval between adjacent ejection ports.

本発明において、前記工程では、基板を回転させるとともに、前記吐出口から現像液を基板に吐出させつつ、前記吐出口の並び方向を平面視で前記一方向に保ったまま前記現像液供給手段を平面視で基板の略中心と周縁とにわたって移動させるとき、各吐出口に応じた着液位置の軌跡はいずれも重複しないことが好ましい。In the present invention, in the step, the developing solution supply means is configured to rotate the substrate and discharge the developing solution from the discharge port onto the substrate while keeping the alignment direction of the discharge ports in the one direction in a plan view. When the substrate is moved across the substantial center and periphery of the substrate in a plan view, it is preferable that none of the locus of the liquid landing position corresponding to each discharge port overlap.

なお、本明細書は、次のような現像装置に係る発明も開示している。   The present specification also discloses an invention relating to the following developing device.

(1)基板を現像する現像装置において、基板を回転可能に保持する回転保持手段と、現像液を吐出する複数の吐出口が一列に並んで形成されて、各吐出口から吐出された現像液を互いに分離したままで基板に着液させる現像液供給手段と、前記吐出口の並び方向を平面視で基板の中心に向かう一方向に保ちつつ、この一方向に前記現像液供給手段を移動することによって、前記現像液供給手段を平面視で基板の略中心と周縁とにわたって移動する移動手段と、前記回転保持手段と前記移動手段とを制御して、各吐出口から基板上に現像液をそれぞれ螺旋状に着液させて基板を現像する制御手段と、を備えたことを特徴とする現像装置。   (1) In a developing device that develops a substrate, a rotation holding means that rotatably holds the substrate and a plurality of discharge ports that discharge the developer are formed in a line, and the developer discharged from each discharge port The developer supply means for landing the liquid on the substrate while being separated from each other, and the developer supply means are moved in this one direction while keeping the direction of alignment of the discharge ports in one direction toward the center of the substrate in plan view. By controlling the moving means for moving the developing solution supply means over substantially the center and the periphery of the substrate in plan view, the rotation holding means and the moving means, the developing solution is supplied onto the substrate from each discharge port. And a control means for developing the substrate by applying the liquid in a spiral manner.

前記(1)に記載の発明によれば、現像液供給手段の各吐出口から吐出された現像液は、基板に着液するまで互いに分離したままである。このため、吐出口から基板面にかけて、流下する現像液の形状は現像液の流量変動によらず安定している。よって、現像液が基板に着液する位置、範囲も安定している。移動手段は、一列に並ぶ各吐出口の並び方向を平面視で基板の中心に向いた一方向に保った状態で、この一方向に現像液供給手段を移動して、現像液供給手段を平面視で基板の略中心と周縁とにわたって移動する。制御手段はこのような移動手段を回転保持手段とともに制御することで、各吐出口に応じた複数の螺旋形状の領域に現像液が供給される。この際、各吐出口は平面視で常に基板の中心を通る直線上にあり、基板の中心から各吐出口までの距離は一様に現像液供給手段が移動した距離に比例して増減する。よって、基板上における複数の螺旋形状の領域相互の位置関係を容易に制御することができる。これにより、基板全面に隙間なく、かつ、効率よく現像液を供給することができ、これにより現像液の消費量を抑制することができる。   According to the invention described in (1), the developer discharged from each discharge port of the developer supply means remains separated from each other until it reaches the substrate. For this reason, the shape of the developer flowing down from the discharge port to the substrate surface is stable regardless of the flow rate variation of the developer. Therefore, the position and range where the developer reaches the substrate is also stable. The moving means moves the developing solution supply means in this one direction while keeping the arrangement direction of the discharge ports arranged in a line in one direction facing the center of the substrate in plan view. Visually moves across the approximate center and periphery of the substrate. The control unit controls the moving unit together with the rotation holding unit, so that the developing solution is supplied to a plurality of spiral regions corresponding to the respective discharge ports. At this time, each ejection port is always on a straight line passing through the center of the substrate in plan view, and the distance from the center of the substrate to each ejection port is increased or decreased in proportion to the distance the developer supply means has moved. Therefore, the positional relationship between a plurality of spiral regions on the substrate can be easily controlled. As a result, the developer can be efficiently supplied to the entire surface of the substrate without any gaps, and thus the consumption of the developer can be suppressed.

(2)上述した発明に係る現像装置において、前記吐出口から吐出された現像液は棒状に流下することを特徴とする現像装置。   (2) In the developing device according to the above-described invention, the developing solution discharged from the discharge port flows down in a rod shape.

前記(2)に記載の発明によれば、現像液が基板に着液する位置や範囲を、現像液の供給流量によらず、好適に制御することができる。   According to the invention described in (2) above, the position and range of the developer landing on the substrate can be suitably controlled regardless of the supply flow rate of the developer.

(3)上述した発明に係る現像装置において、各吐出口は互いに近接して設けられており、各吐出口から同時に現像液が吐出されたとき、基板に現像液が着液する着液位置同士の間の基板面を着液後に広がる現像液で覆うことを特徴とする現像装置。   (3) In the developing device according to the above-described invention, the discharge ports are provided close to each other, and when the developer is simultaneously discharged from the discharge ports, the liquid landing positions where the developer reaches the substrate A developing device characterized in that the substrate surface between the two is covered with a developer that spreads after the liquid is deposited.

前記(3)に記載の発明によれば、基板に現像液を効率よく供給することができるので、現像液の消費量を抑制することができる。   According to the invention described in (3), since the developer can be efficiently supplied to the substrate, the consumption of the developer can be suppressed.

(4)上述した発明に係る現像装置において、前記回転保持手段と前記移動手段とを制御して、隣り合う現像液の着液位置の軌跡同士を近接させて、これら軌跡と軌跡の間の基板面を着液後に広がる現像液で覆うことを特徴とする現像装置。   (4) In the developing device according to the above-described invention, the rotation holding means and the moving means are controlled so that the loci of adhering positions of adjacent developing solutions are brought close to each other, and the substrate between these loci A developing device characterized in that the surface is covered with a developing solution that spreads after landing.

前記(4)に記載の発明によれば、基板を回転させつつ現像液供給手段を移動させることで、着液位置は螺旋状に連なる。この着液位置の軌跡同士を近接させることで、基板の全面に隙間なく現像液を確実に供給することができる。なお、隣り合う着液位置の軌跡は、それぞれ異なる2つの吐出口に応じたものである場合のほかに、同じ吐出口に応じたものである場合もある。   According to the invention described in (4) above, the liquid landing positions are spirally connected by moving the developer supply means while rotating the substrate. By making the locus of the liquid landing position close to each other, the developer can be reliably supplied to the entire surface of the substrate without a gap. In addition, the locus | trajectory of an adjacent landing position may respond | correspond to the same discharge port other than the case where it respond | corresponds to two different discharge ports, respectively.

(5)上述した発明に係る現像装置において、前記制御手段は、前記回転保持手段と前記移動手段とを制御して基板の回転速度と前記現像液供給手段の移動速度との関係を調整することによって、前記隣り合う現像液の着液位置の軌跡同士の間隔を制御することを特徴とする現像装置。   (5) In the developing device according to the above-described invention, the control unit controls the rotation holding unit and the moving unit to adjust the relationship between the rotation speed of the substrate and the moving speed of the developer supply unit. To control the distance between the locus of the liquid landing positions of the adjacent developers.

前記(5)に記載の発明によれば、制御手段は簡易な制御によって、基板の全面に確実に現像液を供給させることができる。   According to the invention as described in said (5), the control means can supply a developing solution reliably to the whole surface of a board | substrate by simple control.

(6)上述した発明に係る現像装置において、前記制御手段は、前記間隔が予め設定されている所定値又は所定範囲内となるように制御することを特徴とする現像装置。   (6) In the developing device according to the above-described invention, the control unit controls the interval to be within a predetermined value or a predetermined range set in advance.

前記(6)に記載の発明によれば、制御手段は好適に制御することができる。   According to the invention as described in said (6), a control means can be controlled suitably.

(7)上述した発明に係る現像装置において、前記制御手段は、基板を1回転させる間に、前記現像液供給手段の移動方向に対して最後尾の吐出口を、1回転を開始する時点における先頭の吐出口の位置に対して移動方向側で近接する位置まで移動させることを特徴とする現像装置。   (7) In the developing device according to the above-described invention, the control unit causes the last discharge port to start rotating once with respect to the moving direction of the developer supply unit while rotating the substrate once. A developing device, wherein the developing device is moved to a position close to the position of the leading discharge port on the moving direction side.

前記(7)に記載の発明によれば、制御手段は基板の全面に効率よく現像液を供給することができる。このため、現像液の消費量をより低減させることができる。   According to the invention as described in said (7), a control means can supply a developing solution efficiently to the whole surface of a board | substrate. For this reason, the consumption of a developing solution can be reduced more.

(8)上述した発明に係る現像装置において、前記制御手段は、各吐出口に応じた複数の前記軌跡のうち、少なくともいずれか2つの軌跡が重なるように制御することを特徴とする現像装置。   (8) In the developing device according to the above-described invention, the control unit performs control so that at least any two of the plurality of trajectories corresponding to each ejection port overlap.

前記(8)に記載の発明によれば、現像液の着液位置の軌跡を重ねることによって、より確実に基板全面に現像液を供給することができる。   According to the invention described in (8) above, the developer can be more reliably supplied to the entire surface of the substrate by overlapping the locus of the landing position of the developer.

(9)上述した発明に係る現像装置において、前記制御手段は、各吐出口に応じた軌跡が互いに重なるように制御することを特徴とする現像装置。   (9) In the developing device according to the above-described invention, the control unit performs control so that the trajectories corresponding to the respective discharge ports overlap each other.

前記(9)に記載の発明によれば、確実に基板全面に現像液を供給することができる。   According to invention of said (9), a developing solution can be reliably supplied to the whole substrate surface.

(10)上述した発明に係る現像装置において、前記制御手段が基板を1回転させる間に前記現像液供給手段を移動させる距離は、隣り合う吐出口の中心間距離を、吐出口の総数から1を引いた数で割った値であることを特徴とする現像装置。   (10) In the developing apparatus according to the above-described invention, the distance by which the developing solution supply unit is moved while the control unit makes one rotation of the substrate is the distance between the centers of adjacent discharge ports from the total number of discharge ports. A developing device characterized by a value obtained by dividing by a number obtained by subtracting.

前記(10)に記載の発明によれば、確実に基板全面に現像液を供給することができる。   According to the invention described in (10), the developer can be reliably supplied to the entire surface of the substrate.

(11)上述した発明に係る現像装置において、前記制御手段が基板を1回転させる間に前記現像液供給手段を移動させる距離は、隣り合う吐出口の中心間距離より短いことを特徴とする現像装置。   (11) In the developing device according to the above-described invention, the distance that the developer supplying unit is moved while the control unit rotates the substrate once is shorter than the distance between the centers of the adjacent discharge ports. apparatus.

前記(11)に記載の発明によれば、確実に基板全面に現像液を供給することができる。   According to the invention as described in said (11), a developing solution can be reliably supplied to the whole substrate surface.

(12)上述した発明に係る現像装置において、各吐出口の直径は約1mmの円形であり、隣り合う吐出口の間はそれぞれ約3mm離れていることを特徴とする現像装置。   (12) In the developing device according to the above-described invention, each discharge port has a circular shape with a diameter of about 1 mm, and the adjacent discharge ports are separated by about 3 mm.

前記(12)に記載の発明によれば、各吐出口から吐出された現像液はそれぞれ円柱状を呈して、分離したまま基板に着液させることができる。また、基板上に着液した現像液が広がって、異なる着液位置の現像液が基板上で合流することで、基板面に隙間なく現像液を供給することができる。   According to the invention described in (12), the developer discharged from each discharge port has a cylindrical shape, and can be applied to the substrate while being separated. Further, the developer that has landed on the substrate spreads and the developers at different landing positions join together on the substrate, so that the developer can be supplied to the substrate surface without any gap.

(13)上述した発明に係る現像装置において、前記制御手段は、各吐出口から基板上に現像液をそれぞれ螺旋状に着液させて基板を現像する際、基板の回転速度および前記現像液供給手段の移動速度をそれぞれ一定に制御することを特徴とする現像装置。   (13) In the developing device according to the above-described invention, when the control unit causes the developer to spirally land on the substrate from each discharge port and develop the substrate, the rotation speed of the substrate and the supply of the developer A developing device characterized in that the moving speed of each means is controlled to be constant.

前記(13)に記載の発明によれば、前記制御手段により好適に制御することができる。   According to the invention as described in said (13), it can control suitably by the said control means.

この発明に係る現像方法によれば、現像液供給手段の各吐出口から吐出された現像液は、基板に着液するまで互いに分離したままである。このため、吐出口から基板面にかけて、流下する現像液の形状は現像液の流量変動によらず安定している。よって、現像液が基板に着液する位置、範囲も安定している。移動手段は、一列に並ぶ各吐出口の並び方向を平面視で基板の中心に向いた一方向に保った状態で、この一方向に現像液供給手段を移動して、現像液供給手段を平面視で基板の略中心と周縁とにわたって移動する。このような移動手段を回転保持手段とともに制御することで、各吐出口に応じた複数の螺旋形状の領域に現像液が供給される。この際、各吐出口は平面視で常に基板の中心を通る直線上にあり、基板の中心から各吐出口までの距離は一様に現像液供給手段が移動した距離に比例して増減する。よって、基板上における複数の螺旋形状の領域相互の位置関係を容易に制御することができる。これにより、基板全面に隙間なく、かつ、効率よく現像液を供給することができ、これにより現像液の消費量を抑制することができる。   According to the developing method of the present invention, the developer discharged from each discharge port of the developer supply means remains separated from each other until it reaches the substrate. For this reason, the shape of the developer flowing down from the discharge port to the substrate surface is stable regardless of the flow rate variation of the developer. Therefore, the position and range where the developer reaches the substrate is also stable. The moving means moves the developing solution supply means in this one direction while keeping the arrangement direction of the discharge ports arranged in a line in one direction facing the center of the substrate in plan view. Visually moves across the approximate center and periphery of the substrate. By controlling such moving means together with the rotation holding means, the developing solution is supplied to a plurality of spiral regions corresponding to the respective discharge ports. At this time, each ejection port is always on a straight line passing through the center of the substrate in plan view, and the distance from the center of the substrate to each ejection port is increased or decreased in proportion to the distance the developer supply means has moved. Therefore, the positional relationship between a plurality of spiral regions on the substrate can be easily controlled. As a result, the developer can be efficiently supplied to the entire surface of the substrate without any gaps, and thus the consumption of the developer can be suppressed.

以下、図面を参照してこの発明の実施例を説明する。図1は、実施例に係る現像装置の概略構成を示すブロック図であり、図2は、実施例に係る現像装置の平面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram illustrating a schematic configuration of a developing device according to the embodiment, and FIG. 2 is a plan view of the developing device according to the embodiment.

本実施例に係る現像装置は、基板Wの下面中央部を吸着して、基板Wを水平姿勢で保持するスピンチャック1を備えている。スピンチャック1の下部中央にはモータ3の出力軸3aの先端が連結されている。モータ3の出力軸3aが回転駆動することで、スピンチャック1と基板Wを鉛直軸AX周りに回転させる。なお、鉛直軸AXは基板Wの略中心を通る。スピンチャック1及びモータ3は、この発明における回転保持手段に相当する。なお、回転保持手段は、上記の例に限られない。たとえば、スピンチャック1を、基板Wの端縁を保持する複数のピンが設けられた回転板に変更してもよい。   The developing device according to the present embodiment includes a spin chuck 1 that sucks the central portion of the lower surface of the substrate W and holds the substrate W in a horizontal posture. The tip of the output shaft 3 a of the motor 3 is connected to the lower center of the spin chuck 1. By rotating the output shaft 3a of the motor 3, the spin chuck 1 and the substrate W are rotated about the vertical axis AX. The vertical axis AX passes through the approximate center of the substrate W. The spin chuck 1 and the motor 3 correspond to the rotation holding means in this invention. The rotation holding means is not limited to the above example. For example, the spin chuck 1 may be changed to a rotating plate provided with a plurality of pins that hold the edge of the substrate W.

スピンチャック1の周囲には、飛散防止カップ5が配備されている。飛散防止カップ5は、基板Wの外周から周囲に飛散する現像液等を下方へ案内するとともに回収する機能を備える。   An anti-scattering cup 5 is provided around the spin chuck 1. The anti-scattering cup 5 has a function of guiding and collecting a developing solution or the like scattered from the outer periphery of the substrate W downward.

本装置は、現像液を供給する現像液ノズル11を備えている。現像液ノズル11の下面には、複数個(本実施例では3個)の吐出口aが一列に並んで形成されている。現像液ノズル11には現像液配管13の一端が連通接続されている。現像液ノズル11内には現像液配管13と各吐出口aとを連通させる流路が形成されている(図4(a)を参照)。現像液配管13の他端は現像液供給源15に連通接続されている。現像液配管13には現像液の流路を開閉する開閉弁17が設けられている。現像液ノズル11は、この発明における現像液供給手段に相当する。   The apparatus includes a developer nozzle 11 that supplies a developer. A plurality (three in this embodiment) of discharge ports a are formed in a row on the lower surface of the developer nozzle 11. One end of a developer pipe 13 is connected to the developer nozzle 11 in communication. A flow path is formed in the developer nozzle 11 to connect the developer pipe 13 and each discharge port a (see FIG. 4A). The other end of the developer pipe 13 is connected in communication with a developer supply source 15. The developer pipe 13 is provided with an opening / closing valve 17 for opening and closing the flow path of the developer. The developer nozzle 11 corresponds to the developer supply means in this invention.

現像液ノズル11は水平移動機構21に支持されている。水平移動機構21は、その吐出口aの並び方向d1が基板Wの略中心に向かう一方向に保ちつつ現像液ノズル11をその一方向に移動させて、基板Wの略中心の上方位置(図1において実線で示す現像液ノズル11の位置)と、基板Wの周縁の上方位置(図1において点線で示す現像液ノズル11の位置)とにわたって現像液ノズル11を移動する。さらに、水平移動機構21は基板Wの上方から外れた位置(図2において実線で示す現像液ノズル11の位置)に現像液ノズル11を移動する。なお、図2において点線で示す現像液ノズル11の位置は、基板Wの略中心の上方位置である。   The developer nozzle 11 is supported by the horizontal movement mechanism 21. The horizontal movement mechanism 21 moves the developing solution nozzle 11 in one direction while keeping the arrangement direction d1 of the discharge ports a in one direction toward the approximate center of the substrate W, and is positioned above the approximate center of the substrate W (see FIG. 1, the developer nozzle 11 is moved over the position of the developer nozzle 11 indicated by a solid line in FIG. Further, the horizontal movement mechanism 21 moves the developer nozzle 11 to a position deviated from above the substrate W (a position of the developer nozzle 11 indicated by a solid line in FIG. 2). Note that the position of the developer nozzle 11 indicated by a dotted line in FIG. 2 is a position above the approximate center of the substrate W.

この水平移動機構21は、レール部22と自走台23とアーム部24とを備えている。レール部22は直線形状を呈し、飛散防止カップ5の側方に水平に設置されている。レール部22には自走台23が摺動可能に取り付けられている。自走台23は、レール部22に案内されつつ、飛散防止カップ5の側方を水平1軸方向(以下では、「移動方向d2」と呼ぶ)に前後移動する。自走台23の上部にはアーム部24の一端が連結されて、飛散防止カップ5の上端より高い位置でアーム部24が支持されている。アーム部24の他端には現像液ノズル11が取り付けられている。このとき、各吐出口aの並び方向d1が自走台23の移動方向d2と平行となり、かつ、並び方向d1を平面視で基板Wの略中心に向かうように、現像液ノズル11の位置、姿勢が決められた状態で固定的にアーム部24に連結されている。この結果、現像液ノズル11は自走台23と一体に移動して、基板Wの略中心の上方と、基板Wの上方から外れた位置との間を直線的に移動する。水平移動機構21は、この発明における移動手段に相当する。   The horizontal movement mechanism 21 includes a rail part 22, a self-propelled base 23, and an arm part 24. The rail portion 22 has a linear shape and is horizontally installed on the side of the anti-scattering cup 5. A self-propelled base 23 is slidably attached to the rail portion 22. The self-propelled base 23 moves back and forth in the horizontal uniaxial direction (hereinafter referred to as “movement direction d2”) while being guided by the rail portion 22. One end of an arm part 24 is connected to the upper part of the self-propelled base 23, and the arm part 24 is supported at a position higher than the upper end of the anti-scattering cup 5. The developer nozzle 11 is attached to the other end of the arm portion 24. At this time, the position of the developer nozzle 11 so that the arrangement direction d1 of the discharge ports a is parallel to the movement direction d2 of the self-propelled base 23 and the arrangement direction d1 is directed to the approximate center of the substrate W in plan view. In a state where the posture is determined, the arm portion 24 is fixedly connected. As a result, the developer nozzle 11 moves integrally with the self-propelled base 23 and moves linearly between a position substantially above the center of the substrate W and a position deviated from above the substrate W. The horizontal moving mechanism 21 corresponds to the moving means in this invention.

このように現像液ノズル11の移動方向は、自走台23の移動方向d2、および、吐出口aの並び方向d1と同じであるので、以下では、符号「d1」、「d2」を適宜に「d」と略記するとともに、適宜に「現像液ノズル11の移動方向d」と記載する。また、3つの吐出口aを区別する場合は、基板Wの略中心に近いほうから順に「吐出口a0、a1、a2」と記載する。本装置は、さらに、基板Wの上方に移動可能に構成されているリンス液ノズル(図示省略)等が配備されている。   As described above, the movement direction of the developer nozzle 11 is the same as the movement direction d2 of the self-propelled base 23 and the arrangement direction d1 of the discharge ports a. Therefore, in the following, reference numerals “d1” and “d2” are appropriately used. It is abbreviated as “d” and appropriately described as “movement direction d of developer nozzle 11”. When the three discharge ports a are distinguished, they are described as “discharge ports a0, a1, a2” in order from the side closer to the approximate center of the substrate W. The apparatus further includes a rinsing liquid nozzle (not shown) that is configured to be movable above the substrate W.

また、本装置は、上述した各構成を統括的に操作する制御部31を備えている。具体的には、モータ3を駆動させて基板Wの回転数(回転速度)を制御し、水平移動機構21を駆動させて現像液ノズル11の移動速度を制御し、開閉弁17を開放・閉止させて現像液の供給量を制御する。   In addition, the apparatus includes a control unit 31 that performs overall operations on the above-described components. Specifically, the motor 3 is driven to control the rotation speed (rotation speed) of the substrate W, the horizontal movement mechanism 21 is driven to control the movement speed of the developer nozzle 11, and the on-off valve 17 is opened / closed. To control the supply amount of the developing solution.

この制御部31は、基板Wを処理するための処理条件が予め設定されている処理レシピと、現像液ノズル11の形状に関するノズル情報とを有している。処理条件としては、後述する距離Lや、現像、洗浄または乾燥などの各種処理時間や、現像液供給流量などを含む。ノズル情報としては、各吐出口aの寸法、吐出口a同士の間隔la(後述)、または、水平移動機構21の位置に応じた各吐出口aと基板Wとの相対的な位置関係などを含む。制御部31は、各種処理を実行する中央演算処理装置(CPU)や、演算処理の作業領域となるRAM(Random-Access Memory)や、各種情報を記憶する固定ディスク等の記憶媒体等によって実現されている。   The control unit 31 includes a processing recipe in which processing conditions for processing the substrate W are set in advance, and nozzle information regarding the shape of the developer nozzle 11. The processing conditions include a distance L which will be described later, various processing times such as development, washing or drying, and a developer supply flow rate. The nozzle information includes the size of each discharge port a, the interval la between the discharge ports a (described later), or the relative positional relationship between each discharge port a and the substrate W according to the position of the horizontal movement mechanism 21. Including. The control unit 31 is realized by a central processing unit (CPU) that executes various types of processing, a RAM (Random-Access Memory) that serves as a work area for arithmetic processing, a storage medium such as a fixed disk that stores various types of information, and the like. ing.

次に、実施例に係る現像装置の動作について説明する。まず、レジスト膜が被着された基板Wが既にスピンチャック1に吸着保持されているものとして、基板Wを現像する一連の動作を簡略に説明する。   Next, the operation of the developing device according to the embodiment will be described. First, a series of operations for developing the substrate W will be briefly described on the assumption that the substrate W on which the resist film is deposited is already sucked and held by the spin chuck 1.

<ステップS1>
制御部31は、モータ3を駆動し、開閉弁17を開放するとともに水平移動機構21を駆動する。これにより、基板Wを回転させるとともに、各吐出口aから現像液を吐出させつつ、現像液ノズル11を基板Wの周縁上方から基板Wの略中心の上方に向かって移動させる。そして、現像液ノズル11が基板Wの略中心の上方まで移動すると、制御部31は現像液ノズル11の移動を停止させる。これにより、各吐出口aから吐出された現像液は基板Wの表面に供給されて、基板Wを現像する。
<Step S1>
The control unit 31 drives the motor 3 to open the on-off valve 17 and to drive the horizontal movement mechanism 21. As a result, the substrate W is rotated, and the developer nozzle 11 is moved from above the peripheral edge of the substrate W to approximately above the center of the substrate W while discharging the developer from each discharge port a. Then, when the developer nozzle 11 moves to a position substantially above the center of the substrate W, the control unit 31 stops the movement of the developer nozzle 11. As a result, the developer discharged from each discharge port a is supplied to the surface of the substrate W to develop the substrate W.

<ステップS2〜S4>
制御部31は、基板Wを回転させつつ、基板Wの略中心の上方位置に静止させた現像液ノズル11から現像液を基板Wに吐出させている状態を、所定の時間が経過するまで維持する(ステップS2)。所定の時間が経過すると、制御部31は、現像液ノズル11を基板Wの上方から外れた位置に退避させるとともに、吐出口aからの現像液の吐出を停止させ、図示省略のリンス液ノズルからリンス液を基板Wに供給して、基板Wの現像を停止させて基板Wを洗浄する(ステップS3)。基板Wに洗浄処理を所定時間行うと、制御部31はリンス液の供給を停止して、基板Wをより高速に回転させる(ステップS4)。これにより、リンス液を基板Wから振り切りつつ基板Wを乾燥する。
<Steps S2 to S4>
The controller 31 rotates the substrate W and maintains the state in which the developer is discharged from the developer nozzle 11 stopped at a position approximately above the center of the substrate W until a predetermined time elapses. (Step S2). When a predetermined time elapses, the control unit 31 retracts the developer nozzle 11 to a position off the upper side of the substrate W, stops the discharge of the developer from the discharge port a, and starts from a rinse liquid nozzle (not shown). The rinse liquid is supplied to the substrate W, the development of the substrate W is stopped, and the substrate W is cleaned (step S3). When the cleaning process is performed on the substrate W for a predetermined time, the control unit 31 stops supplying the rinse liquid and rotates the substrate W at a higher speed (step S4). Thereby, the substrate W is dried while shaking off the rinse liquid from the substrate W.

次に、ステップS1のより詳細な処理内容について、3通りの処理例(ステップS1a、S1b、S1c)をそれぞれ説明する。   Next, three processing examples (steps S1a, S1b, and S1c) will be described for more detailed processing contents of step S1.

<第1の処理例(ステップS1a)>
制御部31は、基板Wを1回転させる間に、現像液ノズル11の移動方向dに対して最後尾の吐出口a2を、1回転を開始する時点における先頭の吐出口a0の位置に対して移動方向側に近接した位置に移動させる。
<First Processing Example (Step S1a)>
During one rotation of the substrate W, the control unit 31 moves the last discharge port a2 with respect to the moving direction d of the developer nozzle 11 with respect to the position of the first discharge port a0 at the time of starting one rotation. Move to a position close to the moving direction.

図3を参照する。図3は、回転する基板に着液した現像液の様子を模式的に示す平面図であり、図4(a)、(b)は、それぞれ図3のA−A矢視とB−B矢視の垂直断面図である。図4(a)に示すように、各吐出口aからそれぞれ吐出された現像液Dは棒状に流下し、互いに分離されたままで基板Wに着液する(図4(a)参照)。現像液Dが基板Wに直接着液する着液位置は、吐出口aのほぼ鉛直下方であって吐出口aの大きさとほぼ同じ領域を有する。図3では、各吐出口a0、a1、a2から吐出された現像液Dの着液位置をそれぞれ符号b0、b1、b2を付して示す。なお、着液位置b0、b1、b2を特に区別しないときは適宜に「着液位置b」と略記する。   Please refer to FIG. 3 is a plan view schematically showing the state of the developer applied to the rotating substrate. FIGS. 4A and 4B are views taken along arrows AA and BB in FIG. 3, respectively. FIG. As shown in FIG. 4A, the developer D discharged from each discharge port a flows down in a rod shape, and is deposited on the substrate W while being separated from each other (see FIG. 4A). The liquid deposition position where the developer D directly deposits on the substrate W is substantially vertically below the ejection port a and has an area substantially the same as the size of the ejection port a. In FIG. 3, the landing positions of the developer D discharged from the discharge ports a0, a1, and a2 are shown with reference numerals b0, b1, and b2, respectively. The liquid landing positions b0, b1, and b2 are appropriately abbreviated as “liquid landing position b” when not particularly distinguished.

各吐出口aから現像液Dを吐出した状態で基板Wを鉛直軸AX周りに回転させつつ(回転方向を図3において符号「c」を付して示す)、現像液ノズル11を移動させることにより、各着液位置bはそれぞれ連続的に変位する。本明細書では、着液位置b0、b1、b2をそれぞれ連ねた各領域を着液位置の軌跡bL0、bL1、bL2と呼ぶ。なお、図3における符号「bL0」、「bL1」、「bL2」は、着液位置b0、b1、b2にそれぞれ対応する2本の湾曲した破線で囲まれた領域を指している。以下では、着液位置の軌跡bL0、bL1、bL2を特に区別しないときは適宜に「着液位置の軌跡bL」と略記する。   The developer nozzle 11 is moved while the substrate W is rotated about the vertical axis AX in a state where the developer D is discharged from each discharge port a (the rotation direction is indicated by a reference numeral “c” in FIG. 3). As a result, each liquid landing position b is continuously displaced. In this specification, the respective regions where the liquid landing positions b0, b1, and b2 are respectively connected are referred to as liquid landing position loci bL0, bL1, and bL2. Note that reference numerals “bL0”, “bL1”, and “bL2” in FIG. 3 indicate regions surrounded by two curved broken lines corresponding to the liquid landing positions b0, b1, and b2, respectively. In the following description, the liquid landing position trajectories bL0, bL1, and bL2 are appropriately abbreviated as “liquid landing position trajectory bL” when not particularly distinguished.

着液した現像液Dは時間の経過とともに着液位置bから横方向へ広がる。このため、図3に示すように、基板Wに現像液Dが供給される範囲は着液位置の軌跡bLよりも広い。   The developed developer D spreads laterally from the landing position b over time. For this reason, as shown in FIG. 3, the range in which the developer D is supplied to the substrate W is wider than the locus bL of the landing position.

本実施例では、実験結果等に基づいて吐出口a同士の間隔(より詳しくは吐出口aの縁同士の距離)laは設計されており、これにより、図4(b)に示すように隣り合う着液位置bに同時に分離着液した現像液は基板W上で合流する。したがって、図3に示すように、着液位置の軌跡bL同士の間の基板W面にも確実に現像液が供給される。なお、隣り合う吐出口a同士の間隔laは、例えば3(mm)であることが好ましい。この場合、吐出口aの直径としては1(mm)であることが好ましい。   In the present embodiment, the interval between the discharge ports a (more specifically, the distance between the edges of the discharge port a) la is designed based on the experimental results and the like, and as a result, as shown in FIG. The developing solution that has been separated and deposited simultaneously on the matching landing position b joins on the substrate W. Therefore, as shown in FIG. 3, the developer is reliably supplied also to the surface of the substrate W between the locus bL of the landing positions. In addition, it is preferable that the space | interval la of the adjacent discharge outlets a is 3 (mm), for example. In this case, the diameter of the discharge port a is preferably 1 (mm).

図5は、基板Wの表面に供給された現像液の範囲を示す模式図であり、図5(b)は、図5(a)で示した時刻から基板Wが1回転した後の時点を示している。図5では、現像液が供給された範囲を、吐出口aごとにパターン濃度を変えて図示している。   FIG. 5 is a schematic diagram showing the range of the developer supplied to the surface of the substrate W, and FIG. 5B shows the time after the substrate W has made one revolution from the time shown in FIG. Show. In FIG. 5, the range in which the developer is supplied is illustrated by changing the pattern density for each ejection port a.

図示するように、基板Wを鉛直軸AX周りに回転させつつ(図5において符号「c」を付した方向)、現像液ノズル11を移動方向dに移動させることにより、現像液は、基板Wの略中心に向けて徐々に径が縮小する螺旋形状の領域に供給される。   As shown in the figure, the developer is moved in the moving direction d while rotating the substrate W around the vertical axis AX (the direction indicated by reference numeral “c” in FIG. 5). Is supplied to a spiral-shaped region whose diameter gradually decreases toward the approximate center.

さらに、図5に示すように、基板Wが1回転する間に、移動方向dに対して最後尾となる吐出口a2を、1回転の開始時における先頭の吐出口a0に対して移動方向d側へ距離Lだけ間隔をあけた位置に移動させる(以下、単に距離Lと記載する)。この距離Lも、隣り合う吐出口a同士の間隔laと同様に、基板W上に現像液が供給されない隙間が生じないような値に設定されている。このように、隣り合う現像液の着液位置の軌跡bL0、bL2との間隔を近接させることで、図5(b)に示すように、吐出口a2に応じた現像液の供給範囲は、吐出口a0に応じた現像液の供給範囲に隙間なく密接させることができる。   Further, as shown in FIG. 5, while the substrate W makes one rotation, the discharge port a <b> 2 that is the last in the movement direction d is moved in the movement direction d with respect to the first discharge port a <b> 0 at the start of one rotation. Move to a position spaced apart by a distance L (hereinafter simply referred to as a distance L). This distance L is also set to a value that does not cause a gap where the developer is not supplied on the substrate W, similarly to the interval la between the adjacent ejection ports a. In this way, by bringing the distance between the adjacent developer landing positions trajectories bL0 and bL2 close to each other, as shown in FIG. 5B, the supply range of the developer corresponding to the discharge port a2 can be reduced. The developer supply range corresponding to the outlet a0 can be brought into close contact with no gap.

上述した距離L(m)は、基板Wの回転速度ω(rad/s)および現像液ノズル11の移動速度v(m/s)の関係と、既知の現像液ノズル11のノズル情報とで決まる(ここで、ω、vはいずれも正の定数とする)。以下、数式を用いて具体的に説明する。   The distance L (m) described above is determined by the relationship between the rotational speed ω (rad / s) of the substrate W and the moving speed v (m / s) of the developer nozzle 11 and the nozzle information of the known developer nozzle 11. (Here, ω and v are both positive constants). Hereinafter, it demonstrates concretely using numerical formula.

図6は、直交座標系を模式的に示す平面図であり、図7は、ノズル情報および距離Lを模式的に示す現像液ノズル11の下面図である。図7(b)は、図7(a)で示した時点から基板Wが1回転した後の時点の様子を示している。図6に示すように、基板W面と平行な2次元平面の座標であって、X軸を吐出口aの並び方向d(現像液ノズル11の移動方向d)とし、Y軸をX軸および鉛直軸AXと直交する軸とする直交座標系を想定する。この直交座標系の原点(0,0)は、平面視で基板Wの回転中心の位置と一致する。   FIG. 6 is a plan view schematically showing an orthogonal coordinate system, and FIG. 7 is a bottom view of the developer nozzle 11 schematically showing nozzle information and distance L. FIG. 7B shows a state at a time point after the substrate W makes one rotation from the time point shown in FIG. As shown in FIG. 6, the coordinates are in a two-dimensional plane parallel to the substrate W surface, where the X axis is the arrangement direction d of the discharge ports a (the moving direction d of the developer nozzle 11), and the Y axis is the X axis and Assume an orthogonal coordinate system with an axis orthogonal to the vertical axis AX. The origin (0, 0) of the orthogonal coordinate system coincides with the position of the rotation center of the substrate W in plan view.

現像液ノズル11に形成される吐出口aの総数は(m+1)個とし、移動方向dの先頭から順に吐出口a0、a1、a2、……、amと呼ぶ(mは1以上の整数)。各吐出口aiは半径r(m)の円形とし、隣り合う吐出口aの中心間距離をそれぞれP(m)とする(iは0からmまでの任意の整数とし、Pは正の定数とする)。時刻t=0(s)における先頭の吐出口a0の中心位置を(−R,0)とすると、時刻t=0(s)における各吐出口aiの中心位置は、(−R−i×P,0)となる(Rは正の定数とする)。   The total number of discharge ports a formed in the developer nozzle 11 is (m + 1), and the discharge ports are referred to as discharge ports a0, a1, a2,..., Am in order from the top in the movement direction d (m is an integer of 1 or more). Each discharge port ai is circular with a radius r (m), and the distance between the centers of adjacent discharge ports a is P (m) (i is an arbitrary integer from 0 to m, and P is a positive constant) To do). If the center position of the first discharge port a0 at time t = 0 (s) is (−R, 0), the center position of each discharge port ai at time t = 0 (s) is (−R−i × P). , 0) (R is a positive constant).

各吐出口aiの中心位置から回転する基板W面に垂直に下ろした点を再びXY座標系に投影した点Bi(Xi,Yi)が、時刻tの経過とともに移動する軌跡は、
Xi=(−R−i×P+v×t)×cosωt …… (1)
Yi=(−R−i×P+v×t)×sinωt …… (2)
で表される。
A trajectory along which the point Bi (Xi, Yi), which is a point that is perpendicular to the rotating substrate W surface from the center position of each ejection port ai and projected onto the XY coordinate system, moves as time t passes,
Xi = (− R−i × P + v × t) × cos ωt (1)
Yi = (− R−i × P + v × t) × sin ωt (2)
It is represented by

この点Biの軌跡は、上述した着液位置の軌跡bLの中心線とみなせる。ここで、角速度ωと移動速度vは一定である。このため、点Biの軌跡同士の間隔を半径方向から見る場合(すなわち、点Biの各軌跡が原点を通過する直線とそれぞれ交わる交点同士の距離を間隔とする場合)、いずれの角度の半径方向からみても変わらない。そこで、点Biの軌跡同士の間隔を、X軸の負の部分(点(−R,0)と原点(0,0)を結ぶ線分)を通過する位置で求めることが便宜である。点BiがX軸の負の部分上にあるときのX座標は、式(1)に時刻t=2πN/ω(Nは基板Wの周回数であり、0以上の整数)を与えることで得られる。   The locus of this point Bi can be regarded as the center line of the locus bL of the liquid landing position described above. Here, the angular velocity ω and the moving velocity v are constant. For this reason, when the distance between the trajectories of the point Bi is viewed from the radial direction (that is, when the distance between the intersection points where each trajectory of the point Bi intersects with the straight line passing through the origin is the distance), the radial direction of any angle Even if it sees, it does not change. Therefore, it is convenient to obtain the interval between the trajectories of the point Bi at a position passing through the negative portion of the X axis (a line segment connecting the point (−R, 0) and the origin (0, 0)). The X coordinate when the point Bi is on the negative part of the X axis is obtained by giving the time t = 2πN / ω (N is the number of revolutions of the substrate W and is an integer of 0 or more) to the equation (1). It is done.

よって、それぞれ周回数N、Nにおける各吐出口ai、aiに対応する各点BiのX座標の差(Xi−Xi)は、
Xi−Xi=(−i+i)×P+v×2π×(N−N)/ω …… (3)
で表すことができる。
Therefore, the difference (Xi 1 −Xi 2 ) between the X coordinates of the points Bi corresponding to the discharge ports ai 1 and ai 2 at the respective circulation numbers N 1 and N 2 is
Xi 1 −Xi 2 = (− i 1 + i 2 ) × P + v × 2π × (N 1 −N 2 ) / ω (3)
Can be expressed as

ここで、X座標の差(Xi−Xi)から2rを引いた値は、隣り合う現像液の着液位置の軌跡同士bLの間隔とみなせる。よって、周回数N、Nにおける各吐出口ai、aiに応じたX座標の差(Xi−Xi)は、隣り合う現像液の着液位置の軌跡同士bLの間隔に対応する。 Here, the value obtained by subtracting 2r from the X coordinate difference (Xi 1 −Xi 2 ) can be regarded as the interval between the locus of adhering positions of adjacent developing solutions bL. Therefore, the difference (Xi 1 −Xi 2 ) of the X coordinates corresponding to the discharge ports ai 1 and ai 2 at the number of revolutions N 1 and N 2 corresponds to the distance between the locus of adhering positions of adjacent developer solutions bL. To do.

ここで、ステップS1aのように動作させる場合は、任意の周回数N=nにおける先頭の吐出口a0の位置を(x,0)とすると、さらに1週分加えた周回数N=(n+1)における最後尾の吐出口amの位置が(x+L+2r,0)となる(図7(a)、(b)を参照)。 Here, when the operation is performed as in step S1a, assuming that the position of the leading discharge port a0 at an arbitrary number of revolutions N 1 = n is (x, 0), the number of revolutions N 2 = (1) added for one week. The position of the last discharge port am in (n + 1) is (x + L + 2r, 0) (see FIGS. 7A and 7B).

すなわち、次式(4)から式(6)に示す関係が成立する。
=0 …… (4)
=m …… (5)
−N=−1 …… (6)
That is, the relationship shown in the following equations (4) to (6) is established.
i 1 = 0 (4)
i 2 = m (5)
N 1 −N 2 = −1 (6)

これら式(4)から式(6)を式(3)に与えると、次式(7)が得られる。
v×2π/ω=L+2r+m×P …… (7)
When these equations (4) to (6) are given to equation (3), the following equation (7) is obtained.
v × 2π / ω = L + 2r + m × P (7)

式(7)において、m、P、rの各値は、現像液ノズル11固有の値であり、いずれも既知である。よって、基板Wの回転速度ω(rad/s)および現像液ノズル11の移動速度v(m/s)との関係によって、距離L(m)が自ずと決まる。   In Expression (7), each value of m, P, and r is a value unique to the developer nozzle 11 and is known. Therefore, the distance L (m) is naturally determined by the relationship between the rotational speed ω (rad / s) of the substrate W and the moving speed v (m / s) of the developer nozzle 11.

このように関係式(7)によれば、吐出口aの個数(〜m)、隣り合う吐出口aの中心間距離P、及び、吐出口aの半径rがそれぞれ任意の値をとる種々の現像液ノズル11について一般化して、基板Wの回転速度ωと現像液ノズル11の移動速度vと距離Lとの関係を表すことできる。   As described above, according to the relational expression (7), the number (˜m) of the discharge ports a, the distance P between the centers of the adjacent discharge ports a, and the radius r of the discharge ports a are various values. By generalizing the developer nozzle 11, the relationship among the rotation speed ω of the substrate W, the moving speed v of the developer nozzle 11, and the distance L can be expressed.

このため、制御部31は、上述の吐出口aの総数(〜m)、隣り合う吐出口aの中心間距離Pおよび吐出口aの半径rの各値が予め設定されているノズル情報を有している。また、制御部31は、処理条件として距離Lの値(所定値)が予め設定されている処理レシピを有している。そして、第1の処理例において、制御部31は、式(7)において距離Lに所定値を与えて得られる基板Wの回転速度ωと現像液ノズル11の移動速度vとの関係が保たれるように、水平移動機構21とモータ3とを制御する。例えば、距離Lが0.003(m)となるように、基板Wの回転速度ωと現像液ノズル11の移動速度vとの関係を調整することが好ましい。   For this reason, the control unit 31 has nozzle information in which the above-mentioned total number (˜m) of the discharge ports a, the center-to-center distance P of the adjacent discharge ports a, and the radius r of the discharge ports a are set in advance. doing. In addition, the control unit 31 has a processing recipe in which a value (predetermined value) of the distance L is set in advance as a processing condition. In the first processing example, the control unit 31 maintains the relationship between the rotation speed ω of the substrate W obtained by giving a predetermined value to the distance L in Expression (7) and the moving speed v of the developer nozzle 11. The horizontal movement mechanism 21 and the motor 3 are controlled as described above. For example, it is preferable to adjust the relationship between the rotational speed ω of the substrate W and the moving speed v of the developer nozzle 11 so that the distance L is 0.003 (m).

この結果、図5に示すように、基板Wが1回転する間に、移動方向dに対して最後尾の吐出口amを、1回転を開始する時点における先頭の吐出口a0に対して、移動方向d側へ距離L(m)だけ離して近接させることができる。このようにして、現像液ノズル11を基板Wの略中心の上方位置まで移動させると、基板Wの全面に隙間なく現像液が供給される。   As a result, as shown in FIG. 5, while the substrate W is rotated once, the rearmost discharge port am is moved with respect to the movement direction d with respect to the first discharge port a0 at the time of starting one rotation. It is possible to bring them closer to the direction d side by a distance L (m). In this way, when the developer nozzle 11 is moved to a position approximately above the center of the substrate W, the developer is supplied to the entire surface of the substrate W without any gap.

次に、ステップS1について第2の処理例(ステップS1b)を説明する。   Next, a second processing example (step S1b) will be described for step S1.

<ステップS1b>
制御部31は、基板Wを1回転させる間に、吐出口aの総数から1引いた数で、隣り合う各吐出口aの中心間距離Pを分割した距離だけ、移動方向dに現像液ノズル11を移動させる。
<Step S1b>
The control unit 31 develops the developer nozzles in the movement direction d by a distance obtained by dividing the center-to-center distance P of each of the adjacent discharge ports a by the number obtained by subtracting 1 from the total number of the discharge ports a while rotating the substrate W once. 11 is moved.

図8を参照する。図8は、第2の処理例によって基板Wの表面に供給された現像液の範囲を示す模式図である。図示するように、現像液ノズル11が3つの吐出口aを有するので、基板Wが1回転する間に、各吐出口aの中心間距離Pを2分割した距離だけ移動方向dに現像液ノズル11を移動させている。なお、図8では、隣り合う吐出口a同士の間隔laが大き過ぎて、同時に分離して着液した現像液が基板W上で広がっても合流できない場合を示している。このような制御によって現像液ノズル11を基板Wの略中心の上方位置まで移動させることで、基板Wの全面に隙間なく現像液を供給する。   Please refer to FIG. FIG. 8 is a schematic diagram showing the range of the developer supplied to the surface of the substrate W in the second processing example. As shown in the drawing, since the developer nozzle 11 has three ejection ports a, the developer nozzle 11 is moved in the moving direction d by a distance obtained by dividing the center distance P of each ejection port a into two while the substrate W rotates once. 11 is moved. Note that FIG. 8 shows a case where the interval la between the adjacent ejection ports a is too large, and the developer that has been separated and applied at the same time cannot be merged even if spread on the substrate W. By moving the developer nozzle 11 to a position above the approximate center of the substrate W by such control, the developer is supplied to the entire surface of the substrate W without any gap.

この第2の処理例は、式(3)において、式(8)から式(10)に示す関係が成立する。
−i=−1 …… (8)
−N=−1 …… (9)
Xi−Xi=(m−1)×P/m …… (10)
In the second processing example, in the equation (3), the relationships shown in the equations (8) to (10) are established.
i 1 −i 2 = −1 (8)
N 1 −N 2 = −1 (9)
Xi 1 −Xi 2 = (m−1) × P / m (10)

あるいは、第2の処理例は、式(3)において、式(11)から式(13)に示す関係が成立する。
−i=0 …… (11)
−N=−1 …… (12)
Xi−Xi=−P/m …… (13)
Alternatively, in the second processing example, in the expression (3), the relationship shown in the expression (11) to the expression (13) is established.
i 1 −i 2 = 0 (11)
N 1 −N 2 = −1 (12)
Xi 1 −Xi 2 = −P / m (13)

これら式(8)から式(10)、または、式(11)から式(13)のいずれを式(3)に与えても、次式(14)が得られる。
v×2π/ω=P/m …… (14)
Even if any of these formulas (8) to (10) or formulas (11) to (13) is given to formula (3), the following formula (14) is obtained.
v × 2π / ω = P / m (14)

よって、第2の処理例では、制御部31は、式(14)から得られる、基板Wの回転速度ωと現像液ノズル11の移動速度vとの関係が保たれるように、水平移動機構21とモータ3とを制御する。   Therefore, in the second processing example, the controller 31 obtains the horizontal movement mechanism so that the relationship between the rotation speed ω of the substrate W and the movement speed v of the developer nozzle 11 obtained from the equation (14) is maintained. 21 and the motor 3 are controlled.

最後に、ステップS1について第3の処理例(ステップS1c)を説明する。   Finally, a third processing example (step S1c) will be described for step S1.

<ステップS1c>
各吐出口aiに応じた着液位置の軌跡bLが互いに重なるように制御する。そして、現像液ノズル11を基板Wの略中心の上方位置まで移動させることで、基板Wの全面に隙間なく現像液を供給する。
<Step S1c>
It controls so that the locus | trajectory bL of the landing position according to each discharge port ai mutually overlaps. Then, the developer nozzle 11 is moved to a position above the approximate center of the substrate W, so that the developer is supplied to the entire surface of the substrate W without any gap.

図9を参照する。図9は、第3の処理例によって基板Wの表面に供給された現像液の範囲を示す模式図である。図示するように、3つの吐出口aの着液位置の各軌跡bLは、周回数が1周ずつ前後して一致する。   Please refer to FIG. FIG. 9 is a schematic diagram showing the range of the developer supplied to the surface of the substrate W by the third processing example. As shown in the figure, the trajectories bL of the liquid landing positions of the three outlets a coincide with each other with the number of laps being around one round.

第3の処理例は、式(3)において、次式(15)から式(17)に示す関係が成立する。
−i=1 …… (15)
−N=1 …… (16)
Xi−Xi=0 …… (17)
In the third processing example, the relationship shown in the following equations (15) to (17) is established in equation (3).
i 1 −i 2 = 1 (15)
N 1 −N 2 = 1 (16)
Xi 1 −Xi 2 = 0 (17)

これら式(15)から式(17)を式(3)に与えると、次式(18)が得られる。
v×2π/ω=P …… (18)
When these equations (15) to (17) are given to equation (3), the following equation (18) is obtained.
v × 2π / ω = P (18)

よって、第3の処理例では、制御部31は、式(18)から得られる、基板Wの回転速度ωと現像液ノズル11の移動速度vとの関係が保たれるように、水平移動機構21とモータ3とを制御する。   Therefore, in the third processing example, the control unit 31 obtains the horizontal movement mechanism so that the relationship between the rotation speed ω of the substrate W and the movement speed v of the developer nozzle 11 obtained from Expression (18) is maintained. 21 and the motor 3 are controlled.

また、隣り合う吐出口a同士の着液位置の軌跡bLが重なるように制御することをさらに一般化して次のように制御してもよい。すなわち、各吐出口aに応じた複数の着液位置の軌跡bLのうち、少なくともいずれか2つの軌跡bLが重なるように制御してもよい。このように動作させる場合は、吐出口ai、aiが同じでなく周回数N、Nが異なるものとして、周回数Nにおける吐出口aiに応じた点BiのX座標Xiと、周回数N(N≠N)における吐出口aiに応じた点BiのX座標Xiが一致することになる。 Further, it may be further generalized to perform control so that the track bL of the liquid landing position between the adjacent discharge ports a overlaps as follows. That is, control may be performed so that at least any two of the trajectories bL of the plurality of liquid deposition positions corresponding to each discharge port a overlap. In the case of operating in this way, the discharge ports ai 1 and ai 2 are not the same and the number of turns N 1 and N 2 are different, and the X coordinate Xi of the point Bi 1 corresponding to the discharge port ai 1 at the number of turns N 1 1 and the X coordinate Xi 2 of the point Bi 2 corresponding to the discharge port ai 2 at the number of revolutions N 2 (N 1 ≠ N 2 ).

よって、式(3)において、次式(19)から式(21)に示す関係が成立する。
−i≠0 …… (19)
−N≠0 …… (20)
Xi−Xi=0 …… (21)
Therefore, in the equation (3), the relationship shown in the following equations (19) to (21) is established.
i 1 −i 2 ≠ 0 (19)
N 1 −N 2 ≠ 0 (20)
Xi 1 −Xi 2 = 0 (21)

これら式(19)から式(21)を式(3)に与えると、次式(22)が得られる。
v×2π/ω=(i−i)×P/(N−N) …… (22)
When these equations (19) to (21) are given to equation (3), the following equation (22) is obtained.
v × 2π / ω = (i 1 −i 2 ) × P / (N 1 −N 2 ) (22)

よって、第3の処理例では、制御部31は、式(22)から得られる、基板Wの回転速度ωと現像液ノズル11の移動速度vとの関係が保たれるように、水平移動機構21とモータ3とを制御する。   Therefore, in the third processing example, the control unit 31 uses the horizontal movement mechanism so that the relationship between the rotation speed ω of the substrate W and the movement speed v of the developer nozzle 11 obtained from the equation (22) is maintained. 21 and the motor 3 are controlled.

このように、実施例1に係る現像装置によれば、現像液ノズル11は複数の吐出口aを有し、各吐出口aから吐出された現像液は、基板Wに着液するまで互いに分離したままである。このため、吐出口aから吐出されてから基板Wに着液するまでの間、現像液は安定した形状を保って流下する。よって、現像液が基板Wに着液する位置、範囲も安定しており、現像液の着液位置bを容易に制御、管理することができる。   As described above, according to the developing device according to the first embodiment, the developer nozzle 11 has the plurality of discharge ports a, and the developer discharged from each discharge port a is separated from each other until the liquid reaches the substrate W. It remains. For this reason, the developer flows down in a stable shape from the time when the liquid is discharged from the discharge port a to the time when the liquid reaches the substrate W. Therefore, the position and range where the developer reaches the substrate W is also stable, and the developer landing position b can be easily controlled and managed.

また、各吐出口aは円形であるため、各吐出口aから現像液が円柱状に流下する。このため、流下する現像液の形状が、帯状の現像液に比べて容易に変形しない。具体的には、流下する現像液の幅が広狭したり、流下する現像液が2以上に割れたりしない。   Since each discharge port a is circular, the developer flows down from each discharge port a in a columnar shape. For this reason, the shape of the flowing-down developing solution is not easily deformed as compared with the belt-like developing solution. Specifically, the width of the flowing-down developer does not widen and the flowing-down developer does not break into two or more.

さらに、各吐出口aはそれぞれ間隔laをあけて一列に近接配置されているので、吐出口a毎に分離して基板W上に着液した現像液が広がり、着液位置b同士の間の基板W面を現像液によって覆うことができる。よって、基板Wに現像液を隙間なく供給することができる。   Further, since the discharge ports a are arranged close to each other at intervals la, the developer that has been separated and discharged onto the substrate W spreads out for each discharge port a, and between the landing positions b. The substrate W surface can be covered with a developer. Therefore, the developer can be supplied to the substrate W without any gap.

また、水平移動機構21は、各吐出口aの並び方向dが平面視で基板Wの中心に向いた一定の方向に保った状態で、この一方向に現像液ノズル11を移動する。このため、各吐出口aは平面視で常に基板Wの中心を通る直線上にある。よって、基板Wの中心から各吐出口aまでの距離は一様に現像液ノズル11が移動した距離に比例して増減する。このため、制御部31は、基板Wの回転数(回転速度ω)と現像液ノズル11の移動速度vの関係を調整することによって、着液位置の軌跡bLの位置を制御できる。   Further, the horizontal movement mechanism 21 moves the developer nozzle 11 in this one direction in a state where the arrangement direction d of the discharge ports a is maintained in a fixed direction toward the center of the substrate W in plan view. For this reason, each ejection port a is always on a straight line passing through the center of the substrate W in plan view. Therefore, the distance from the center of the substrate W to each discharge port a increases and decreases in proportion to the distance that the developer nozzle 11 has moved uniformly. For this reason, the control unit 31 can control the position of the locus bL of the liquid landing position by adjusting the relationship between the rotational speed (rotational speed ω) of the substrate W and the moving speed v of the developer nozzle 11.

そして、上述したように、各吐出口aに応じた現像液の着液位置bと、これら各着液位置の軌跡bLの位置を精度よく制御することができることから、複数の着液位置の軌跡bLの相互の位置関係も調整できる。よって、現像液の供給量に余剰分を含めることを要することなく、効率よく現像液を基板W全面に供給することができる。よって、現像液の消費量を低減することができる。   As described above, since the developer landing position b corresponding to each discharge port a and the position bL of each liquid landing position can be accurately controlled, a plurality of liquid landing position trajectories can be controlled. The mutual positional relationship of bL can also be adjusted. Therefore, the developer can be efficiently supplied to the entire surface of the substrate W without requiring that the supply amount of the developer be excessive. Therefore, the consumption of the developer can be reduced.

具体的には、第1の処理例では、各吐出口aに応じた着液位置の軌跡bLがいずれも重複せず、ただ基板W上で合流するのみである。これにより、基板W全面に極めて効率よく、かつ、均一に現像液を供給することができる。   Specifically, in the first processing example, the locus bL of the liquid landing position corresponding to each discharge port a does not overlap, and only merges on the substrate W. As a result, the developer can be supplied to the entire surface of the substrate W very efficiently and uniformly.

また、第2の処理例では、隣り合う着液位置bに分離供給された現像液が基板W上でも合流しないほど、各吐出口a同士の間隔laが大きい場合に有効である。すなわち、処理例2によれば、同時に着液する着液位置b同士の間に、その後の周回数Nで現像液を着液させることができ、基板Wの全面に確実に現像液を供給することができる。   Further, the second processing example is effective when the interval la between the ejection ports a is so large that the developing solution separated and supplied to the adjacent liquid landing position b does not merge even on the substrate W. That is, according to the processing example 2, the developer can be deposited between the liquid deposition positions b that are simultaneously deposited, and the developer N can be reliably supplied to the entire surface of the substrate W. be able to.

また、第3の処理例では、各吐出口aからの現像液の吐出が仮に不安定になった場合に有効である。すなわち、全ての吐出口aから周回数を異にして同じ位置に現像液を吐出させるため、確実に所望の位置に現像液を着液することができる。これにより、確実に基板Wの全面に現像液を供給することができる。   Further, the third processing example is effective when the discharge of the developer from each discharge port a becomes unstable. That is, since the developer is discharged from all the discharge ports a to the same position with different number of turns, the developer can be reliably deposited at a desired position. As a result, the developer can be reliably supplied to the entire surface of the substrate W.

この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)上述した第1の処理例(ステップS1a)では、吐出口a同士の間隔laおよび距離Lとして好ましい値を例示したが、これに限られない。現像液Dが広がることで確実に隣り合う着液位置b同士の隙間を覆うことができる範囲内であれば、吐出口a同士の間隔laおよび距離Lの値を適宜に変更してもよい。また、これらの値が大きい値であるほど、より効率よく現像液を供給することができ、現像液の消費量を低減することができる。   (1) In the above-described first processing example (step S1a), preferable values are exemplified as the interval la and the distance L between the ejection ports a, but are not limited thereto. As long as the developer D is within a range in which the gap between the adjacent landing positions b can be reliably covered by spreading, the values of the interval la and the distance L between the discharge ports a may be appropriately changed. Further, the larger these values are, the more efficiently the developer can be supplied and the consumption of the developer can be reduced.

このため、第1の処理例を次のような制御のもとで動作するように変更してもよい。すなわち、制御部31は、距離Lの値ではなく、距離Lの上限値Lmaxの値が設定されている処理条件を処理レシピとして予め有している。   For this reason, the first processing example may be changed to operate under the following control. That is, the control unit 31 has in advance a processing condition in which the upper limit value Lmax of the distance L is set instead of the value of the distance L as a processing recipe.

そして、距離Lが上限値Lmax以下(所定範囲内)となるように、すなわち、上記した式(7)を変形した下記の式(23)を満たすように、モータ3と水平移動機構21を制御部31が制御するようにしてもよい。
L = v×2π/ω−2r−m×P ≦ Lmax …… (23)
Then, the motor 3 and the horizontal movement mechanism 21 are controlled so that the distance L is equal to or less than the upper limit value Lmax (within a predetermined range), that is, the following expression (23) obtained by modifying the above expression (7) is satisfied. The unit 31 may be controlled.
L = v × 2π / ω−2r−m × P ≦ Lmax (23)

このようにして動作させることにより、基板Wの周縁から略中心に現像液ノズル11を移動させる間の基板Wの周回数をさらに少なくすることができ、着液位置の軌跡bLの全長を短くすることができる。このため、現像液を基板Wの全面にさらに効率よく供給することができる。   By operating in this way, the number of rounds of the substrate W during the movement of the developer nozzle 11 from the peripheral edge of the substrate W to the approximate center can be further reduced, and the total length of the locus bL of the landing position is shortened. be able to. For this reason, the developer can be more efficiently supplied to the entire surface of the substrate W.

また、処理条件として上述の距離Lの上限値Lmaxに加えて、距離Lの下限値Lminを予め設定しておき、距離Lが上限値Lmaxから下限値Lminまでの所定範囲内ととなるように、すなわち、上記した式(7)を変形した下記の式(24)を満たすようにモータ3と水平移動機構21を制御部31が制御するようにしてもよい。
Lmin ≦ L = v×2π/ω−2r−m×P ≦ Lmax …… (24)
In addition to the upper limit value Lmax of the distance L described above as a processing condition, a lower limit value Lmin of the distance L is set in advance so that the distance L falls within a predetermined range from the upper limit value Lmax to the lower limit value Lmin. That is, the control unit 31 may control the motor 3 and the horizontal movement mechanism 21 so as to satisfy the following expression (24) obtained by modifying the above expression (7).
Lmin ≦ L = v × 2π / ω−2r−m × P ≦ Lmax (24)

(2)上述した第2の処理例(ステップS1b)では、基板Wを1回転させる間に、吐出口aの総数から1引いた数で、隣り合う各吐出口aの中心間距離Pを分割した距離だけ、移動方向dに現像液ノズル11を移動させるように構成したが、これに限られない。例えば、基板Wを1回転させる間に現像液ノズル11を移動方向dに移動させる距離を、隣り合う吐出口aの中心間距離Pより短い距離に変更してもよい。   (2) In the above-described second processing example (step S1b), the center-to-center distance P between the adjacent ejection ports a is divided by the number obtained by subtracting 1 from the total number of ejection ports a while the substrate W is rotated once. The developer nozzle 11 is moved in the movement direction d by the distance as described above, but is not limited thereto. For example, the distance by which the developer nozzle 11 is moved in the movement direction d while the substrate W is rotated once may be changed to a distance shorter than the distance P between the centers of the adjacent ejection ports a.

たとえば、上述した条件式(11)、(12)に加えて、次の式(25)を式(3)に与えるように変更すればよい。
Xi−Xi=−P×k …… (25)
k:係数(0以上で1未満の定数)
For example, in addition to the conditional expressions (11) and (12) described above, the following expression (25) may be changed to give the expression (3).
Xi 1 −Xi 2 = −P × k (25)
k: coefficient (a constant greater than or equal to 0 and less than 1)

そこで、係数k、または、隣り合う吐出口aの中心間距離Pより短い距離(P×k)を処理条件として設定しておき、式(3)、(11)、(12)、(25)を満たすように、モータ3と水平移動機構21を制御部31が制御するようにしてもよい。   Therefore, a coefficient k or a distance (P × k) shorter than the center-to-center distance P between the adjacent ejection ports a is set as a processing condition, and equations (3), (11), (12), (25) are set. The control unit 31 may control the motor 3 and the horizontal movement mechanism 21 so as to satisfy the above.

(3)上述した実施例では、水平移動機構21は、現像液ノズル11を水平方向に移動させるものであったが、これに限られない。現像液ノズル11を平面視で基板Wの周縁と中心との間で変位させることができれば、他の方向の成分を含んで移動させるものであってもよい。   (3) In the embodiment described above, the horizontal movement mechanism 21 moves the developer nozzle 11 in the horizontal direction, but is not limited thereto. As long as the developer nozzle 11 can be displaced between the periphery and the center of the substrate W in plan view, the developer nozzle 11 may be moved including components in other directions.

(4)上述した各実施例では、現像液ノズル11の移動方向dを、平面視で基板Wの略中心に向かう方向として説明したが、この方向と反対の方向に移動させつつ現像液を供給してもよい。   (4) In each of the embodiments described above, the moving direction d of the developer nozzle 11 has been described as a direction toward the approximate center of the substrate W in plan view, but the developer is supplied while being moved in a direction opposite to this direction. May be.

(5)上述した実施例では、吐出口aは円形であったが、吐出した現像液を棒状に流下させることができれば、吐出口aの形状は矩形(正方形)やその他の形状に適宜に変更できる。   (5) In the above-described embodiment, the discharge port a is circular. However, if the discharged developer can flow down in a rod shape, the shape of the discharge port a is appropriately changed to a rectangle (square) or other shapes. it can.

(6)上述した実施例、特に第1の処理例の説明において、隣り合う吐出口a同士の間隔laとして、同時に分離して着液した現像液が基板W上で合流可能な値であることが好ましいと記載したが、これに限られるものではない。たとえば、同時に分離して着液した現像液が基板W上で広がっても合流できないほど、隣り合う吐出口a同士の間隔laを大きく設計してもよい。このような現像液ノズル11に変更した場合であっても、第2の処理例や第3の処理例を行うことによって、基板Wの全面に現像液を隙間なく供給することができる。   (6) In the above-described embodiment, particularly in the description of the first processing example, the interval la between the adjacent discharge ports a is a value at which the separately separated developer can be merged on the substrate W. However, the present invention is not limited to this. For example, the interval la between the adjacent discharge ports a may be designed so as to be large enough that the developer that has been separated and applied at the same time cannot be merged even if spread on the substrate W. Even in the case of changing to the developer nozzle 11 as described above, the developer can be supplied to the entire surface of the substrate W without gaps by performing the second processing example and the third processing example.

実施例に係る現像装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a developing device according to an embodiment. 実施例に係る現像装置の平面図である。1 is a plan view of a developing device according to an embodiment. 回転する基板に着液した現像液の様子を模式的に示す要部平面図である。It is a principal part top view which shows typically the mode of the developing solution applied to the rotating board | substrate. (a)、(b)は、それぞれ図3に示すA−A矢視とB−B矢視の垂直断面図である。(A), (b) is a vertical sectional view of AA arrow and BB arrow shown in FIG. 3, respectively. 第1の処理例によって、基板の表面に供給された現像液の範囲を示す模式図であり、(a)で示した時刻から基板が1回転した後の時点が(b)である。It is a schematic diagram which shows the range of the developing solution supplied to the surface of the board | substrate by the 1st process example, and the time after a board | substrate carries out 1 rotation from the time shown to (a) is (b). 直交座標系を模式的に示す要部平面図である。It is a principal part top view which shows a rectangular coordinate system typically. ノズル情報および距離を模式的に示す現像液ノズルの下面図である。It is a bottom view of a developing solution nozzle which shows nozzle information and distance typically. 第2の処理例によって、基板の表面に供給された現像液の範囲を示す模式図であり、(a)で示した時刻から基板が1回転した後の時点が(b)である。It is a schematic diagram which shows the range of the developing solution supplied to the surface of the board | substrate by the 2nd process example, and the time after a board | substrate carries out 1 rotation from the time shown to (a) is (b). 第3の処理例によって、基板の表面に供給された現像液の範囲を示す模式図であり、(a)で示した時刻から基板が1回転した後の時点が(b)である。It is a schematic diagram which shows the range of the developing solution supplied to the surface of the board | substrate by the 3rd processing example, and the time after a board | substrate carries out 1 rotation from the time shown to (a) is (b).

1 …スピンチャック
3 …モータ
11 …現像液ノズル
21 …水平移動機構
31 …制御部
a、a0、a1、a2、ai、ai、ai …吐出口
b、b0、b1、b2 …着液位置
bL、bL0、bL1、bL2 …着液位置の軌跡
d1 …吐出口の並び方向
d …現像液ノズルの移動方向
m …吐出口の総数から1を引いた値
r …吐出口の半径
la …隣り合う吐出口同士の間隔
ω …基板の角速度
v …現像液ノズルの移動速度
L …距離
Lmax …距離Lの上限値
Lmin …距離Lの下限値
N、N、N …基板の周回数
W …基板
D …現像液
1 ... spin chuck 3 ... motor 11 ... developer nozzle 21 ... horizontal moving mechanism 31 ... control unit a, a0, a1, a2, ai, ai 1, ai 2 ... discharge port b, b0, b1, b2 ... Chakueki position bL, bL0, bL1, bL2 ... locus of liquid landing position d1 ... direction of arrangement of discharge ports d ... direction of movement of developer nozzles m ... value obtained by subtracting 1 from the total number of discharge ports r ... radius of discharge ports la ... adjacent to each other Distance between discharge ports ω ... Angular speed of substrate v ... Moving speed of developer nozzle L ... Distance Lmax ... Upper limit value of distance L Lmin ... Lower limit value of distance L N, N 1 , N 2 ... Number of substrate turns W ... Substrate D: Developer

Claims (13)

基板を現像する現像方法であって、
回転保持手段によって基板を回転させるとともに、現像液供給手段に一列に並んで形成される複数の吐出口から現像液を基板に吐出させつつ、移動手段によって前記吐出口の並び方向を平面視で基板の中心に向かう一方向に保ったまま前記現像液供給手段を平面視で基板の略中心と周縁とにわたって移動させて、各吐出口から吐出された現像液を互いに分離したままで基板に着液させ、かつ、各吐出口から吐出された現像液をそれぞれ螺旋状に基板上に着液させて基板を現像する工程を含み、
前記工程では、基板を1回転させる間に、前記現像液供給手段の移動方向に対して最後尾の吐出口は、1回転を開始する時点における先頭の吐出口の位置よりも移動方向下流側であってかつ互いに重ならない近接する位置まで移動し、
前記工程では、各吐出口から基板上に現像液をそれぞれ螺旋状に着液させて基板を現像する際、基板の回転速度および前記現像液供給手段の移動速度はそれぞれ一定であり、
前記工程では、隣り合う吐出口から吐出された現像液が基板に着液する着液位置同士の間の基板面を、着液後に時間の経過とともに周囲に広がり、且つ、着液後に時間の経過とともに基板の中心および基板の周縁の両方に向かって広がる現像液で覆う現像方法。
A development method for developing a substrate,
The substrate is rotated by the rotation holding unit, and the developing solution is discharged from the plurality of discharge ports formed in a line in the developer supply unit to the substrate, and the moving ports are arranged in a plan view of the alignment direction of the discharge ports. The developer supply means is moved across the substantially center and periphery of the substrate in a plan view while being maintained in one direction toward the center of the substrate, and the developer discharged from each discharge port is applied to the substrate while being separated from each other. And developing the substrate by causing the developer discharged from each discharge port to be spirally deposited on the substrate, respectively,
In the above step, the last discharge port with respect to the moving direction of the developing solution supplying means is rotated downstream in the moving direction from the position of the leading discharge port at the start of one rotation while the substrate is rotated once. Move to close positions that do not overlap each other,
In the above step, when developing the substrate by spirally applying the developer from each discharge port onto the substrate, the rotation speed of the substrate and the moving speed of the developer supply means are respectively constant,
In the step, the substrate surface between the landing positions where the developer discharged from the adjacent discharge ports is deposited on the substrate spreads to the periphery with the passage of time after the landing, and the passage of time after the landing. And a developing method of covering with a developer spreading toward both the center of the substrate and the periphery of the substrate.
請求項1に記載の現像方法において、
前記工程では、前記現像液供給手段を平面視で基板の略中心と周縁とにわたって移動させることによって、基板に隙間なく現像液を供給する現像方法。
The developing method according to claim 1,
In the step, the developing solution supplying means without any gap is provided to the substrate by moving the developing solution supply means across the substantially center and peripheral edge of the substrate in plan view.
請求項1または2に記載の現像方法において、
前記工程では、隣り合う吐出口から吐出された現像液が基板に着液する着液位置同士の間の基板面を、現像液が着液したときから基板が1回転するまでに、着液後に時間の経過とともに周囲に広がる現像液で覆う現像方法。
The developing method according to claim 1 or 2,
In the step, after the liquid is deposited, the substrate surface between the liquid deposition positions where the developer ejected from the adjacent ejection ports is deposited on the substrate until the substrate is rotated once after the developer is deposited. A developing method that covers with a developing solution that spreads over time.
請求項1から3のいずれかに記載の現像方法において、
前記工程では、隣り合う吐出口から吐出された現像液が基板に着液する着液位置は、互いに離れている現像方法。
In the developing method according to any one of claims 1 to 3,
The developing method in which, in the step, the liquid landing positions where the developer discharged from the adjacent discharge ports reaches the substrate are separated from each other.
請求項1から4のいずれかに記載の現像方法において、
前記工程では、隣り合う現像液の着液位置の軌跡同士を近接させて、これら軌跡と軌跡の間の基板面を着液後に広がる現像液で覆うように、前記回転保持手段と前記移動手段とは制御され、
前記工程では、基板上に着液した現像液が時間の経過とともに周囲に広がることによって、軌跡と軌跡の間の基板面は覆われる現像方法。
The development method according to any one of claims 1 to 4,
In the step, the rotation holding unit and the moving unit are arranged so that the locus of adhering positions of adjacent developing solutions are close to each other and the substrate surface between these trajectories is covered with the developing solution spreading after the landing. Is controlled
In the step, the developing solution that has landed on the substrate spreads around as time passes, so that the substrate surface between the tracks is covered.
請求項1から5のいずれかに記載の現像方法において、
前記吐出口から吐出された現像液は棒状に流下する現像方法。
The development method according to any one of claims 1 to 5,
A developing method in which the developer discharged from the discharge port flows down in a rod shape.
請求項1から6のいずれかに記載の現像方法において、
各吐出口は互いに近接して設けられている現像方法。
The development method according to any one of claims 1 to 6,
A developing method in which each discharge port is provided close to each other.
請求項1から7のいずれかに記載の現像方法において、
前記工程では、前記回転保持手段と前記移動手段とが制御されることにより、基板の回転速度と前記現像液供給手段の移動速度との関係が調整され、隣り合う現像液の着液位置の軌跡同士の間隔が制御される現像方法。
The development method according to any one of claims 1 to 7,
In the step, the rotation holding means and the moving means are controlled to adjust the relationship between the rotation speed of the substrate and the moving speed of the developing solution supply means, and the locus of the landing position of the adjacent developing solutions. A developing method in which the distance between the two is controlled.
請求項8に記載の現像方法において、
前記間隔は、予め設定されている所定値又は所定範囲内となるように制御される現像方法。
The developing method according to claim 8, wherein
A developing method in which the interval is controlled to be within a predetermined value or a predetermined range.
請求項1から9のいずれかに記載の現像方法において、
各吐出口の直径は約1mmの円形であり、隣り合う吐出口の間はそれぞれ約3mm離れている現像方法。
The development method according to any one of claims 1 to 9,
A developing method in which each discharge port has a circular shape with a diameter of about 1 mm, and adjacent discharge ports are separated by about 3 mm.
請求項1から10のいずれかに記載の現像方法において、
前記工程では、基板が1回転を開始する時点における前記先頭の吐出口と、基板が1回転する間に前記先頭の吐出口の位置に対して移動方向側へ移動させた前記最後尾の吐出口との間にあけられる間隔の距離Lは、着液後に時間の経過とともに周囲に広がる現像液によって、基板上に現像液が供給されない隙間が生じないような値に設定されている現像方法。
The development method according to any one of claims 1 to 10,
In the step, the first discharge port when the substrate starts one rotation and the last discharge port moved to the moving direction side with respect to the position of the first discharge port during one rotation of the substrate The distance L between the two is set to a value such that a gap where the developer is not supplied is not formed on the substrate by the developer spreading to the surroundings as time passes after the landing.
請求項11に記載の現像方法において、
前記距離Lは、隣り合う吐出口同士の間隔に等しいことを特徴とする現像方法。
The development method according to claim 11,
The developing method according to claim 1, wherein the distance L is equal to an interval between adjacent discharge ports.
請求項1から12のいずれかに記載の現像方法において、
前記工程では、基板を回転させるとともに、前記吐出口から現像液を基板に吐出させつつ、前記吐出口の並び方向を平面視で前記一方向に保ったまま前記現像液供給手段を平面視で基板の略中心と周縁とにわたって移動させるとき、各吐出口に応じた着液位置の軌跡はいずれも重複しない現像方法。
The development method according to any one of claims 1 to 12,
In the step, while rotating the substrate and discharging the developing solution from the discharge port onto the substrate, the developing solution supply means is viewed in a plan view while maintaining the direction in which the discharge ports are aligned in the one direction in a plan view. A developing method in which the trajectories of the liquid landing positions corresponding to the respective ejection ports do not overlap when moved over the substantially center and the peripheral edge.
JP2014253079A 2014-12-15 2014-12-15 Development method Active JP6475487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014253079A JP6475487B2 (en) 2014-12-15 2014-12-15 Development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253079A JP6475487B2 (en) 2014-12-15 2014-12-15 Development method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013206612A Division JP5668120B2 (en) 2013-10-01 2013-10-01 Development device

Publications (2)

Publication Number Publication Date
JP2015099925A JP2015099925A (en) 2015-05-28
JP6475487B2 true JP6475487B2 (en) 2019-02-27

Family

ID=53376333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253079A Active JP6475487B2 (en) 2014-12-15 2014-12-15 Development method

Country Status (1)

Country Link
JP (1) JP6475487B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6842952B2 (en) * 2017-02-28 2021-03-17 株式会社Screenホールディングス Substrate processing equipment and substrate processing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263302A (en) * 1994-03-18 1995-10-13 Fujitsu Ltd Method for developing resist
JP3890393B2 (en) * 1996-01-29 2007-03-07 株式会社Sokudo Rotary substrate coater
JPH11111603A (en) * 1997-10-07 1999-04-23 Dainippon Screen Mfg Co Ltd Method and apparatus for developing substrate
JPH11156278A (en) * 1997-11-27 1999-06-15 Dainippon Screen Mfg Co Ltd Processing solution discharge nozzle and substrate treating device provided with the nozzle
JP2000068188A (en) * 1998-08-24 2000-03-03 Dainippon Screen Mfg Co Ltd Apparatus and method for development
JP2000311846A (en) * 1999-04-27 2000-11-07 Sony Corp Method and apparatus for resist development
JP3605545B2 (en) * 1999-06-09 2004-12-22 東京エレクトロン株式会社 Development processing method and development processing apparatus
JP3535997B2 (en) * 1999-10-01 2004-06-07 東京エレクトロン株式会社 Development processing apparatus and development processing method
JP3898906B2 (en) * 2001-05-22 2007-03-28 東京エレクトロン株式会社 Substrate coating device
JP4084167B2 (en) * 2002-06-10 2008-04-30 株式会社Sokudo Treatment liquid application method
JP2005046694A (en) * 2003-07-31 2005-02-24 Toshiba Corp Coated film forming method and coater
JP4369325B2 (en) * 2003-12-26 2009-11-18 東京エレクトロン株式会社 Development device and development processing method
JP4537109B2 (en) * 2004-04-16 2010-09-01 東京エレクトロン株式会社 Development processing apparatus and development processing method
JP4494332B2 (en) * 2005-11-29 2010-06-30 東京エレクトロン株式会社 Rinse processing method, development processing apparatus, and control program

Also Published As

Publication number Publication date
JP2015099925A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP5449662B2 (en) Development device
JP6267141B2 (en) Liquid coating method, liquid coating apparatus, and computer-readable recording medium
US9802227B2 (en) Method of cleaning substrate processing apparatus
TW425618B (en) Coating apparatus and coating method
US10279368B2 (en) Coating method and coating apparatus
TWI544968B (en) Coating method and coating apparatus
JP2022046444A (en) Cleaning jig, substrate processing apparatus containing them, and cleaning method of the substrate processing apparatus
JP6475487B2 (en) Development method
KR101950047B1 (en) Substrate cleaning and drying method and substrate developing method
JPH11111603A (en) Method and apparatus for developing substrate
JP5668120B2 (en) Development device
JP5920736B2 (en) Spin development method and apparatus
JP2010153474A (en) Substrate treatment device and substrate treatment method
US10824074B2 (en) Liquid processing apparatus and liquid processing method
JP6650323B2 (en) Substrate processing apparatus and substrate processing method
JP4326820B2 (en) Developing apparatus and developing method
JP6814847B2 (en) Development method
JP6516825B2 (en) Liquid application method, liquid application apparatus, and computer readable recording medium
JP2016115785A (en) Development apparatus and development method
JPH09122558A (en) Spin coater
JP6812262B2 (en) Substrate processing equipment and substrate processing method
KR20210133166A (en) Nozzle unit, liquid treatment apparatus, and liquid treatment method
JPH07335543A (en) Substrate treatment device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250