JP6474930B2 - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
JP6474930B2
JP6474930B2 JP2018047521A JP2018047521A JP6474930B2 JP 6474930 B2 JP6474930 B2 JP 6474930B2 JP 2018047521 A JP2018047521 A JP 2018047521A JP 2018047521 A JP2018047521 A JP 2018047521A JP 6474930 B2 JP6474930 B2 JP 6474930B2
Authority
JP
Japan
Prior art keywords
layer
internal electrode
conductive portion
relay layer
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047521A
Other languages
Japanese (ja)
Other versions
JP2018113469A (en
Inventor
高太郎 水野
高太郎 水野
加藤 洋一
洋一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018047521A priority Critical patent/JP6474930B2/en
Publication of JP2018113469A publication Critical patent/JP2018113469A/en
Application granted granted Critical
Publication of JP6474930B2 publication Critical patent/JP6474930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、略直方体状のコンデンサ本体の高さ方向一面に第1外部電極と第2外部電極が設けられた積層セラミックコンデンサに関する。   The present invention relates to a multilayer ceramic capacitor in which a first external electrode and a second external electrode are provided on one surface in the height direction of a substantially rectangular parallelepiped capacitor body.

後記特許文献1の図1〜図7には、前掲に関連する積層セラミックコンデンサが開示されている。この積層セラミックコンデンサは、誘電体層を介して幅方向に交互に配された略矩形状の複数の第1内部電極層と略矩形状の複数の内部電極層とを内包した略直方体状のコンデンサ本体と、コンデンサ本体の高さ方向一面に設けられた略矩形状の第1外部電極と略矩形状の第2外部電極とを備えている。各第1内部電極層はコンデンサ本体の高さ方向一面に至る略矩形状の第1引出部を有していて、各第1引出部の端縁を第1外部電極に接続されている。各第2内部電極層はコンデンサ本体の高さ方向一面に至る略矩形状の第2引出部を有していて、各第2引出部の端縁を第2外部電極に接続されている。   1 to 7 of Patent Document 1 described later disclose a multilayer ceramic capacitor related to the above. This monolithic ceramic capacitor is a substantially rectangular parallelepiped capacitor including a plurality of substantially rectangular first internal electrode layers and a plurality of substantially rectangular internal electrode layers alternately arranged in the width direction through dielectric layers. The main body includes a substantially rectangular first external electrode and a substantially rectangular second external electrode provided on one surface of the capacitor main body in the height direction. Each first internal electrode layer has a substantially rectangular first lead portion extending to one surface in the height direction of the capacitor body, and an end edge of each first lead portion is connected to the first external electrode. Each second internal electrode layer has a substantially rectangular second lead portion that extends to one surface in the height direction of the capacitor body, and an end edge of each second lead portion is connected to the second external electrode.

前記積層セラミックコンデンサは、各第1内部電極層と各第2内部電極層が第1外部電極及び第2外部電極と略直角となる向きで配された構造であるため、各第1引出部の長さ方向寸法(幅)は各第1内部電極層の高さ方向寸法(幅)よりも狭くなり、且つ、各第2引出部の長さ方向寸法(幅)は各第2内部電極層の高さ方向寸法(幅)よりも狭くなる。依って、前記積層セラミックコンデンサにおいて小型化と大容量化の要求に応じようとすると、第1外部電極に対する各第1引出部の接続と第2外部電極に対する各第2引出部の接続が不安定になる懸念がある。   The multilayer ceramic capacitor has a structure in which each first internal electrode layer and each second internal electrode layer are arranged in a direction substantially perpendicular to the first external electrode and the second external electrode. The lengthwise dimension (width) is narrower than the heightwise dimension (width) of each first internal electrode layer, and the lengthwise dimension (width) of each second lead portion is the same as that of each second internal electrode layer. It becomes narrower than the height direction dimension (width). Therefore, when trying to meet the demands for downsizing and large capacity in the multilayer ceramic capacitor, the connection of each first lead part to the first external electrode and the connection of each second lead part to the second external electrode are unstable. There is a concern to become.

即ち、前記積層セラミックコンデンサにおいて小型化と大容量化の要求に応じるには、各第1内部電極層の高さ方向寸法(幅)及び長さ方向寸法と各第2内部電極層の高さ方向寸法(幅)及び長さ方向寸法の縮小が必要となるが、とりわけ長さ方向寸法の縮小に伴って各第1引出部の長さ方向寸法(幅)と各第2引出部の長さ方向寸法(幅)が極端に狭くなってしまうため、第1外部電極に対する各第1引出部の接続と第2外部電極に対する各第2引出部の接続が不安定になり易い。   That is, in order to meet the demands for miniaturization and large capacity in the multilayer ceramic capacitor, the height direction dimension (width) and length direction of each first internal electrode layer and the height direction of each second internal electrode layer Although it is necessary to reduce the dimension (width) and the length dimension, the length dimension (width) of each first drawer part and the length direction of each second drawer part in particular with the reduction of the length dimension. Since the dimension (width) becomes extremely narrow, the connection of each first lead portion to the first external electrode and the connection of each second lead portion to the second external electrode tend to be unstable.

特開2014−116571号公報JP, 2014-116571, A

本発明の課題は、略直方体状のコンデンサ本体の高さ方向一面に第1外部電極と第2外部電極が設けられた積層セラミックコンデンサにおいて小型化と大容量化の要求に応じる場合であっても、第1外部電極に対する各第1内部電極層の接続と第2外部電極に対する各第2内部電極層の接続のそれぞれに信頼性の高い接続を実現できる積層セラミックコンデンサを提供することにある。   The subject of the present invention is a case where a multilayer ceramic capacitor in which a first external electrode and a second external electrode are provided on one surface in the height direction of a substantially rectangular parallelepiped capacitor body meets the demand for miniaturization and large capacity. An object of the present invention is to provide a multilayer ceramic capacitor capable of realizing a highly reliable connection between the connection of each first internal electrode layer to the first external electrode and the connection of each second internal electrode layer to the second external electrode.

前記課題を解決するため、本発明に係る積層セラミックコンデンサは、略直方体状のコンデンサ本体の高さ方向一面に略矩形状の第1外部電極と略矩形状の第2外部電極が設けられた積層セラミックコンデンサであって、前記コンデンサ本体は、(1)誘電体層を介して交互に配された略矩形状の複数の第1内部電極層と略矩形状の複数の第2内部電極層とを内包する略直方体状の容量素子と、(2)前記容量素子の幅方向一面を覆う第1被覆層と、(3)前記容量素子の幅方向他面を覆う第2被覆層と、(4)前記容量素子の長さ方向一面を覆い、前記第1被覆層の長さ方向一端縁と前記第2被覆層の長さ方向一端縁とに接する第1中継層と、(5)前記容量素子の長さ方向他面を覆い、前記第1被覆層の長さ方向他端縁と前記第2被覆層の長さ方向他端縁とに接する第2中継層と、(6)前記第1中継層の外面を覆う第3被覆層と、(7)前記第2中継層の外面を覆う第4被覆層と、を備えており、前記第1中継層は、前記複数の第1内部電極層の長さ方向一端縁それぞれと向き合う略矩形状の導電性部分と、前記導電性部分の高さ方向一端縁を除く周縁を囲む難導電性部分とを有しており、前記第2中継層は、前記複数の第2内部電極層の長さ方向他端縁それぞれと向き合う略矩形状の導電性部分と、前記導電性部分の高さ方向一端縁を除く周縁を囲む難導電性部分とを有しており、前記第1中継層の前記導電性部分には、前記複数の第1内部電極層の長さ方向一端縁それぞれが前記複数の第1内部電極層それぞれの幅と同等の接続幅にて接続され、前記第2中継層の前記導電性部分には、前記複数の第2内部電極層の長さ方向他端縁それぞれが前記複数の第2内部電極層それぞれの幅と同等の接続幅にて接続され、前記第1外部電極には、前記第1中継層の前記導電性部分の高さ方向一端縁が前記第1中継層の前記導電性部分の幅と同等の接続幅にて接続され、前記第2外部電極には、前記第2中継層の前記導電性部分の高さ方向一端縁が前記第2中継層の前記導電性部分の幅と同等の接続幅にて接続されている。   In order to solve the above problems, a multilayer ceramic capacitor according to the present invention is a multilayer ceramic body in which a substantially rectangular first external electrode and a substantially rectangular second external electrode are provided on one surface in the height direction of a substantially rectangular parallelepiped capacitor body. The capacitor body includes (1) a plurality of substantially rectangular first internal electrode layers and a plurality of substantially rectangular second internal electrode layers that are alternately arranged via dielectric layers. A substantially rectangular parallelepiped capacitive element included therein, (2) a first coating layer covering one side in the width direction of the capacitive element, (3) a second coating layer covering the other side in the width direction of the capacitive element, and (4) A first relay layer that covers one surface in the length direction of the capacitive element and is in contact with one edge in the length direction of the first coating layer and one edge in the length direction of the second coating layer; Covering the other surface in the length direction, the other end in the length direction of the first coating layer and the second coating layer A second relay layer in contact with the other edge in the lengthwise direction; (6) a third coating layer covering the outer surface of the first relay layer; and (7) a fourth coating layer covering the outer surface of the second relay layer. The first relay layer includes a substantially rectangular conductive portion facing one end edge in the length direction of the plurality of first internal electrode layers, and one end edge in the height direction of the conductive portion. The second relay layer has a substantially rectangular conductive portion facing each other end in the longitudinal direction of the plurality of second internal electrode layers; and A conductive portion of the first relay layer surrounding the periphery excluding one edge in the height direction, and the conductive portion of the first relay layer includes a length direction of the plurality of first internal electrode layers. One end edge is connected with a connection width equal to the width of each of the plurality of first internal electrode layers, and the conductive layer of the second relay layer is connected. The other ends in the length direction of the plurality of second internal electrode layers are connected to the active portion with connection widths equal to the widths of the plurality of second internal electrode layers, respectively, One end edge in the height direction of the conductive portion of the first relay layer is connected with a connection width equal to the width of the conductive portion of the first relay layer, and the second external electrode is connected to the second external electrode. One end edge in the height direction of the conductive portion of the two relay layers is connected with a connection width equal to the width of the conductive portion of the second relay layer.

本発明によれば、略直方体状のコンデンサ本体の高さ方向一面に第1外部電極と第2外部電極が設けられた積層セラミックコンデンサにおいて小型化と大容量化の要求に応じる場合であっても、第1外部電極に対する各第1内部電極層の接続と第2外部電極に対する各第2内部電極層の接続のそれぞれに信頼性の高い接続を実現できる積層セラミックコンデンサを提供することができる。   According to the present invention, even when a multilayer ceramic capacitor in which a first external electrode and a second external electrode are provided on one surface in the height direction of a substantially rectangular parallelepiped capacitor body meets the demand for miniaturization and large capacity. In addition, it is possible to provide a multilayer ceramic capacitor capable of realizing a highly reliable connection between the connection of each first internal electrode layer to the first external electrode and the connection of each second internal electrode layer to the second external electrode.

図1は本発明を適用した積層セラミックコンデンサを容量素子の第6面f6側から見た図である。FIG. 1 is a view of a multilayer ceramic capacitor to which the present invention is applied as viewed from the sixth surface f6 side of the capacitive element. 図2は図1に示した積層セラミックコンデンサを容量素子の第3面f3側から見た図である。2 is a view of the multilayer ceramic capacitor shown in FIG. 1 as viewed from the third surface f3 side of the capacitive element. 図3は図1に示した積層セラミックコンデンサを容量素子の第5面f5側から見た図である。FIG. 3 is a view of the multilayer ceramic capacitor shown in FIG. 1 as viewed from the fifth surface f5 side of the capacitive element. 図4は図1のS1−S1線に沿う断面図である。4 is a cross-sectional view taken along line S1-S1 of FIG. 図5(A)は図2のS2−S2線に沿う断面図、図5(B)は図2のS3−S3線に沿う断面図である。5A is a cross-sectional view taken along line S2-S2 in FIG. 2, and FIG. 5B is a cross-sectional view taken along line S3-S3 in FIG. 図6(A)と図6(B)それぞれは図4の部分拡大図である。6A and 6B are partially enlarged views of FIG. 図7(A)〜図7(C)は図1に示した積層セラミックコンデンサの製法例を説明するための図である。FIGS. 7A to 7C are diagrams for explaining an example of a method for manufacturing the multilayer ceramic capacitor shown in FIG. 図8(A)と図8(B)それぞれは図1に示した積層セラミックコンデンサの変形例を示す図6対応図である。8A and FIG. 8B are diagrams corresponding to FIG. 6 showing a modification of the multilayer ceramic capacitor shown in FIG.

先ず、図1〜図6を用いて、本発明を適用した積層セラミックコンデンサの構造について説明する。この説明では、図1の左右方向を長さ方向と言い、図1の上下方向を幅方向と言い、図2の上下方向を高さ方向と言うと共に、各構成要素の長さ方向、幅方向及び高さ方向それぞれに沿う寸法を長さ、幅及び高さと言う。   First, the structure of a multilayer ceramic capacitor to which the present invention is applied will be described with reference to FIGS. In this description, the horizontal direction in FIG. 1 is referred to as the length direction, the vertical direction in FIG. 1 is referred to as the width direction, the vertical direction in FIG. 2 is referred to as the height direction, and the length direction and width direction of each component. And the dimension along each height direction is called length, width, and height.

この積層セラミックコンデンサは、略直方体状のコンデンサ本体110と、コンデンサ本体110の高さ方向一面に設けられた略矩形状の第1外部電極120と略矩形状の第2外部電極130とを備えていて、全体寸法が長さLと幅Wと高さHによって規定されている。ちなみに、図1〜図6に示した積層セラミックコンデンサの長さLと幅Wと高さHそれぞれは、例えば1000μmと500μmと500μmや、600μmと300μmと300μmである。なお、図1〜図6には、長さLと幅Wと高さHそれぞれが長さL>幅W=高さHである積層セラミックコンデンサを描いているが、これら長さLと幅Wと高さHの関係は長さL>幅W>高さHや、長さL>高さH>幅Wの他、幅W>長さL=高さHや、幅W>長さL>高さHや、幅W>高さH>長さLであってもよい。   This multilayer ceramic capacitor includes a substantially rectangular parallelepiped capacitor body 110, a substantially rectangular first external electrode 120 and a substantially rectangular second external electrode 130 provided on one surface of the capacitor body 110 in the height direction. The overall dimensions are defined by the length L, the width W, and the height H. Incidentally, the length L, width W, and height H of the multilayer ceramic capacitor shown in FIGS. 1 to 6 are, for example, 1000 μm, 500 μm, and 500 μm, or 600 μm, 300 μm, and 300 μm, respectively. 1 to 6 illustrate a multilayer ceramic capacitor in which the length L, the width W, and the height H are such that length L> width W = height H. These length L and width W are illustrated. And height H are length L> width W> height H, length L> height H> width W, width W> length L = height H, width W> length L > Height H or width W> height H> length L may be sufficient.

コンデンサ本体110は、容量素子111と、第1被覆層112と、第2被覆層113と、第1中継層114と、第2中継層115と、第3被覆層116と、第4被覆層117と、によって構成されている。   The capacitor body 110 includes a capacitive element 111, a first coating layer 112, a second coating layer 113, a first relay layer 114, a second relay layer 115, a third coating layer 116, and a fourth coating layer 117. And is composed of.

容量素子111は、略直方体状を成していて、長さ方向で向き合う第1面f1及び第2面f2と、幅方向で向き合う第3面f3及び第4面f4と、高さ方向で向き合う第5面f5及び第6面f6とを有している。容量素子111は、誘電体層(符号省略)を介して高さ方向に交互に配された略矩形状の複数の第1内部電極層111aと略矩形状の複数の第2内部電極層111bを内包している。各第1内部電極層111aの幅、長さ及び厚さと各第2内部電極層111bの幅、長さ及び厚さは略同じであり、各誘電体層の厚さは略同じである。ちなみに、各第1内部電極層111aの厚さと各第2内部電極層111bの厚さは、例えば0.5〜2μmの範囲内で設定されており、各誘電体層の厚さは、例えば0.5〜2μmの範囲内で設定されている。また、図7(A)からも分かるように、容量素子111の幅は第1内部電極層111aと第2内部電極層111bそれぞれの幅と略同じであり、容量素子111は第5面f5側と第6面f6側それぞれにマージン部分(符号省略)を有している。なお、図1〜図6には、第1内部電極層111aと第2内部電極層111bそれぞれを10層ずつ描いているが、これらは図示の都合によるものであって、第1内部電極層111aと第2内部電極層111bの数は11層以上であってもよい。   The capacitive element 111 has a substantially rectangular parallelepiped shape, and faces the first surface f1 and the second surface f2 facing in the length direction and the third surface f3 and the fourth surface f4 facing in the width direction in the height direction. It has the 5th surface f5 and the 6th surface f6. The capacitive element 111 includes a plurality of substantially rectangular first internal electrode layers 111a and a plurality of substantially rectangular second internal electrode layers 111b arranged alternately in the height direction via dielectric layers (reference numerals omitted). Contains. The width, length and thickness of each first internal electrode layer 111a and the width, length and thickness of each second internal electrode layer 111b are substantially the same, and the thickness of each dielectric layer is substantially the same. Incidentally, the thickness of each first internal electrode layer 111a and the thickness of each second internal electrode layer 111b are set within a range of 0.5 to 2 μm, for example, and the thickness of each dielectric layer is 0, for example. It is set within a range of 0.5 to 2 μm. As can be seen from FIG. 7A, the width of the capacitive element 111 is substantially the same as the width of each of the first internal electrode layer 111a and the second internal electrode layer 111b, and the capacitive element 111 is on the fifth surface f5 side. And the sixth surface f6 side have margin portions (reference numerals omitted). 1 to FIG. 6, 10 layers of the first internal electrode layer 111a and the second internal electrode layer 111b are respectively drawn for convenience of illustration, and the first internal electrode layer 111a is illustrated. The number of second internal electrode layers 111b may be 11 or more.

容量素子111の各第1内部電極層111aと各第2内部電極層111bを除く部分には、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ジルコン酸カルシウム、チタン酸ジルコン酸カルシウム、ジルコン酸バリウム、酸化チタン等を主成分とした誘電体セラミックス、好ましくは比誘電率が1000以上の高誘電率系誘電体セラミックスが使用できる。また、各第1内部電極層111aと各第2内部電極層111bには、ニッケル、銅、パラジウム、白金、銀、金、これらの合金等を主成分した良導体が使用できる。   The portion of the capacitive element 111 excluding each first internal electrode layer 111a and each second internal electrode layer 111b has barium titanate, strontium titanate, calcium titanate, magnesium titanate, calcium zirconate, and calcium zirconate titanate. Dielectric ceramics mainly composed of barium zirconate, titanium oxide, etc., preferably high dielectric constant dielectric ceramics having a relative dielectric constant of 1000 or more can be used. Further, a good conductor mainly composed of nickel, copper, palladium, platinum, silver, gold, an alloy thereof, or the like can be used for each first internal electrode layer 111a and each second internal electrode layer 111b.

第1被覆層112は、略矩形状を成していて、容量素子111の第3面f3を密着状態で覆っている。第1被覆層112の長さ及び高さは、第3面f3の長さ及び高さと略同じである。第1被覆層112の厚さは、コンデンサ本体110の幅に関与することから極力薄い方が望ましい。ちなみに、第1被覆層112の厚さは、例えば後記第3被覆層116の厚さ又は第4被覆層117の厚さの1〜20倍の範囲内で設定されており、好ましくは5〜20μmの範囲内で設定されている。また、第1被覆層112には、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ジルコン酸カルシウム、チタン酸ジルコン酸カルシウム、ジルコン酸バリウム、酸化チタン等を主成分とした誘電体セラミックス、好ましくは比誘電率が1000以上の高誘電率系誘電体セラミックス、より好ましくは容量素子111の第1内部電極層111aと第2内部電極層111bを除く部分の主成分と同じ主成分の誘電体セラミックスが使用できる。   The first coating layer 112 has a substantially rectangular shape and covers the third surface f3 of the capacitive element 111 in a close contact state. The length and height of the first coating layer 112 are substantially the same as the length and height of the third surface f3. Since the thickness of the first coating layer 112 is related to the width of the capacitor body 110, it is desirable that the thickness is as thin as possible. Incidentally, the thickness of the first coating layer 112 is set within a range of 1 to 20 times the thickness of the third coating layer 116 or the thickness of the fourth coating layer 117, which will be described later, preferably 5 to 20 μm. Is set within the range. In addition, the first coating layer 112 has a dielectric material mainly composed of barium titanate, strontium titanate, calcium titanate, magnesium titanate, calcium zirconate, calcium zirconate titanate, barium zirconate, titanium oxide and the like. Ceramics, preferably a high dielectric constant dielectric ceramic having a relative dielectric constant of 1000 or more, more preferably the same main component as the main component of the capacitive element 111 excluding the first internal electrode layer 111a and the second internal electrode layer 111b Dielectric ceramics can be used.

第2被覆層113は、略矩形状を成していて、容量素子111の第4面f4を密着状態で覆っている。第2被覆層113の長さ及び高さは、第4面f4の長さ及び高さと略同じである。第2被覆層113の厚さは、コンデンサ本体110の幅に関与することから極力薄い方が望ましい。ちなみに、第2被覆層113の厚さは、例えば後記第3被覆層116の厚さ又は第4被覆層117の厚さの1〜20倍の範囲内で設定されており、好ましくは5〜20μmの範囲内で設定されている。また、第2被覆層113には、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ジルコン酸カルシウム、チタン酸ジルコン酸カルシウム、ジルコン酸バリウム、酸化チタン等を主成分とした誘電体セラミックス、好ましくは比誘電率が1000以上の高誘電率系誘電体セラミックス、より好ましくは容量素子111の第1内部電極層111aと第2内部電極層111bを除く部分の主成分と同じ主成分の誘電体セラミックスが使用できる。   The second coating layer 113 has a substantially rectangular shape, and covers the fourth surface f4 of the capacitive element 111 in a close contact state. The length and height of the second coating layer 113 are substantially the same as the length and height of the fourth surface f4. Since the thickness of the second coating layer 113 is related to the width of the capacitor body 110, it is desirable that the thickness is as thin as possible. Incidentally, the thickness of the second coating layer 113 is set within a range of 1 to 20 times the thickness of the third coating layer 116 or the thickness of the fourth coating layer 117, which will be described later, preferably 5 to 20 μm. Is set within the range. In addition, the second coating layer 113 has a dielectric material mainly composed of barium titanate, strontium titanate, calcium titanate, magnesium titanate, calcium zirconate, calcium zirconate titanate, barium zirconate, titanium oxide and the like. Ceramics, preferably a high dielectric constant dielectric ceramic having a relative dielectric constant of 1000 or more, more preferably the same main component as the main component of the capacitive element 111 excluding the first internal electrode layer 111a and the second internal electrode layer 111b Dielectric ceramics can be used.

第1中継層114は、略矩形状を成していて、容量素子111の第1面f1を密着状態で覆い、第1被覆層112の長さ方向一端縁と、第2被覆層113の長さ方向一端縁とに接している。第1中継層114の幅は、容量素子111の第1面f1の幅と第1被覆層112の厚さと第2被覆層113の厚さとの和と、略同じである。第1中継層114の高さは、容量素子111の第1面f1の高さと略同じである。第1中継層114の厚さは、コンデンサ本体110の長さに関与することから極力薄い方が望ましい。ちなみに、第1中継層114の厚さは、例えば第1内部電極層111aの厚さの1〜5倍の範囲内で設定されており、好ましくは0.5〜5μmの範囲内で設定されている。   The first relay layer 114 has a substantially rectangular shape, covers the first surface f1 of the capacitive element 111 in a close contact state, one end edge in the length direction of the first coating layer 112, and the length of the second coating layer 113. It is in contact with one edge in the vertical direction. The width of the first relay layer 114 is substantially the same as the sum of the width of the first surface f1 of the capacitive element 111, the thickness of the first covering layer 112, and the thickness of the second covering layer 113. The height of the first relay layer 114 is substantially the same as the height of the first surface f1 of the capacitive element 111. Since the thickness of the first relay layer 114 is related to the length of the capacitor body 110, it is desirable that the thickness is as thin as possible. Incidentally, the thickness of the first relay layer 114 is set, for example, within a range of 1 to 5 times the thickness of the first internal electrode layer 111a, and preferably within a range of 0.5-5 μm. Yes.

図4及び図5(A)に示したように、第1中継層114は、容量素子111の各第1内部電極層111aの長さ方向一端縁と向き合う略矩形状の導電性部分114aと、この導電性部分114aの高さ方向一端縁を除く周縁を囲む略U字状の難導電性部分114bとを有している。ここでの「難導電性」は導電性部分114aよりも導電性が低いことを意味する他、導電性が殆どないこと意味する。導電性部分114aには、ニッケル、銅、これらの合金等を主成分した良導体が使用でき、好ましくは第1内部電極層111aと第2内部電極層112aそれぞれの主成分と同じ主成分の良導体が使用できる。また、難導電性部分114bには、導電性を低下させるための成分、好ましくは導電性部分114aの主成分である金属の酸化物、具体的には酸化ニッケル、ニッケルマグネシウム複合酸化物等を含むものが使用できる。この第1中継層114の導電性部分114aには、各第1内部電極層111aの長さ方向一端縁が各第1内部電極層111aの幅と同等の接続幅にて接続されている。なお、第1中継層114の導電性部分114aに対する各第1内部電極層111aの長さ方向一端縁の接続幅は理想的には各第1内部電極層111aの幅となるが、実際のものでは各第1内部電極層111aの長さ方向一端縁の幅に各第1内部電極層111aの幅の±5%程度の変動が確認できたため、ここでは敢えて「各第1内部電極層111aの幅と同じ接続幅」と表現せずに「各第1内部電極層111aの幅と同等の接続幅」と表現している。   As shown in FIGS. 4 and 5A, the first relay layer 114 includes a substantially rectangular conductive portion 114a facing one end edge in the length direction of each first internal electrode layer 111a of the capacitor 111, and The conductive portion 114a has a substantially U-shaped hardly conductive portion 114b surrounding a peripheral edge excluding one edge in the height direction. Here, “difficult conductivity” means that the conductivity is lower than that of the conductive portion 114a, and it means that there is almost no conductivity. For the conductive portion 114a, a good conductor mainly composed of nickel, copper, or an alloy thereof can be used. Preferably, a good conductor having the same main component as the main component of each of the first internal electrode layer 111a and the second internal electrode layer 112a is used. Can be used. Further, the hardly conductive portion 114b includes a component for reducing conductivity, preferably a metal oxide which is a main component of the conductive portion 114a, specifically nickel oxide, nickel magnesium composite oxide, or the like. Things can be used. One end edge in the length direction of each first internal electrode layer 111a is connected to the conductive portion 114a of the first relay layer 114 with a connection width equivalent to the width of each first internal electrode layer 111a. Note that the connection width of one edge in the length direction of each first internal electrode layer 111a to the conductive portion 114a of the first relay layer 114 is ideally the width of each first internal electrode layer 111a, but it is an actual one. Then, since the fluctuation of about ± 5% of the width of each first internal electrode layer 111a was confirmed in the width of one edge in the longitudinal direction of each first internal electrode layer 111a, here, “ Instead of expressing “the same connection width as the width”, it is expressed as “a connection width equivalent to the width of each first internal electrode layer 111a”.

第2中継層115は、略矩形状を成していて、容量素子111の第2面f2と、第1被覆層112の長さ方向他端縁と、第2被覆層113の長さ方向他端縁とを密着状態で覆っている。第2中継層115の幅は、容量素子111の第2面f2の幅と第1被覆層112の厚さと第2被覆層113の厚さとの和と、略同じである。第2中継層115の高さは、容量素子111の第2面f2の高さと略同じである。第2中継層115の厚さは、コンデンサ本体110の長さに関与することから極力薄い方が望ましい。ちなみに、第2中継層115の厚さは、例えば第2内部電極層111bの厚さの1〜5倍の範囲内で設定されており、好ましくは0.5〜5μmの範囲内で設定されている。   The second relay layer 115 has a substantially rectangular shape, the second surface f2 of the capacitive element 111, the other edge in the length direction of the first coating layer 112, the length direction of the second coating layer 113, and the like. The edges are covered in close contact. The width of the second relay layer 115 is substantially the same as the sum of the width of the second surface f2 of the capacitive element 111, the thickness of the first covering layer 112, and the thickness of the second covering layer 113. The height of the second relay layer 115 is substantially the same as the height of the second surface f2 of the capacitive element 111. Since the thickness of the second relay layer 115 is related to the length of the capacitor body 110, it is desirable that the thickness is as thin as possible. Incidentally, the thickness of the second relay layer 115 is set within a range of, for example, 1 to 5 times the thickness of the second internal electrode layer 111b, and preferably within a range of 0.5 to 5 μm. Yes.

図4及び図5(B)に示したように、第2中継層115は、容量素子111の各第2内部電極層111bの長さ方向他端縁と向き合う略矩形状の導電性部分115aと、この導電性部分115aの高さ方向一端縁を除く周縁を囲む略U字状の難導電性部分115bとを有している。ここでの「難導電性」は導電性部分115aよりも導電性が低いことを意味する他、導電性が殆どないことを意味する。導電性部分115aには、ニッケル、銅、これらの合金等を主成分した良導体が使用でき、好ましくは第1内部電極層111aと第2内部電極層112aそれぞれの主成分と同じ主成分の良導体が使用できる。また、難導電性部分115bには、導電性を低下させるための成分、好ましくは導電性部分115aの主成分である金属の酸化物、具体的には酸化ニッケル、ニッケルマグネシウム複合酸化物等を含むものが使用できる。この第2中継層115の導電性部分115aには、各第2内部電極層111bの長さ方向他端縁が各第2内部電極層111bの幅と同等の接続幅にて接続されている。なお、第2中継層115の導電性部分115aに対する各第2内部電極層111bの長さ方向他端縁の接続幅は理想的には各第2内部電極層111bの幅となるが、実際のものでは各第2内部電極層111bの長さ方向他端縁の幅に各第1内部電極層111aの幅の±5%程度の変動が確認できたため、ここでは敢えて「各第2内部電極層111bの幅と同じ接続幅」と表現せずに「各第2内部電極層111bの幅と同等の接続幅」と表現している。   As shown in FIGS. 4 and 5B, the second relay layer 115 includes a substantially rectangular conductive portion 115a facing the other end in the length direction of each second internal electrode layer 111b of the capacitive element 111. The conductive portion 115a has a substantially U-shaped hardly conductive portion 115b surrounding a peripheral edge excluding one edge in the height direction. Here, “difficult conductivity” means that the conductivity is lower than that of the conductive portion 115a, and it means that there is almost no conductivity. For the conductive portion 115a, a good conductor mainly composed of nickel, copper, or an alloy thereof can be used. Preferably, a good conductor having the same main component as the main components of the first internal electrode layer 111a and the second internal electrode layer 112a is used. Can be used. Further, the hardly conductive portion 115b includes a component for reducing conductivity, preferably a metal oxide which is a main component of the conductive portion 115a, specifically nickel oxide, nickel magnesium composite oxide, or the like. Things can be used. The other end edge in the length direction of each second internal electrode layer 111b is connected to the conductive portion 115a of the second relay layer 115 with a connection width equivalent to the width of each second internal electrode layer 111b. It should be noted that the connection width of the other end in the longitudinal direction of each second internal electrode layer 111b with respect to the conductive portion 115a of the second relay layer 115 is ideally the width of each second internal electrode layer 111b. In the present embodiment, since the variation of the width of each first internal electrode layer 111a by about ± 5% was confirmed in the width of the other edge in the length direction of each second internal electrode layer 111b, the “second second internal electrode layer” It is expressed as “a connection width equivalent to the width of each second internal electrode layer 111b” instead of “the same connection width as the width of 111b”.

第3被覆層116は、略矩形状を成していて、第1中継層114の外面を密着状態で覆っている。第3被覆層116の幅及び高さは、第1中継層114の外面の幅及び高さと略同じである。第3被覆層116の厚さは、コンデンサ本体110の長さに関与することから極力薄い方が望ましい。ちなみに、第3被覆層116の厚さは、例えば第1内部電極層111aと第2内部電極層111bとの間に介在する誘電体層の厚さの1〜10倍の範囲内で設定されており、好ましくは1〜10μmの範囲内で設定されている。また、第3被覆層116には、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ジルコン酸カルシウム、チタン酸ジルコン酸カルシウム、ジルコン酸バリウム、酸化チタン等を主成分とした誘電体セラミックス、好ましくは比誘電率が1000以上の高誘電率系誘電体セラミックス、より好ましくは容量素子111の第1内部電極層111aと第2内部電極層111bを除く部分の主成分と同じ主成分の誘電体セラミックスが使用できる。   The third coating layer 116 has a substantially rectangular shape and covers the outer surface of the first relay layer 114 in a close contact state. The width and height of the third coating layer 116 are substantially the same as the width and height of the outer surface of the first relay layer 114. Since the thickness of the third coating layer 116 is related to the length of the capacitor body 110, it is desirable that the thickness is as thin as possible. Incidentally, the thickness of the third coating layer 116 is set within a range of 1 to 10 times the thickness of the dielectric layer interposed between the first internal electrode layer 111a and the second internal electrode layer 111b, for example. Preferably, it is set within a range of 1 to 10 μm. The third coating layer 116 has a dielectric material mainly composed of barium titanate, strontium titanate, calcium titanate, magnesium titanate, calcium zirconate, calcium zirconate titanate, barium zirconate, titanium oxide and the like. Ceramics, preferably a high dielectric constant dielectric ceramic having a relative dielectric constant of 1000 or more, more preferably the same main component as the main component of the capacitive element 111 excluding the first internal electrode layer 111a and the second internal electrode layer 111b Dielectric ceramics can be used.

第4被覆層117は、略矩形状を成していて、第2中継層115の外面を密着状態で覆っている。第4被覆層117の幅及び高さは、第2中継層115の外面の幅及び高さと略同じである。第4被覆層117の厚さは、コンデンサ本体110の長さに関与することから極力薄い方が望ましい。ちなみに、第4被覆層117の厚さは、例えば第1内部電極層111aと第2内部電極層111bとの間に介在する誘電体層の厚さの1〜10倍の範囲内で設定されており、好ましくは1〜10μmの範囲内で設定されている。また、第4被覆層117には、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ジルコン酸カルシウム、チタン酸ジルコン酸カルシウム、ジルコン酸バリウム、酸化チタン等を主成分とした誘電体セラミックス、好ましくは比誘電率が1000以上の高誘電率系誘電体セラミックス、より好ましくは容量素子111の第1内部電極層111aと第2内部電極層111bを除く部分の主成分と同じ主成分の誘電体セラミックスが使用できる。   The fourth coating layer 117 has a substantially rectangular shape, and covers the outer surface of the second relay layer 115 in a close contact state. The width and height of the fourth coating layer 117 are substantially the same as the width and height of the outer surface of the second relay layer 115. Since the thickness of the fourth coating layer 117 is related to the length of the capacitor body 110, it is desirable that the thickness is as thin as possible. Incidentally, the thickness of the fourth covering layer 117 is set within a range of 1 to 10 times the thickness of the dielectric layer interposed between the first internal electrode layer 111a and the second internal electrode layer 111b, for example. Preferably, it is set within a range of 1 to 10 μm. The fourth coating layer 117 includes a dielectric material mainly composed of barium titanate, strontium titanate, calcium titanate, magnesium titanate, calcium zirconate, calcium zirconate titanate, barium zirconate, titanium oxide, and the like. Ceramics, preferably a high dielectric constant dielectric ceramic having a relative dielectric constant of 1000 or more, more preferably the same main component as the main component of the capacitive element 111 excluding the first internal electrode layer 111a and the second internal electrode layer 111b Dielectric ceramics can be used.

第1外部電極120は、略矩形状を成していて、コンデンサ本体110の高さ方向一面に相当する容量素子111の第5面f5の第3被覆層116側に密着状態で設けられている。第1外部電極120の幅は、容量素子111の第5面f5の幅と第1被覆層112の厚さと第2被覆層113の厚さとの和と、略同じである。第1外部電極120の長さは例えば積層セラミックコンデンサの長さLの1/8〜1/3の範囲内で設定されており、厚さは例えば1〜15μmの範囲内で設定されている。また、第1外部電極120の長さ方向一端縁は、第3被覆層116の外面下まで達している。この第1外部電極120には、第1中継層114の導電性部分114aの高さ方向一端縁が第1中継層114の導電性部分114aの幅と同等の接続幅にて接続されている。なお、第1外部電極120に対する第1中継層114の導電性部分114aの高さ方向一端縁の接続幅は理想的には第1中継層114の導電性部分114aの幅となるが、実際のものでは第1中継層114の導電性部分114aの高さ方向一端縁の幅に第1中継層114の導電性部分114aの幅の±5%程度の変動が確認できたため、ここでは敢えて「第1中継層114の導電性部分114aの幅と同じ接続幅」と表現せずに「第1中継層114の導電性部分114aの幅と同等の接続幅」と表現している。   The first external electrode 120 has a substantially rectangular shape, and is provided in close contact with the third coating layer 116 side of the fifth surface f5 of the capacitive element 111 corresponding to one surface of the capacitor body 110 in the height direction. . The width of the first external electrode 120 is substantially the same as the sum of the width of the fifth surface f5 of the capacitive element 111, the thickness of the first covering layer 112, and the thickness of the second covering layer 113. The length of the first external electrode 120 is set, for example, within a range of 1/8 to 1/3 of the length L of the multilayer ceramic capacitor, and the thickness is set within a range of, for example, 1-15 μm. In addition, one end edge in the length direction of the first external electrode 120 reaches below the outer surface of the third coating layer 116. One end edge in the height direction of the conductive portion 114 a of the first relay layer 114 is connected to the first external electrode 120 with a connection width equal to the width of the conductive portion 114 a of the first relay layer 114. The connection width of the one end edge in the height direction of the conductive portion 114a of the first relay layer 114 with respect to the first external electrode 120 is ideally the width of the conductive portion 114a of the first relay layer 114. In this case, since a variation of about ± 5% of the width of the conductive portion 114a of the first relay layer 114 was confirmed in the width of the one end edge in the height direction of the conductive portion 114a of the first relay layer 114, the “first Instead of expressing “the same connection width as the width of the conductive portion 114 a of the first relay layer 114”, it is expressed as “the connection width equivalent to the width of the conductive portion 114 a of the first relay layer 114”.

第2外部電極130は、略矩形状を成していて、コンデンサ本体110の高さ方向一面に相当する容量素子111の第5面f5の第4被覆層117側に密着状態で設けられている。第2外部電極130の幅は、容量素子111の第5面f5の幅と第1被覆層112の厚さと第2被覆層113の厚さとの和と、略同じである。第2外部電極130の長さは例えば積層セラミックコンデンサの長さLの1/8〜1/3の範囲内で設定されており、厚さは例えば1〜15μmの範囲内で設定されている。また、第2外部電極130の長さ方向他端縁は、第4被覆層117の外面下まで達している。この第2外部電極130には、第2中継層115の導電性部分115aの高さ方向一端縁が第2中継層115の導電性部分115aの幅と同等の接続幅にて接続されている。なお、第2外部電極130に対する第2中継層115の導電性部分115aの高さ方向一端縁の接続幅は理想的には第2中継層115の導電性部分115aの幅となるが、実際のものでは第2中継層115の導電性部分115aの高さ方向一端縁の幅に第2中継層115の導電性部分115aの幅の±5%程度の変動が確認できたため、ここでは敢えて「第2中継層115の導電性部分115aの幅と同じ接続幅」と表現せずに「第2中継層115の導電性部分115aの幅と同等の接続幅」と表現している。   The second external electrode 130 has a substantially rectangular shape and is provided in close contact with the fourth coating layer 117 side of the fifth surface f5 of the capacitive element 111 corresponding to one surface in the height direction of the capacitor body 110. . The width of the second external electrode 130 is substantially the same as the sum of the width of the fifth surface f5 of the capacitive element 111, the thickness of the first covering layer 112, and the thickness of the second covering layer 113. The length of the second external electrode 130 is set, for example, within a range of 1/8 to 1/3 of the length L of the multilayer ceramic capacitor, and the thickness is set within a range of, for example, 1-15 μm. In addition, the other end in the length direction of the second external electrode 130 reaches below the outer surface of the fourth coating layer 117. One end edge in the height direction of the conductive portion 115 a of the second relay layer 115 is connected to the second external electrode 130 with a connection width equal to the width of the conductive portion 115 a of the second relay layer 115. The connection width of one end edge in the height direction of the conductive portion 115a of the second relay layer 115 to the second external electrode 130 is ideally the width of the conductive portion 115a of the second relay layer 115. In this case, since a variation of about ± 5% of the width of the conductive portion 115a of the second relay layer 115 can be confirmed in the width of the one end edge in the height direction of the conductive portion 115a of the second relay layer 115, here, “ It is expressed as “a connection width equivalent to the width of the conductive portion 115a of the second relay layer 115” instead of “the same connection width as the width of the conductive portion 115a of the second relay layer 115”.

ここで、図5及び図6を用いて、第1外部電極120と第2外部電極130の態様について補足する。   Here, using FIGS. 5 and 6, the aspect of the first external electrode 120 and the second external electrode 130 will be supplemented.

図6(A)に示した第1外部電極120は、(1)容量素子111の第5面f5に密着し、第1被覆層112の高さ方向一端縁と第2被覆層113の高さ方向一端縁と第1中継層114の高さ方向一端縁と第3被覆層116の高さ方向一端縁とに接した下地膜121と、(2)下地膜121の外面に密着した中間膜122と、(3)中間膜122の外面に密着した表面膜123と、を有する3層構造である。また、図6(B)に示した第2外部電極130は、(1)容量素子111の第5面f5に密着し、第1被覆層112の高さ方向一端縁と第2被覆層113の高さ方向一端縁と第2中継層115の高さ方向一端縁と第4被覆層117の高さ方向一端縁とに接した下地膜131と、(2)下地膜131の外面に密着した中間膜132と、(3)中間膜132の外面に密着した表面膜133と、を有する3層構造である。   The first external electrode 120 shown in FIG. 6A is in close contact with (5) the fifth surface f5 of the capacitive element 111, and one edge in the height direction of the first coating layer 112 and the height of the second coating layer 113. A base film 121 in contact with one edge in the direction, one edge in the height direction of the first relay layer 114, and one edge in the height direction of the third coating layer 116; and (2) an intermediate film 122 in close contact with the outer surface of the base film 121. And (3) a three-layer structure having a surface film 123 in close contact with the outer surface of the intermediate film 122. 6B is in close contact with the fifth surface f5 of the capacitive element 111, and one end edge in the height direction of the first coating layer 112 and the second coating layer 113. A base film 131 in contact with one end edge in the height direction, one end edge in the height direction of the second relay layer 115 and one end edge in the height direction of the fourth coating layer 117; and (2) an intermediate portion in close contact with the outer surface of the base film 131 It has a three-layer structure including a film 132 and (3) a surface film 133 in close contact with the outer surface of the intermediate film 132.

下地膜121及び131は例えば焼き付け膜からなり、この焼き付け膜には好ましくはニッケル、銅、パラジウム、白金、銀、金、これらの合金等を主成分した良導体が使用できる。中間膜122及び132は例えばメッキ膜からなり、このメッキ膜には好ましくは白金、パラジウム、金、銅、ニッケル、これらの合金等を主成分とした良導体が使用できる。表面膜123及び133は例えばメッキ膜からなり、このメッキ膜には好ましくは銅、スズ、パラジウム、金、亜鉛、これらの合金等を主成分とした良導体が使用できる。なお、第1外部電極120と第2外部電極130は必ずしも3層構造である必要はなく、中間膜122及び132を除外した2層構造や、中間膜122及び132を2層以上とした多層構造や、表面膜123及び133のみとした単層構造であってもよい。   The base films 121 and 131 are made of, for example, a baked film, and a good conductor mainly composed of nickel, copper, palladium, platinum, silver, gold, or an alloy thereof can be used for the baked film. The intermediate films 122 and 132 are made of, for example, a plating film, and a good conductor mainly composed of platinum, palladium, gold, copper, nickel, alloys thereof, or the like can be used for the plating film. The surface films 123 and 133 are made of, for example, a plating film, and a good conductor mainly composed of copper, tin, palladium, gold, zinc, alloys thereof, or the like can be used for the plating film. The first external electrode 120 and the second external electrode 130 do not necessarily have a three-layer structure, and a two-layer structure excluding the intermediate films 122 and 132 or a multilayer structure in which the intermediate films 122 and 132 are two or more layers. Alternatively, a single layer structure having only the surface films 123 and 133 may be used.

次に、前述の積層セラミックコンデンサに適した製造方法の例を、図7を用い、且つ、図1〜図6に示した符号等を適宜用いて説明する。   Next, an example of a manufacturing method suitable for the above-described multilayer ceramic capacitor will be described using FIG. 7 and appropriately using the reference numerals shown in FIGS.

製造に際しては、誘電体セラミックス粉末、有機バインダ、有機溶剤及び各種添加剤を含有した第1セラミックスラリーと、第1セラミックスラリーに0.1〜30at%の範囲内でMgO等の酸化促進剤を添加した第2セラミックスラリーと、良導体粉末、有機バインダ、有機溶剤及び各種添加剤を含有した電極ペーストと、良導体粉末、有機バインダ及び有機溶剤のみを含有した導体ペーストを用意する。   During production, a first ceramic slurry containing a dielectric ceramic powder, an organic binder, an organic solvent and various additives, and an oxidation promoter such as MgO are added to the first ceramic slurry within a range of 0.1 to 30 at%. An electrode paste containing the second ceramic slurry, a good conductor powder, an organic binder, an organic solvent and various additives, and a conductor paste containing only the good conductor powder, the organic binder and the organic solvent are prepared.

続いて、キャリアフィルムの表面に第1セラミックスラリーを塗工して乾燥することにより、第1シートを作製する。また、第1シートの表面に電極ペーストを印刷して乾燥することにより、内部電極層パターン群が形成された第2シートを作製する。さらに、第1シートの表面に導体ペーストを印刷して乾燥することにより、導体層パターン群が形成された第3シートを作製する。さらに、キャリアフィルムの表面に第2セラミックスラリーを塗工して乾燥することにより、第4シートを作製する。   Subsequently, a first ceramic slurry is applied to the surface of the carrier film and dried to produce a first sheet. Moreover, the 2nd sheet in which the internal electrode layer pattern group was formed is produced by printing and drying an electrode paste on the surface of the 1st sheet. Furthermore, the 3rd sheet in which the conductor layer pattern group was formed is produced by printing and drying a conductor paste on the surface of the 1st sheet. Furthermore, a 4th sheet | seat is produced by apply | coating a 2nd ceramic slurry to the surface of a carrier film, and drying.

続いて、第1シートから取り出した単位シートを所定枚数に達するまで積み重ねて熱圧着する作業を繰り返すことにより、容量素子111の高さ方向一方のマージン部分に対応する部位を形成する。続いて、第2シートから取り出した単位シート(内部電極層パターン群を含む)を所定枚数に達するまで積み重ねて熱圧着する作業を繰り返すことにより、容量素子111の第1内部電極層111a及び第2内部電極層111bが存在する部分に対応する部位を形成する。続いて、第4シートから取り出した単位シートを所定枚数に達するまで積み重ねて熱圧着する作業を繰り返すことにより、容量素子111の高さ方向他方のマージン部分に対応する部位を形成する。最後に、積み重ねられた全体を本熱圧着することにより、未焼成シートを作製する。   Subsequently, the unit sheet taken out from the first sheet is repeatedly stacked and thermocompression bonded until a predetermined number of sheets are reached, thereby forming a portion corresponding to one margin portion of the capacitive element 111 in the height direction. Subsequently, the unit sheets (including the internal electrode layer pattern group) taken out from the second sheet are stacked and thermocompression bonded until a predetermined number of sheets are reached, thereby repeating the first internal electrode layer 111a and the second internal electrode layer 111a of the capacitive element 111. A portion corresponding to a portion where the internal electrode layer 111b exists is formed. Subsequently, a unit corresponding to the other margin part in the height direction of the capacitive element 111 is formed by repeating the operation of stacking the unit sheets taken out from the fourth sheet until the predetermined number is reached and thermocompression bonding. Finally, an unfired sheet is produced by subjecting the entire stacked body to thermocompression bonding.

続いて、未焼成シートを格子状に切断することにより、容量素子111に対応した未焼成素子CEを作製する(図7(A)を参照)。この未焼成素子CEは、第1内部電極層111a及び第2内部電極層111bとなる複数の未焼成内部電極層IEL1及びIEL2を有する他、酸化促進剤を含有した未焼成マージン部分CEaを高さ方向他面側に有している。   Subsequently, an unsintered element CE corresponding to the capacitor 111 is manufactured by cutting the unsintered sheet into a lattice shape (see FIG. 7A). This unfired element CE has a plurality of unfired internal electrode layers IEL1 and IEL2 to be the first internal electrode layer 111a and the second internal electrode layer 111b, and also has a height of an unfired margin portion CEa containing an oxidation accelerator. It has in the direction other side.

続いて、図7(A)に示した未焼成素子CEの向きを揃えてから、各々の幅方向一面と幅方向他面に第4シートを押し付けて熱圧着し、熱圧着後に第4シートを切断することにより、未焼成素子CEの幅方向一面に第1被覆層112となる未焼成被覆層DL1を形成すると共に幅方向他面に第2被覆層113となる未焼成被覆層DL2を形成する(図7(B)を参照)。この未焼成被覆層DL1及びDL2は酸化促進剤を含有している。   Subsequently, after aligning the direction of the unfired element CE shown in FIG. 7A, the fourth sheet is pressed against the one surface in the width direction and the other surface in the width direction to perform thermocompression bonding. By cutting, an unsintered coating layer DL1 serving as the first coating layer 112 is formed on one surface in the width direction of the unfired element CE, and an unsintered coating layer DL2 serving as the second coating layer 113 is formed on the other surface in the width direction. (See FIG. 7B). The unsintered coating layers DL1 and DL2 contain an oxidation accelerator.

続いて、図7(B)に示したものの向きを揃えてから、各々の長さ方向一面と長さ方向他面に第3シートの導体層パターン群側を押し付けて熱圧着し、熱圧着後に第3シートを切断することにより、図7(B)に示したものの長さ方向一面に第1中継層114及び第3被覆層116となる未焼成導体層CL1及び未焼成被覆層DL3を形成すると共に、長さ方向他面に第2中継層115及び第4被覆層117となる未焼成導体層CL2及び未焼成被覆層DL4を形成する(図7(C)を参照)。   Subsequently, after aligning the orientation shown in FIG. 7B, the conductor layer pattern group side of the third sheet is pressed against the one surface in the length direction and the other surface in the length direction, followed by thermocompression bonding. By cutting the third sheet, the unfired conductor layer CL1 and the unfired coating layer DL3, which become the first relay layer 114 and the third coating layer 116, are formed on one surface in the length direction of the one shown in FIG. 7B. At the same time, the unfired conductor layer CL2 and the unfired coating layer DL4 to be the second relay layer 115 and the fourth cover layer 117 are formed on the other surface in the length direction (see FIG. 7C).

続いて、図7(C)に示したものをこれに含まれている誘電体セラミックス粉末と良導体粉末に応じた雰囲気下、並びに、温度プロファイルにて多数個一括で焼成(脱バインダ処理と焼成処理を含む)を行い、必要に応じて多数個一括でバレル研磨を行う。これによりコンデンサ本体110が作製される。   Subsequently, a large number of the ceramics shown in FIG. 7C are fired together in an atmosphere corresponding to the dielectric ceramic powder and good conductor powder contained therein, and in a temperature profile (binder removal treatment and firing treatment). And barrel-polishing as many as needed. Thereby, the capacitor body 110 is manufactured.

前記焼成工程では、図7(C)に示した未焼成導体層CL1及びCL2それぞれに含まれる良導体粉末が例えばニッケル粉末である場合、未焼成導体層CL1及びCL2のうちの未焼成マージン部分CEaと未焼成被覆層DL1と未焼成被覆層DL2それぞれに接する部分にニッケル酸化物が積極的に生成され、これにより同部分が難導電性部分に変化する。即ち、図7(C)に示した未焼成導体層CL1と未焼成導体層CL2は、前記焼成工程を経て、導電性部分114a及び難導電性部分114bを有する第1中継層114(図5(A)を参照)と、導電性部分115a及び難導電性部分115bを有する第2中継層115(図5(B)を参照)となる。   In the firing step, when the good conductor powder contained in each of the unfired conductor layers CL1 and CL2 shown in FIG. 7C is, for example, nickel powder, the unfired margin portion CEa of the unfired conductor layers CL1 and CL2 and Nickel oxide is positively generated at the portions in contact with the unsintered coating layer DL1 and the unsintered coating layer DL2, thereby changing the same portion into a hardly conductive portion. That is, the unfired conductor layer CL1 and the unfired conductor layer CL2 shown in FIG. 7C are subjected to the firing process, and the first relay layer 114 having the conductive portion 114a and the hardly conductive portion 114b (see FIG. A)), a second relay layer 115 (see FIG. 5B) having a conductive portion 115a and a hardly conductive portion 115b is obtained.

続いて、コンデンサ本体110の向きを揃えてから、各々の高さ方向一面に電極ペースト(前記電極ペーストと同じペースト、或いは、前記電極ペーストと良導体粉末の種類が異なる別のペースト)を塗布又は印刷して乾燥した後、焼き付け処理を行って下地膜121及び131を形成する。続いて、下地膜121及び131を覆う中間膜122及び132と表面膜123及び133をメッキ処理で形成して、第1外部電極120と第2外部電極130を作製する。   Subsequently, after aligning the orientation of the capacitor body 110, an electrode paste (the same paste as the electrode paste or another paste having a different kind of good conductor powder) is applied or printed on one surface in each height direction. After drying, a baking process is performed to form the base films 121 and 131. Subsequently, the intermediate films 122 and 132 and the surface films 123 and 133 covering the base films 121 and 131 are formed by plating, and the first external electrode 120 and the second external electrode 130 are manufactured.

次に、前述の積層セラミックコンデンサによって得られる主たる効果(効果e1及び効果e2)について説明する。   Next, main effects (effects e1 and e2) obtained by the above-described multilayer ceramic capacitor will be described.

(e1)コンデンサ本体110は、(1)誘電体層を介して交互に配された略矩形状の複数の第1内部電極層111aと略矩形状の複数の第2内部電極層111bとを内包する略直方体状の容量素子111と、(2)容量素子111の幅方向一面を覆う第1被覆層112と、(3)容量素子111の幅方向他面を覆う第2被覆層113と、(4)容量素子111の長さ方向一面を覆い、第1被覆層112の長さ方向一端縁と第2被覆層113の長さ方向一端縁とに接する第1中継層114と、(5)容量素子111の長さ方向他面を覆い、第1被覆層112の長さ方向他端縁と第2被覆層113の長さ方向他端縁に接する第2中継層115と、(6)第1中継層114の外面を覆う第3被覆層116と、(7)第2中継層115の外面を覆う第4被覆層117と、によって構成されている。   (E1) The capacitor body 110 includes (1) a plurality of substantially rectangular first internal electrode layers 111a and a plurality of substantially rectangular second internal electrode layers 111b arranged alternately via dielectric layers. A substantially rectangular parallelepiped capacitive element 111, (2) a first coating layer 112 covering one surface in the width direction of the capacitor element 111, (3) a second coating layer 113 covering the other surface in the width direction of the capacitor element 111, 4) a first relay layer 114 that covers one surface in the length direction of the capacitive element 111 and is in contact with one end edge in the length direction of the first covering layer 112 and one end edge in the length direction of the second covering layer 113; A second relay layer 115 that covers the other longitudinal surface of the element 111 and is in contact with the other longitudinal edge of the first coating layer 112 and the other longitudinal edge of the second coating layer 113; (6) a first A third covering layer 116 covering the outer surface of the relay layer 114; and (7) covering an outer surface of the second relay layer 115. 4 coating layer 117 is composed of a.

また、第1中継層114は、複数の第1内部電極層111aの長さ方向一端縁それぞれと向き合う略矩形状の導電性部分114aと、導電性部分114aの高さ方向一端縁を除く周縁を囲む難導電性部分114bとを有しており、第2中継層115は、複数の第2内部電極層111bの長さ方向他端縁それぞれと向き合う略矩形状の導電性部分115aと、導電性部分115aの高さ方向一端縁を除く周縁を囲む難導電性部分115bとを有している。さらに、第1中継層114の導電性部分114aには、複数の第1内部電極層111aの長さ方向一端縁それぞれが複数の第1内部電極層111aそれぞれの幅と同等の接続幅にて接続され、第2中継層115の導電性部分115aには、複数の第2内部電極層111bの長さ方向他端縁それぞれが複数の第2内部電極層111bそれぞれの幅と同等の接続幅にて接続されている。さらに、第1外部電極120には、第1中継層114の導電性部分114aの高さ方向一端縁が第1中継層114の導電性部分114aの幅と同等の接続幅にて接続され、第2外部電極130には、第2中継層115の導電性部分115aの高さ方向一端縁が第2中継層115の導電性部分115aの幅と同等の接続幅にて接続されている。   The first relay layer 114 has a substantially rectangular conductive portion 114a facing each of one end edge in the length direction of the plurality of first internal electrode layers 111a, and a peripheral edge excluding one end edge in the height direction of the conductive portion 114a. The second relay layer 115 includes a substantially rectangular conductive portion 115a facing each of the other end in the length direction of the plurality of second internal electrode layers 111b, and a conductive layer. The portion 115a has a non-conductive portion 115b surrounding the periphery except for one edge in the height direction. Further, one end edge in the length direction of the plurality of first internal electrode layers 111a is connected to the conductive portion 114a of the first relay layer 114 with a connection width equivalent to the width of each of the plurality of first internal electrode layers 111a. The other end edges in the length direction of the plurality of second internal electrode layers 111b are connected to the conductive portions 115a of the second relay layer 115 with connection widths equivalent to the widths of the plurality of second internal electrode layers 111b. It is connected. Further, one end edge in the height direction of the conductive portion 114a of the first relay layer 114 is connected to the first external electrode 120 with a connection width equal to the width of the conductive portion 114a of the first relay layer 114. One end edge in the height direction of the conductive portion 115 a of the second relay layer 115 is connected to the two external electrodes 130 with a connection width equivalent to the width of the conductive portion 115 a of the second relay layer 115.

即ち、コンデンサ本体110に、各第1内部電極層111aを各々の幅を活かして第1外部電極120に接続する役目を果たす第1中継層114の導電性部分114aと、各第2内部電極層111bを各々の幅を活かして第2外部電極130に接続する役目を果たす第2中継層115の導電性部分115aが設けられているため、各第1内部電極層111aの幅及び長さと各第2内部電極層111bの幅及び長さが縮小されても、第1外部電極120に対する各第1内部電極層111aの接続と第2外部電極130に対する各第2内部電極層111bの接続が不安定になることを極力回避することができる。依って、略直方体状のコンデンサ本体110の高さ方向一面に第1外部電極120と第2外部電極130が設けられた積層セラミックコンデンサにおいて小型化と大容量化の要求に応じる場合であっても、第1外部電極120に対する各第1内部電極層111aの接続と第2外部電極130に対する各第2内部電極層111bの接続のそれぞれに信頼性の高い接続を実現できる。   That is, the conductive portion 114a of the first relay layer 114 that serves to connect the first internal electrode layers 111a to the first external electrodes 120 by utilizing the respective widths of the capacitor body 110 and the second internal electrode layers. Since the conductive portion 115a of the second relay layer 115 serving to connect the 111b to the second external electrode 130 by utilizing each width is provided, the width and length of each first internal electrode layer 111a and each of the first internal electrode layers 111a are provided. Even if the width and length of the two internal electrode layers 111b are reduced, the connection of each first internal electrode layer 111a to the first external electrode 120 and the connection of each second internal electrode layer 111b to the second external electrode 130 are unstable. Can be avoided as much as possible. Therefore, even if the multilayer ceramic capacitor in which the first external electrode 120 and the second external electrode 130 are provided on one surface in the height direction of the substantially rectangular parallelepiped capacitor main body 110 meets the demand for miniaturization and large capacity. The connection of each first internal electrode layer 111 a to the first external electrode 120 and the connection of each second internal electrode layer 111 b to the second external electrode 130 can be realized with high reliability.

また、コンデンサ本体110は、第1中継層114の外面を覆う第3被覆層116と、第2中継層115の外面を覆う第4被覆層117を有していると共に、第1中継層114は導電性部分114aの高さ方向一端縁を除く周縁を囲む難導電性部分114bを有し、第2中継層115は導電性部分115aの高さ方向一端縁を除く周縁を囲む難導電性部分115bを有している。即ち、回路基板に実装するときに積層セラミックコンデンサが倒れても、第1中継層114の導電性部分114aと第2中継層115の導電性部分115aが回路基板の導体ラインや隣接する電子部品等に接触してショート等の問題を生じることを確実に防止できる。   The capacitor body 110 includes a third coating layer 116 that covers the outer surface of the first relay layer 114 and a fourth coating layer 117 that covers the outer surface of the second relay layer 115. The first relay layer 114 includes The conductive portion 114a has a hardly conductive portion 114b surrounding a peripheral edge except for one edge in the height direction, and the second relay layer 115 has a hard conductive portion 115b surrounding the peripheral edge except the one edge in the height direction of the conductive portion 115a. have. That is, even when the multilayer ceramic capacitor falls down when mounted on the circuit board, the conductive portion 114a of the first relay layer 114 and the conductive portion 115a of the second relay layer 115 are connected to the conductor lines of the circuit board, adjacent electronic components, etc. It is possible to surely prevent a problem such as a short circuit from coming into contact with the battery.

(e2)コンデンサ本体110の第1中継層114と第2中継層115それぞれの難導電性部分114b及び115bは導電性を低下させるための成分、好ましくは第1中継層114と第2中継層115それぞれの導電性部分114a及び115aの主成分である金属の酸化物を含んでいるため、この金属の酸化物によって難導電性部分114b及び115bの導電性を導電性部分114a及び115aの導電性よりも簡単、且つ、確実に低下させることができる。   (E2) The poorly conductive portions 114b and 115b of the first relay layer 114 and the second relay layer 115 of the capacitor body 110 are components for reducing conductivity, preferably the first relay layer 114 and the second relay layer 115. Since the metal oxide which is the main component of the respective conductive portions 114a and 115a is included, the conductivity of the hardly conductive portions 114b and 115b is made higher than the conductivity of the conductive portions 114a and 115a by this metal oxide. Can be reduced easily and reliably.

《変形例》
次に、前述の積層セラミックコンデンサの変形例(変形例m1及び変形例m2)について説明する。
<Modification>
Next, modified examples (modified examples m1 and m2) of the above-described multilayer ceramic capacitor will be described.

(m1)図1〜図6には第1被覆層112としてその高さが容量素子111の第3面f3の高さと略同じものを示し、且つ、第2被覆層113としてその高さが容量素子111の第4面f5の高さと略同じものを示したが、第1被覆層112の高さ方向一端縁の長さ方向両端部に第1外部電極120と第2外部電極130それぞれの幅方向一端縁に及ぶ略矩形状の張り出し部分を設け、且つ、第2被覆層113の高さ方向一端縁の長さ方向両端部に第1外部電極120と第2外部電極130それぞれの幅方向他端縁に及ぶ略矩形状の張り出し部分を設けるようにしてもよい。このようにすれば、第1外部電極120と第2外部電極130それぞれの幅が多少狭くなるものの、第1外部電極120と第2外部電極130の幅方向一端縁の少なくとも厚さ方向一部分を第1被覆層112の各張り出し部分で覆うことも可能であり、且つ、第1外部電極120と第2外部電極130の幅方向他端縁の少なくとも厚さ方向一部分を第2被覆層113の各張り出し部分で覆うことも可能である。   (M1) FIGS. 1 to 6 show the first covering layer 112 having a height substantially the same as the height of the third surface f3 of the capacitive element 111, and the second covering layer 113 has a height that is a capacity. Although the same height as that of the fourth surface f5 of the element 111 is shown, the widths of the first external electrode 120 and the second external electrode 130 at both ends in the length direction of one edge of the first coating layer 112 in the height direction are shown. A substantially rectangular projecting portion extending to one edge in the direction is provided, and each of the first external electrode 120 and the second external electrode 130 in the width direction is provided at both ends in the length direction of the second coating layer 113 in the height direction. You may make it provide the substantially rectangular overhang | projection part which extends to an edge. In this way, although the width of each of the first external electrode 120 and the second external electrode 130 is somewhat narrowed, at least a part in the thickness direction of one edge in the width direction of the first external electrode 120 and the second external electrode 130 is the first. It is also possible to cover each overhanging portion of the first covering layer 112, and at least a part in the thickness direction of the other edge in the width direction of the first external electrode 120 and the second external electrode 130 is covered with each overhanging portion of the second covering layer 113. It is also possible to cover with parts.

(m2)図1〜図6には第1外部電極120の長さ方向一端縁が第3被覆層116の外面下まで達し、第2外部電極130の長さ方向他端縁が第4被覆層117の外面下まで達しているものを示したが、図8(A)及び図8(B)に示したように、第1中継層114と第3被覆層116それぞれの高さを増加して増加分を容量素子111の第5面f5よりも図中下側に突出させ、且つ、第2中継層115と第4被覆層117それぞれの高さを増加して増加分を容量素子111の第5面f5よりも図中下側に突出させるようにしてもよい。このようにすれば、第1外部電極120の長さ方向一端縁の少なくとも厚さ方向一部分を第1中継層114と第3被覆層116それぞれの突出部分で覆うことができ、且つ、第2外部電極130の長さ方向他端縁の少なくとも厚さ方向一部分を第2中継層115と第4被覆層117それぞれの突出部分で覆うことも可能である。また、この変形例m2に前記変形例m1を組み合わせれば、第1外部電極120の幅方向両端縁及び長さ方向一端縁の少なくとも厚さ方向一部分を覆うことも可能となり、且つ、第2外部電極130の幅方向両端縁及び長さ方向他端縁の少なくとも厚さ方向一部分を覆うことも可能となる。   (M2) In FIGS. 1 to 6, one end in the length direction of the first external electrode 120 reaches the outer surface of the third coating layer 116, and the other end in the length direction of the second external electrode 130 is the fourth coating layer. Although it has shown what has reached the outer surface of 117, as shown to FIG. 8 (A) and FIG. 8 (B), the height of each of the 1st relay layer 114 and the 3rd coating layer 116 was increased. The increased amount protrudes downward in the drawing from the fifth surface f5 of the capacitive element 111, and the height of each of the second relay layer 115 and the fourth covering layer 117 is increased to increase the increased amount of the capacitive element 111. You may make it protrude in the figure lower side rather than the 5th surface f5. In this way, at least a portion in the thickness direction of one end edge in the length direction of the first external electrode 120 can be covered with the protruding portions of the first relay layer 114 and the third covering layer 116, and the second external electrode It is also possible to cover at least a part in the thickness direction at the other end in the length direction of the electrode 130 with the protruding portions of the second relay layer 115 and the fourth coating layer 117. Further, by combining the modified example m1 with the modified example m2, it is possible to cover at least a part in the thickness direction of both the widthwise both ends and the lengthwise one end edge of the first external electrode 120, and the second external electrode It is also possible to cover at least a part in the thickness direction of the both ends in the width direction and the other end in the length direction of the electrode 130.

110…コンデンサ本体、111…容量素子、111a…第1内部電極層、111b…第2内部電極層、112…第1被覆層、113…第2被覆層、114…第1中継層、114a…第1中継層の導電性部分、114b…第1中継層の難導電性部分、115…第2中継層、115a…第2中継層の導電性部分、115b…第2中継層の難導電性部分、116…第3被覆層、117…第4被覆層、120…第1外部電極、130…第2外部電極。   DESCRIPTION OF SYMBOLS 110 ... Capacitor main body, 111 ... Capacitance element, 111a ... 1st internal electrode layer, 111b ... 2nd internal electrode layer, 112 ... 1st coating layer, 113 ... 2nd coating layer, 114 ... 1st relay layer, 114a ... 1st 1 conductive layer of the relay layer, 114b ... the poorly conductive part of the first relay layer, 115 ... the second relay layer, 115a ... the conductive part of the second relay layer, 115b ... the poorly conductive part of the second relay layer, 116 ... third coating layer, 117 ... fourth coating layer, 120 ... first external electrode, 130 ... second external electrode.

Claims (3)

略直方体状のコンデンサ本体の高さ方向一面に略矩形状の第1外部電極と略矩形状の第2外部電極が設けられた積層セラミックコンデンサであって、
前記コンデンサ本体は、(1)誘電体層を介して交互に配された複数の第1内部電極層と複数の第2内部電極層とを内包する略直方体状の容量素子と、(2)前記容量素子の幅方向一面を覆う第1被覆層と、(3)前記容量素子の幅方向他面を覆う第2被覆層と、(4)前記容量素子の長さ方向一面を覆い、前記第1被覆層の長さ方向一端縁と前記第2被覆層の長さ方向一端縁とに接する第1中継層と、(5)前記容量素子の長さ方向他面を覆い、前記第1被覆層の長さ方向他端縁と前記第2被覆層の長さ方向他端縁とに接する第2中継層と、(6)前記第1中継層の外面を覆う第3被覆層と、(7)前記第2中継層の外面を覆う第4被覆層と、を備えており、
前記第1中継層は、前記複数の第1内部電極層の長さ方向一端縁それぞれと向き合う略矩形状の導電性部分と、前記導電性部分の高さ方向一端縁を除く周縁を囲む難導電性部分とを有し、前記第2中継層は、前記複数の第2内部電極層の長さ方向他端縁それぞれと向き合う略矩形状の導電性部分と、前記導電性部分の高さ方向一端縁を除く周縁を囲む難導電性部分とを有しており、
前記第1中継層の前記導電性部分には、前記複数の第1内部電極層の長さ方向一端縁それぞれが接続され、前記第2中継層の前記導電性部分には、前記複数の第2内部電極層の長さ方向他端縁それぞれが接続されており、
前記第1中継層と前記第3被覆層は、前記容量素子の高さ方向一面から突出する突出部分をそれぞれ有し、前記第2中継層と前記第4被覆層は、前記容量素子の高さ方向一面から突出する突出部分をそれぞれ有しており、
前記第1中継層の前記突出部分の前記導電性部分には、前記第1外部電極の長さ方向一端縁が接続され、前記第2中継層の前記突出部分の前記導電性部分には、前記第2外部電極の長さ方向他端縁が接続されている、
積層セラミックコンデンサ。
A monolithic ceramic capacitor in which a substantially rectangular first external electrode and a substantially rectangular second external electrode are provided on one surface in the height direction of a substantially rectangular parallelepiped capacitor body,
The capacitor body includes (1) a substantially rectangular parallelepiped capacitive element including a plurality of first internal electrode layers and a plurality of second internal electrode layers alternately arranged via dielectric layers, and (2) A first covering layer covering one surface in the width direction of the capacitive element; (3) a second covering layer covering the other surface in the width direction of the capacitive element; and (4) covering one surface in the length direction of the capacitive element. A first relay layer in contact with one end edge in the length direction of the covering layer and one end edge in the length direction of the second covering layer; (5) covering the other surface in the length direction of the capacitive element; A second relay layer in contact with the other end in the length direction and the other end in the length direction of the second coating layer; (6) a third coating layer covering an outer surface of the first relay layer; A fourth covering layer covering the outer surface of the second relay layer,
The first relay layer has a substantially rectangular conductive portion facing each of one end edge in the length direction of the plurality of first internal electrode layers, and hardly conductive surrounding a peripheral edge excluding one end edge in the height direction of the conductive portion. And the second relay layer has a substantially rectangular conductive portion facing each other end in the longitudinal direction of the plurality of second internal electrode layers, and one end in the height direction of the conductive portion. A non-conductive part surrounding the periphery except the edge,
One end edge in the length direction of the plurality of first internal electrode layers is connected to the conductive portion of the first relay layer, and the plurality of second internal layers are connected to the conductive portion of the second relay layer. Each other end in the length direction of the internal electrode layer is connected,
The first relay layer and the third cover layer each have a protruding portion that protrudes from one surface in the height direction of the capacitive element, and the second relay layer and the fourth cover layer have a height of the capacitive element. Each has a protruding part that protrudes from one side in the direction,
One end edge in the length direction of the first external electrode is connected to the conductive portion of the protruding portion of the first relay layer, and the conductive portion of the protruding portion of the second relay layer includes the The other end in the length direction of the second external electrode is connected,
Multilayer ceramic capacitor.
前記第1中継層と前記第2中継層それぞれの前記難導電性部分は、導電性を低下させるための成分を含んでいる、
請求項1に記載の積層セラミックコンデンサ。
Each of the hardly conductive portions of the first relay layer and the second relay layer includes a component for reducing conductivity.
The multilayer ceramic capacitor according to claim 1.
前記導電性を低下させるための成分は、前記第1中継層の前記導電性部分と前記第2中継層の前記導電性部分それぞれの主成分である金属の酸化物である、
請求項2に記載の積層セラミックコンデンサ。
The component for reducing the conductivity is a metal oxide that is a main component of each of the conductive portion of the first relay layer and the conductive portion of the second relay layer.
The multilayer ceramic capacitor according to claim 2.
JP2018047521A 2018-03-15 2018-03-15 Multilayer ceramic capacitor Active JP6474930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047521A JP6474930B2 (en) 2018-03-15 2018-03-15 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047521A JP6474930B2 (en) 2018-03-15 2018-03-15 Multilayer ceramic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016061495A Division JP6309991B2 (en) 2016-03-25 2016-03-25 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2018113469A JP2018113469A (en) 2018-07-19
JP6474930B2 true JP6474930B2 (en) 2019-02-27

Family

ID=62912527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047521A Active JP6474930B2 (en) 2018-03-15 2018-03-15 Multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP6474930B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194324U (en) * 1984-06-04 1985-12-24 日本電気株式会社 multilayer chip capacitor
JP2003100548A (en) * 2001-09-27 2003-04-04 Fdk Corp Laminated chip electronic component and its manufacturing method
JP5673595B2 (en) * 2012-04-19 2015-02-18 株式会社村田製作所 Multilayer ceramic electronic component and its mounting structure
KR101376839B1 (en) * 2012-10-12 2014-03-20 삼성전기주식회사 Multi-layered ceramic capacitor
KR101548793B1 (en) * 2013-01-14 2015-08-31 삼성전기주식회사 Multi-layered ceramic capacitor, mounting circuit thereof and manufacturing method of the same

Also Published As

Publication number Publication date
JP2018113469A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6309991B2 (en) Multilayer ceramic capacitor
JP6421137B2 (en) Multilayer ceramic capacitor
JP6834091B2 (en) Multilayer ceramic electronic components and their manufacturing methods
KR102076145B1 (en) Multi-layered ceramic electronic part, board for mounting the same and manufacturing method thereof
JP5206440B2 (en) Ceramic electronic components
JP5217692B2 (en) Multilayer ceramic electronic components
JP5529298B1 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2012253337A (en) Multilayer ceramic electronic component
JP2010092896A (en) Multilayer ceramic electronic component and method of manufacturing the same
JP2014165489A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP6891388B2 (en) Multilayer capacitor and its mounting board
JP7103573B2 (en) Capacitors and their manufacturing methods
JP6421138B2 (en) Multilayer ceramic capacitor
JP5694456B2 (en) Multilayer ceramic electronic component and its mounting board
JP5628351B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR20210081668A (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP2020035991A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2020035992A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2022091960A (en) Multilayer capacitor and mounting board of the same
JP2014078674A (en) Multilayered ceramic electronic component and method of manufacturing the same
JP2019021907A (en) Multilayer ceramic capacitor and manufacturing method of the same
KR102483617B1 (en) Multilayer electronic component
JP6474930B2 (en) Multilayer ceramic capacitor
KR102505445B1 (en) Multilayer ceramic capacitor and manufacturing method of the same
JP2022101469A (en) Multilayer electronic component

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190130

R150 Certificate of patent or registration of utility model

Ref document number: 6474930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250