JP6469245B2 - Air heat exchanger and outdoor unit - Google Patents

Air heat exchanger and outdoor unit Download PDF

Info

Publication number
JP6469245B2
JP6469245B2 JP2017546298A JP2017546298A JP6469245B2 JP 6469245 B2 JP6469245 B2 JP 6469245B2 JP 2017546298 A JP2017546298 A JP 2017546298A JP 2017546298 A JP2017546298 A JP 2017546298A JP 6469245 B2 JP6469245 B2 JP 6469245B2
Authority
JP
Japan
Prior art keywords
heat exchanger
fins
air
air heat
rough surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017546298A
Other languages
Japanese (ja)
Other versions
JPWO2017068632A1 (en
Inventor
和之 石田
和之 石田
靖 大越
靖 大越
拓也 伊藤
拓也 伊藤
昂仁 彦根
昂仁 彦根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017068632A1 publication Critical patent/JPWO2017068632A1/en
Application granted granted Critical
Publication of JP6469245B2 publication Critical patent/JP6469245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Description

本発明は、空気熱交換器及び室外機に関し、特に大型室外機に用いる空気熱交換器の構造に関するものである。   The present invention relates to an air heat exchanger and an outdoor unit, and more particularly to a structure of an air heat exchanger used for a large outdoor unit.

例えば、オフィスビルなどの建物に採用される冷温水供給システムにおいては、各部屋に熱負荷源として空気調和機が設けられ、冷温熱源機で生成した冷温水が供給されている。冷温熱源機は、ヒートポンプ式冷凍サイクルの空気熱交換器により外気と熱交換を行い、冷水または温水を生成するものである。冷温水供給システムの一例として、特許文献1には、冷温水を生成し、その冷温水により施設内の空気調和とプールの水温調節とを行う技術が開示されている。   For example, in a cold / hot water supply system employed in a building such as an office building, an air conditioner is provided as a heat load source in each room, and cold / hot water generated by the cold / hot heat source machine is supplied. The cold / hot heat source machine exchanges heat with the outside air by an air heat exchanger of a heat pump refrigeration cycle to generate cold water or hot water. As an example of the cold / hot water supply system, Patent Literature 1 discloses a technique for generating cold / hot water and performing air conditioning in the facility and adjusting the water temperature of the pool using the cold / hot water.

空気熱交換器に用いられるフィンには、一般に、切り起こしなどが設けられ、乱流を起こさせることで熱交換効率を向上させている。また、例えば、特許文献2に開示されているように、フィンに形成された凹凸により水切り性を向上させ、付着した結露水による送風抵抗の上昇を抑制することも提案されている。   Generally, the fins used in the air heat exchanger are provided with a cut and raised, and the heat exchange efficiency is improved by causing a turbulent flow. For example, as disclosed in Patent Document 2, it has been proposed to improve drainage by unevenness formed on the fins, and to suppress an increase in blowing resistance due to the condensed water that has adhered.

特開2002−13838号公報JP 2002-13838 A 特開昭54−153366号公報JP 54-153366 A

特許文献1の冷温水供給システムをオフィスビルなどの建物に採用する場合には、室外機が屋上などの狭いスペースに設置されるため、室外機に収容される空気熱交換器を屈曲させて小型化する必要がある。しかし、空気熱交換器を屈曲させると、屈曲の内側に配置されたフィン同士が近接するため、屈曲する角度に限度がある。フィン同士が近接すると、フィンに設けられた切り起こしが倒れたり接触したりしてしまい送風抵抗の上昇を招いてしまうからである。送風抵抗の上昇はファンの消費電力を上昇させるため、圧縮機の容量を抑制しながらエネルギー効率を向上させる対策がなされているオフィスビルなどに採用される冷温水供給システムでは、エネルギー効率を相対的に低下させてしまう。   When the cold / hot water supply system of Patent Document 1 is adopted in a building such as an office building, since the outdoor unit is installed in a narrow space such as a rooftop, the air heat exchanger accommodated in the outdoor unit is bent to be small. It is necessary to make it. However, when the air heat exchanger is bent, the fins disposed inside the bends are close to each other, so that there is a limit to the angle at which the air heat exchanger can be bent. This is because when the fins are close to each other, the cut and raised portions provided on the fins fall down or come into contact with each other, leading to an increase in blowing resistance. Since the increase in airflow resistance increases the power consumption of the fan, the energy efficiency of the chilled / hot water supply system used in office buildings where measures are taken to improve energy efficiency while suppressing the capacity of the compressor is relatively low. Will be reduced.

特許文献2のような凹凸が形成されたフィンを採用した場合には、曲げたことでフィンに応力集中が生じ、フィンの強度が低下することが考えられる。その結果、フィンが意図せぬ方向に曲がり、フィンの間が塞がれて送風抵抗が上昇することになる。   In the case where a fin with unevenness as in Patent Document 2 is adopted, it is conceivable that stress concentration occurs in the fin due to bending, and the strength of the fin decreases. As a result, the fin bends in an unintended direction, the gap between the fins is blocked, and the blowing resistance increases.

本発明は、上述のような課題を解決するためになされたものであり、小型化してもフィンの強度が維持され、且つ、送風抵抗が低減された空気熱交換器及び室外機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides an air heat exchanger and an outdoor unit in which the strength of the fin is maintained even when the size is reduced and the blowing resistance is reduced. With the goal.

本発明に係る空気熱交換器は、複数の粗面フィン、及び、前記複数の粗面フィンに挿通され、冷媒が流通する伝熱管から成る複数の第1熱交換器と、複数の平滑フィンと複数の粗面フィンと、及び、前記複数の平滑フィンと前記複数の粗面フィンとに挿通され、前記冷媒が流通する伝熱管から成り、前記複数の第1熱交換器に隣接する第2熱交換器と、を備え、前記第1熱交換器は、前記第2熱交換器側に屈曲され、前記第2熱交換器は、前記第1熱交換器と同じ側に屈曲され、前記第1熱交換器には、前記粗面フィンのみが設けられており、前記第2熱交換器の屈曲している領域には、前記平滑フィンが設けられており、前記第2熱交換器の屈曲していない領域には、前記粗面フィンが設けられているAn air heat exchanger according to the present invention includes a plurality of first fins, a plurality of first heat exchangers each including a plurality of rough fins, a heat transfer tube that is inserted through the plurality of rough fins and through which a refrigerant flows, and a plurality of smooth fins . A plurality of rough surface fins , and a second heat that is inserted through the plurality of smooth fins and the plurality of rough surface fins and includes a heat transfer tube through which the refrigerant flows, and is adjacent to the plurality of first heat exchangers. The first heat exchanger is bent toward the second heat exchanger, the second heat exchanger is bent toward the same side as the first heat exchanger, and the first heat exchanger is bent toward the second heat exchanger. In the heat exchanger , only the rough surface fins are provided, and in the bent region of the second heat exchanger, the smooth fins are provided, and the second heat exchanger is bent. The rough surface fins are provided in the regions that are not .

本発明に係る空気熱交換器によれば、第1熱交換器及び第2熱交換器は、平滑フィンが設けられた第2熱交換器側に屈曲されるため、屈曲部において応力集中することがなく、急な屈曲により近接した平滑フィンが接触することもない。このため、空気熱交換器を小型化しても、フィンの強度の低下を防止し、ファンの消費電力を低減できる。また、第1熱交換器には、凹凸が形成された粗面フィンが設けられるため、熱交換の効率を良好に維持できる。   According to the air heat exchanger according to the present invention, the first heat exchanger and the second heat exchanger are bent toward the second heat exchanger provided with the smooth fins, and therefore stress is concentrated at the bent portion. There is no contact between the adjacent smooth fins due to sudden bending. For this reason, even if the air heat exchanger is downsized, the strength of the fins can be prevented from being lowered and the power consumption of the fan can be reduced. Moreover, since the 1st heat exchanger is provided with the rough surface fin in which the unevenness | corrugation was formed, the efficiency of heat exchange can be maintained favorable.

本実施の形態に係る室外機が収容する冷凍サイクル装置を示す図である。It is a figure which shows the refrigerating-cycle apparatus which the outdoor unit which concerns on this Embodiment accommodates. 図1の室外機の空気熱交換器の概略上面図である。It is a schematic top view of the air heat exchanger of the outdoor unit of FIG. 図2の空気熱交換器、及び、図2の空気熱交換器を矢印で示す方向から見た拡大側面図である。It is the expanded side view which looked at the air heat exchanger of FIG. 2 and the air heat exchanger of FIG. 2 from the direction shown by the arrow. 図2の空気熱交換器、及び、図2の空気熱交換器を矢印で示す方向から見た拡大側面図である。It is the expanded side view which looked at the air heat exchanger of FIG. 2 and the air heat exchanger of FIG. 2 from the direction shown by the arrow. 変形例に係る熱交換器の直線部を矢印の方向から見た拡大側面図である。It is the expanded side view which looked at the linear part of the heat exchanger which concerns on a modification from the direction of the arrow. 変形例に係る熱交換器の屈曲部を矢印の方向から見た拡大側面図である。It is the expanded side view which looked at the bending part of the heat exchanger which concerns on a modification from the direction of the arrow. 本実施の形態に係る空気熱交換器の性能評価の結果を示す散布図である。It is a scatter diagram which shows the result of the performance evaluation of the air heat exchanger which concerns on this Embodiment.

実施の形態.
図1は、本実施の形態に係る室外機100が収容する冷凍サイクル装置を示す図である。図1に示すように、室外機100は、圧縮機1、空気熱交換器2、膨張弁4、及び、蒸発器5が冷媒配管7により接続されて構成された冷凍サイクル装置が、例えば、角柱形状の筐体8に収容されたものである。空気熱交換器2は、ファン3とともに筐体8の上部に配置されている。室外機100は、トップフロー形式の形態のものであり、例えば、建物の屋上などに設置される。
Embodiment.
FIG. 1 is a diagram showing a refrigeration cycle apparatus housed in an outdoor unit 100 according to the present embodiment. As shown in FIG. 1, an outdoor unit 100 includes a refrigeration cycle apparatus in which a compressor 1, an air heat exchanger 2, an expansion valve 4, and an evaporator 5 are connected by a refrigerant pipe 7. It is housed in a casing 8 having a shape. The air heat exchanger 2 is disposed at the top of the housing 8 together with the fan 3. The outdoor unit 100 is in the form of a top flow type, and is installed, for example, on the roof of a building.

空気熱交換器2は、筐体8の内側に、筐体8の内側面に沿って配置されており、内部を流通する冷媒と通過する空気との熱交換を行う。ファン3は、空気を筐体8の側面から吸い込み、空気熱交換器2を通過させながら上方から排気するように送風する。蒸発器5は、冷温熱源機を構成するものであり、空気熱交換器2において熱交換した冷媒が流入し、蒸発器5に近接して配置された入口水配管6a及び出口水配管6bを流通する水と熱交換を行う。入口水配管6a及び出口水配管6bを流通する水は熱交換により冷温水となって施設内を循環する。   The air heat exchanger 2 is disposed inside the housing 8 along the inner surface of the housing 8, and performs heat exchange between the refrigerant flowing through the inside and the air passing therethrough. The fan 3 sucks air from the side surface of the housing 8 and blows air from above while passing through the air heat exchanger 2. The evaporator 5 constitutes a cold / hot heat source machine, and the refrigerant heat exchanged in the air heat exchanger 2 flows in and flows through the inlet water pipe 6a and the outlet water pipe 6b arranged close to the evaporator 5. Exchange heat with water. The water flowing through the inlet water pipe 6a and the outlet water pipe 6b becomes cold / hot water by heat exchange and circulates in the facility.

図2は、図1の室外機100の空気熱交換器2の概略上面図である。図2に示すように、空気熱交換器2は、4列空気熱交と呼ばれる形態のものであり、室外機100の筐体8の内側面に沿った形状に形成されている。具体的には、3列の互いに隣接する第1熱交換器20と、第1熱交換器20に隣接する第2熱交換器25とから構成され、第2熱交換器25の方向に屈曲し、筐体8の内側面に沿う直線部2aと、筐体8の角に沿う屈曲部2bとを備えている。なお、空気熱交換器2の屈曲部2bの数は、空気熱交換器2の形状に応じて適宜選定すればよい。例えば、空気熱交換器2が筐体8の2つの側面に沿う形状とする場合は、屈曲部2bを1つ形成すればよく、空気熱交換器2が筐体8の3側面に沿う形状である場合は、屈曲部2bを2つ形成すればよい。また、図2において、屈曲部2bの角度を直角に示しているが、屈曲部2bの角度は限定されず、筐体8の形状などに合わせて適宜選定すればよい。   FIG. 2 is a schematic top view of the air heat exchanger 2 of the outdoor unit 100 of FIG. As shown in FIG. 2, the air heat exchanger 2 has a form called four-row air heat exchange, and is formed in a shape along the inner surface of the casing 8 of the outdoor unit 100. Specifically, it is composed of three rows of first heat exchangers 20 adjacent to each other and a second heat exchanger 25 adjacent to the first heat exchanger 20, and is bent in the direction of the second heat exchanger 25. The straight portion 2 a along the inner surface of the housing 8 and the bent portion 2 b along the corner of the housing 8 are provided. Note that the number of the bent portions 2 b of the air heat exchanger 2 may be appropriately selected according to the shape of the air heat exchanger 2. For example, when the air heat exchanger 2 has a shape along two side surfaces of the housing 8, it is only necessary to form one bent portion 2 b, and the air heat exchanger 2 has a shape along three side surfaces of the housing 8. In some cases, two bent portions 2b may be formed. In FIG. 2, the angle of the bent portion 2 b is shown as a right angle, but the angle of the bent portion 2 b is not limited and may be appropriately selected according to the shape of the housing 8.

伝熱管は、1本の管が複数回折り返されて側面視において複数の段状に形成され、筐体8の側面から流入する空気が接触しやすい形状になっている。なお、図2においては、第1熱交換器20として、伝熱管と、粗面フィンとを一体的に図示し、第2熱交換器25として、伝熱管と、平滑フィンとを一体的に図示し、個別の図示を省略している。   The heat transfer tube is formed in a plurality of steps in a side view by bending a plurality of tubes, and the shape of the heat transfer tube is such that air flowing in from the side surface of the housing 8 is easy to contact. In FIG. 2, as the first heat exchanger 20, a heat transfer tube and a rough fin are integrally illustrated, and as the second heat exchanger 25, a heat transfer tube and a smooth fin are integrally illustrated. The illustration is omitted.

図3(a)は、図2の空気熱交換器2の概略図であり、図3(b)は、図2の空気熱交換器2を矢印で示す方向から見た拡大側面図である。図3(a)において、便宜上、図2の空気熱交換器2を左右反転させた状態で図示している。図3(b)に示すように、空気熱交換器2の屈曲部2bの外側には、第1熱交換器20が、例えば、3列などの層状に配置されている。第1熱交換器20は、伝熱管21と、伝熱管21が貫通する複数の粗面フィン22と、から構成される。粗面フィン22は、凹凸が形成されたフィンである。粗面フィン22の切り起こし22aにより粗面フィン22同士の間を流通する空気を乱流にし、熱交換を促す。粗面フィン22は、例えば、切り起こし22aが複数形成されたクロスフィンなどである。   3A is a schematic view of the air heat exchanger 2 of FIG. 2, and FIG. 3B is an enlarged side view of the air heat exchanger 2 of FIG. 2 as viewed from the direction indicated by the arrow. In FIG. 3A, for convenience, the air heat exchanger 2 of FIG. As shown in FIG.3 (b), the 1st heat exchanger 20 is arrange | positioned on the outer side of the bending part 2b of the air heat exchanger 2, for example in layers, such as 3 rows. The first heat exchanger 20 includes a heat transfer tube 21 and a plurality of rough surface fins 22 through which the heat transfer tube 21 passes. The rough surface fins 22 are fins on which irregularities are formed. The air flowing between the rough fins 22 is turbulent by the cut and raised portions 22a of the rough fins 22 to promote heat exchange. The rough surface fin 22 is, for example, a cross fin in which a plurality of cut and raised portions 22a are formed.

図4(a)は、図2の空気熱交換器2の概略図であり、図4(b)は、図2の空気熱交換器2を矢印で示す方向から見た第2熱交換器25の拡大側面図である。図4に示すように、空気熱交換器2の屈曲部2bの内側には、複数の第1熱交換器20に隣接する第2熱交換器25が配置されている。第2熱交換器25は、伝熱管21と、伝熱管21が挿通された複数の平滑フィン27とから構成されている。平滑フィン27は、平板状のフィンであり、間を流通する空気の抵抗が粗面フィン22の間を流通する場合よりも小さい。平滑フィン27は、例えば、表面に切り起こしなどの凹凸がないリングフィンなどである。   4A is a schematic diagram of the air heat exchanger 2 in FIG. 2, and FIG. 4B is a second heat exchanger 25 when the air heat exchanger 2 in FIG. 2 is viewed from the direction indicated by the arrow. FIG. As shown in FIG. 4, a second heat exchanger 25 adjacent to the plurality of first heat exchangers 20 is disposed inside the bent portion 2 b of the air heat exchanger 2. The second heat exchanger 25 includes a heat transfer tube 21 and a plurality of smooth fins 27 through which the heat transfer tube 21 is inserted. The smooth fins 27 are flat fins, and the resistance of air flowing between them is smaller than when flowing between the rough fins 22. The smooth fins 27 are, for example, ring fins having no irregularities such as cut and raised on the surface.

従来のように、空気熱交換器2に粗面フィン22が配列された第1熱交換器20のみを配置した場合には、屈曲部2bの内側にも粗面フィン22が設けられた第1熱交換器20が配置されるため、粗面フィン22同士が近接することになる。これでは、空気の流通が妨げられ、切り起こし22aにより送風効率が低下し、結果的に熱交換効率を低下させる原因となる。粗面フィン22の形状を維持すべく屈曲部2bを緩やかにすると、室外機全体が大型化し、占有面積が増大し好ましくない。   When only the first heat exchanger 20 in which the rough surface fins 22 are arranged is arranged in the air heat exchanger 2 as in the conventional case, the first rough surface fins 22 are also provided inside the bent portion 2b. Since the heat exchanger 20 is arranged, the rough surface fins 22 come close to each other. This hinders the air flow, reduces the air blowing efficiency by the cut and raise 22a, and consequently causes the heat exchange efficiency to decrease. If the bent portion 2b is loosened so as to maintain the shape of the rough fins 22, the entire outdoor unit becomes large, and the occupied area increases, which is not preferable.

これに対し、本実施の形態の構成では、屈曲部2bの内側には、平滑フィン27が設けられた第2熱交換器25が配置される。平滑フィン27には、切り欠きや凹凸が形成されていないため、屈曲部2bにおいて平滑フィン27が近接しても空気の流通を過度に妨げることがない。また、屈曲部2bの角度が急であっても、平滑フィン27同士が接触しにくい上に、平滑フィン27の局所的な応力集中が抑制されるため平滑フィン27の強度が高く保たれる。そのため、空気熱交換器2が折り曲げて、筐体8に収容する場合であっても、熱交換性能を保ったまま、良好な送風効率を得ることができる。そして、このような空気熱交換器2が収容された室外機100は、室外機100の占有面積が小さく抑制される。   In contrast, in the configuration of the present embodiment, the second heat exchanger 25 provided with the smooth fins 27 is disposed inside the bent portion 2b. Since the smooth fin 27 is not formed with notches or irregularities, even if the smooth fin 27 comes close to the bent portion 2b, the air flow is not hindered excessively. Further, even if the angle of the bent portion 2b is steep, the smooth fins 27 are not easily in contact with each other, and the local stress concentration of the smooth fins 27 is suppressed, so that the strength of the smooth fins 27 is kept high. Therefore, even when the air heat exchanger 2 is bent and accommodated in the housing 8, good blowing efficiency can be obtained while maintaining the heat exchange performance. And the outdoor unit 100 in which such an air heat exchanger 2 was accommodated can suppress the occupation area of the outdoor unit 100 small.

[変形例]
図5(a)は、変形例に係る空気熱交換器30の概略図であり、図5(b)は、図5(a)の空気熱交換器30の直線部30aを矢印で示す方向から見た拡大側面図である。また、図6(a)は、変形例に係る空気熱交換器30の概略図であり、図6(b)は、図6(a)の空気熱交換器30の屈曲部30bを矢印で示す方向から見た拡大側面図である。図5、及び、図6に示すように、この変形例において、空気熱交換器30は、3列配置された第1熱交換器31と、その内側に配置された第2熱交換器35とにより構成されている。そのうち、第1熱交換器31の直線部30aには、粗面フィン22が設けられている。また、第2熱交換器35においては、屈曲部30bに平滑フィン27が設けられ、直線部30aに粗面フィン22が設けられている。
[Modification]
Fig.5 (a) is the schematic of the air heat exchanger 30 which concerns on a modification, FIG.5 (b) is from the direction which shows the linear part 30a of the air heat exchanger 30 of Fig.5 (a) by the arrow. FIG. Moreover, Fig.6 (a) is the schematic of the air heat exchanger 30 which concerns on a modification, FIG.6 (b) shows the bending part 30b of the air heat exchanger 30 of Fig.6 (a) with the arrow. It is the enlarged side view seen from the direction. As shown in FIG.5 and FIG.6, in this modification, the air heat exchanger 30 includes a first heat exchanger 31 arranged in three rows, and a second heat exchanger 35 arranged inside thereof. It is comprised by. Among these, rough surface fins 22 are provided on the straight portion 30 a of the first heat exchanger 31. Moreover, in the 2nd heat exchanger 35, the smooth fin 27 is provided in the bending part 30b, and the rough surface fin 22 is provided in the linear part 30a.

第2熱交換器35は、屈曲部30bに平滑フィン27が設けられており、平滑フィン27の隣接による送風抵抗の上昇が抑制される。また、第2熱交換器35のうち、直線部30aには、粗面フィン22が設けられており、空気に乱流を起こして熱交換が促される。このように、送風抵抗の上昇が懸念される領域にのみ平滑フィン27を用い、その他の領域に粗面フィン22を用いることで、平滑フィン27により送風抵抗を低減しながら、粗面フィン22により熱交換効率を高く維持することが可能になる。   The second heat exchanger 35 is provided with the smooth fins 27 at the bent portions 30b, and an increase in blowing resistance due to the adjacent smooth fins 27 is suppressed. Moreover, the rough surface fin 22 is provided in the linear part 30a among the 2nd heat exchangers 35, a turbulent flow is caused in air, and heat exchange is promoted. In this way, by using the smooth fins 27 only in regions where the increase in blowing resistance is a concern and using the rough fins 22 in other regions, the smooth fins 27 reduce the blowing resistance, while the rough fins 22 reduce the blowing resistance. It becomes possible to maintain high heat exchange efficiency.

なお、上記の構成以外にも、例えば、第2熱交換器25の段方向に異なる種類のフィンを配置した構成としてもよい。また、粗面フィン22に形成する凹凸も、切り起こし22aに限定されず、例えば、小突起を貼り付けた形態などであってもよい。   In addition to the above configuration, for example, different types of fins may be arranged in the step direction of the second heat exchanger 25. The unevenness formed on the rough fin 22 is not limited to the cut and raised 22a, and may be, for example, a form in which a small protrusion is attached.

[性能評価]
性能評価においては、IPLVと略称されるIntegrated Part Load Valueにおいて規定された指標に基づき評価を行った。IPLVは、指標として異なる4点の負荷における冷凍機の成績係数を定義し、それぞれの負荷での稼働割合に基づいて機器のエネルギー効率を評価するものである。評価対象として、従来例の空気熱交換器には、第1熱交換器20が4列配列され、屈曲されたものを採用した。また、本実施の形態に係る空気熱交換器2には、第1熱交換器20が3列と、第2熱交換器25が1列とが配列され、第2熱交換器25側に屈曲されたものを採用した。
[Performance evaluation]
In the performance evaluation, evaluation was performed based on an index defined in the Integrated Part Load Value abbreviated as IPLV. IPLV defines the coefficient of performance of the refrigerator at four different loads as an index, and evaluates the energy efficiency of the equipment based on the operating ratio at each load. As an evaluation object, the air heat exchanger of the conventional example employs the first heat exchanger 20 arranged in four rows and bent. Further, in the air heat exchanger 2 according to the present embodiment, three rows of the first heat exchanger 20 and one row of the second heat exchanger 25 are arranged and bent toward the second heat exchanger 25 side. Adopted.

図7は、本実施の形態に係る空気熱交換器2の性能評価の結果を示す散布図である。横軸は、圧縮機容量を示し、縦軸は、ユニット効率を示す。ここで、ユニット効率とは、空気熱交換器のエネルギー効率を示す。また、図7において、菱形は、従来例の空気熱交換器により得られた結果を示し、四角は、本実施の形態に係る空気熱交換器2により得られた結果を示している。   FIG. 7 is a scatter diagram showing the results of performance evaluation of the air heat exchanger 2 according to the present embodiment. The horizontal axis indicates the compressor capacity, and the vertical axis indicates the unit efficiency. Here, the unit efficiency indicates the energy efficiency of the air heat exchanger. Moreover, in FIG. 7, the rhombus shows the result obtained by the conventional air heat exchanger, and the square shows the result obtained by the air heat exchanger 2 according to the present embodiment.

図7に示すように、本実施の形態、従来例ともに、部分負荷率を低下させると、ユニット効率が上昇した。これは、低い部分負荷率で稼働する割合が高いほど、エネルギー効率が向上し、高い部分負荷率で稼働する割合が高いほど、エネルギー効率が低下することを意味している。そして、部分負荷率の低い50%及び25%においては、本実施の形態に係る空気熱交換器2のユニット効率が、従来例の空気熱交換器よりも高い値を示していた。これは、第2熱交換器に平滑フィンを採用することで送風抵抗が低下したため、ファンの消費電力が低下し、エネルギー効率が上昇したためと考えられる。以上より、本実施の形態に係る空気熱交換器2は、屈曲の内側の第2熱交換器に平滑フィンを設けることで良好なエネルギー効率を得られることが示された。特に、低負荷による稼働が予想される場合では、本実施の形態の構造が有用であった。   As shown in FIG. 7, when the partial load factor is reduced in both the present embodiment and the conventional example, the unit efficiency is increased. This means that the higher the rate of operation at a low partial load factor, the higher the energy efficiency, and the higher the rate of operation at a high partial load rate, the lower the energy efficiency. And in 50% and 25% with a low partial load factor, the unit efficiency of the air heat exchanger 2 which concerns on this Embodiment showed the value higher than the air heat exchanger of a prior art example. This is thought to be due to the fact that the use of smooth fins in the second heat exchanger reduced the blowing resistance, so that the power consumption of the fan decreased and the energy efficiency increased. As mentioned above, it was shown that the air heat exchanger 2 which concerns on this Embodiment can acquire favorable energy efficiency by providing a smooth fin in the 2nd heat exchanger inside a bending | flexion. In particular, the structure of the present embodiment is useful when operation with a low load is expected.

以上説明した本発明の空気熱交換器2によれば、屈曲部2bの内側に平板状の平滑フィン27を備えた第2熱交換器25が配置される。これにより、屈曲部2bにおいて、平滑フィン27に局所的な応力集中が生じず、平滑フィン27が近接しても接触することがない。このため、占有面積を小型化しながら、局所的な応力集中による強度の低下を防止し、且つ、ファン3の消費電力を低減し熱交換効率を向上させることができる。   According to the air heat exchanger 2 of the present invention described above, the second heat exchanger 25 including the flat smooth fins 27 is disposed inside the bent portion 2b. Thereby, in the bending part 2b, local stress concentration does not arise in the smooth fin 27, and even if the smooth fin 27 adjoins, it does not contact. For this reason, it is possible to prevent a decrease in strength due to local stress concentration and reduce the power consumption of the fan 3 and improve the heat exchange efficiency while reducing the occupied area.

また、第2熱交換器25の屈曲部2b以外の領域には、粗面フィン22を設けることで、空気の流れに乱流が起き、熱交換効率を向上させることができる。   Further, by providing the rough surface fins 22 in the region other than the bent portion 2b of the second heat exchanger 25, turbulent flow occurs in the air flow, and heat exchange efficiency can be improved.

特に、粗面フィン22として切り起こし22aが形成されたものを用いた場合であっても、良好な熱交換効率と送風効率とが維持される。   In particular, even when a rough surface fin 22 with a cut and raised portion 22a is used, good heat exchange efficiency and air blowing efficiency are maintained.

1 圧縮機、2、30 空気熱交換器、2a、30a 直線部、2b、30b 屈曲部、3 ファン、4 膨張弁、5 蒸発器、6a 入口水配管、6b 出口水配管、7 冷媒配管、8 筐体、20、31 第1熱交換器、21 伝熱管、22 粗面フィン、22a 切り起こし、25、35 第2熱交換器、27 平滑フィン、100 室外機。   DESCRIPTION OF SYMBOLS 1 Compressor, 2, 30 Air heat exchanger, 2a, 30a Straight part, 2b, 30b Bending part, 3 Fan, 4 Expansion valve, 5 Evaporator, 6a Inlet water piping, 6b Outlet water piping, 7 Refrigerant piping, 8 Case, 20, 31 1st heat exchanger, 21 Heat transfer tube, 22 Rough surface fin, 22a Cut and raise, 25, 35 2nd heat exchanger, 27 Smooth fin, 100 Outdoor unit.

Claims (3)

複数の粗面フィン、及び、前記複数の粗面フィンに挿通され、冷媒が流通する伝熱管から成る複数の第1熱交換器と、
複数の平滑フィンと複数の粗面フィンと、及び、前記複数の平滑フィンと前記複数の粗面フィンとに挿通され、前記冷媒が流通する伝熱管から成り、前記複数の第1熱交換器に隣接する第2熱交換器と、
を備え、
前記第1熱交換器は、前記第2熱交換器側に屈曲され、
前記第2熱交換器は、前記第1熱交換器と同じ側に屈曲され、
前記第1熱交換器には、前記粗面フィンのみが設けられており、
前記第2熱交換器の屈曲している領域には、前記平滑フィンが設けられており、
前記第2熱交換器の屈曲していない領域には、前記粗面フィンが設けられている、
空気熱交換器。
A plurality of first heat exchangers composed of a plurality of rough surface fins and heat transfer tubes that are inserted through the plurality of rough surface fins and through which the refrigerant flows;
A plurality of smooth fins , a plurality of rough surface fins , and a plurality of the smooth fins and the plurality of rough surface fins are inserted into the heat transfer tubes through which the refrigerant flows, and the plurality of first heat exchangers An adjacent second heat exchanger;
With
The first heat exchanger is bent toward the second heat exchanger;
The second heat exchanger is bent on the same side as the first heat exchanger,
Wherein the first heat exchanger, only the rough surface fins are provided,
In the bent region of the second heat exchanger, the smooth fin is provided,
The rough surface fin is provided in an unbent region of the second heat exchanger.
Air heat exchanger.
前記粗面フィンは、
切り起こし、又は、凹凸が形成された、
請求項1に記載の空気熱交換器。
The rough fin is
Cut or raised, or irregularities were formed,
The air heat exchanger according to claim 1 .
請求項1又は2に記載の空気熱交換器、冷媒ガスを圧縮する圧縮機、前記空気熱交換器に風を送るファン、冷媒量を制御する膨張弁、及び、水と前記冷媒との熱交換を行う水熱交換器、を収容する筐体を備え、
前記空気熱交換器は、前記筐体の内面の隣接する2面に沿って設けられた、
室外機。
Air heat exchanger according to claim 1 or 2, a compressor for compressing a refrigerant gas, a fan blows air to the air heat exchanger, an expansion valve for controlling the refrigerant amount, and the heat exchange between the water and the refrigerant A water heat exchanger, which has a housing for housing,
The air heat exchanger is provided along two adjacent surfaces of the inner surface of the housing.
Outdoor unit.
JP2017546298A 2015-10-19 2015-10-19 Air heat exchanger and outdoor unit Active JP6469245B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079470 WO2017068632A1 (en) 2015-10-19 2015-10-19 Air heat exchanger and outdoor unit

Publications (2)

Publication Number Publication Date
JPWO2017068632A1 JPWO2017068632A1 (en) 2018-04-26
JP6469245B2 true JP6469245B2 (en) 2019-02-13

Family

ID=58557979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017546298A Active JP6469245B2 (en) 2015-10-19 2015-10-19 Air heat exchanger and outdoor unit

Country Status (3)

Country Link
JP (1) JP6469245B2 (en)
GB (1) GB2557822B (en)
WO (1) WO2017068632A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167078A (en) * 1986-12-29 1988-07-11 Fuji Electric Co Ltd Detecting device for rupture spot of defective pin of water turbine guide vane
JPS63167078U (en) * 1987-04-20 1988-10-31
JP2008128553A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Outdoor unit of air conditioner
JP2008261611A (en) * 2007-04-16 2008-10-30 Mitsubishi Electric Corp Outdoor unit for air conditioner, and bending device and method for fin and tube type heat exchanger
JPWO2013084397A1 (en) * 2011-12-09 2015-04-27 パナソニックIpマネジメント株式会社 Air conditioner
WO2014024221A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Heat exchanger and air conditioner provided with said heat exchanger
JP6155465B2 (en) * 2012-12-07 2017-07-05 パナソニックIpマネジメント株式会社 Heat pump equipment

Also Published As

Publication number Publication date
JPWO2017068632A1 (en) 2018-04-26
GB2557822B (en) 2021-02-17
GB201805619D0 (en) 2018-05-23
WO2017068632A1 (en) 2017-04-27
GB2557822A (en) 2018-06-27

Similar Documents

Publication Publication Date Title
US10077956B2 (en) Heat exchanger with enhanced airflow
JP4889011B2 (en) Air conditioning system
JP6223596B2 (en) Air conditioner indoor unit
WO2015005352A1 (en) Heat exchanger, and heat pump device
JP4659779B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP5554741B2 (en) Finned tube heat exchanger and air conditioner equipped with the same
WO2013084397A1 (en) Air conditioner
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP5951475B2 (en) Air conditioner and outdoor heat exchanger used therefor
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP2010261642A (en) Condenser and air conditioning device having the same
JP2019015432A (en) Heat exchanger and heat exchange unit
JP6469245B2 (en) Air heat exchanger and outdoor unit
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
JP3177302U (en) Air conditioning unit
JP2011163670A (en) Heat source machine
JP4902625B2 (en) Heat pump water heater and refrigeration equipment
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP5641945B2 (en) Heat exchanger and air conditioner using this heat exchanger
JP2010196945A (en) Outdoor unit
JP2016017695A (en) Fin tube heat exchanger
JP6381657B2 (en) Refrigeration cycle equipment
JP3177300U (en) Air conditioning unit
JP6230852B2 (en) Air conditioner and heat exchanger for air conditioner
JP3177299U (en) Air conditioning unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190115

R150 Certificate of patent or registration of utility model

Ref document number: 6469245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250