JP3177300U - Air conditioning unit - Google Patents

Air conditioning unit Download PDF

Info

Publication number
JP3177300U
JP3177300U JP2012002909U JP2012002909U JP3177300U JP 3177300 U JP3177300 U JP 3177300U JP 2012002909 U JP2012002909 U JP 2012002909U JP 2012002909 U JP2012002909 U JP 2012002909U JP 3177300 U JP3177300 U JP 3177300U
Authority
JP
Japan
Prior art keywords
heat exchanger
leeward
air
side heat
windward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012002909U
Other languages
Japanese (ja)
Inventor
正 岡本
泰司 道本
Original Assignee
株式会社B.T.P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社B.T.P filed Critical 株式会社B.T.P
Priority to JP2012002909U priority Critical patent/JP3177300U/en
Application granted granted Critical
Publication of JP3177300U publication Critical patent/JP3177300U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

【課題】風上側熱交換器から風下側熱交換器に流れる空気の通風面積あたりの温度差を略均一化し、風下側熱交換器の難着霜効果を最大化させることにより熱交換性能に優れた冷暖房空調装置を提供する。
【解決手段】圧縮機5と、室内機用熱交換器6と、外気通風路7に対して風上側と風下側に直列接続により面対向して並設される風上側熱交換器11及び風下側熱交換器12とを含む冷暖房空調装置において、少なくとも風上側熱交換器11を、上下に対峙する一対のアルミニウム製のヘッダーパイプと、一対のヘッダーパイプに連通する互いに平行なアルミニウム製の扁平熱交換管と、隣接する扁平熱交換管の間に介在されるアルミニウム製のフィンと、で構成されたパラレルフロー型熱交換器とし、風上側熱交換器11と風下側熱交換器12の距離を5〜50mmとする。
【選択図】図1
[PROBLEMS] To achieve excellent heat exchange performance by substantially uniforming the temperature difference per ventilation area of the air flowing from the leeward heat exchanger to the leeward heat exchanger and maximizing the frost formation effect of the leeward heat exchanger. Provide air conditioning and heating equipment.
SOLUTION: A compressor 5, an indoor unit heat exchanger 6, an upside heat exchanger 11 and an leeward side-by-side connection in series on the upwind side and downwind side of the outside air ventilation path 7 in series. In a heating / cooling air conditioner including a side heat exchanger 12, at least the windward side heat exchanger 11 is made up of a pair of aluminum header pipes facing each other up and down, and aluminum flat heat parallel to each other communicating with the pair of header pipes. A parallel flow type heat exchanger composed of an exchange pipe and an aluminum fin interposed between adjacent flat heat exchange pipes, and the distance between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is 5 to 50 mm.
[Selection] Figure 1

Description

本考案は、冷暖房空調装置(システム)の新規な構造に関する。   The present invention relates to a novel structure of a cooling / heating air conditioner (system).

一般に、冷暖房空調装置の室外機用熱交換器においては、暖房運転時に、外気の温度が低下すると、室外機用熱交換器に霜が付着して、通風量の低下及び熱交換量の低下をきたすため、除霜する必要があった。   Generally, in a heat exchanger for an outdoor unit of a cooling and heating air conditioner, when the temperature of the outside air decreases during the heating operation, frost adheres to the heat exchanger for the outdoor unit, and the air flow rate and the heat exchange amount are reduced. It was necessary to defrost to make it come.

そのため、例えば特許文献1(特開平10−253188号公報)においては、室外機用熱交換器を、風上側熱交換器と風下側熱交換器に分割し、暖房時に、室内側熱交換器から吐出された冷媒を風上側熱交換器、風下側熱交換器の順に流して、暖房運転中の除霜を行う構造のものが知られている(特許文献1、特許請求の範囲、図1等参照)。   For this reason, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 10-253188), the outdoor unit heat exchanger is divided into an upwind heat exchanger and a downwind heat exchanger, and from the indoor heat exchanger during heating, The thing of the structure which flows the discharged refrigerant in order of a windward side heat exchanger and a leeward side heat exchanger, and defrosts during heating operation is known (patent document 1, a claim, FIG. 1, etc.) reference).

また、例えば特許文献2(特開2002−333242号公報)においては、上記のように並設された風上側熱交換器と風下側熱交換器を、切換弁や配管を付加させて冷暖房空調装置に組み込み、通常(暖房)運転と除霜運転とを切り換えて除霜を行う構造のものも知られている(特許文献2、特許請求の範囲、図2〜4参照)。   For example, in patent document 2 (Unexamined-Japanese-Patent No. 2002-333242), the air-conditioning air-conditioning apparatus which added the switching valve and piping to the windward side heat exchanger and the leeward side heat exchanger which were arranged side by side as mentioned above. The structure of defrosting by switching between normal (heating) operation and defrosting operation is also known (see Patent Document 2, Claims, and FIGS. 2 to 4).

ところが、上記特許文献1及び2に記載の室外機用熱交換器は、風上側熱交換器が風下側熱交換器の全面を覆う構造であるため、室外機用熱交換器の設置スペースを広くする必要があった。また、風上側熱交換器が風下側熱交換器の全面を覆うため、通風路を流れる空気の圧損が多くなり、熱交換性能が低下するという問題もあった。更にまた、フィン・アンド・チューブ型の熱交換器は、伝熱フィン3に複数列の蛇行伝熱管4を貫通させる構造であるため、コアが厚くなり、その分設置スペースを広くする必要がある。   However, the outdoor unit heat exchangers described in Patent Documents 1 and 2 have a structure in which the windward side heat exchanger covers the entire surface of the leeward side heat exchanger, so that the installation space for the outdoor unit heat exchanger is widened. There was a need to do. In addition, since the windward side heat exchanger covers the entire surface of the leeward side heat exchanger, there is a problem that the pressure loss of the air flowing through the ventilation path is increased and the heat exchange performance is deteriorated. Furthermore, since the fin-and-tube heat exchanger has a structure in which a plurality of rows of meandering heat transfer tubes 4 are passed through the heat transfer fins 3, the core becomes thick and the installation space needs to be widened accordingly. .

これに対し、特許文献3(特開2008−25897号公報)には、室外機用熱交換器の設置スペースの省スペース化が図れると共に、通風路を流れる空気の圧損を少なくして、熱交換性能の向上を図れるようにした冷暖房空調装置の室外機用熱交換器を提供することを意図した技術が開示されている。   On the other hand, Patent Document 3 (Japanese Patent Application Laid-Open No. 2008-25897) can reduce the installation space of the outdoor unit heat exchanger, reduce the pressure loss of the air flowing through the ventilation path, and perform heat exchange. A technique intended to provide a heat exchanger for an outdoor unit of an air-conditioning and air-conditioning apparatus capable of improving performance is disclosed.

即ち、特許文献3においては、風上側熱交換器を、風下側熱交換器の全面面積に対して1/4〜2/3の全面面積を有するアルミニウム製のパラレルフロー型熱交換器にて形成してなる、ことを特徴とする冷暖房空調装置の室外機用熱交換器が開示されている(特許文献3、要約等参照)。   That is, in Patent Document 3, the windward side heat exchanger is formed by an aluminum parallel flow type heat exchanger having an entire area of 1/4 to 2/3 of the entire area of the leeward side heat exchanger. There is disclosed a heat exchanger for an outdoor unit of an air-conditioning / air-conditioning apparatus characterized by the above (see Patent Document 3, Abstract, etc.).

特開平10−253188号公報Japanese Patent Laid-Open No. 10-253188 特開2002−333242号公報JP 2002-333242 A 特開2008−25897号公報JP 2008-25897 A

しかしながら、上記特許文献3に記載される室外機用熱交換器では、風上側熱交換器を通過し暖められた空気が風下側熱交換器に供給されるにあたり、風上側熱交換器の通風面積の冷媒入口側から出口側にかけて熱交換器表面温度に温度差があり、その温度差がそのまま風下側熱交換器へ供給される通過空気の温度差となり、風下側熱交換器の着霜防止効果(難着霜効果)に影響を与えていることが考慮されていない。   However, in the outdoor unit heat exchanger described in Patent Document 3, when the heated air passing through the upwind heat exchanger is supplied to the downwind heat exchanger, the ventilation area of the upwind heat exchanger is There is a temperature difference in the heat exchanger surface temperature from the refrigerant inlet side to the outlet side, and the temperature difference becomes the temperature difference of the passing air supplied to the leeward heat exchanger as it is, and the frost prevention effect of the leeward heat exchanger It does not take into account that it has an effect on (hard frost effect).

そこで、本考案の目的は、風上側熱交換器の全面面積と風下側熱交換器の全面面積とが略同じであっても、寸法がむやみに大きくはならず、風上側熱交換器から風下側熱交換器に流れる空気の通風面積あたりの温度差を略均一化し、風下側熱交換器の難着霜効果を最大化させることにより熱交換性能に優れた冷暖房空調装置を提供することにある。   Therefore, the object of the present invention is that even if the entire area of the leeward heat exchanger and the entire area of the leeward heat exchanger are substantially the same, the size does not increase unnecessarily. The object is to provide a cooling / heating air conditioner with excellent heat exchange performance by making the temperature difference per ventilation area of the air flowing through the side heat exchanger substantially uniform and maximizing the hard frost effect of the leeward side heat exchanger. .

上記課題を解決するため、本考案は
圧縮機及び室内機用熱交換器を有し、外気通風路に対して風上側と風下側に直列接続により面対向して並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が前記風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が前記風下側熱交換器に流れ、冷房時には高温冷媒が前記風下側熱交換器及び前記風上側熱交換器の順に流れる構成を有する冷暖房空調装置であって、
少なくとも上記風上側熱交換器は、上下に対峙する一対のアルミニウム製のヘッダーパイプと、前記一対のヘッダーパイプに連通する互いに平行なアルミニウム製の扁平熱交換管と、隣接する扁平熱交換管の間に介在されるアルミニウム製のフィンと、で構成されたパラレルフロー型熱交換器であり、
前記風上側熱交換器と前記風下側熱交換器との距離が5〜50mmであること、
を特徴とする冷暖房空調装置を提供する。
In order to solve the above-mentioned problems, the present invention has a heat exchanger for a compressor and an indoor unit, and is arranged on the windward side and the leeward side of the outside air ventilation path so as to face each other in series by serial connection. And the leeward heat exchanger are used as outdoor unit heat exchangers, and during heating, after the high-temperature refrigerant flows into the upwind heat exchanger, the refrigerant that has become low temperature due to adiabatic expansion is supplied to the leeward heat exchanger. A cooling and heating air conditioner having a configuration in which a high-temperature refrigerant flows in the order of the leeward heat exchanger and the windward heat exchanger during flow and cooling,
At least the upwind heat exchanger includes a pair of aluminum header pipes facing each other vertically, a flat aluminum heat exchange pipe parallel to each other communicating with the pair of header pipes, and an adjacent flat heat exchange pipe A parallel flow heat exchanger composed of aluminum fins interposed between
The distance between the windward side heat exchanger and the leeward side heat exchanger is 5 to 50 mm,
An air-conditioning / air-conditioning apparatus is provided.

このような構成を有する本考案に係る冷暖房空調装置によれば、風上側熱交換器の全面面積と風下側熱交換器の全面面積とが略同じであっても、寸法がむやみに大きくはならず、風上側熱交換器から風下側熱交換器に流れる空気の攪拌による難着霜により熱交換性能に優れた熱交換性能に優れた冷暖房空調装置を実現できる。   According to the air-conditioning / air-conditioning apparatus of the present invention having such a configuration, even if the entire area of the windward heat exchanger and the entire area of the leeward heat exchanger are substantially the same, the dimensions do not increase unnecessarily. In addition, it is possible to realize an air conditioner with excellent heat exchange performance due to difficult frost formation due to stirring of air flowing from the windward heat exchanger to the leeward heat exchanger.

本考案者らは、多くの試作品を作製して鋭意実験を繰り返した結果、風上側熱交換器と風下側熱交換器との距離が5mm以上であれば、風上側熱交換器から風下側熱交換器に流れる空気の攪拌を発生させ、十分な難着霜効果を確保でき、風上側熱交換器と風下側熱交換器との距離が50mm以下であれば、冷暖房空調装置の寸法を大きくすることなく十分な熱交換性能を確保できることを見出した。特に風上側熱交換器と風下側熱交換器との距離が50mm超となると、熱交換性能の更なる向上は見込めず、冷暖房空調装置の寸法が大きくなるだけであった。   As a result of producing a number of prototypes and repeating the diligent experiments, the inventors have determined that if the distance between the windward side heat exchanger and the leeward side heat exchanger is 5 mm or more, the windward side heat exchanger and the leeward side If the air flowing through the heat exchanger is agitated and sufficient frost formation effect can be secured, and the distance between the windward side heat exchanger and the leeward side heat exchanger is 50 mm or less, the size of the air conditioner is increased. It has been found that sufficient heat exchange performance can be ensured without doing so. In particular, when the distance between the windward side heat exchanger and the leeward side heat exchanger exceeds 50 mm, no further improvement in the heat exchange performance can be expected, and only the size of the air-conditioning / air-conditioning apparatus is increased.

上記の本考案の冷暖房空調装置においては、上記風上側熱交換器及び上記風下側熱交換器のいずれもが、上下に対峙する一対のアルミニウム製のヘッダーパイプと、前記一対のヘッダーパイプに連通する互いに平行なアルミニウム製の扁平熱交換管と、隣接する扁平熱交換管の間に介在されるアルミニウム製のフィンと、で構成されたパラレルフロー型熱交換器であること、が好ましい。   In the air-conditioning / air-conditioning apparatus according to the present invention, both the upwind heat exchanger and the downwind heat exchanger communicate with a pair of aluminum header pipes facing each other and the pair of header pipes. It is preferable that the parallel flow type heat exchanger is composed of aluminum flat heat exchange tubes parallel to each other and aluminum fins interposed between adjacent flat heat exchange tubes.

このような構成を有する本考案の冷暖房空調装置によれば、風上側熱交換器と風下側熱交換器の双方を同じ構造にすることができる上、両熱交換器の厚さをフィン・アンド・チューブ型熱交換器に比較して薄くすることができる。加えて、扁平熱交換管を垂直方向に配列することで、扁平熱交換管に付着する結露水又は除霜により生じた水を溜まりにくくすることができる。また、熱交換性能を高性能に維持させた状態で、熱交換器を薄くすることができる。   According to the air-conditioning / air-conditioning apparatus of the present invention having such a configuration, both the windward side heat exchanger and the leeward side heat exchanger can have the same structure, and the thicknesses of both the heat exchangers can be set to fin and・ It can be made thinner than tube heat exchangers. In addition, by arranging the flat heat exchange tubes in the vertical direction, it is possible to make it difficult to collect the condensed water or water generated by defrosting attached to the flat heat exchange tubes. In addition, the heat exchanger can be thinned while maintaining high heat exchange performance.

また、上記の本考案の冷暖房空調装置においては、前記風上側熱交換器と前記風下側熱交換器との距離が10〜50mmであること、更には、30〜50mmであること、が好ましい。   In the air conditioning / heating air conditioner of the present invention, the distance between the windward side heat exchanger and the leeward side heat exchanger is preferably 10 to 50 mm, and more preferably 30 to 50 mm.

風上側熱交換器と風下側熱交換器との距離が上記範囲内にあれば、より確実に、冷暖房空調装置の寸法を抑えつつ風上側熱交換器から風下側熱交換器に流れる空気の攪拌により、更には、当該空気の攪拌による難着霜により、十分な熱交換性能を確保できる。   If the distance between the windward side heat exchanger and the leeward side heat exchanger is within the above range, the agitation of the air flowing from the windward side heat exchanger to the leeward side heat exchanger is more reliably suppressed while suppressing the size of the air conditioning air conditioner. Further, sufficient heat exchange performance can be ensured by difficult frost formation by stirring the air.

また、上記の本考案の冷暖房空調装置においては、前記室内機用熱交換器と前記風上側熱交換器とを接続する配管に、暖房時に前記冷媒を通す第1の逆止弁と、冷房時にのみ機能して前記冷媒を減圧せずに通す第1の膨張弁と、が並列に介設されており、
前記風上側熱交換器と前記風下側熱交換器とを接続する配管に、冷房時に前記冷媒を通す第2の逆止弁と、暖房時にのみ機能して前記冷媒を減圧せずに通す第2の膨張弁と、が並列に介設されていること、が好ましい。
In the air conditioning / air conditioning apparatus of the present invention, a first check valve that passes the refrigerant during heating and a pipe connecting the indoor unit heat exchanger and the windward heat exchanger, and during cooling A first expansion valve that functions only and passes the refrigerant without depressurization, and is interposed in parallel,
A second check valve that allows the refrigerant to pass during cooling, and a second valve that functions only during heating and passes the refrigerant without reducing pressure, to a pipe connecting the windward heat exchanger and the leeward heat exchanger. It is preferable that the expansion valve is interposed in parallel.

このような構成を有する本考案の冷暖房空調装置によれば、風上側熱交換器から風下側熱交換器に流れる空気の通風面積あたりの温度差を均一化し、難着霜効果を最大化させることにより、熱交換性能を向上させることができ、かつ、冷暖房空調装置としての機能を確実に発揮することができる。   According to the cooling / heating air conditioning apparatus of the present invention having such a configuration, the temperature difference per ventilation area of the air flowing from the windward side heat exchanger to the leeward side heat exchanger is made uniform, and the effect of difficult frost formation is maximized. Thus, the heat exchange performance can be improved, and the function as an air conditioning and air conditioning apparatus can be reliably exhibited.

本考案によれば、風上側熱交換器の全面面積と風下側熱交換器の全面面積とが略同じであっても、風上側熱交換器から風下側熱交換器に流れる空気の通風面積あたりの温度差が小さい熱交換性能に優れた冷暖房空調装置を提供することができる。   According to the present invention, even if the entire area of the leeward heat exchanger and the entire area of the leeward heat exchanger are substantially the same, the airflow flowing from the leeward heat exchanger to the leeward heat exchanger Thus, it is possible to provide an air conditioning / air conditioning apparatus having a small temperature difference and excellent heat exchange performance.

本考案の一実施形態に係る冷暖房空調装置1の構造を示す概略構成図である(暖房運転時の状態)。It is a schematic block diagram which shows the structure of the air conditioning air conditioning apparatus 1 which concerns on one Embodiment of this invention (state at the time of heating operation). 本考案の一実施形態に係る冷暖房空調装置1の構造を示す概略構成図である(冷房運転時の状態)。It is a schematic block diagram which shows the structure of the air conditioning air conditioning apparatus 1 which concerns on one Embodiment of this invention (state at the time of air_conditionaing | cooling operation). 図1及び図2の冷暖房空調装置1における室外機用熱交換器10を構成する風上側熱交換器11と風下側熱交換器12の一例を展開して示す概略構成図である。It is a schematic block diagram which expand | deploys and shows an example of the windward side heat exchanger 11 and the leeward side heat exchanger 12 which comprise the heat exchanger 10 for outdoor units in the air conditioning air conditioner 1 of FIG.1 and FIG.2. 図1及び図2の冷暖房空調装置1における風上側熱交換器11と風下側熱交換器12の一例を示す斜視図である。It is a perspective view which shows an example of the windward side heat exchanger 11 and the leeward side heat exchanger 12 in the air conditioning air conditioner 1 of FIG.1 and FIG.2. 図1及び図2の冷暖房空調装置1における風上側熱交換器11のフィン(ルーバーレス)17の構造を示す部分拡大図(a)及び風下側熱交換器12のフィン(ルーバー付き)17の構造を示す部分拡大図(b)である。The partial enlarged view (a) which shows the structure of the fin (louverless) 17 of the windward side heat exchanger 11 and the structure of the fin (with louver) 17 of the leeward side heat exchanger 12 in the heating / cooling air conditioner 1 of FIGS. It is the elements on larger scale which show (b). 図1及び図2の冷暖房空調装置1における風下側熱交換器12のフィン(ルーバー付き)17と扁平熱交換管18との構造の一例を示す部分写真である。It is a partial photograph which shows an example of the structure of the fin (with louver) 17 and the flat heat exchange pipe | tube 18 of the leeward side heat exchanger 12 in the air conditioning air conditioner 1 of FIG.1 and FIG.2. 図1及び図2の冷暖房空調装置1における室外機用熱交換器10に使用できる他の熱交換器の例を示す斜視図である。It is a perspective view which shows the example of the other heat exchanger which can be used for the heat exchanger 10 for outdoor units in the air conditioning air conditioning apparatus 1 of FIG.1 and FIG.2.

以下において、本考案の冷暖房空調装置の一実施形態について、図面を参照しつつ詳細に説明するが、本考案はこれらのみに限定されるものではない。また、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略することもある。図面は、本考案を概念的に説明するためのものであるから、理解容易のために、必要に応じて寸法、比又は数を誇張又は簡略化して表している場合もある。   Hereinafter, an embodiment of the air-conditioning / air-conditioning apparatus of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these. Moreover, in the following description, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description may be abbreviate | omitted. Since the drawings are for conceptual description of the present invention, dimensions, ratios or numbers may be exaggerated or simplified as necessary for easy understanding.

図1及び図2は、本考案の一実施形態に係る冷暖房空調装置1の構造を示す概略構成図であり、図1は暖房運転時の状態を示し、図2は冷房運転時の状態を示している。また、図3は、本実施形態に係る冷暖房空調装置1における室外機用熱交換器を構成する風上側熱交換器と風下側熱交換器を展開して示す概略構成図であり、図4は、風上側熱交換器と風下側熱交換器を示す斜視図である。   1 and 2 are schematic configuration diagrams showing the structure of an air conditioning / air conditioning apparatus 1 according to an embodiment of the present invention. FIG. 1 shows a state during heating operation, and FIG. 2 shows a state during cooling operation. ing. Moreover, FIG. 3 is a schematic configuration diagram showing the windward side heat exchanger and the leeward side heat exchanger constituting the outdoor unit heat exchanger in the cooling / heating air conditioner 1 according to the present embodiment. It is a perspective view which shows a windward side heat exchanger and a leeward side heat exchanger.

更に、図5は、図1及び図2の冷暖房空調装置1における風上側熱交換器11のフィン(ルーバーレス)17の構造を示す部分拡大図(a)及び風下側熱交換器12のフィン(ルーバー付き)17の構造を示す部分拡大図(b)(それぞれ扁平熱交換管16の長さ方向に略平行な方向からみた図)であり、図6は、図1及び図2の冷暖房空調装置1における風下側熱交換器12のフィン(ルーバー付き)17と扁平熱交換管18との構造の一例を示す部分写真である。また、図7は、図1及び図2の冷暖房空調装置1における室外機用熱交換器10に使用できる他の熱交換器の例を示す斜視図である。   5 is a partially enlarged view (a) showing the structure of the fin (louverless) 17 of the windward side heat exchanger 11 and the fins of the leeward side heat exchanger 12 (in FIG. 1 and FIG. 2). FIG. 6 is a partially enlarged view (b) showing the structure of the louver 17 (shown from a direction substantially parallel to the length direction of the flat heat exchange pipe 16), and FIG. 6 is the air conditioning air conditioner of FIGS. 2 is a partial photograph showing an example of the structure of fins (with louvers) 17 and flat heat exchange tubes 18 of the leeward heat exchanger 12 in FIG. FIG. 7 is a perspective view showing an example of another heat exchanger that can be used for the outdoor unit heat exchanger 10 in the air conditioning air conditioner 1 of FIGS. 1 and 2.

本実施形態の冷暖房空調装置1は、圧縮機5と、室内機用熱交換器6と、室外機用熱交換器10と、第1の電子膨張弁EV1と、第2の電子膨張弁EV2と、を具備している。また、室外機用熱交換器10は、外気通風路7に対して風上側に配置される風上側熱交換器11と風下側に配置される風下側熱交換器12とが直列接続により面対向して並設されており、風上側熱交換器11の風上側に送風ファン13が配設されている。   The air conditioning air conditioner 1 of this embodiment includes a compressor 5, an indoor unit heat exchanger 6, an outdoor unit heat exchanger 10, a first electronic expansion valve EV1, and a second electronic expansion valve EV2. Are provided. The outdoor unit heat exchanger 10 is face-to-face by serial connection of an upwind heat exchanger 11 disposed on the windward side with respect to the outdoor air passage 7 and a leeward heat exchanger 12 disposed on the leeward side. The blower fan 13 is disposed on the windward side of the windward side heat exchanger 11.

また、圧縮機5と室内機用熱交換器6とを接続する第1の配管21と、圧縮機5と室外機用熱交換器10の風下側熱交換器12とを接続する第2の配管22と、には、切換弁である四方弁DVが介設されている。この四方弁DVの切り換えによって、圧縮機5から吐出される高温・高圧の冷媒が室内機用熱交換器6、又は、室外機用熱交換器10の風下側熱交換器12に流れるように構成されている。   Moreover, the 1st piping 21 which connects the compressor 5 and the indoor unit heat exchanger 6, and the 2nd piping which connects the compressor 5 and the leeward side heat exchanger 12 of the heat exchanger 10 for outdoor units. 22 is provided with a four-way valve DV, which is a switching valve. By switching the four-way valve DV, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is configured to flow to the indoor unit heat exchanger 6 or the leeward heat exchanger 12 of the outdoor unit heat exchanger 10. Has been.

室内機用熱交換器6と室外機用熱交換器10の風上側熱交換器11とを接続する第3の配管23には、第1の逆止弁CV1と、冷房時にのみ機能する第1の電子膨張弁EV1と、が介設されている。風上側熱交換器11と風下側熱交換器12とを接続する第4の配管24には、第2の逆止弁CV2と、暖房時にのみ機能する第2の電子膨張弁EV2と、が介設されている。   The third pipe 23 that connects the indoor unit heat exchanger 6 and the upside heat exchanger 11 of the outdoor unit heat exchanger 10 has a first check valve CV1 and a first function that functions only during cooling. And an electronic expansion valve EV1. The fourth pipe 24 connecting the windward side heat exchanger 11 and the leeward side heat exchanger 12 is provided with a second check valve CV2 and a second electronic expansion valve EV2 that functions only during heating. It is installed.

ここで、本実施形態の室外機用熱交換器10を構成する風上側熱交換器11と風下側熱交換器12とは、図3に示すように、両者の全面面積が略同一となる形状及び寸法を有している。即ち、風上側熱交換器11と風下側熱交換器12の幅Bは略同一に形成され、風上側熱交換器11と風下側熱交換器12の高さHも略同一に形成されている。   Here, as shown in FIG. 3, the windward side heat exchanger 11 and the leeward side heat exchanger 12 constituting the outdoor unit heat exchanger 10 of the present embodiment have shapes in which the entire surface area of both is substantially the same. And dimensions. That is, the width B of the windward side heat exchanger 11 and the leeward side heat exchanger 12 is substantially the same, and the height H of the windward side heat exchanger 11 and the leeward side heat exchanger 12 is also substantially the same. .

そして、風上側熱交換器11と風下側熱交換器12とは、いずれもアルミニウム合金製のパラレルフロー型熱交換器(PFC)によって形成されている。より具体的には、風上側熱交換器11及び風下側熱交換器12は、図3及び図4に示すように、主として、それぞれ上下に対峙する一対のアルミニウム合金製のヘッダーパイプ14、15と、これらヘッダーパイプ14、15に連通する互いに平行なアルミニウム合金製の複数の扁平熱交換管16(例えば押出形材で構成されている。)と、隣接する扁平熱交換管16の間に介在されるアルミニウム合金製のコルゲートフィン17と、で構成されている。   And the windward side heat exchanger 11 and the leeward side heat exchanger 12 are all formed by a parallel flow type heat exchanger (PFC) made of an aluminum alloy. More specifically, as shown in FIGS. 3 and 4, the windward side heat exchanger 11 and the leeward side heat exchanger 12 are mainly composed of a pair of header pipes 14 and 15 made of aluminum alloy facing each other vertically. A plurality of flat aluminum alloy heat exchange tubes 16 (for example, formed of extruded shapes) communicating with the header pipes 14 and 15 and the adjacent flat heat exchange tubes 16 are interposed. And an aluminum alloy corrugated fin 17.

風上側熱交換器11の下部ヘッダーパイプ15には、第3の配管23が接続される冷媒流入出口18aが設けられ、風上側熱交換器11の上部ヘッダーパイプ14には、第4の配管24の一端が接続される冷媒流入出口18bが設けられている。一方、風下側熱交換器12の下部ヘッダーパイプ15には、第4の配管24の他端が接続される冷媒流入出口18cが設けられ、風上側熱交換器11の上部ヘッダーパイプ14には、第2の配管22が接続される冷媒流入出口18dが設けられている。   The lower header pipe 15 of the windward side heat exchanger 11 is provided with a refrigerant inlet / outlet port 18a to which the third pipe 23 is connected, and the upper header pipe 14 of the windward side heat exchanger 11 has a fourth pipe 24. A refrigerant inlet / outlet port 18b to which one end of the refrigerant is connected is provided. On the other hand, the lower header pipe 15 of the leeward heat exchanger 12 is provided with a refrigerant inflow / outlet port 18c to which the other end of the fourth pipe 24 is connected, and the upper header pipe 14 of the leeward heat exchanger 11 has A refrigerant inlet / outlet port 18d to which the second pipe 22 is connected is provided.

また、扁平熱交換管16には、複数の冷媒通路(後述する図5及び図6を参照)が区画形成されている。上部ヘッダーパイプ14及び下部ヘッダーパイプ15と、扁平熱交換管16と、コルゲートフィン17と、は、例えばろう付けによって一体的に形成されている。   Further, the flat heat exchange pipe 16 is formed with a plurality of refrigerant passages (see FIGS. 5 and 6 to be described later). The upper header pipe 14 and the lower header pipe 15, the flat heat exchange pipe 16, and the corrugated fins 17 are integrally formed, for example, by brazing.

次に、本実施形態の冷暖房空調装置1において、風上側熱交換器11では、図5の(a)に示すように、扁平熱交換管16の間に配設されているコルゲートフィン17aが平板状の形状(ルーバーレス)を有しているのに対し、風下側熱交換器12では、図5の(b)及び図6に示すように、扁平熱交換管16の間に配設されているコルゲートフィン17bは、平板状であるとともに多数のスリット状の開口17cが並列して設けられた形状(ルーバー付き)を有している。   Next, in the cooling / heating air conditioner 1 of the present embodiment, in the windward side heat exchanger 11, the corrugated fins 17a disposed between the flat heat exchange tubes 16 are flat as shown in FIG. In contrast, the leeward heat exchanger 12 is disposed between the flat heat exchange tubes 16 as shown in FIG. 5B and FIG. The corrugated fin 17b is flat and has a shape (with a louver) in which a large number of slit-shaped openings 17c are provided in parallel.

このような構造により、風上側熱交換器11の通気抵抗R1が風下側熱交換器12の通気抵抗R2より小さく設定されている。通気抵抗とは、一般的に言う圧力損失と略同じ意味を有し、風上側熱交換器11の通気抵抗R1が風下側熱交換器12の通気抵抗R2と同じか大きいと、風下側熱交換器12に供給される風量が下がってしまい、熱交換性能を損なってしまう傾向にある。そのため、本実施形態では、上記のように、風上側熱交換器11の通気抵抗R1が風下側熱交換器12の通気抵抗R2より小さく設定されており、外気通風路7を流れる外気Aの風上側熱交換器11によって受ける圧損を少なくして、熱交換性能の低下が効果的に抑制されている。 With such a structure, the ventilation resistance R 1 of the leeward heat exchanger 11 is set to be smaller than the ventilation resistance R 2 of the leeward heat exchanger 12. The ventilation resistance has substantially the same meaning as the pressure loss in general, and when the ventilation resistance R 1 of the windward side heat exchanger 11 is equal to or larger than the ventilation resistance R 2 of the leeward side heat exchanger 12, the leeward side The air volume supplied to the heat exchanger 12 tends to decrease, and the heat exchange performance tends to be impaired. Therefore, in the present embodiment, as described above, the ventilation resistance R 1 of the windward side heat exchanger 11 is set to be smaller than the ventilation resistance R 2 of the leeward side heat exchanger 12, and the outside air A flowing through the outside air ventilation path 7. The pressure loss received by the windward side heat exchanger 11 is reduced, and the deterioration of the heat exchange performance is effectively suppressed.

上記の通気抵抗の単位に関し、「Pa(AF−0.5m/sec)」とは、通過風速が0.5m/secの際の通気抵抗であることを意味し、「Pa(AF−1.5m/sec)」とは通過風速が1.5m/secの際の通気抵抗であることを意味する。本実施形態におけるこの通過風速は、熱交換性能と静音性とのバランスを考慮して、0.5〜3.0m/secの範囲、好ましくは0.5〜1.5m/secの範囲で決定すればよい。   Regarding the unit of ventilation resistance, “Pa (AF−0.5 m / sec)” means the ventilation resistance when the passing wind speed is 0.5 m / sec, and “Pa (AF-1. “5 m / sec)” means a ventilation resistance when the passing wind speed is 1.5 m / sec. The passing wind speed in the present embodiment is determined in the range of 0.5 to 3.0 m / sec, preferably in the range of 0.5 to 1.5 m / sec in consideration of the balance between heat exchange performance and quietness. do it.

より具体的には、風上側熱交換器11から風下側熱交換器12に流れる空気の圧損を確実に低減させて、熱交換性能を向上させることができ、かつ、冷暖房空調装置1の機能をより確実に発揮することができるという観点から、例えば風上側熱交換器11の通気抵抗R1を2Pa(AF−0.5m/sec)〜14Pa(AF−3.0m/sec)に設定し、風下側熱交換器12の通気抵抗R2を3Pa(AF−0.5m/sec)〜28Pa(AF−3.0m/sec)に設定することが好ましい。更には、風上側熱交換器11の通気抵抗R1を2Pa(AF−0.5m/sec)〜14Pa(AF−1.5m/sec)に設定し、風下側熱交換器12の通気抵抗R2を3Pa(AF−0.5m/sec)〜28Pa(AF−1.5m/sec)に設定することが好ましい。 More specifically, the pressure loss of the air flowing from the windward side heat exchanger 11 to the leeward side heat exchanger 12 can be reliably reduced, the heat exchange performance can be improved, and the function of the air conditioner / air conditioner 1 can be improved. From the viewpoint that it can be more reliably exhibited, for example, the ventilation resistance R 1 of the windward side heat exchanger 11 is set to 2 Pa (AF-0.5 m / sec) to 14 Pa (AF-3.0 m / sec), it is preferable to set the ventilation resistance R 2 of the leeward side heat exchanger 12 to 3Pa (AF-0.5m / sec) ~28Pa (AF-3.0m / sec). Furthermore, the ventilation resistance R 1 of the leeward heat exchanger 11 is set to 2 Pa (AF−0.5 m / sec) to 14 Pa (AF−1.5 m / sec), and the ventilation resistance R of the leeward heat exchanger 12 is set. 2 is preferably set to 3 Pa (AF-0.5 m / sec) to 28 Pa (AF-1.5 m / sec).

上記の通気抵抗は、コルゲートフィン17のピッチ(fp:山−谷間の距離)や風上側熱交換器11及び風下側熱交換器12のコア厚み(コアとなる部分の厚み、本実施形態においては扁平熱交換管16の幅と略一致)によっても変動し得る。例えば、コア厚みが14、16、19又は21mmであり、fpは1.0〜2.5の範囲で適宜選択されるが、選択したこれらの具体的数値に応じて、風上側熱交換器11の通気抵抗R1及び風下側熱交換器12の通気抵抗R2を、上記の通気抵抗の範囲に設定すればよい。 The airflow resistance is the pitch of the corrugated fins 17 (fp: distance between peaks and valleys), and the core thicknesses of the windward side heat exchanger 11 and the leeward side heat exchanger 12 (thickness of the portion serving as the core, in the present embodiment). It can also vary depending on the width of the flat heat exchange tube 16. For example, the core thickness is 14, 16, 19 or 21 mm, and fp is appropriately selected in the range of 1.0 to 2.5, but depending on these selected specific values, the windward side heat exchanger 11 the ventilation resistance R 1 and the ventilation resistance R 2 of the leeward side heat exchanger 12, may be set to the above range of airflow resistance.

また、本実施形態においては、上記のように、風上側熱交換器11と風下側熱交換器12を、パラレルフロー型熱交換器にて形成することにより、図7に示すような伝熱フィン103に複数列の蛇行伝熱管104を貫通させた、フィン・アンド・チューブ型熱交換器102に比べて厚さを薄くすることができるので、室外機用熱交換器の設置スペースの低減させることができる。ただし、変形態様として、風下側熱交換器12は図7に示すような構造を有するフィン・アンド・チューブ型熱交換器であってもよい。   Further, in the present embodiment, as described above, the windward heat exchanger 11 and the leeward heat exchanger 12 are formed by a parallel flow heat exchanger, so that the heat transfer fins as shown in FIG. Since the thickness can be reduced as compared with the fin-and-tube heat exchanger 102 in which a plurality of rows of meandering heat transfer tubes 104 are passed through 103, the installation space of the heat exchanger for the outdoor unit can be reduced. Can do. However, as a modification, the leeward heat exchanger 12 may be a fin-and-tube heat exchanger having a structure as shown in FIG.

なお、パラレルフロー型熱交換器とフィン・アンド・チューブ型熱交換器を、熱交換性能を同等として比較した場合、パラレルフロー型熱交換器は、フィン・アンド・チューブ型熱交換器に対して厚み寸法を約半分にすることができる。   When comparing parallel flow heat exchangers and fin-and-tube heat exchangers with the same heat exchange performance, parallel flow heat exchangers are compared to fin-and-tube heat exchangers. The thickness dimension can be halved.

例えば、風上側熱交換器11及び風下側熱交換器12の上部ヘッダーパイプ14及び下部ヘッダーパイプ15の直径を25mmとし、扁平熱交換管16の厚み(コア厚み)を2mmとし、扁平熱交換管16のピッチ(fp)を10mmとしたパラレルフロー型熱交換器においては、コアの厚さを約20mmにすることができる。   For example, the diameters of the upper header pipe 14 and the lower header pipe 15 of the windward side heat exchanger 11 and the leeward side heat exchanger 12 are set to 25 mm, and the thickness (core thickness) of the flat heat exchange pipe 16 is set to 2 mm. In a parallel flow heat exchanger in which the pitch (fp) of 16 is 10 mm, the thickness of the core can be about 20 mm.

これに対して、同等の熱交換性能を有するフィン・アンド・チューブ型熱交換器においては、一般には、蛇行伝熱管104の直径を6〜9mmとして一列に配列した場合は、コア厚みは25mm以上となり、また、蛇行伝熱管104を2とした場合は、コア厚みは約34mmとすることができる。   On the other hand, in a fin-and-tube heat exchanger having equivalent heat exchange performance, in general, when the diameter of the meandering heat transfer tube 104 is 6 to 9 mm and arranged in a line, the core thickness is 25 mm or more. When the meandering heat transfer tube 104 is 2, the core thickness can be about 34 mm.

なお、上記実施形態では、風上側熱交換器11と風下側熱交換器12の双方を、上下に対峙する上部ヘッダーパイプ14及び下部ヘッダーパイプ15を有するアルミニウム合金製のパラレルフロー型熱交換器としたが、風上側熱交換器11は、左右に対峙するヘッダーパイプを有するアルミニウム合金製のパラレルフロー型熱交換器であってもよい。   In the above embodiment, both the upwind heat exchanger 11 and the downwind heat exchanger 12 are parallel flow type heat exchangers made of aluminum alloy having an upper header pipe 14 and a lower header pipe 15 facing each other up and down. However, the upwind heat exchanger 11 may be an aluminum alloy parallel flow heat exchanger having header pipes facing left and right.

また、本実施形態における風上側熱交換器11と風下側熱交換器12との距離W(図1及び図2参照)は5〜50mmであればよい。風上側熱交換器11と前記風下側熱交換器12との距離Wが5mm以上であれば、風上側熱交換器11から風下側熱交換器12に流れる空気の攪拌を発生させ、十分な難着霜効果を確保でき、かつ、冷暖房空調装置1内のスペースを取り過ぎることもない。特に、上記距離Wが50mmを超えると熱交換性能は略一定となって変化が無いことを本発明者らは実験で確認している。風上側熱交換器11と前記風下側熱交換器12との距離Wは10〜50mmであることが好ましく、更には、30〜50mmであることが好ましい。
なお、風上側熱交換器11及び風下側熱交換器12は、従来と同様に、室外機のフレームに取り付けて防振効果を備えているのが好ましい。
Moreover, the distance W (refer FIG.1 and FIG.2) of the leeward side heat exchanger 11 and the leeward side heat exchanger 12 in this embodiment should just be 5-50 mm. If the distance W between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is 5 mm or more, the air flowing from the windward side heat exchanger 11 to the leeward side heat exchanger 12 is agitated, which is sufficiently difficult. The frosting effect can be ensured, and the space in the air conditioning / air conditioning apparatus 1 is not taken too much. In particular, the present inventors have confirmed through experiments that the heat exchange performance is substantially constant and does not change when the distance W exceeds 50 mm. The distance W between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is preferably 10 to 50 mm, and more preferably 30 to 50 mm.
In addition, it is preferable that the windward side heat exchanger 11 and the leeward side heat exchanger 12 are attached to the frame of the outdoor unit and have a vibration isolation effect as in the conventional case.

次に、上記のような構成を有する本実施形態の冷暖房空調装置1の動作について、図1〜図3を参照して説明する。   Next, operation | movement of the air conditioning air conditioner 1 of this embodiment which has the above structures is demonstrated with reference to FIGS. 1-3.

(1)暖房運転時
暖房運転時には、図1及び図3において矢印で示すように、四方弁DVを切り換えることにより、圧縮機5から吐出される高温・高圧の冷媒は、第1の配管21→室内機用熱交換器6→第3の配管23→第1の逆止弁CV1→風上側熱交換器11→第4の配管24→第2の電子膨張弁EVb→風下側熱交換器12→第2の配管22→圧縮機5の順に循環する。
(1) During heating operation During heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is changed to the first pipe 21 → by switching the four-way valve DV as indicated by arrows in FIGS. Indoor unit heat exchanger 6 → third pipe 23 → first check valve CV1 → upward heat exchanger 11 → fourth pipe 24 → second electronic expansion valve EVb → downward heat exchanger 12 → It circulates in order of the 2nd piping 22-> compressor 5.

この暖房運転時においては、室内機用熱交換器6から吐出される高温冷媒が風上側熱交換器11を流れた後に風下側熱交換器12に流れるため、風下側熱交換器12には、風上側熱交換器11で暖められた外気が送風される。したがって、暖房運転時に風上側熱交換器11及び風下側熱交換器12の除霜を行うことができると共に、着霜の発生を抑制することができる。   In this heating operation, since the high-temperature refrigerant discharged from the indoor unit heat exchanger 6 flows through the windward heat exchanger 11 and then flows into the leeward heat exchanger 12, the leeward heat exchanger 12 includes: The outside air warmed by the upwind heat exchanger 11 is blown. Therefore, defrosting of the windward side heat exchanger 11 and the leeward side heat exchanger 12 can be performed during heating operation, and the occurrence of frost formation can be suppressed.

また、風上側熱交換器11の通気抵抗R1が風下側熱交換器12の通気抵抗R2より小さいため、外気通風路7を流れる外気Aの圧損を少なくすることができると共に、風上側熱交換器11及び風下側熱交換器12を流れる冷媒の圧損を少なくすることができ、熱交換性能の低下を確実に抑制することができる。 Further, since the ventilation resistance R 1 of the windward side heat exchanger 11 is smaller than the ventilation resistance R 2 of the leeward side heat exchanger 12, the pressure loss of the outside air A flowing through the outside air ventilation path 7 can be reduced, and the windward side heat can be reduced. The pressure loss of the refrigerant flowing through the exchanger 11 and the leeward heat exchanger 12 can be reduced, and the deterioration of the heat exchange performance can be reliably suppressed.

(2)冷房運転時
冷房運転時には、図2に矢印で示すように、四方弁DVを切り換えることにより、圧縮機5から吐出される高温・高圧の冷媒は、第2の配管22→風下側熱交換器12→第4の配管24→第2の逆止弁CV2→風上側熱交換器11→第3の配管23→第1の電子膨張弁EV1→室内機用熱交換器6→第1の配管21→圧縮機5の順に循環する。
(2) During cooling operation During cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 5 is switched from the second pipe 22 to the leeward side heat by switching the four-way valve DV as indicated by the arrows in FIG. Exchanger 12 → fourth piping 24 → second check valve CV2 → upstream heat exchanger 11 → third piping 23 → first electronic expansion valve EV1 → heat exchanger 6 for indoor unit → first It circulates in order of piping 21-> compressor 5.

この冷房運転時においては、風下側熱交換器12から風上側熱交換器11には、第2の逆止弁CV2を介して減圧されない冷媒が送られ、しかも、外気通風路7を流れる外気Aの圧損は少なく、風下側熱交換器12及び風上側熱交換器11を流れる冷媒の圧損も少ないので、室外機用熱交換器10の熱交換性能の低下を確実に抑制することができる。   During this cooling operation, the refrigerant that is not decompressed is sent from the leeward heat exchanger 12 to the leeward heat exchanger 11 via the second check valve CV2, and the outside air A flowing through the outside air passage 7 is also sent. Since the pressure loss of the refrigerant flowing through the leeward heat exchanger 12 and the leeward heat exchanger 11 is also small, it is possible to reliably suppress the deterioration of the heat exchange performance of the outdoor unit heat exchanger 10.

1・・・冷暖房空調装置、
5・・・圧縮機、
6・・・室内機用熱交換器、
7・・・外気通風路、
10・・・室外機用熱交換器、
11・・・風上側熱交換器、
12・・・風下側熱交換器、
13・・・送風ファン、
14・・・上部ヘッダーパイプ、
15・・・下部ヘッダーパイプ、
16・・・扁平熱交換管、
17・・・コルゲートフィン、
17a・・・コルゲートフィン(ルーバーレス)、
17b・・・コルゲートフィン(ルーバー付き)、
17c・・・開口、
18・・・扁平熱交換管、
21・・・第1の配管、
22・・・第2の配管、
23・・・第3の配管、
A・・・外気、
CV1・・・第1の逆止弁、
CV2・・・第2の逆止弁、
DV・・・四方弁、
EV1・・・第1の電子膨張弁、
EV2・・・第2の電子膨張弁。
1 ... Air conditioning unit
5 ... Compressor,
6 ... indoor unit heat exchanger,
7: Open air ventilation path,
10 ... heat exchanger for outdoor unit,
11 ... windward heat exchanger,
12 ... leeward heat exchanger,
13 ... Blower fan,
14 ... Upper header pipe,
15 ... Lower header pipe,
16 ... flat heat exchange tube,
17 ... corrugated fin,
17a ... corrugated fin (louverless),
17b ... corrugated fin (with louver),
17c ... opening,
18 ... flat heat exchange tube,
21 ... first piping,
22 ... second piping,
23 ... third piping,
A ... Open air,
CV1 ... first check valve,
CV2 ... second check valve,
DV: Four-way valve,
EV1 ... first electronic expansion valve,
EV2 ... Second electronic expansion valve.

Claims (5)

圧縮機及び室内機用熱交換器を有し、外気通風路に対して風上側と風下側に直列接続により面対向して並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が前記風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が前記風下側熱交換器に流れ、冷房時には高温冷媒が前記風下側熱交換器及び前記風上側熱交換器の順に流れる構成を有する冷暖房空調装置であって、
少なくとも上記風上側熱交換器は、上下に対峙する一対のアルミニウム製のヘッダーパイプと、前記一対のヘッダーパイプに連通する互いに平行なアルミニウム製の扁平熱交換管と、隣接する扁平熱交換管の間に介在されるアルミニウム製のフィンと、で構成されたパラレルフロー型熱交換器であり、
前記風上側熱交換器と前記風下側熱交換器との距離が5〜50mmであること、
を特徴とする冷暖房空調装置。
A windward side heat exchanger and a leeward side heat exchanger that have a compressor and a heat exchanger for indoor units, and are arranged side by side in series on the windward side and the leeward side of the outdoor air passage by serial connection. Used as a heat exchanger for heating, high-temperature refrigerant flows to the leeward heat exchanger during heating, then low-temperature refrigerant due to adiabatic expansion flows to the leeward heat exchanger, and during cooling, the high-temperature refrigerant flows to the leeward side A heating and cooling air conditioner having a configuration in which the heat exchanger and the windward heat exchanger flow in this order,
At least the upwind heat exchanger includes a pair of aluminum header pipes facing each other vertically, a flat aluminum heat exchange pipe parallel to each other communicating with the pair of header pipes, and an adjacent flat heat exchange pipe A parallel flow heat exchanger composed of aluminum fins interposed between
The distance between the windward side heat exchanger and the leeward side heat exchanger is 5 to 50 mm,
Air-conditioning air conditioner characterized by.
上記風上側熱交換器及び上記風下側熱交換器のいずれもが、上下に対峙する一対のアルミニウム製のヘッダーパイプと、前記一対のヘッダーパイプに連通する互いに平行なアルミニウム製の扁平熱交換管と、隣接する扁平熱交換管の間に介在されるアルミニウム製のフィンと、で構成されたパラレルフロー型熱交換器であること、を特徴とする請求項1に記載の冷暖房空調装置。   Each of the windward side heat exchanger and the leeward side heat exchanger includes a pair of aluminum header pipes facing up and down, and flat aluminum heat pipes that are parallel to each other and communicate with the pair of header pipes. The air-conditioning / air-conditioning apparatus according to claim 1, wherein the air-conditioning / air-conditioning apparatus is a parallel flow type heat exchanger composed of aluminum fins interposed between adjacent flat heat exchange tubes. 前記風上側熱交換器と前記風下側熱交換器との距離が10〜50mmであること、
を特徴とする請求項1又は2に記載の冷暖房空調装置。
The distance between the windward side heat exchanger and the leeward side heat exchanger is 10 to 50 mm;
The air conditioning air conditioning apparatus according to claim 1 or 2.
前記風上側熱交換器と前記風下側熱交換器との距離が30〜50mmであること、
を特徴とする請求項1又は2に記載の冷暖房空調装置。
The distance between the windward side heat exchanger and the leeward side heat exchanger is 30 to 50 mm,
The air conditioning air conditioning apparatus according to claim 1 or 2.
前記室内機用熱交換器と前記風上側熱交換器とを接続する配管に、暖房時に前記冷媒を通す第1の逆止弁と、冷房時にのみ機能して前記冷媒を減圧せずに通す第1の膨張弁と、が並列に介設されており、
前記風上側熱交換器と前記風下側熱交換器とを接続する配管に、冷房時に前記冷媒を通す第2の逆止弁と、暖房時にのみ機能して前記冷媒を減圧せずに通す第2の膨張弁と、が並列に介設されていること、
を特徴とする請求項1〜4のうちのいずれかに記載の冷暖房空調装置。
A pipe connecting the indoor unit heat exchanger and the upwind heat exchanger has a first check valve that passes the refrigerant during heating, and a first valve that functions only during cooling and passes the refrigerant without reducing pressure. 1 expansion valve is interposed in parallel,
A second check valve that allows the refrigerant to pass during cooling, and a second valve that functions only during heating and passes the refrigerant without reducing pressure, to a pipe connecting the windward heat exchanger and the leeward heat exchanger. The expansion valve of
The air conditioning air conditioning apparatus according to any one of claims 1 to 4.
JP2012002909U 2012-05-17 2012-05-17 Air conditioning unit Expired - Fee Related JP3177300U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002909U JP3177300U (en) 2012-05-17 2012-05-17 Air conditioning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002909U JP3177300U (en) 2012-05-17 2012-05-17 Air conditioning unit

Publications (1)

Publication Number Publication Date
JP3177300U true JP3177300U (en) 2012-07-26

Family

ID=48004145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002909U Expired - Fee Related JP3177300U (en) 2012-05-17 2012-05-17 Air conditioning unit

Country Status (1)

Country Link
JP (1) JP3177300U (en)

Similar Documents

Publication Publication Date Title
JP4889011B2 (en) Air conditioning system
US9651317B2 (en) Heat exchanger and air conditioner
JP5858478B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
JP5079857B2 (en) Air conditioner indoor unit
JP6223596B2 (en) Air conditioner indoor unit
WO2017183180A1 (en) Heat exchanger
US20130240187A1 (en) Heat exchanger and air conditioner equipped with same
JP2006284133A (en) Heat exchanger
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JP4845987B2 (en) Air conditioning system
JP4785670B2 (en) Air conditioner indoor unit
JP3177302U (en) Air conditioning unit
JP2007147221A (en) Heat exchanger with fin
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
JP2004271113A (en) Heat exchanger
JP2010261642A (en) Condenser and air conditioning device having the same
JP6952797B2 (en) Heat exchanger and refrigeration cycle equipment
JP5404571B2 (en) Heat exchanger and equipment
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP3177300U (en) Air conditioning unit
JP2015014397A (en) Heat exchanger
JP6678413B2 (en) Air conditioner
JP3177299U (en) Air conditioning unit
WO2018040036A1 (en) Micro-channel heat exchanger and air-cooled refrigerator

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150704

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R323531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees