JP6468208B2 - Powder for annealing separator, method for producing the same, and grain-oriented electrical steel sheet - Google Patents

Powder for annealing separator, method for producing the same, and grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6468208B2
JP6468208B2 JP2016009857A JP2016009857A JP6468208B2 JP 6468208 B2 JP6468208 B2 JP 6468208B2 JP 2016009857 A JP2016009857 A JP 2016009857A JP 2016009857 A JP2016009857 A JP 2016009857A JP 6468208 B2 JP6468208 B2 JP 6468208B2
Authority
JP
Japan
Prior art keywords
powder
mass
boron
annealing
annealing separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016009857A
Other languages
Japanese (ja)
Other versions
JP2017128773A (en
Inventor
敬 寺島
寺島  敬
高宮 俊人
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016009857A priority Critical patent/JP6468208B2/en
Publication of JP2017128773A publication Critical patent/JP2017128773A/en
Application granted granted Critical
Publication of JP6468208B2 publication Critical patent/JP6468208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、表面にフォルステライトを主体とする被膜を有しない方向性電磁鋼板の製造に供する焼鈍分離剤に用いられる粉末に関し、方向性電磁鋼板における完全な被膜レス化に寄与する焼鈍分離剤用粉末、その製造方法、および方向性電磁鋼板に関するものである。   The present invention relates to a powder used for an annealing separator for producing a grain-oriented electrical steel sheet that does not have a film mainly composed of forsterite on the surface, and for an annealing separator that contributes to complete filmlessness in the grain-oriented electrical steel sheet. The present invention relates to a powder, a manufacturing method thereof, and a grain-oriented electrical steel sheet.

方向性電磁鋼板の製造は、所定の成分組成に調整した鋼スラブに、熱間圧延、焼鈍、冷間圧延を施し、次いで再結晶焼鈍後、仕上焼鈍を施す工程を経るのが一般的である。上記の工程のうち、仕上焼鈍工程では、1200℃以上の高温での焼鈍が必要であることから、コイルの焼きつき防止のために、酸化マグネシウムの粉末を主体とする焼鈍分離剤を塗布するのが通例である。   Production of grain-oriented electrical steel sheets is generally performed by subjecting a steel slab adjusted to a predetermined component composition to hot rolling, annealing, and cold rolling, followed by recrystallization annealing followed by finish annealing. . Of the above steps, the finish annealing step requires annealing at a high temperature of 1200 ° C. or higher. Therefore, an annealing separator mainly composed of magnesium oxide powder is applied to prevent coil seizure. Is customary.

また、酸化マグネシウムには、上記の焼鈍分離剤としての役割のほかに、仕上焼鈍の前に行われる脱炭焼鈍時に鋼板表面に生成するシリカを主体とする酸化層と反応させてフォルステライト被膜を形成させるという役割や、インヒビターと呼ばれる鉄の結晶粒の成長を制御する析出物(例えば、AlN、MnS、MnSe、Si3N4、TiN、TiCなどの一部)を仕上焼鈍後に鋼板中から除去して純化するという役割がある。 In addition to the above role as an annealing separator, magnesium oxide reacts with an oxide layer mainly composed of silica that forms on the steel sheet surface during decarburization annealing prior to finish annealing to form a forsterite coating. Precipitation (such as AlN, MnS, MnSe, Si 3 N 4 , TiN, TiC, etc.) is removed from the steel sheet after finish annealing. And has the role of purification.

上記のフォルステライト被膜は、上塗りされるリン酸塩系の絶縁被膜と鋼板との密着性を向上させるバインダーとしての働きをはじめとして、鋼板に張力を付与することにより、磁気特性を向上させるという働きもある。   The above forsterite coating works as a binder that improves the adhesion between the overcoated phosphate insulating coating and the steel plate, and improves the magnetic properties by applying tension to the steel plate. There is also.

しかし、フォルステライト被膜は、密着性の向上効果が優れている反面、地鉄と被膜との界面構造を乱すために、鉄損に対する張力効果が相殺される。これを避けるため、特許文献1には、鋼板表面と被膜との界面の粗度を低減し、つまり、地鉄表面を平滑化するとともに、張力付与処理を行なうことで材料の鉄損を大幅に低減する技術が開示されている。酸化マグネシウムを主体とする焼鈍分離剤は、通常、フォルステライトを鋼板表面に緻密かつ均一に形成させる為に反応性が良好なものが使用されている。   However, while the forsterite film has an excellent adhesion improving effect, it disturbs the interface structure between the ground iron and the film, so that the tension effect on the iron loss is offset. In order to avoid this, Patent Document 1 discloses that the roughness of the interface between the steel sheet surface and the coating is reduced, that is, the iron core of the material is greatly reduced by smoothing the surface of the ground iron and applying the tension. Techniques for reducing are disclosed. As the annealing separator mainly composed of magnesium oxide, those having good reactivity are usually used in order to form forsterite densely and uniformly on the steel sheet surface.

しかし、このような焼鈍分離剤は、鋼板表面を平滑化するためには不都合なものもある。そのため、特許文献2には、酸化マグネシウム100重量部にアルカリ又はアルカリ土類金属の塩化物を2〜40重量部添加した焼鈍分離剤を用いる技術が開示されている。また、特許文献3には焼鈍分離剤としてアルミナを用いることによりフォルステライトを形成しない技術が開示されている。   However, such an annealing separator is inconvenient for smoothing the steel plate surface. Therefore, Patent Document 2 discloses a technique using an annealing separator obtained by adding 2 to 40 parts by weight of an alkali or alkaline earth metal chloride to 100 parts by weight of magnesium oxide. Patent Document 3 discloses a technique that does not form forsterite by using alumina as an annealing separator.

特公昭52-24499号公報Japanese Patent Publication No.52-24499 特開昭64-62476号公報JP-A-64-62476 特開2003-268450号公報JP 2003-268450 A

しかしながら、上記いずれの技術においても、仕上焼鈍後に少量の酸化物が残留してしまう問題を解決するには至らず、鏡面状態の平滑な表面を得るためには、フッ酸を含む酸での酸洗や電解研磨等のプロセスが必要であり、製造コストが非常に高いという問題を有している。   However, none of the above-mentioned techniques has solved the problem that a small amount of oxide remains after finish annealing, and in order to obtain a mirror-like smooth surface, an acid with hydrofluoric acid is used. Processes such as washing and electropolishing are necessary, and the manufacturing cost is very high.

本発明は、上記の実情に鑑み開発されたもので、仕上焼鈍後に残留する酸化物量が極めて少なく、フッ酸を含む酸での酸洗や電解研磨等のプロセスを追加することなく、鏡面状態の平滑な表面を持つ方向性電磁鋼板を得るのに寄与する焼鈍分離剤用粉末および平滑な表面を持つ方向性電磁鋼板を得ることを目的とする。   The present invention has been developed in view of the above circumstances, and the amount of oxide remaining after finish annealing is extremely small, and without adding a process such as pickling with an acid containing hydrofluoric acid or electropolishing, it is in a mirror state. An object is to obtain a powder for annealing separator that contributes to obtaining a grain-oriented electrical steel sheet having a smooth surface and a grain-oriented electrical steel sheet having a smooth surface.

さて、上記の課題を解決すべく、本発明者らは、特許文献2および特許文献3の技術について鋭意調査検討した。
その結果、特許文献2に記載の技術では、従来と同等のフォルステライト被膜を形成するために調整された酸化マグネシウムを使用するため、フォルステライト被膜の形成能力が高く、塩化物によりSiO2の分解を促進してケイ酸塩化合物の生成を阻止しようとしても、100%阻止する効果が得られないことがわかった。
Now, in order to solve the above-mentioned problems, the present inventors have intensively investigated and studied the techniques of Patent Document 2 and Patent Document 3.
As a result, the technique described in Patent Document 2 uses magnesium oxide prepared to form a forsterite film equivalent to the conventional one, and therefore has a high forsterite film forming ability, and the decomposition of SiO 2 by chlorides. It was found that even if it was attempted to prevent the formation of silicate compounds by promoting the above, the effect of inhibiting 100% could not be obtained.

特許文献3に記載の技術では、アルミナをスラリーとして塗布する際に、鋼板に持ち込まれる水分が悪影響を与えていることが考えられる。特許文献3ではこの点を考慮し、その請求項2で「アルミナを主成分とする焼鈍分離剤を水スラリー状で塗布乾燥した後の持ち込み水分量を1.5%以下とする」としているが、1.5%以下では未だ不十分あり、持ち込まれた水分により、高温の焼鈍において鋼板表面に酸化物が生じてしまうことがわかった。   In the technique described in Patent Document 3, it is considered that when alumina is applied as a slurry, moisture brought into the steel sheet has an adverse effect. Patent Document 3 considers this point and claims that in claim 2, “the amount of water brought in after applying and separating an annealing separator mainly composed of alumina in a water slurry state is 1.5% or less” is 1.5. % Or less is still inadequate, and it has been found that oxides are generated on the surface of the steel sheet by high-temperature annealing due to the introduced moisture.

まず発明者らは、特許文献3での発想である、できるだけフォルステライトを形成させないという考えを改めた。すなわち、持ち込まれた水分による酸化物の形成は不可避であることを前提に、新たな技術の開発を試みた。ここで、酸化物の形成を前提とすると、特許文献2の技術思想は、高温でのフォルステライト被膜形成に係るマグネシアと鋼板表面酸化物であるSiO2との反応を阻害しようというものであり、SiO2に着目したものであった。 First, the inventors changed the idea of not forming forsterite as much as possible, which is the idea in Patent Document 3. That is, the development of a new technology was attempted on the assumption that the formation of oxides due to the introduced moisture is inevitable. Here, assuming the formation of an oxide, the technical idea of Patent Document 2 is to inhibit the reaction between magnesia for forming a forsterite film at a high temperature and SiO 2 that is a steel sheet surface oxide. The focus was on SiO 2 .

そこで、発明者らは酸化マグネシウムに着目し鋭意研究を重ねた結果、
1)高温でのフォルステライト被膜の形成促進にはホウ素の作用が大きいこと、
2)高温で形成した被膜と地鉄の密着性には、ホウ素の存在形態が大きく関与していること、を見出した。
本発明は上記知見に立脚するものである。
すなわち本発明の要旨は次のとおりである。
Therefore, as a result of repeated researches focused on magnesium oxide, the inventors
1) The action of boron is large in promoting the formation of a forsterite film at high temperatures,
2) The present inventors have found that the presence of boron is largely involved in the adhesion between the coating formed at high temperature and the ground iron.
The present invention is based on the above findings.
That is, the gist of the present invention is as follows.

(1)ホウ素を0.04質量%以上0.30質量%含有し、酸化マグネシウムを主成分とする焼鈍分離剤用粉末であって、
前記ホウ素中の4配位ホウ素の割合が50%以上であることを特徴とする、焼鈍分離剤用粉末。
(1) A powder for an annealing separator containing 0.04 mass% or more and 0.30 mass% of boron and containing magnesium oxide as a main component,
An annealing separator powder, wherein the proportion of tetracoordinate boron in the boron is 50% or more.

(2)リンをP2O5換算で0.03質量%以上0.30質量%含有することを特徴とする、上記(1)に記載の焼鈍分離剤用粉末。 (2) The powder for annealing separator as described in (1) above, wherein phosphorus is contained in an amount of 0.03 to 0.30% by mass in terms of P 2 O 5 .

(3)酸化マグネシウム粉末中の325メッシュふるい残分が1.0%質量以下であることを特徴とする、上記(1)または(2)に記載の焼鈍分離剤用粉末。 (3) The annealing separator powder according to (1) or (2) above, wherein the 325 mesh sieve residue in the magnesium oxide powder is 1.0% by mass or less.

(4)酸化マグネシウムの含有率が95質量%以上であることを特徴とする、上記(1)ないし(3)に記載の焼鈍分離剤用粉末。 (4) Magnesium oxide content is 95% by mass or more, The annealing separator powder according to (1) to (3) above.

(5)水酸化マグネシウムおよび炭酸マグネシウムのいずれか一方または両方と、ホウ素とを含む原料を焼成し、その後、
焼成物の湿度調節により4配位ホウ素比率を調整することを特徴とする、焼鈍分離剤用酸化粉末の製造方法。
(5) Firing a raw material containing one or both of magnesium hydroxide and magnesium carbonate and boron, and then
A method for producing an oxidized powder for an annealing separator, wherein the tetracoordinate boron ratio is adjusted by adjusting the humidity of the fired product.

(6)前記原料は、前記水酸化マグネシウムおよび前記炭酸マグネシウムのいずれか一方またはその両方を、合計で80質量%以上含むことを特徴とする、上記(5)に記載の焼鈍分離剤用粉末の製造方法。 (6) The raw material of the powder for annealing separator according to (5) above, wherein the raw material contains one or both of the magnesium hydroxide and the magnesium carbonate in a total of 80% by mass or more. Production method.

(7)前記原料は、前記ホウ素を0.04質量%以上0.30質量%以下含有し、該ホウ素中の4配位ホウ素の割合が50%質量以上であることを特徴とする、上記(5)または(6)に記載の焼鈍分離剤用粉末の製造方法。 (7) The above raw material contains 0.04% by mass or more and 0.30% by mass or less of the boron, and the proportion of tetracoordinate boron in the boron is 50% by mass or more. The manufacturing method of the powder for annealing separators as described in 6).

(8)上記(1)ないし(4)に記載の焼鈍分離剤用粉末により鋼板表面上にフォルステライトを主体とする被膜を有しないことを特徴とする方向性電磁鋼板。 (8) A grain-oriented electrical steel sheet characterized by having no coating mainly composed of forsterite on the steel sheet surface by the annealing separator powder according to any one of (1) to (4) above.

(9)厚みが0.05mm以上0.23mm以下であることを特徴とする、上記(8)に記載の方向性電磁鋼板。 (9) The grain-oriented electrical steel sheet according to (8) above, wherein the thickness is 0.05 mm or more and 0.23 mm or less.

本発明によれば、フッ酸を含む酸での酸洗や電解研磨等のプロセスが不要であり、製造コストが安価で、磁気特性良好である、鏡面状態の平滑な表面を持つ方向性電磁鋼板を得ることができる。   According to the present invention, a grain-oriented electrical steel sheet having a smooth surface in a mirror state, which does not require a process such as pickling with an acid containing hydrofluoric acid or electropolishing, has a low manufacturing cost, and has good magnetic properties. Can be obtained.

以下、本発明を導くに至った実験結果について説明する。
まず、試料を次のようにして製作した。
出発原料として宇部マテリアルズ株式会社製の気相法高純度超微粉マグネシア2000Aを用いた。その純度は99.98%と非常に高純度であった。
Hereinafter, experimental results that led to the present invention will be described.
First, a sample was manufactured as follows.
As a starting material, vapor phase high purity ultrafine powder magnesia 2000A manufactured by Ube Materials Co., Ltd. was used. Its purity was very high at 99.98%.

この出発原料を純水で水和し、水酸化マグネシウムスラリーを得た。この水酸化マグネシウムスラリーに、ホウ酸(H3BO3)を、後述する焼鈍のあとに所望のホウ素濃度となるように調整して添加し、水酸化マグネシウムスラリーをフィルタープレスにて圧搾し、水酸化マグネシウムケーキを得た。 This starting material was hydrated with pure water to obtain a magnesium hydroxide slurry. To this magnesium hydroxide slurry, boric acid (H 3 BO 3 ) is added after annealing to be adjusted to a desired boron concentration, and the magnesium hydroxide slurry is squeezed with a filter press, A magnesium oxide cake was obtained.

この水酸化マグネシウムケーキ100gをアルミナ製坩堝に入れ、電気炉(丸祥電気製 SPX1518T-17)において1000℃〜1500℃の温度域に、電気炉が復熱してから30分間、空気中で焼成し、そのまま炉内で冷却を行なった後、粉砕を行なった。こうして造られた粉末のホウ素量と4配位ホウ素比率(4配位ホウ素/(3配位ホウ素+4配位ホウ素))を表1に記載する。   100 g of this magnesium hydroxide cake is put in an alumina crucible and baked in the air in the temperature range of 1000 ° C to 1500 ° C for 30 minutes after the electric furnace reheats in an electric furnace (SPX1518T-17 manufactured by Marusho Electric). After cooling in the furnace as it was, pulverization was performed. The amount of boron and the 4-coordinate boron ratio (4-coordinate boron / (3-coordinate boron + 4-coordinate boron)) of the powder thus prepared are shown in Table 1.

なお、ホウ素量は酸化マグネシウムを酸溶解し、高周波誘導結合プラズマ(ICP)にて分析した。4配位ホウ素比率については、株式会社東レリサーチセンターにて、JEOL社製ECA600を用いてDD/MAS法で行った。測定は、パルス幅1.0μsec(30°パルス)とし、繰り返し待ち時間を3.0sとし、基準物質として飽和ホウ酸水溶液(外部基準19.49ppm)を用い、室温で、試料回転数を15.0kHzとして行った。   The amount of boron was analyzed by high-frequency inductively coupled plasma (ICP) after magnesium oxide was dissolved in acid. The tetracoordinate boron ratio was measured by DD / MAS method using ECA600 manufactured by JEOL at Toray Research Center, Inc. Measurement was performed at a pulse width of 1.0 μsec (30 ° pulse), a repetition waiting time of 3.0 s, a saturated boric acid aqueous solution (external reference 19.49 ppm) as a reference material, and a sample rotation speed of 15.0 kHz at room temperature. .

3配位ホウ素と4配位ホウ素の存在比率の算出は波形分離をすることで正確に行うことができるが、より簡易に算出する方法として27ppm〜6ppmを3配位ホウ素由来のピーク、6ppm〜−6ppmを4配位ホウ素由来のピークとしてその面積を積分して比をとることで算出した。   Calculation of the abundance ratio of tricoordinated boron and tetracoordinated boron can be accurately performed by waveform separation, but as a simpler calculation method, the peak derived from tricoordinated boron, from 6 ppm to 6 ppm -6 ppm was calculated as a peak derived from tetracoordinate boron, and the area was integrated to calculate the ratio.

なお、4配位ホウ素比率の測定については、ECA600を必ずしも用いる必要はなく、別の水素の共鳴周波数で600MHz相当の磁場強度を持つNMR測定装置であれば、測定により得られたNMRスペクトルから上記と同様に算出できる。   For the measurement of the tetracoordinate boron ratio, ECA600 is not necessarily used, and any NMR measurement apparatus having a magnetic field strength equivalent to 600 MHz at another hydrogen resonance frequency can be obtained from the NMR spectrum obtained by measurement. It can be calculated in the same manner as

表1の結果から、焼成温度を高くするほど、4配位ホウ素比率が高くなることがわかる。これは焼成前の水酸化マグネシウム中に取り込まれたH3BO3は、Materials Transactions, vol.54, No.9, (2013) P.1809のFig.7に示されるように、3配位で存在し、その後焼成に伴って徐々に4配位となっていくためであると考えられる。 From the results in Table 1, it can be seen that the higher the firing temperature, the higher the tetracoordinate boron ratio. This is because H 3 BO 3 incorporated into magnesium hydroxide before firing is tri-coordinated as shown in Fig. 7 of Materials Transactions, vol. 54, No. 9, (2013) P.1809. This is considered to be due to the fact that it exists and then gradually becomes four-coordinated with firing.

Figure 0006468208
Figure 0006468208

さらに、焼成後に、焼成物に対して乾燥処理または吸湿処理のような湿度調節を行うことにより、4配位ホウ素比率を制御する。すなわち、焼成物に対して乾燥処理または吸湿処理を行うことにより、所望の4配位ホウ素比率を得ることができる。湿度調節の好ましい条件としては、乾燥処理は100℃〜400℃(より好ましくは100℃〜300℃)で行い、吸湿処理は10℃〜50℃(より好ましくは20℃〜40℃)で行うこととし、処理時間は、所望の4配位ホウ素比率となるように、乾燥処理時間または吸湿処理時間を適宜選択する。   Furthermore, the tetracoordinate boron ratio is controlled by performing humidity adjustment such as drying or moisture absorption treatment on the fired product after firing. That is, a desired tetracoordinate boron ratio can be obtained by subjecting the fired product to a drying treatment or a moisture absorption treatment. As preferable conditions for humidity control, the drying treatment is performed at 100 ° C. to 400 ° C. (more preferably 100 ° C. to 300 ° C.), and the moisture absorption treatment is performed at 10 ° C. to 50 ° C. (more preferably 20 ° C. to 40 ° C.). As the treatment time, a drying treatment time or a moisture absorption treatment time is appropriately selected so that a desired tetracoordinate boron ratio is obtained.

例えば、表1のNo.5の酸化マグネシウムを主成分とする焼鈍分離剤用粉末を200℃で6時間から48時間乾燥処理を施したものを表2に記載する。また、表1のNo.2の酸化マグネシウムを22℃、湿度70%の室内に1日から42日放置して吸湿処理たものを表3に記載する。   For example, Table 2 shows powders for annealing separator containing No. 5 magnesium oxide as the main component in Table 1 subjected to drying treatment at 200 ° C. for 6 hours to 48 hours. Table 3 shows the results of moisture absorption treatment of No. 2 magnesium oxide in Table 1 which was left in a room at 22 ° C. and 70% humidity for 1 to 42 days.

表2の結果から、200℃での乾燥処理で4配位ホウ素比率を低くすることができることがわかった。具体的には、表1のNo.5の酸化マグネシウムを24時間乾燥処理することにより、4配位ホウ素比率を60%から55%まで低下させることができた。   From the results in Table 2, it was found that the tetracoordinate boron ratio can be lowered by drying at 200 ° C. Specifically, the 4-coordinate boron ratio could be reduced from 60% to 55% by drying the No. 5 magnesium oxide in Table 1 for 24 hours.

また、表3の結果から、吸湿処理として室内に放置することで、4配位ホウ素比率を高くすることができることもわかった。具体的には、表1のNo.2の酸化マグネシウムを14日間吸湿処理することにより、4配位ホウ素比率を48%から82%まで高めることができた。   The results in Table 3 also revealed that the tetracoordinate boron ratio can be increased by leaving it indoors as a moisture absorption treatment. Specifically, the four-coordinate boron ratio could be increased from 48% to 82% by moisture absorption treatment of No. 2 magnesium oxide in Table 1 for 14 days.

Figure 0006468208
Figure 0006468208

Figure 0006468208
Figure 0006468208

次に、C:0.045質量%、Si:3.25質量%、Mn:0.070質量%、Al:80ppm、N:40ppm、S:20ppmを含有する電磁鋼板用スラブを1200℃の温度に加熱後、熱間圧延し、2.0mm厚の熱延板コイルとし、この熱延板に1000℃の温度で30秒間の熱延板焼鈍を施し、鋼板表面のスケールを除去した。次にタンデム圧延機により冷間圧延し、最終冷延板厚0.23mmとした。その後、均熱温度850℃で90秒間保持する脱炭焼鈍を施し、表1ないし表3に記載の酸化マグネシウムを主成分とする焼鈍分離剤を塗布してコイル状に巻取り、1200℃まで25℃/hで昇熱し、1200℃で20h保持する仕上焼鈍を施したのち、焼鈍分離剤をブラシで除去した。その後、N2 98%-H2 2%の非酸化性雰囲気で800℃、30秒の平滑化焼鈍を施した。 Next, the steel sheet slab containing C: 0.045% by mass, Si: 3.25% by mass, Mn: 0.070% by mass, Al: 80ppm, N: 40ppm, S: 20ppm is heated to a temperature of 1200 ° C and then hot. The steel sheet was rolled to form a hot-rolled sheet coil having a thickness of 2.0 mm. Next, it was cold-rolled with a tandem rolling mill to a final cold-rolled sheet thickness of 0.23 mm. Thereafter, decarburization annealing is performed for 90 seconds at a soaking temperature of 850 ° C., and an annealing separator mainly composed of magnesium oxide shown in Tables 1 to 3 is applied and wound into a coil shape. After heat-treating at a temperature of ℃ / h and finish annealing at 1200 ° C for 20 hours, the annealing separator was removed with a brush. Thereafter, smooth annealing was performed at 800 ° C. for 30 seconds in a non-oxidizing atmosphere of N 2 98% -H 2 2%.

かくして得られた試料の磁束密度B8、鉄損W17/50、鋼板の酸素量、ホウ素量、繰り返し曲げ特性を調査した。磁束密度および鉄損については、鋼板に10MPaの引張り応力を機械的に負荷し、JISC2550-1エプスタイン試験に準拠して試験した。鋼板の酸素量は、不活性ガス融解赤外線吸収法により測定し、ホウ素量(B)は、ホウ酸メチル蒸留分離クルクミン吸光光度法により測定した。繰返し曲げ特性は、JISC2550(2000)の方法を用いて測定した。 The magnetic flux density B 8 , iron loss W 17/50 , oxygen content of the steel sheet, boron content, and repeated bending characteristics of the sample thus obtained were investigated. For magnetic flux density and iron loss, a tensile stress of 10 MPa was mechanically applied to the steel sheet, and the test was conducted in accordance with the JISC2550-1 Epstein test. The amount of oxygen in the steel sheet was measured by an inert gas melting infrared absorption method, and the amount of boron (B) was measured by a methyl borate-distilled curcumin spectrophotometric method. The repeated bending characteristics were measured using the method of JISC2550 (2000).

表4に、実験に用いたマグネシア粉末とその4配位ホウ素比率、マグネシア粉末のホウ素量(質量%)、磁束密度B8、鉄損W17/50、鋼板の酸素量およびホウ素量(質量ppm)、繰り返し曲げ特性を示す。
表4に示されるように、ホウ素量が少ない場合(No.1-3)および4配位ホウ素比率が少ない場合(No.1-1、No.1-2、No.2-5)では鋼板に残存する酸素量(つまり表面酸化物=フォルステライト被膜の残留)が多く、鉄損が劣る。ホウ素量が多すぎる場合(No.1-4)では鋼板中にホウ素が残留し、鉄損の増加及び繰り返し曲げ回数の減少が生じる。
Table 4 shows the magnesia powder used in the experiment and its 4-coordinated boron ratio, the boron content of the magnesia powder (mass%), the magnetic flux density B 8 , the iron loss W 17/50 , the oxygen content of the steel sheet and the boron content (mass ppm) ), Showing repeated bending properties.
As shown in Table 4, when the amount of boron is small (No. 1-3) and when the tetracoordinate boron ratio is low (No. 1-1, No. 1-2, No. 2-5), the steel plate There is a large amount of oxygen remaining (namely, surface oxide = residual forsterite film) and the iron loss is inferior. When the amount of boron is too large (No. 1-4), boron remains in the steel sheet, resulting in an increase in iron loss and a decrease in the number of repeated bending.

なお、鉄損は磁束密度(1.91-1.93T)を勘案し、0.85W/kg以下を良好と判断した。繰り返し曲げ回数は、10回以上を良好とした。Bの分析値(質量ppm)は、20質量ppm未満で良好と判断し、酸素の分析値(質量ppm)は、20質量ppm以下で良好と判断した。   The iron loss was determined to be 0.85 W / kg or less considering the magnetic flux density (1.91-1.93T). The number of repeated bendings was 10 or more. The analytical value (mass ppm) of B was judged to be good when it was less than 20 mass ppm, and the analytical value (mass ppm) of oxygen was judged to be good when it was 20 mass ppm or less.

Figure 0006468208
Figure 0006468208

次に、本発明の各構成要件の限定理由について述べる。
本発明で対象とする方向性電磁鋼板用酸化マグネシウムを主成分とする焼鈍分離剤用粉末には、ホウ素を0.04質量%以上0.30質量%以下(好ましくは0.05質量%以上0.20質量%以下)含有させる。ホウ素量が0.04質量%よりも少ないと、仕上焼鈍後の酸素残存率が高くなり、ひいては鉄損が劣る。0.30質量%よりも多いと、仕上焼鈍中に鋼板にBが浸入しFe2Bを形成し、鉄損の増加と繰り返し曲げ回数の減少が生じる。
Next, the reasons for limiting the respective constituent requirements of the present invention will be described.
The powder for annealing separator mainly composed of magnesium oxide for grain-oriented electrical steel sheet according to the present invention contains boron in an amount of 0.04 mass% to 0.30 mass% (preferably 0.05 mass% to 0.20 mass%). . If the boron content is less than 0.04% by mass, the oxygen remaining rate after finish annealing becomes high, and consequently the iron loss is inferior. If it exceeds 0.30% by mass, B penetrates into the steel sheet during finish annealing to form Fe 2 B, resulting in an increase in iron loss and a decrease in the number of repeated bending.

さらに、ホウ素中の4配位ホウ素の比率は50%以上(好ましくは55%以上95%以下)とする。すなわち、4配位ホウ素比率が50%よりも低いと、高温でのフォルステライト被膜形成能が向上し、鋼板と被膜の密着性が向上し、焼鈍後の分離剤除去工程でブラシ等による機械的な被膜除去が容易できなくなり、表面残存物が多くなり、ひいては鉄損の増加を招く。   Further, the ratio of tetracoordinate boron in boron is 50% or more (preferably 55% or more and 95% or less). That is, when the tetracoordinate boron ratio is lower than 50%, the forsterite film forming ability at high temperature is improved, the adhesion between the steel sheet and the film is improved, and the separation agent removing process after annealing is mechanically performed with a brush or the like. Film removal cannot be facilitated, surface residue increases, and iron loss increases.

4配位ホウ素比率の調整方法としては、種々の方法が挙げられるが、例えば、上記表1〜3に示したように、焼成温度などを調整する方法、焼成後に乾燥、吸湿等の操作により調整する方法があり、また、予め4配位比率がわかっている化合物(例えばMg2B2O5、MgB6O10、Mg3B2O6など)を混合する方法なども考えられる。 There are various methods for adjusting the tetracoordinate boron ratio. For example, as shown in Tables 1 to 3 above, the method for adjusting the firing temperature, etc., and adjustment by operations such as drying and moisture absorption after firing. In addition, a method in which a compound having a known 4-coordination ratio (eg, Mg 2 B 2 O 5 , MgB 6 O 10 , Mg 3 B 2 O 6, etc.) is conceivable.

焼鈍分離剤用粉末中にはさらにリン(P)をP2O5換算で0.03質量%以上、0.30質量%以下含有させることができる。Bは高温での被膜反応性に寄与する一方、Pは低温での被膜反応性を向上させる働きがある。そのため、Pを添加することで、低温での被膜形成量を一定に制御することにより、持ち込み水分による鋼板の酸化の影響を少なくし、いっそうBを制御することによる被膜形成制御性を向上させることができる。PがP2O5換算で0.03質量%よりも少ないと、改善効果が得られなくなり、添加量が多くなると、改善効果とコストアップがつりあわなくなるため、その添加量は0.30質量%以下とすることが好ましい。焼鈍分離剤用粉末中には、上記以外に、Igloss(強熱減量)として揮発する成分、主として水分、炭酸ガス、有機分など、CaO、SiO2、Al2O3などの原料鉱物由来の不純物も含まれ得る。 The annealing separator powder may further contain phosphorus (P) in an amount of 0.03% by mass or more and 0.30% by mass or less in terms of P 2 O 5 . B contributes to film reactivity at high temperatures, while P has a function to improve film reactivity at low temperatures. Therefore, by adding P, the film formation amount at a low temperature is controlled to be constant, thereby reducing the influence of steel plate oxidation due to moisture brought in, and improving the film formation controllability by controlling B more. Can do. When P is less than 0.03% by mass in terms of P 2 O 5 , the improvement effect cannot be obtained, and when the addition amount is large, the improvement effect and cost increase are not balanced, so the addition amount is 0.30 mass% or less. It is preferable. In addition to the above, in the powder for annealing separator, impurities that volatilize as Igloss (ignition loss), mainly moisture, carbon dioxide gas, organic matter, impurities such as CaO, SiO 2 , Al 2 O 3 May also be included.

本発明の酸化マグネシウムを主成分とする焼鈍分離剤用粉末は、原料を焼成することにより製造され、その主な原料としては水酸化マグネシウム、炭酸マグネシウムが挙げられる。B、Pは原料の段階で予め添加や純化等により調整されていることが好ましい。焼成前には水分を多く含むケーキ状であることが一般的であるが、その水分量はケーキ重量の20%以下にすることが望ましい(つまり原料固形分として80%以上)。   The annealing separator powder mainly composed of magnesium oxide of the present invention is produced by firing the raw material, and the main raw material includes magnesium hydroxide and magnesium carbonate. B and P are preferably adjusted in advance at the raw material stage by addition or purification. In general, the cake is in the form of a cake containing a large amount of moisture before baking, but the moisture content is desirably 20% or less of the cake weight (that is, 80% or more as a raw material solid content).

焼成して作られた酸化マグネシウムは、粉砕を行うことにより、その粒度を整えることが好ましい。粒度としては325メッシュふるい残分が1.0質量%以下であることが好ましい。ふるい残分が1.0質量%よりも多くなると鋼板表面に押し傷をつくる原因となったり、それを防ぐために電磁鋼板の製造プロセス中にふるいを設置するなどの手間がかかることがある。325メッシュ(目開き45μm)をふるいに用いたのは、焼鈍後の押し傷の防止の観点から、粗粒の大きさと焼鈍分離剤の塗布厚みとの関係がちょうどよいためである。   Magnesium oxide produced by firing is preferably adjusted in particle size by pulverization. The particle size is preferably 1.0% by mass or less with a 325 mesh sieve residue. If the sieve residue exceeds 1.0% by mass, it may cause the surface of the steel sheet to be pressed, and it may take time to install a sieve during the manufacturing process of the electrical steel sheet to prevent it. The reason why 325 mesh (aperture 45 μm) is used for the sieve is that the relationship between the size of the coarse particles and the coating thickness of the annealing separator is just right from the viewpoint of preventing the scratches after annealing.

粉末中には、その製造プロセスによってCa、Si、Fe、Al、S、Naなど様々な不純物が不可避的に混入する場合があるため、できるだけその特性のバラツキを小さくするためには、焼鈍分離剤用粉末における酸化マグネシウムの含有率は95質量%以上であることが好ましい。   Various impurities such as Ca, Si, Fe, Al, S, Na may be inevitably mixed in the powder depending on the manufacturing process. Therefore, in order to reduce the variation in the characteristics as much as possible, the annealing separator The content of magnesium oxide in the powder for use is preferably 95% by mass or more.

また、方向性電磁鋼板用の焼鈍分離剤としては、酸化マグネシウムを主成分とする上記粉末に加えて、助剤として、例えば、酸化チタンといった公知の物質を混合することができる。   Moreover, as an annealing separation agent for grain-oriented electrical steel sheets, in addition to the above powder containing magnesium oxide as a main component, a known substance such as titanium oxide can be mixed as an auxiliary agent.

本発明で対象とする鋼板は、方向性電磁鋼板であれば特に鋼種を問わない。通常、このような方向性電磁鋼板は、珪素を含む鋼スラブを、公知の方法で熱間圧延し、1回もしくは中間焼鈍を挟む複数回の冷間圧延により最終板厚に仕上げたのち、一次再結晶焼鈍を施し、ついで焼鈍分離剤を塗布してから最終仕上焼鈍を行うことによって製造される。   The steel plate used in the present invention is not particularly limited as long as it is a grain-oriented electrical steel plate. Usually, such a grain-oriented electrical steel sheet is obtained by first hot rolling a steel slab containing silicon by a known method and finishing it to a final thickness by one or multiple cold rolling sandwiching intermediate annealing. It is manufactured by subjecting it to recrystallization annealing and then applying an annealing separating agent, followed by final finishing annealing.

また、鋼板の厚みが薄くなると、鋼板性能に寄与する表面の割合が大きくなるため、表面の鏡面化度が鉄損に及ぼす影響も大きくなり、そのぶん、焼鈍分離剤用粉末に求められる特性も高くなる。そのため本発明の焼鈍分離剤用粉末は、特に板厚の薄い鋼板に適用するにあたり、これまで公知の焼鈍分離剤用粉末に比べて好適である。
[実施例]
In addition, as the thickness of the steel sheet decreases, the proportion of the surface that contributes to the performance of the steel sheet increases, so the influence of the surface specularity on the iron loss also increases, and the characteristics required for the powder for annealing separators are also increased. Get higher. Therefore, the annealing separator powder of the present invention is more suitable than the conventionally known annealing separator powders, particularly when applied to a steel sheet having a thin plate thickness.
[Example]

(実施例1)
ナカライテスク社製の塩基性炭酸マグネシウム(MgCO3)4Mg(OH)2・xH2Oを出発原料にし、これを純水でスラリー状にした上、硼砂(Na2B4O5(OH)4・8H2O)、メタリン酸マグネシウムを、焼成後の粉末として所望のB濃度およびP濃度となるよう混合した。このスラリーをフィルタープレスにて圧搾し、ケーキを得た。ケーキ水分量は3%であった。次に、アルミナ製坩堝にケーキを入れ、ボックス炉にて空気中で表5に記載の温度、時間で焼成した。焼成後、これを粉砕し粒度を調整し、焼鈍分離剤用粉末とした。このようにして得られた粉末の含有ホウ素中の4配位ホウ素比率、含有ホウ素量、P量を調査した結果を表5に示す。
Example 1
Nacalai Tesque's basic magnesium carbonate (MgCO 3 ) 4 Mg (OH) 2 xH 2 O was used as a starting material, which was slurried with pure water and then borax (Na 2 B 4 O 5 (OH) 4 · 8H 2 O) and magnesium metaphosphate were mixed to obtain desired B and P concentrations as the powder after firing. This slurry was squeezed with a filter press to obtain a cake. The cake moisture content was 3%. Next, the cake was put into an alumina crucible and fired at a temperature and time shown in Table 5 in a box furnace in the air. After firing, this was pulverized to adjust the particle size to obtain a powder for an annealing separator. Table 5 shows the results of investigating the tetracoordinate boron ratio, the boron content, and the P content in the boron content of the powder thus obtained.

次に、C:0.06質量%、Si:2.95質量%、Mn:0.07質量%、Se:0.015質量%、Sb:0.015質量%およびCr:0.03質量%を含み、残部Feおよび不可避的不純物よりなる鋼スラブを、1350℃で40分加熱後、熱間圧延して2.6mmの板厚にした後、900℃および60sでの熱延板焼鈍を施してから、1050℃および60sの中間焼鈍を挟んで冷間圧延し、0.23mmの最終板厚に仕上げた。その後、脱炭焼鈍し、表5に記載の粉末を焼鈍分離剤として塗布して1200℃まで25℃/hで昇温し、1200℃で20h保持する仕上焼鈍を施し、焼鈍分離剤をブラシで除去した。その後、N2 98%-H2 2%の非酸化性雰囲気で800℃、30秒の平滑化焼鈍を施した。 Next, steel containing C: 0.06% by mass, Si: 2.95% by mass, Mn: 0.07% by mass, Se: 0.015% by mass, Sb: 0.015% by mass and Cr: 0.03% by mass, the balance being Fe and inevitable impurities The slab is heated at 1350 ° C for 40 minutes, then hot rolled to a thickness of 2.6mm, then hot-rolled sheet annealed at 900 ° C and 60s, followed by intermediate annealing at 1050 ° C and 60s. Cold rolled to a final thickness of 0.23 mm. Then, decarburization annealing was performed, and the powder listed in Table 5 was applied as an annealing separator, heated to 1200 ° C at a rate of 25 ° C / h, and subjected to finish annealing that was held at 1200 ° C for 20 hours. Removed. Thereafter, smooth annealing was performed at 800 ° C. for 30 seconds in a non-oxidizing atmosphere of N 2 98% -H 2 2%.

上記に従って製造された方向性電磁鋼板について、磁束密度B8、鉄損W17/50、酸素含有量、ホウ素含有量、繰り返し曲げ特性を測定した結果を併せて表5に示す。磁束密度および鉄損については、鋼板に10MPaの引張り応力を機械的に負荷することにより、JISC2550-1エプスタイン試験に準拠して試験した。鋼板の酸素量を不活性ガス融解赤外線吸収法により測定し、Bをホウ酸メチル蒸留分離クルクミン吸光光度法により測定した。繰返し曲げ特性は、JISC2550(2000)の方法を用いて測定した。繰返し曲げ回数は、10回以上を良好と判断した。Bの分析値(質量ppm)は、20質量ppm未満で良好と判断し、酸素の分析値(質量ppm)は、20質量ppm以下で良好と判断した。 Table 5 shows the results of measuring the magnetic flux density B 8 , iron loss W 17/50 , oxygen content, boron content, and repeated bending characteristics for the grain- oriented electrical steel sheet produced according to the above. The magnetic flux density and iron loss were tested according to the JISC2550-1 Epstein test by mechanically applying a tensile stress of 10 MPa to the steel sheet. The amount of oxygen in the steel sheet was measured by an inert gas melting infrared absorption method, and B was measured by methyl borate distillation separation curcumin absorptiometry. The repeated bending characteristics were measured using the method of JISC2550 (2000). The number of repeated bendings was determined to be 10 or more. The analytical value (mass ppm) of B was judged to be good when it was less than 20 mass ppm, and the analytical value (mass ppm) of oxygen was judged to be good when it was 20 mass ppm or less.

表5に示されるように、粉末中にホウ素を0.04質量%以上0.30質量%以下含有し、その4配位ホウ素比率が50%以上であれば、仕上焼鈍後酸素残存量および鉄損が低く、外観の均一性が高く、繰り返し曲げ回数を増加させることができる。さらに、PをP2O5換算で0.03質量%以上含ませることにより、一段と低い酸素残存量が得られる。 As shown in Table 5, if the powder contains boron in an amount of 0.04 mass% or more and 0.30 mass% or less and the tetracoordinate boron ratio is 50% or more, the amount of residual oxygen and iron loss after finish annealing are low, The appearance is highly uniform and the number of repeated bending can be increased. Furthermore, by including 0.03% by mass or more of P in terms of P 2 O 5 , a much lower oxygen residual amount can be obtained.

Figure 0006468208
Figure 0006468208

(実施例2)
ナカライテックス製塩化マグネシウム6水和物を25℃に保った純水中に溶解し、飽和水溶液とした。これを水酸化カルシウムと反応させて水酸化マグネシウムを得た。こうして得られた水酸化マグネシウムをろ過水洗し、これを再び純水中に投入して水酸化マグネシウムスラリーとした。この水酸化マグネシウムスラリーに、ホウ酸ナトリウムおよびリン酸カルシウムを、焼成後に所望のB濃度およびP濃度になるように、所定量添加した。
(Example 2)
Nacalai tex magnesium chloride hexahydrate was dissolved in pure water kept at 25 ° C. to obtain a saturated aqueous solution. This was reacted with calcium hydroxide to obtain magnesium hydroxide. The magnesium hydroxide thus obtained was washed with filtered water and again poured into pure water to obtain a magnesium hydroxide slurry. Predetermined amounts of sodium borate and calcium phosphate were added to the magnesium hydroxide slurry so that the desired B concentration and P concentration were obtained after firing.

こうして調整された水酸化マグネシウムスラリーを、フィルタープレスでケーキ状に圧搾し、その後、アルミナ坩堝中で1000℃で40分間焼成して粉末A,Bを得、また1400℃で40分間焼成して粉末C,Dを得た。焼成後粉砕によりその粒度を調整した。得られた粉末A,Bは、表6に記載の日数で、25℃、湿度80%で吸湿処理を行い、粉末C,Dはさらに、表6に記載の時間の間、200℃で乾燥処理を行った。このようにして得られた粉末の含有ホウ素中の4配位ホウ素比率、含有ホウ素量、P量を調査した結果を表6に示す。   The magnesium hydroxide slurry thus prepared is squeezed into a cake with a filter press, and then calcined at 1000 ° C. for 40 minutes in an alumina crucible to obtain powders A and B, and further calcined at 1400 ° C. for 40 minutes. C and D were obtained. The particle size was adjusted by pulverization after firing. The obtained powders A and B were subjected to a moisture absorption treatment at 25 ° C. and 80% humidity for the number of days shown in Table 6, and the powders C and D were further dried at 200 ° C. for the time shown in Table 6. Went. Table 6 shows the results of investigating the tetracoordinate boron ratio, the boron content, and the P content in the boron contained in the powder thus obtained.

次に、C:0.045質量%、Si:3.25質量%、Mn:0.070質量%、Al:80ppm、N:40ppm、S:20ppmを含有する電磁鋼板用スラブを1200℃の温度に加熱後、熱間圧延し、2.0mm厚の熱延板コイルとし、この熱延板に1000℃の温度で30秒間の熱延板焼鈍を施し、鋼板表面のスケールを除去した。次に、タンデム圧延機により冷間圧延し、最終冷延板厚0.20mmとした。その後、均熱温度850℃で90秒間保持する脱炭焼鈍を施して、表6に記載の粉末100gと酸化チタンを5.0g混合したものを、焼鈍分離剤として塗布してコイル状に巻取り、1200℃まで25℃/hで昇熱し、1200℃で20h保持する仕上焼鈍を施したのち、焼鈍分離剤をブラシで除去し、その後、N2 98%-H2 2%の非酸化性雰囲気で800℃、30秒の平滑化焼鈍を施した。 Next, the steel sheet slab containing C: 0.045% by mass, Si: 3.25% by mass, Mn: 0.070% by mass, Al: 80ppm, N: 40ppm, S: 20ppm is heated to a temperature of 1200 ° C and then hot. The steel sheet was rolled to form a hot-rolled sheet coil having a thickness of 2.0 mm. Next, it was cold-rolled with a tandem rolling mill to a final cold-rolled sheet thickness of 0.20 mm. Thereafter, decarburization annealing is performed for 90 seconds at a soaking temperature of 850 ° C., and a mixture of 100 g of the powder shown in Table 6 and 5.0 g of titanium oxide is applied as an annealing separator and wound into a coil shape. After heat-treating to 1200 ° C at 25 ° C / h and finishing annealing at 1200 ° C for 20 h, the annealing separator is removed with a brush, and then N 2 98% -H 2 2% in a non-oxidizing atmosphere Smooth annealing was performed at 800 ° C. for 30 seconds.

上記に従って製造された方向性電磁鋼板について、磁束密度B8、鉄損W17/50、鋼板の酸素量、ホウ素含有量、繰り返し曲げ特性を調査した結果を併せて表6に示す。磁束密度および鉄損については、鋼板に10MPaの引張り応力を機械的に負荷し、JISC2550-1エプスタイン試験に準拠して試験した。鋼板の酸素量を不活性ガス融解赤外線吸収法で測定し、Bをホウ酸メチル蒸留分離クルクミン吸光光度法で測定した。繰返し曲げ特性は、JISC2550(2000)の方法を用いて測定した。繰返し曲げ回数は、10回以上を良好と判断した。Bの分析値(質量ppm)は、20質量ppm未満で良好と判断し、酸素の分析値(質量ppm)は、20質量ppm以下で良好と判断した。 Table 6 shows the results of investigating the magnetic flux density B 8 , iron loss W 17/50 , oxygen content, boron content, and repeated bending characteristics of the grain- oriented electrical steel sheet manufactured according to the above. For magnetic flux density and iron loss, a tensile stress of 10 MPa was mechanically applied to the steel sheet, and the test was conducted in accordance with the JISC2550-1 Epstein test. The oxygen content of the steel sheet was measured by an inert gas melting infrared absorption method, and B was measured by methyl borate distillation separation curcumin absorptiometry. The repeated bending characteristics were measured using the method of JISC2550 (2000). The number of repeated bendings was determined to be 10 or more. The analytical value (mass ppm) of B was judged to be good when it was less than 20 mass ppm, and the analytical value (mass ppm) of oxygen was judged to be good when it was 20 mass ppm or less.

表6に示されるように、粉末中にホウ素を0.04質量%以上0.30質量%以下含有し、その4配位ホウ素比率が50%以上であることにより、仕上焼鈍後酸素残存量および鉄損が低く、外観の均一性が高く、繰り返し曲げ回数を増加させることができる。さらに、PをP2O5換算で0.03質量%以上含ませることにより、一段と低い酸素残存量が得られる。 As shown in Table 6, the powder contains 0.04 mass% or more and 0.30 mass% or less of boron, and its 4-coordinate boron ratio is 50% or more, so that the amount of residual oxygen and iron loss after finish annealing are low. The appearance uniformity is high and the number of repeated bending can be increased. Furthermore, by including 0.03% by mass or more of P in terms of P 2 O 5 , a much lower oxygen residual amount can be obtained.

Figure 0006468208
Figure 0006468208

Claims (6)

酸化マグネシウムの含有率が95質量%以上で、かつホウ素を0.04質量%以上0.30質量%以下含有する焼鈍分離剤用粉末であって、
前記ホウ素中の4配位ホウ素の割合が55〜95%であることを特徴とする、焼鈍分離剤用粉末。
A powder for an annealing separator having a magnesium oxide content of 95% by mass or more and containing 0.04% by mass to 0.30% by mass of boron,
An annealing separator powder, wherein the proportion of tetracoordinate boron in the boron is 55 to 95%.
リンをP2O5換算で0.03質量%以上0.30質量%以下含有することを特徴とする、請求項1に記載の焼鈍分離剤用粉末。 2. The powder for annealing separator according to claim 1, wherein phosphorus is contained in an amount of 0.03 to 0.30 mass% in terms of P 2 O 5 . 酸化マグネシウム粉末中の325メッシュふるい残分が1.0質量%以下であることを特徴とする、請求項1または2に記載の焼鈍分離剤用粉末。   The powder for annealing separator according to claim 1 or 2, wherein a 325 mesh sieve residue in the magnesium oxide powder is 1.0 mass% or less. 請求項1ないし3に記載の焼鈍分離剤用粉末を製造する方法であって、水酸化マグネシウムおよび炭酸マグネシウムのいずれか一方または両方と、ホウ素とを含む原料を焼成し、その後、
焼成物の湿度調節により4配位ホウ素比率を調整することを特徴とする、焼鈍分離剤用粉末の製造方法。
A method for producing a powder for an annealing separator according to claim 1, wherein a raw material containing one or both of magnesium hydroxide and magnesium carbonate and boron is fired, and thereafter
A method for producing a powder for an annealing separator, wherein the tetracoordinate boron ratio is adjusted by adjusting the humidity of the fired product.
前記原料は、前記水酸化マグネシウムおよび前記炭酸マグネシウムのいずれか一方またはその両方を、合計で80質量%以上含むことを特徴とする、請求項4に記載の焼鈍分離剤用粉末の製造方法。   The said raw material contains 80 mass% or more in total of any one or both of the said magnesium hydroxide and the said magnesium carbonate, The manufacturing method of the powder for annealing separators of Claim 4 characterized by the above-mentioned. 前記原料は、前記ホウ素を0.04質量%以上0.30質量%以下含有し、該ホウ素中の4配位ホウ素の割合が55〜95%であることを特徴とする、請求項4または5に記載の焼鈍分離剤用粉末の製造方法
The annealing according to claim 4 or 5, wherein the raw material contains 0.04 mass% or more and 0.30 mass% or less of the boron, and the proportion of tetracoordinate boron in the boron is 55 to 95%. Method for producing powder for separating agent .
JP2016009857A 2016-01-21 2016-01-21 Powder for annealing separator, method for producing the same, and grain-oriented electrical steel sheet Active JP6468208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009857A JP6468208B2 (en) 2016-01-21 2016-01-21 Powder for annealing separator, method for producing the same, and grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009857A JP6468208B2 (en) 2016-01-21 2016-01-21 Powder for annealing separator, method for producing the same, and grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2017128773A JP2017128773A (en) 2017-07-27
JP6468208B2 true JP6468208B2 (en) 2019-02-13

Family

ID=59396521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009857A Active JP6468208B2 (en) 2016-01-21 2016-01-21 Powder for annealing separator, method for producing the same, and grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6468208B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454334B2 (en) * 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP7454335B2 (en) * 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP6939766B2 (en) * 2018-12-27 2021-09-22 Jfeスチール株式会社 Annealing separator for grain-oriented electrical steel sheets and manufacturing method of grain-oriented electrical steel sheets
JP6939767B2 (en) 2018-12-27 2021-09-22 Jfeスチール株式会社 Annealing separator for grain-oriented electrical steel sheets and manufacturing method of grain-oriented electrical steel sheets
CN113388725B (en) 2021-06-18 2022-12-02 协和化学工业株式会社 Method for producing annealing separator, and grain-oriented electromagnetic steel sheet
WO2024048721A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Mixed powder, mgo particles, method for producing grain-oriented electrical steel sheet, method for producing mgo particles, and method for producing mixed powder
WO2024048751A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Mixed powder, mgo particles, method for producing grain-oriented electrical steel sheet, method for producing mgo particles, and method for producing mixed powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224499B2 (en) * 1973-01-22 1977-07-01
JP3973988B2 (en) * 2002-07-24 2007-09-12 タテホ化学工業株式会社 Calcium / boron composite oxide-containing magnesium oxide composition, method for producing the same, and use thereof
JP4122448B2 (en) * 2002-11-28 2008-07-23 タテホ化学工業株式会社 Magnesium oxide for annealing separator
JP3761867B2 (en) * 2003-02-05 2006-03-29 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP5194927B2 (en) * 2008-03-25 2013-05-08 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5786950B2 (en) * 2011-10-04 2015-09-30 Jfeスチール株式会社 Annealing separator for grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2017128773A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6468208B2 (en) Powder for annealing separator, method for producing the same, and grain-oriented electrical steel sheet
JP6547835B2 (en) Directional electromagnetic steel sheet and method of manufacturing directional electromagnetic steel sheet
JP6463458B2 (en) Preliminary coating composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet containing the same, and method for producing the same
CN107849656A (en) Orientation electromagnetic steel plate and its manufacture method
JP7454334B2 (en) Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
KR102493707B1 (en) Grain-oriented electrical steel sheet manufacturing method and grain-oriented electrical steel sheet
JP5696404B2 (en) Method for producing grain-oriented electrical steel sheet
JPS62156226A (en) Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
JP6613919B2 (en) Powder for annealing separator and method for producing grain-oriented electrical steel sheet
JP6791327B2 (en) Method for manufacturing powder for annealing separator
JP5418844B2 (en) Method for producing grain-oriented electrical steel sheet
JP2011068968A (en) Method for manufacturing grain-oriented electrical steel sheet
JP2011231368A (en) Annealing separation agent for grain-oriented electromagnetic steel sheet
CN114402087B (en) Grain-oriented electromagnetic steel sheet
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JPH0225433B2 (en)
JP7044216B1 (en) Powder for annealing separator and its manufacturing method and manufacturing method of grain-oriented electrical steel sheet
JP2023024094A (en) METHOD FOR PRODUCING MIXED POWDER AND MgO PARTICLES, AND METHOD FOR PRODUCING GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET
CN117062920A (en) Powder for annealing separating agent and method for producing oriented electromagnetic steel sheet using same
JP7256405B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPH09256068A (en) Production of grain-oriented silicon steel sheet for obtaining excellent glass coating
JP4259338B2 (en) Method for producing grain-oriented electrical steel sheet and method for preparing annealing separator
JPH11302731A (en) Production of grain-oriented silicon steel sheet excellent in magnetic characteristic and punching property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R150 Certificate of patent or registration of utility model

Ref document number: 6468208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250