JP6468082B2 - Rotating electrical machine control device - Google Patents

Rotating electrical machine control device Download PDF

Info

Publication number
JP6468082B2
JP6468082B2 JP2015115159A JP2015115159A JP6468082B2 JP 6468082 B2 JP6468082 B2 JP 6468082B2 JP 2015115159 A JP2015115159 A JP 2015115159A JP 2015115159 A JP2015115159 A JP 2015115159A JP 6468082 B2 JP6468082 B2 JP 6468082B2
Authority
JP
Japan
Prior art keywords
modulation
phase
electrical machine
rotating electrical
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015115159A
Other languages
Japanese (ja)
Other versions
JP2017005810A (en
Inventor
スブラタ サハ
スブラタ サハ
佐藤 靖之
靖之 佐藤
宰徳 全
宰徳 全
裕樹 杉山
裕樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2015115159A priority Critical patent/JP6468082B2/en
Publication of JP2017005810A publication Critical patent/JP2017005810A/en
Application granted granted Critical
Publication of JP6468082B2 publication Critical patent/JP6468082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、直流電力と3相の交流電力との間で電力変換するインバータを介して交流の回転電機を制御する回転電機制御装置に関する。   The present invention relates to a rotating electrical machine control device that controls an AC rotating electrical machine via an inverter that converts power between DC power and three-phase AC power.

直流と交流との変換には、多くの場合、半導体スイッチング素子を用いたインバータが利用される。直流電力を交流電力に変換する際の変調方式として、パルス幅変調(Pulse Width Modulation)が知られている。パルス幅変調では、指令値としての交流波形(例えば交流電圧波形)の振幅と三角波(鋸波を含む)状のキャリアの波形の振幅との大小関係に基づいてパルスが生成される。キャリアとの比較によらずにデジタル演算により直接パルスを生成する場合もあるが、その場合でも、指令値としての交流波形の振幅と仮想的なキャリア波形の振幅とは相関関係を有する。パルス幅変調には、正弦波パルス幅変調(SPWM : Sinusoidal PWM)や、空間ベクトルパルス幅変調(SVPWM : Space Vector PWM)などが含まれる。これらの変調方式において、キャリアは例えばマイクロコンピュータの演算周期や電子回路の動作周期など、制御装置の制御周期に応じて定まる。つまり、複数相の交流電力が交流の回転電機などの駆動に利用される場合であっても、キャリアは回転電機の回転速度や回転角度(電気角)とは直接的に相関関係のない周期を有している。キャリアも、キャリアに基づいて生成される各パルスも、回転電機の回転には同期していない。従って、正弦波パルス幅変調、空間ベクトルパルス幅変調などの変調方式は、“非同期変調方式”と称する場合がある。   In many cases, an inverter using a semiconductor switching element is used for conversion between direct current and alternating current. As a modulation method for converting DC power to AC power, pulse width modulation is known. In pulse width modulation, a pulse is generated based on the magnitude relationship between the amplitude of an AC waveform (for example, AC voltage waveform) as a command value and the amplitude of a triangular wave (including sawtooth) carrier waveform. In some cases, the pulse is directly generated by digital calculation without being compared with the carrier, but even in that case, the amplitude of the AC waveform as the command value and the amplitude of the virtual carrier waveform have a correlation. Pulse width modulation includes sinusoidal pulse width modulation (SPWM: Sinusoidal PWM), space vector pulse width modulation (SVPWM: Space Vector PWM), and the like. In these modulation methods, the carrier is determined according to the control cycle of the control device, such as the operation cycle of the microcomputer and the operation cycle of the electronic circuit. In other words, even when a plurality of phases of AC power is used for driving an AC rotating electrical machine, the carrier has a cycle that is not directly correlated with the rotational speed or rotation angle (electrical angle) of the rotating electrical machine. Have. Neither the carrier nor each pulse generated based on the carrier is synchronized with the rotation of the rotating electrical machine. Therefore, modulation methods such as sinusoidal pulse width modulation and space vector pulse width modulation may be referred to as “asynchronous modulation methods”.

これに対し、回転電機の回転に同期したパルスを利用した変調方式を“同期変調方式”と称することができる。例えば回転電機の電気角1周期に付き1つのパルスが出力される矩形波変調は、同期変調方式である。回転電機の回転に同期していれば、パルス数は電気角1周期について複数個出力されてもよく、同期変調方式として、回転電機の回転に同期して複数パルスを出力する複数パルス変調を実施することも可能である。複数パルス変調には、5パルス変調、7パルス変調、9パルス変調などが採用可能である。   On the other hand, a modulation method using a pulse synchronized with the rotation of the rotating electrical machine can be referred to as a “synchronous modulation method”. For example, rectangular wave modulation in which one pulse is output per electrical angle period of a rotating electrical machine is a synchronous modulation method. As long as it is synchronized with the rotation of the rotating electrical machine, a plurality of pulses may be output for one electrical angle cycle. As a synchronous modulation method, multiple pulse modulation is performed to output multiple pulses in synchronization with the rotation of the rotating electrical machine. It is also possible to do. For multi-pulse modulation, 5-pulse modulation, 7-pulse modulation, 9-pulse modulation, etc. can be employed.

これらの変調方式は、回転電機の要求トルクや回転速度などの動作条件に応じて選択される。回転電機の動作中に、要求トルクや回転速度が変化した場合には、変調方式が切り替わる場合もある。特開2013−132135公報(特許文献1)にも記載されているように、非同期変調方式から同期変調方式へ変調方式が切り替わる際には、過渡的な電流が流れる場合がある(例えば第25〜35段落等)。特許文献1では、この瞬時の過渡電流が、過電流判定しきい値を超えて、回転電機の出力を制限してしまうことがないように、出力制限の判定を猶予するようにしている。但し、インバータを構成する半導体スイッチング素子には、この過渡電流に対する耐性が求められる。そのような特性を持つ半導体スイッチング素子を選定するとインバータの小型化の妨げとなり、またコストの低減も難しくなる。従って、そのような過渡電流の影響により、大きくなる交流電流の最大値(絶対値)を低減させることが好ましい。   These modulation methods are selected according to operating conditions such as required torque and rotational speed of the rotating electrical machine. If the required torque or rotational speed changes during operation of the rotating electrical machine, the modulation method may be switched. As described in Japanese Patent Laid-Open No. 2013-132135 (Patent Document 1), when the modulation method is switched from the asynchronous modulation method to the synchronous modulation method, a transient current may flow (for example, the 25th to 25th times). 35 paragraphs). In Patent Document 1, the determination of the output limit is delayed so that the instantaneous transient current does not exceed the overcurrent determination threshold value and limit the output of the rotating electrical machine. However, the semiconductor switching elements constituting the inverter are required to have resistance against this transient current. If a semiconductor switching element having such characteristics is selected, it will hinder downsizing of the inverter and it will be difficult to reduce costs. Therefore, it is preferable to reduce the maximum value (absolute value) of the alternating current that increases due to the influence of such a transient current.

特開2013−132135号公報JP 2013-132135 A

上記背景に鑑みて、非同期変調と同期変調とを切り替える際に生じる過渡電流の影響による交流電流の絶対値の最大値を低減する技術の提供が望まれる。   In view of the above background, it is desired to provide a technique for reducing the maximum value of the absolute value of an alternating current due to the influence of a transient current generated when switching between asynchronous modulation and synchronous modulation.

1つの態様として、上記に鑑みた、直流電力と3相の交流電力との間で電力変換するインバータを介して交流の回転電機を制御する回転電機制御装置は、
前記回転電機の回転に同期しないキャリア周波数を有するキャリアに基づいて生成される変調パルスによって前記インバータをスイッチング制御する非同期変調と、前記回転電機の回転に同期して生成される変調パルスによって前記インバータをスイッチング制御する同期変調と、を少なくとも前記回転電機の回転速度を含む前記回転電機の動作条件に応じて切換え、
前記非同期変調と前記同期変調との間での変調方式の切換えは、3相の交流電圧の関係を表す電圧位相に基づいて規定される遷移期間に行われ、前記遷移期間は、3相の交流電圧の内の1相の信号レベルがハイレベル又はローレベルに固定され、当該1相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する2相変調の状態となる前記電圧位相の期間に設定されている。
As one aspect, a rotary electric machine control device that controls an AC rotary electric machine via an inverter that converts power between DC power and three-phase AC power in view of the above,
Asynchronous modulation for switching control of the inverter by a modulation pulse generated based on a carrier having a carrier frequency not synchronized with the rotation of the rotating electrical machine, and the inverter by a modulation pulse generated in synchronization with the rotation of the rotating electrical machine Switching synchronous control and switching according to operating conditions of the rotating electrical machine including at least the rotational speed of the rotating electrical machine,
Switching of the modulation method between the asynchronous modulation and the synchronous modulation is performed in a transition period defined based on a voltage phase representing a relationship between three-phase AC voltages, and the transition period is a three-phase AC. The signal level of one phase of the voltage is fixed to a high level or a low level, and a state of two-phase modulation in which the signal level of the other two phases changes during a period in which the signal level of the one phase is fixed. The period of the voltage phase is set.

複数相の交流電流の何れか1相の電流が最大振幅である位相において変調方式が切換わると、当該最大電流に対して過渡電流が重畳されることになるので、交流電流の絶対値の最大値は大きくなる。従って、そのような位相で変調方式を切換えることを避け、より好ましい位相において変調方式を切換えると好適である。多くの場合、インバータは、電圧制御型であり、交流電圧の電圧位相(変調パルスの電圧位相とほぼ等価)によって変調方式を切換えるタイミングが規定されると好適である。インバータの交流側の相数が3相である場合、1相の電圧レベルが固定され、他の2相の電圧レベルが変化する2相変調のフェーズと、2相の電圧レベルが固定され、残りの1相の電圧レベルが変化する1相変調のフェーズとが発生し得る。1相変調のフェーズでは、3相の内の何れか1相の電流の振幅が大きくなり、過渡電流が重畳される基本電流の絶対値が大きくなる。発明者らによる実験やシミュレーションによれば、1相変調のフェーズで変調方式を切換えると、2相変調のフェーズで変調方式を切換える場合に比べて、過渡電流の影響によって交流電流の絶対値が大きくなる傾向があることが確認されている。従って、変調方式の切換えは、2相変調の状態となる電圧位相の期間に行われることが好ましい。   When the modulation method is switched in a phase where the current of any one of the multiple-phase alternating currents has the maximum amplitude, the transient current is superimposed on the maximum current, so the maximum absolute value of the alternating current is maximum. The value gets bigger. Therefore, it is preferable to avoid switching the modulation system at such a phase and switch the modulation system at a more preferable phase. In many cases, the inverter is of a voltage control type, and it is preferable that the timing for switching the modulation method is defined by the voltage phase of the AC voltage (substantially equivalent to the voltage phase of the modulation pulse). When the number of phases on the AC side of the inverter is three, the voltage level of one phase is fixed, the phase of two-phase modulation in which the voltage level of the other two phases changes, the voltage level of the two phases is fixed, and the rest The phase of the single phase modulation in which the voltage level of the single phase changes may occur. In the phase of one-phase modulation, the amplitude of the current of any one of the three phases increases, and the absolute value of the basic current on which the transient current is superimposed increases. According to experiments and simulations by the inventors, when the modulation method is switched in the phase of one-phase modulation, the absolute value of the alternating current is larger due to the influence of the transient current than in the case of switching the modulation method in the phase of two-phase modulation. It has been confirmed that there is a tendency to become. Therefore, it is preferable that the switching of the modulation system is performed during the voltage phase period in which the two-phase modulation is performed.

さらなる特徴と利点は、図面を参照して説明する回転電機制御装置の実施形態についての以下の記載から明確となる。   Further features and advantages will be apparent from the following description of an embodiment of a rotating electrical machine control device described with reference to the drawings.

回転電機制御装置を含むシステム構成を模式的に示すブロック図Block diagram schematically showing a system configuration including a rotating electrical machine control device 回転速度及びトルクと変調方式との関係を模式的に示す図Schematic diagram showing the relationship between rotation speed and torque and modulation method 回転速度及びトルクと変調方式との関係の一例を具体的に示す図The figure which shows an example of the relationship between a rotational speed and torque, and a modulation system concretely 非同期変調パルスと3相電流との関係の一例を示す波形図Waveform diagram showing an example of the relationship between an asynchronous modulation pulse and a three-phase current 同期変調パルスと3相電流との関係の一例を示す波形図Waveform diagram showing an example of the relationship between the synchronous modulation pulse and the three-phase current 非同期変調から同期変調への遷移の一例を示す波形図Waveform diagram showing an example of transition from asynchronous modulation to synchronous modulation 非同期変調から同期変調の遷移の際の電圧位相ベクトルの一例を示す説明図Explanatory drawing which shows an example of the voltage phase vector at the time of the transition from asynchronous modulation to synchronous modulation 変調方式の遷移の一例を示す説明図Explanatory drawing showing an example of transition of modulation system 変調方式を切換える好適な電圧位相の一例を示す波形図Waveform diagram showing an example of a suitable voltage phase for switching the modulation method 高周波非同期変調を経て変調方式を切換える例を示す波形図Waveform diagram showing an example of switching the modulation method via high-frequency asynchronous modulation 好適な電圧位相で変調方式を切換える例を示す波形図Waveform diagram showing an example of switching the modulation method with a suitable voltage phase 変調方式を切換える電圧位相と交流電流のピーク値との関係を示す波形図Waveform diagram showing the relationship between the voltage phase for switching the modulation method and the peak value of the alternating current 高周波非同期変調を経ると共に好適な電圧位相で変調方式を切換える例を示す波形図Waveform diagram showing an example of switching the modulation method at a suitable voltage phase while undergoing high-frequency asynchronous modulation 変調方式を切換える一般的な例を示す状態遷移図State transition diagram showing a general example of switching the modulation method 高周波非同期変調を経て変調方式を切換える例を示す状態遷移図State transition diagram showing an example of switching the modulation method via high-frequency asynchronous modulation 好適な電圧位相で変調方式を切換える例を示す状態遷移図State transition diagram showing an example of switching the modulation method with a suitable voltage phase 高周波非同期変調を経ると共に好適な電圧位相で変調方式を切換える例を示す状態遷移図State transition diagram showing an example of switching the modulation method at a suitable voltage phase while undergoing high-frequency asynchronous modulation 変調周波数と高周波非同期制御の実行時間との関係の一例を示す図The figure which shows an example of the relationship between the modulation frequency and the execution time of high frequency asynchronous control

以下、本実施形態に係る回転電機制御装置について図面に基づいて説明する。図1のブロック図は、回転電機制御装置を含むシステム構成を模式的に示している。回転電機80は、本実施形態では、例えばハイブリッド自動車や電気自動車等の車両の駆動力源となる回転電機である。回転電機80は、複数相の交流(ここでは3相交流)により動作する回転電機であり、電動機としても発電機としても機能することができる。後述するように、回転電機80は、インバータ10を介して高圧バッテリ11(直流電源)からの電力を動力に変換する(力行)。或いは、回転電機80は、例えば不図示の内燃機関や車輪から伝達される回転駆動力を電力に変換し、インバータ10を介して高圧バッテリ11を充電する(回生)。   Hereinafter, the rotating electrical machine control apparatus according to the present embodiment will be described with reference to the drawings. The block diagram of FIG. 1 schematically shows a system configuration including a rotating electrical machine control device. In this embodiment, the rotating electrical machine 80 is a rotating electrical machine that serves as a driving force source for a vehicle such as a hybrid vehicle or an electric vehicle. The rotating electrical machine 80 is a rotating electrical machine that operates with a plurality of phases of alternating current (here, three-phase alternating current), and can function as both an electric motor and a generator. As will be described later, the rotating electrical machine 80 converts electric power from the high voltage battery 11 (DC power supply) into power via the inverter 10 (power running). Alternatively, the rotating electrical machine 80 converts, for example, a rotational driving force transmitted from an unillustrated internal combustion engine or wheels into electric power, and charges the high voltage battery 11 via the inverter 10 (regeneration).

図1に示すように、回転電機制御装置2は、インバータ10を備えた回転電機駆動装置1を制御対象とし、回転電機駆動装置1を介して交流の回転電機80を駆動制御する。インバータ10は、直流電力(高圧バッテリ11)と複数相の交流電力との間で電力変換する電気回路である。即ち、回転電機制御装置2は、インバータ10を介して交流の回転電機80を制御する制御装置である。本実施形態では、回転電機制御装置2は、マイクロコンピュータやDSP(Digital Signal Processor)などの論理演算プロセッサなどのハードウェアと、プログラムやパラメータなどのソフトウェアとの協働によって実現される。当然ながら、回転電機制御装置2は、論理回路などの電子回路を中核としたハードウェアによって構成されてもよい。   As shown in FIG. 1, the rotating electrical machine control device 2 controls the rotating electrical machine drive device 1 including the inverter 10 and controls the AC rotating electrical machine 80 via the rotating electrical machine drive device 1. The inverter 10 is an electric circuit that converts power between DC power (high-voltage battery 11) and a plurality of phases of AC power. That is, the rotary electric machine control device 2 is a control device that controls the AC rotary electric machine 80 via the inverter 10. In the present embodiment, the rotating electrical machine control device 2 is realized by the cooperation of hardware such as a logical operation processor such as a microcomputer or DSP (Digital Signal Processor) and software such as a program or a parameter. Naturally, the rotating electrical machine control device 2 may be configured by hardware having an electronic circuit such as a logic circuit as a core.

例えば、回転電機制御装置2の中核となるマイクロコンピュータは、CPUコア、プログラムメモリ、パラメータメモリ、ワークメモリ、A/Dコンバータ、タイマ(カウンタ)等を有している。これらの全てが1つの集積回路の中に構成されている必要はなく、例えば、プログラムメモリなど一部がCPUコアとは別の素子であってもよい。CPUコアは、種々の演算の実行主体となるALU(Arithmetic Logic Unit)や、命令レジスタ、命令デコーダ、フラグレジスタ、汎用レジスタ、割り込みコントローラ、DMA(Direct Memory Access)コントローラなどを有して構成される。回転電機制御装置2の動作電圧は、3.3〜12[V]程度であり、回転電機制御装置2は、不図示の低圧バッテリ(例えば定格電圧が12〜24[V]程度)から電力の供給を受けて動作する。   For example, the microcomputer as the core of the rotating electrical machine control device 2 includes a CPU core, a program memory, a parameter memory, a work memory, an A / D converter, a timer (counter), and the like. All of these need not be configured in one integrated circuit. For example, a part such as a program memory may be an element different from the CPU core. The CPU core is configured to include an ALU (Arithmetic Logic Unit), an instruction register, an instruction decoder, a flag register, a general-purpose register, an interrupt controller, a DMA (Direct Memory Access) controller, and the like that perform various operations. . The operating voltage of the rotating electrical machine control device 2 is about 3.3 to 12 [V], and the rotating electrical machine control device 2 receives power from a low-voltage battery (not shown) (for example, rated voltage is about 12 to 24 [V]). Operates upon supply.

上述したように、インバータ10は、高圧バッテリ11(直流電源)に接続されると共に、交流の回転電機80に接続されて直流と複数相の交流(ここでは3相交流)との間で電力変換を行う。高圧バッテリ11は、例えば、ニッケル水素やリチウムイオンなどの二次電池や、電気二重層キャパシタなどのキャパシタ、或いはこれらを組み合わせたものなどであり、大電圧大容量の蓄電可能な直流電源である。高圧バッテリ11の定格電圧は200〜400[V]程度である。尚、高圧バッテリ11の出力電圧を昇圧する直流コンバータ(DC−DCコンバータ)を備える場合には、直流電源に当該コンバータを含めることができる。尚、このコンバータは、インバータ10を介して高圧バッテリ11へ電力が回生される場合には、降圧コンバータとして機能する。   As described above, the inverter 10 is connected to the high voltage battery 11 (DC power supply) and connected to the AC rotating electrical machine 80 to convert power between DC and a plurality of phases of AC (here, three-phase AC). I do. The high voltage battery 11 is, for example, a secondary battery such as nickel metal hydride or lithium ion, a capacitor such as an electric double layer capacitor, or a combination of these, and is a DC power supply capable of storing a large voltage and a large capacity. The rated voltage of the high voltage battery 11 is about 200 to 400 [V]. In the case where a DC converter (DC-DC converter) that boosts the output voltage of the high-voltage battery 11 is provided, the DC power supply can include the converter. Note that this converter functions as a step-down converter when power is regenerated to the high voltage battery 11 via the inverter 10.

以下、インバータ10の直流側の電圧(高圧バッテリ11の端子間電圧やコンバータの出力電圧)を直流リンク電圧Vdcと称する。インバータ10の直流側には、直流リンク電圧Vdcを平滑化する平滑コンデンサ(直流リンクコンデンサ4)が備えられている。直流リンクコンデンサ4は、回転電機80の消費電力の変動に応じて変動する直流電圧(直流リンク電圧Vdc)を安定化させる。   Hereinafter, the voltage on the DC side of the inverter 10 (voltage between terminals of the high voltage battery 11 and output voltage of the converter) is referred to as DC link voltage Vdc. A smoothing capacitor (DC link capacitor 4) for smoothing the DC link voltage Vdc is provided on the DC side of the inverter 10. The DC link capacitor 4 stabilizes a DC voltage (DC link voltage Vdc) that fluctuates according to fluctuations in power consumption of the rotating electrical machine 80.

上述したように、インバータ10は、直流リンク電圧Vdcを有する直流電力を複数相(nを自然数としてn相、ここでは3相)の交流電力に変換して回転電機80に供給すると共に、回転電機80が発電した交流電力を直流電力に変換して直流電源に供給する。インバータ10は、複数のスイッチング素子3を有して構成される。スイッチング素子3には、シリコン(Si)を基材としたIGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)、シリコンカーバイド(SiC)を基材としたSiC−MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC−SIT(SiC - Static Induction Transistor)、ガリウムナイトライド(GaN)を基材としたGaN−MOSFET(Gallium Nitride - MOSFET)などの高周波での動作が可能なパワー半導体素子を適用すると好適である。   As described above, the inverter 10 converts the DC power having the DC link voltage Vdc into a plurality of phases (n is a natural number, n-phase, here three-phase) AC power and supplies the AC power to the rotating electrical machine 80. AC power generated by 80 is converted into DC power and supplied to a DC power source. The inverter 10 includes a plurality of switching elements 3. The switching element 3 includes an IGBT (Insulated Gate Bipolar Transistor) based on silicon (Si), a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and a SiC-MOSFET (Silicon Carbide) based on silicon carbide (SiC). -Power semiconductor devices capable of high-frequency operation such as Metal Oxide Semiconductor FET), SiC-SIT (SiC-Static Induction Transistor), and GaN-MOSFET (Gallium Nitride-MOSFET) based on gallium nitride (GaN) Is preferably applied.

インバータ10を構成するスイッチング素子には、しばしばIGBTが用いられている。電圧制御型のMOSFETは、耐圧に伴ってオン抵抗が高くなり発熱が大きくなる。一方、バイポーラトランジスタは、スイッチング速度が低く高速スイッチングには向かない。IGBTは、このようなMOSFET及びバイポーラトランジスタの欠点をそれぞれ補うように、1つの半導体素子上において、入力段にMOSFET構造を、出力段にバイポーラトランジスタ構造を構築したものである。IGBTは、ゲート・エミッタ間の電圧で駆動され、入力信号によってオン・オフができる自己消弧形であるので、大電力の高速スイッチングが可能な半導体素子である。このような特徴により、インバータ10を構成するスイッチング素子3として、IGBTは好適である。   An IGBT is often used as a switching element constituting the inverter 10. In the voltage control type MOSFET, the on-resistance increases and the heat generation increases with the withstand voltage. On the other hand, a bipolar transistor has a low switching speed and is not suitable for high-speed switching. The IGBT is constructed by constructing a MOSFET structure at the input stage and a bipolar transistor structure at the output stage on one semiconductor element so as to compensate for the drawbacks of the MOSFET and the bipolar transistor. The IGBT is a self-extinguishing type that is driven by a voltage between a gate and an emitter and can be turned on / off by an input signal. Due to such characteristics, the IGBT is suitable as the switching element 3 constituting the inverter 10.

ところで、近年、インバータ10を構成するスイッチング素子3として、上述したようなSiC半導体やGaN半導体を用いるケースも増加している。SiCやGaNは、シリコンに比べてバンドギャップが広く、ワイドバンドギャップ半導体と称され、半導体材料の素材としての性能が高い。このため、シリコン素材のIGBTに代えて、SiC素材やGaN素材のFETを使ってインバータ10を構成することで、インバータ10を小型化、軽量化することができる。また、インバータ10の損失も低減させることができる。但し、小型化によって面積も小さくなるので、インバータ10の放熱性は低下する。また、SiC半導体やGaN半導体は、Si半導体よりも耐熱性が高いため、素子に備えられるヒートシンクも、例えば、熱抵抗は小さいが高価な銅から、銅よりも熱抵抗の大きいが銅よりも安価なアルミニウムなどを採用することが容易である。従って、SiC半導体やGaN半導体を用いたインバータ10では、素子の性能向上に伴う小型化や軽量化、ヒートシンクなどの付加部材のコストダウンが可能な一方で、熱対策の上ではIGBTを用いたインバータ10に対して大きなアドバンテージは得られない可能性がある。つまり、SiC半導体やGaN半導体を用いたインバータ10でも、IGBTを用いたインバータ10と同様の熱対策の継続や、さらなる熱対策の付加が重要である。   Incidentally, in recent years, cases in which the above-described SiC semiconductor or GaN semiconductor is used as the switching element 3 constituting the inverter 10 are increasing. SiC and GaN have a wider band gap than silicon and are referred to as wide band gap semiconductors, and have high performance as materials for semiconductor materials. For this reason, the inverter 10 can be reduced in size and weight by configuring the inverter 10 using a SiC material or a GaN material FET instead of the silicon material IGBT. Moreover, the loss of the inverter 10 can also be reduced. However, since the area is reduced by downsizing, the heat dissipation of the inverter 10 is lowered. In addition, since SiC semiconductors and GaN semiconductors have higher heat resistance than Si semiconductors, the heat sinks provided in the elements are also, for example, from low-priced but expensive copper to higher thermal resistance than copper but less expensive than copper It is easy to adopt aluminum or the like. Therefore, in the inverter 10 using the SiC semiconductor or the GaN semiconductor, the size and weight can be reduced along with the improvement of the element performance, and the cost of the additional member such as the heat sink can be reduced. There is a possibility that a large advantage over 10 may not be obtained. That is, even in the inverter 10 using the SiC semiconductor or the GaN semiconductor, it is important to continue the heat countermeasure similar to the inverter 10 using the IGBT or to add a further heat countermeasure.

熱対策の1つとして以下に説明するような過渡電流(例えば変調方式の切換え時に生じる過渡電流など)に起因する交流電流のピーク値(絶対値)の低減は重要である。1つの対策として、インバータ10のスイッチング周波数を高くすることによって、過渡電流を低減し、当該過渡電流に起因する交流電流のピーク値も低減することが考えられる。しかし、インバータ10のスイッチング周波数を高くすると、インバータ10を構成するスイッチング素子3の発熱量も増加する。従って、インバータ10のスイッチング周波数を単純に高くするという対策は好ましくない。上述したように、スイッチング素子3がIGBTであっても、SiC半導体やGaN半導体を素材としたFETなどであっても、インバータ10の装置としての熱容量には限界がある。つまり、本実施形態のインバータ10を構成するスイッチング素子3が、シリコンを基材とするIGBT、及びシリコンカーバイドやガリウムナイトライドを基材としたFETの何れであっても、変調方式の切換え時に生じる過渡電流などに起因する交流電流のピーク値(絶対値)の低減は重要である。このため、図1ではスイッチング素子3の構造を特定しない形で例示している。また、当然ながら、スイッチング素子3としてバイポーラトランジスタを用いることを妨げるものではない。   As one of the countermeasures against heat, it is important to reduce the peak value (absolute value) of the alternating current due to a transient current as described below (for example, a transient current generated when the modulation method is switched). As one countermeasure, it is conceivable that the transient current is reduced by increasing the switching frequency of the inverter 10 and the peak value of the alternating current resulting from the transient current is also reduced. However, when the switching frequency of the inverter 10 is increased, the amount of heat generated by the switching element 3 constituting the inverter 10 also increases. Therefore, a measure of simply increasing the switching frequency of the inverter 10 is not preferable. As described above, there is a limit to the heat capacity of the inverter 10 regardless of whether the switching element 3 is an IGBT or an FET made of a SiC semiconductor or a GaN semiconductor. In other words, the switching element 3 constituting the inverter 10 of the present embodiment is generated when the modulation method is switched regardless of whether the switching element 3 is an IGBT based on silicon or an FET based on silicon carbide or gallium nitride. It is important to reduce the peak value (absolute value) of the alternating current due to a transient current or the like. For this reason, in FIG. 1, the structure of the switching element 3 is illustrated without specifying it. Needless to say, this does not prevent the use of a bipolar transistor as the switching element 3.

インバータ10は、複数組のスイッチング素子3を備えたブリッジ回路により構成されている。インバータ10は、回転電機80の各相のステータコイル8(3相の場合、U相、V相、W相)に対応するそれぞれのアームについて上段側及び下段側の一対のスイッチング素子3を備えて構成されている。具体的には、図1に示すように、交流1相分のアームが上段側スイッチング素子31と下段側スイッチング素子32との直列回路により構成されている。また、各スイッチング素子3には、下段側から上段側へ向かう方向を順方向として、並列にダイオード(フリーホイールダイオード5)が接続されている。換言すれば、スイッチング素子3がオン状態の場合の通流方向と逆方向を順方向として、各スイッチング素子3にフリーホイールダイオード5が並列接続(逆並列接続)されている。   The inverter 10 is configured by a bridge circuit including a plurality of sets of switching elements 3. The inverter 10 includes a pair of switching elements 3 on the upper stage side and the lower stage side for each arm corresponding to the stator coil 8 of each phase of the rotating electrical machine 80 (in the case of three phases, U phase, V phase, W phase). It is configured. Specifically, as shown in FIG. 1, an AC one-phase arm is configured by a series circuit of an upper stage side switching element 31 and a lower stage side switching element 32. Each switching element 3 is connected in parallel with a diode (freewheel diode 5) with the direction from the lower side to the upper side as the forward direction. In other words, the free wheel diode 5 is connected in parallel (reverse parallel connection) to each switching element 3 with the direction opposite to the flow direction when the switching element 3 is in the ON state as the forward direction.

スイッチング素子3のそれぞれは、回転電機制御装置2から出力されるスイッチング制御信号(例えば、IGBT又はMOSFETのゲート端子を駆動するゲート駆動信号)に従って動作する。高電圧をスイッチングするIGBTやMOSFETの制御端子(ゲート端子)に入力されるゲート駆動信号は、回転電機制御装置2を構成する電子回路(マイクロコンピュータなど)の動作電圧よりも高い電圧を必要とする。このため、回転電機制御装置2により生成されたスイッチング制御信号は、ドライバ回路30によって電圧変換(例えば昇圧)された後、インバータ10に入力される。   Each of the switching elements 3 operates according to a switching control signal (for example, a gate drive signal that drives the gate terminal of the IGBT or MOSFET) output from the rotating electrical machine control device 2. A gate drive signal input to a control terminal (gate terminal) of an IGBT or MOSFET that switches a high voltage requires a voltage higher than an operating voltage of an electronic circuit (such as a microcomputer) constituting the rotating electrical machine control device 2. . For this reason, the switching control signal generated by the rotating electrical machine control device 2 is voltage-converted (for example, boosted) by the driver circuit 30 and then input to the inverter 10.

回転電機80には、図1に示すように、回転電機80のロータの各時点での磁極位置(ロータの回転角度)や回転速度を検出する回転センサ13が備えられている。回転センサ13は、例えばレゾルバ等である。また、回転電機80の各相のステータコイル8を流れる電流は、電流センサ12により測定される。本実施形態では、3相の全てが非接触型の電流センサ12により測定される構成を例示している。回転電機制御装置2は、回転電機80の要求トルクや回転速度、変調率に基づき、電流フィードバック制御を行う。要求トルクは、例えば車両用制御装置や車両の走行制御装置などの不図示の他の制御装置から回転電機制御装置2に提供される。尚、変調率は、直流電圧(直流リンク電圧Vdc)に対する3相交流電力の実効値の割合を示す指標である。   As shown in FIG. 1, the rotating electrical machine 80 includes a rotation sensor 13 that detects a magnetic pole position (rotational angle of the rotor) and a rotational speed at each time point of the rotor of the rotating electrical machine 80. The rotation sensor 13 is, for example, a resolver. The current flowing through the stator coil 8 of each phase of the rotating electrical machine 80 is measured by the current sensor 12. In the present embodiment, a configuration in which all three phases are measured by the non-contact type current sensor 12 is illustrated. The rotating electrical machine control device 2 performs current feedback control based on the required torque, rotational speed, and modulation rate of the rotating electrical machine 80. The required torque is provided to the rotating electrical machine control device 2 from another control device (not shown) such as a vehicle control device or a vehicle travel control device. The modulation factor is an index indicating the ratio of the effective value of the three-phase AC power to the DC voltage (DC link voltage Vdc).

回転電機制御装置2は、これらの要求トルク、回転速度、変調率等に応じて、インバータ10をスイッチング制御するためのパルス(変調パルス)を生成して出力する。尚、変調パルスは都度生成されても良いし、回転電機80或いはインバータ10の動作条件に応じて予めメモリ等にパルスパターンを記憶させておき、DMA転送等によってプロセッサに負荷をかけることなく出力される形態であってもよい。   The rotating electrical machine control device 2 generates and outputs a pulse (modulation pulse) for switching control of the inverter 10 according to the required torque, rotational speed, modulation factor, and the like. The modulation pulse may be generated each time, or a pulse pattern is stored in advance in a memory or the like according to the operating conditions of the rotating electrical machine 80 or the inverter 10 and is output without applying a load to the processor by DMA transfer or the like. It may be a form.

ところで、直流から交流へ変換する場合を変調、交流から直流へ変換する場合を復調と、区別して称することも可能であり、両者を併せて変復調と称することもできるが、本実施形態では何れの変換についても変調と称して説明する。本実施形態において、回転電機制御装置2は、ベクトル制御法を用いた電流フィードバック制御を行って、インバータ10を介して回転電機80を制御する。ベクトル制御法については、以下のような簡単な説明に留め、詳細な説明は省略する。   By the way, the case of converting from direct current to alternating current can be referred to as modulation, and the case of conversion from alternating current to direct current can be referred to as demodulation, and both can be collectively referred to as modulation / demodulation. The conversion is also referred to as modulation. In the present embodiment, the rotating electrical machine control device 2 performs current feedback control using a vector control method, and controls the rotating electrical machine 80 via the inverter 10. The vector control method is simply described as follows, and detailed description thereof is omitted.

まず、回転電機制御装置2は、直流リンク電圧Vdc、要求トルク、変調率等に基づいて、ベクトル制御における直交ベクトル座標系における電流指令を演算する。この直交ベクトル座標系は、回転電機80のロータの磁極の方向を一方の軸(d軸)、この軸(d軸)に直交する方向を他方の軸(q軸)とする座標系である。ステータコイル8を流れる3相の電流(実電流)も、磁極位置に基づいてこの直交ベクトル座標系に座標変換される。直交ベクトル座標系において、電流指令と実電流との偏差に基づき、比例積分制御(PI制御)や比例積分微分制御(PID制御)の演算が行われ、電圧指令が導出される。この電圧指令が磁極位置に基づいて、3相の電圧指令に逆座標変換され、選択された変調方式に従って変調パルス(スイッチング制御信号)が生成される。   First, the rotating electrical machine control device 2 calculates a current command in the orthogonal vector coordinate system in vector control based on the DC link voltage Vdc, the required torque, the modulation factor, and the like. This orthogonal vector coordinate system is a coordinate system in which the direction of the magnetic pole of the rotor of the rotating electrical machine 80 is one axis (d-axis) and the direction orthogonal to this axis (d-axis) is the other axis (q-axis). The three-phase current (actual current) flowing through the stator coil 8 is also coordinate-converted into this orthogonal vector coordinate system based on the magnetic pole position. In the orthogonal vector coordinate system, calculation of proportional-integral control (PI control) and proportional-integral-derivative control (PID control) is performed based on the deviation between the current command and the actual current, and the voltage command is derived. This voltage command is inversely transformed into a three-phase voltage command based on the magnetic pole position, and a modulation pulse (switching control signal) is generated according to the selected modulation method.

ところで、変調方式として、パルス幅変調(Pulse Width Modulation)が知られている。パルス幅変調では、出力指令としての交流波形(例えば交流電圧波形)の振幅と三角波(鋸波を含む)状のキャリアの波形の振幅との大小関係に基づいてパルスが生成される。キャリアとの比較によらずにデジタル演算により直接PWM波形を生成する場合もあるが、その場合でも、指令値としての交流波形の振幅と仮想的なキャリア波形の振幅とは相関関係を有する。パルス幅変調には、正弦波パルス幅変調(SPWM : sinusoidal PWM)や、空間ベクトルパルス幅変調(SVPWM : space vector PWM)などが含まれる。   By the way, as a modulation method, pulse width modulation is known. In pulse width modulation, a pulse is generated based on the magnitude relationship between the amplitude of an AC waveform (for example, AC voltage waveform) as an output command and the amplitude of a triangular wave (including sawtooth) carrier waveform. In some cases, the PWM waveform is directly generated by digital calculation without being compared with the carrier, but even in that case, the amplitude of the AC waveform as the command value and the amplitude of the virtual carrier waveform have a correlation. Pulse width modulation includes sinusoidal pulse width modulation (SPWM), space vector pulse width modulation (SVPWM), and so on.

これらの変調方式において、キャリアは例えばマイクロコンピュータの演算周期や電子回路の動作周期など、回転電機制御装置2の制御周期に応じて定まる。つまり、複数相の交流電力が交流の回転電機80の駆動に利用される場合であっても、キャリアは回転電機80の回転速度や回転角度(電気角)には拘束されない周期(同期しない周期)を有している。従って、キャリアも、キャリアに基づいて生成される各パルスも、回転電機80の回転には同期していない。従って、正弦波パルス幅変調、空間ベクトルパルス幅変調などの変調方式は、“非同期変調方式”と称される場合がある。   In these modulation schemes, the carrier is determined according to the control cycle of the rotating electrical machine control device 2, such as the calculation cycle of the microcomputer and the operation cycle of the electronic circuit. That is, even when a plurality of phases of AC power is used to drive the AC rotating electrical machine 80, the carrier is not restricted by the rotational speed or the rotation angle (electrical angle) of the rotating electrical machine 80 (period not synchronized). have. Therefore, neither the carrier nor each pulse generated based on the carrier is synchronized with the rotation of the rotating electrical machine 80. Therefore, modulation methods such as sinusoidal pulse width modulation and space vector pulse width modulation are sometimes referred to as “asynchronous modulation methods”.

これに対して、回転電機80の回転に同期してパルスが生成される変調方式は“同期変調方式”と称される。例えば回転電機80の電気角1周期に付き1つのパルスが出力される回転同期変調方式として、矩形波変調(1パルス変調)という変調方式がある。   On the other hand, a modulation method in which pulses are generated in synchronization with the rotation of the rotating electrical machine 80 is referred to as a “synchronous modulation method”. For example, there is a modulation method called rectangular wave modulation (one pulse modulation) as a rotation-synchronous modulation method in which one pulse is output per electrical angle period of the rotating electrical machine 80.

ところで、上述したように、直流電圧から交流電圧への変換率を示す指標として、直流電圧に対する複数相の交流電圧の線間電圧の実効値の割合を示す変調率がある。一般的に、正弦波パルス幅変調の最大変調率は約0.61、空間ベクトルパルス幅変調制御の最大変調率は約0.71である。約0.71を越える変調率を有する変調方式も存在し、その変調方式は、通常よりも変調率を高くした変調方式として、“過変調パルス幅変調”と称される。“過変調パルス幅変調”の最大変調率は、約0.78である。この変調率0.78は、直流から交流への電力変換における物理的(数学的)な限界値である。過変調パルス幅変調において、変調率が0.78に達すると、電気角の1周期において1つのパルスが出力される矩形波変調(1パルス変調)となる。矩形波変調では、変調率は物理的な限界値である約0.78に固定されることになる。   Incidentally, as described above, as an index indicating the conversion rate from DC voltage to AC voltage, there is a modulation rate indicating the ratio of the effective value of the line voltage of the AC voltage of a plurality of phases to the DC voltage. Generally, the maximum modulation rate of sinusoidal pulse width modulation is about 0.61, and the maximum modulation rate of space vector pulse width modulation control is about 0.71. There is also a modulation scheme having a modulation rate exceeding about 0.71, and this modulation scheme is referred to as “overmodulation pulse width modulation” as a modulation scheme having a higher modulation ratio than usual. The maximum modulation rate of “overmodulation pulse width modulation” is about 0.78. This modulation factor 0.78 is a physical (mathematical) limit value in power conversion from direct current to alternating current. In overmodulation pulse width modulation, when the modulation rate reaches 0.78, rectangular wave modulation (one pulse modulation) is performed in which one pulse is output in one cycle of the electrical angle. In the rectangular wave modulation, the modulation rate is fixed to about 0.78 which is a physical limit value.

変調率が0.78未満の過変調パルス幅変調は、同期変調方式、非同期変調方式の何れの原理を用いても実現することができる。代表的な変調方式は、不連続パルス幅変調(DPWM:discontinuous PWM)と称される変調方式である。不連続パルス幅変調は、同期変調方式、非同期変調方式の何れの原理を用いても実現することができるが、ここでは、同期変調方式を用いる形態を例示する。上記において、矩形波変調(1パルス変調)では、電気角の1周期において1つのパルスが出力されると例示したが、電気角の1周期において複数のパルスを出力することもできる。電気角の1周期において複数のパルスを出力すると、パルスの有効期間がその分減少するため、変調率は低下する。従って、約0.78に固定された変調率に限らず、0.78未満の任意の変調率を同期変調方式によって実現することができる。例えば、電気角の1周期において、9パルス、5パルスなどのパルスを出力することも可能である。本実施形態では、このような変調方式を複数パルス変調と称する。上述したように、この複数パルス変調は、回転電機80の回転に同期してパルスを出力するので、“同期変調方式”に属する。   Overmodulation pulse width modulation with a modulation rate of less than 0.78 can be realized by using either the synchronous modulation method or the asynchronous modulation method. A typical modulation method is a modulation method called discontinuous PWM (DPWM). The discontinuous pulse width modulation can be realized by using any principle of a synchronous modulation method and an asynchronous modulation method, but here, a mode using the synchronous modulation method is exemplified. In the above description, in the rectangular wave modulation (one pulse modulation), one pulse is output in one cycle of the electrical angle, but a plurality of pulses can be output in one cycle of the electrical angle. When a plurality of pulses are output in one cycle of the electrical angle, the effective period of the pulses is reduced correspondingly, so that the modulation rate is lowered. Therefore, not only the modulation rate fixed at about 0.78 but also any modulation rate less than 0.78 can be realized by the synchronous modulation method. For example, it is possible to output pulses such as 9 pulses and 5 pulses in one cycle of the electrical angle. In this embodiment, such a modulation method is referred to as multi-pulse modulation. As described above, this multi-pulse modulation belongs to the “synchronous modulation method” because a pulse is output in synchronization with the rotation of the rotating electrical machine 80.

本実施形態において、回転電機制御装置2は、回転電機80の動作条件に応じて、非同期変調と同期変調との間で変調方式を切換えて、回転電機80を制御する。ここで、動作条件には、少なくとも回転電機80の回転速度を含む。回転電機80の回転速度が高くなると、逆起電力が高くなり、変調率を高くする必要が生じる。このため、回転電機80の回転速度が高くなると、より高い変調率での変調が可能な変調方式を選択することが好ましい。変調方式を切換える際の動作条件には、図2や図3に例示するように、回転電機80の要求トルク(出力トルク)や直流リンク電圧Vdc等も含まれると好適である。しかし、説明を容易にするため、本実施形態では、回転電機制御装置2が、少なくとも回転電機80の回転速度に応じて変調方式を切換えるものとして説明する。   In the present embodiment, the rotating electrical machine control device 2 controls the rotating electrical machine 80 by switching the modulation method between asynchronous modulation and synchronous modulation according to the operating conditions of the rotating electrical machine 80. Here, the operating conditions include at least the rotational speed of the rotating electrical machine 80. As the rotational speed of the rotating electrical machine 80 increases, the back electromotive force increases and the modulation rate needs to be increased. For this reason, when the rotational speed of the rotating electrical machine 80 is increased, it is preferable to select a modulation method capable of modulation at a higher modulation rate. It is preferable that the operating conditions for switching the modulation method include a required torque (output torque) of the rotating electrical machine 80, a DC link voltage Vdc, and the like as illustrated in FIGS. However, for ease of explanation, in the present embodiment, the description will be made assuming that the rotating electrical machine control device 2 switches the modulation method according to at least the rotational speed of the rotating electrical machine 80.

図2は、要求トルクを縦軸に、回転速度を横軸に取り、非同期変調及び同期変調が適用される領域を模式的に示している。本実施形態において、非同期変調(空間ベクトルパルス幅変調など)は主に低回転・高トルク領域で採用され、同期変調(矩形波(1パルス・複数パルス))は主に高回転・低トルク領域で採用される。回転電機制御装置2は、少なくとも回転電機80の回転速度に基づいて、非同期変調と同期変調との変調方式を選択的に採用し、スイッチング素子3を制御する変調パルス(スイッチング制御信号)を生成する。図3は、同期変調として9パルス、5パルス、1パルスが採用される場合の、回転速度及びトルクと変調方式との関係の一例を具体的に示している。本実施形態では、非同期変調と同期変調との間で変調方式が切り替わる際に、空間ベクトルパルス幅変調(SVPWM)と9パルス変調との間で変調方式が切り替わる例を用いて説明する。   FIG. 2 schematically shows a region where asynchronous modulation and synchronous modulation are applied, with the required torque on the vertical axis and the rotational speed on the horizontal axis. In this embodiment, asynchronous modulation (space vector pulse width modulation, etc.) is mainly used in the low rotation / high torque region, and synchronous modulation (rectangular wave (one pulse / multiple pulses)) is mainly used in the high rotation / low torque region. Adopted. The rotating electrical machine control device 2 selectively employs modulation methods of asynchronous modulation and synchronous modulation based on at least the rotational speed of the rotating electrical machine 80, and generates a modulation pulse (switching control signal) for controlling the switching element 3. . FIG. 3 specifically shows an example of the relationship between the rotation speed and torque and the modulation method when 9 pulses, 5 pulses, and 1 pulse are employed as the synchronous modulation. In the present embodiment, description will be made using an example in which the modulation scheme is switched between space vector pulse width modulation (SVPWM) and nine-pulse modulation when the modulation scheme is switched between asynchronous modulation and synchronous modulation.

ここで、図3に示す領域A、即ち、要求トルクが高い状態で非同期変調(SVPWM)から同期変調(9パルス変調)へ変調方式が切り替わる場合について考える。図4は、領域Aにおいて、非同期変調(SVPWM)によってスイッチング制御信号(変調パルス)が生成され、インバータ10がスイッチング制御される場合の3相交流電流波形とスイッチング制御信号(変調パルス)のパルス波形とのシミュレーション結果を示している。また、図5は、領域Aにおいて、同期変調(9パルス変調)によってスイッチング制御信号(変調パルス)が生成され、インバータ10がスイッチング制御される場合の3相交流電流波形とスイッチング制御信号(変調パルス)のパルス波形とのシミュレーション結果を示している。また、図6は、領域Aにおいて、非同期変調(SVPWM)から同期変調(9パルス変調)に変調方式が切り替わる場合の、3相交流電流波形とスイッチング制御信号(変調パルス)のパルス波形とのシミュレーション結果を示している。図4から図6において、Su+,Sv+,Sw+は、それぞれU相、V相、W相の上段側スイッチング素子31に対するゲート駆動信号(スイッチング制御信号、変調パルス)を表している。また、Iu,Iv,Iwは、それぞれU相、V相、W相の交流電流を示している。   Here, consider the region A shown in FIG. 3, that is, the case where the modulation method is switched from asynchronous modulation (SVPWM) to synchronous modulation (9-pulse modulation) in a state where the required torque is high. FIG. 4 shows a three-phase alternating current waveform and a pulse waveform of the switching control signal (modulation pulse) when the switching control signal (modulation pulse) is generated by asynchronous modulation (SVPWM) in the region A and the inverter 10 is subjected to switching control. The simulation result is shown. FIG. 5 shows a three-phase alternating current waveform and a switching control signal (modulation pulse) in the region A when a switching control signal (modulation pulse) is generated by synchronous modulation (9-pulse modulation) and the inverter 10 is subjected to switching control. ) Shows a simulation result with a pulse waveform. FIG. 6 shows a simulation of a three-phase alternating current waveform and a pulse waveform of a switching control signal (modulation pulse) when the modulation method is switched from asynchronous modulation (SVPWM) to synchronous modulation (9-pulse modulation) in region A. Results are shown. 4 to 6, Su +, Sv +, and Sw + represent gate drive signals (switching control signals and modulation pulses) for the upper switching elements 31 of the U phase, the V phase, and the W phase, respectively. Iu, Iv, and Iw indicate U-phase, V-phase, and W-phase AC currents, respectively.

図4は、非同期変調(SVPWM)から同期変調(9パルス変調)に変調方式が切り替わる直前の波形を示しており、図5は、非同期変調(SVPWM)から同期変調(9パルス変調)に変調方式が切り替わった直後の波形を表しているということができる。非同期変調では、周波数“cf1”のキャリア周波数(第1キャリア周波数cf1)で変調パルスが生成されている。変調パルスの平均周波数(変調周波数)は、“cf1”である。第1キャリア周波数cf1による非同期変調では、回転電機80の回転速度に拘わらず、変調パルスの平均周波数(変調周波数)は同じである。従って、回転電機80の回転速度が高くなるほど、電気角1周期当たりの変調パルスの数が少なくなる。   FIG. 4 shows a waveform immediately before the modulation method is switched from asynchronous modulation (SVPWM) to synchronous modulation (9 pulse modulation), and FIG. 5 shows the modulation method from asynchronous modulation (SVPWM) to synchronous modulation (9 pulse modulation). It can be said that the waveform immediately after is switched. In asynchronous modulation, a modulation pulse is generated at a carrier frequency (first carrier frequency cf1) having a frequency “cf1”. The average frequency (modulation frequency) of the modulation pulse is “cf1”. In the asynchronous modulation using the first carrier frequency cf1, the average frequency (modulation frequency) of the modulation pulses is the same regardless of the rotation speed of the rotating electrical machine 80. Therefore, the higher the rotational speed of the rotating electrical machine 80, the smaller the number of modulation pulses per electrical angle cycle.

一方、同期変調では、回転電機80の回転速度に拘わらず、電気角1周期当たりの変調パルスの数は一定であるが、回転速度に応じて変調パルスの平均周波数は変化する。図4に例示した形態(非同期変調)では、電気角1周期当たりの変調パルスの数は約5パルスである。図5に例示した形態(同期制変調)は、9パルス変調であるから電気角1周期当たりの変調パルスの数は9パルスである。従って、本実施形態においては、変調方式が切換わる時点の変調周波数は、同期変調の方が高い。即ち、回転電機80の回転速度が高いため、同期変調の変調周波数は、第1キャリア周波数cf1よりも高い。本実施形態では、第1キャリア周波数cf1は、この時点での同期変調(9パルス変調)の変調パルスの周波数の約半分である。   On the other hand, in synchronous modulation, the number of modulation pulses per electrical angle period is constant regardless of the rotational speed of the rotating electrical machine 80, but the average frequency of the modulation pulses changes according to the rotational speed. In the form illustrated in FIG. 4 (asynchronous modulation), the number of modulation pulses per electrical angle period is about 5 pulses. Since the form illustrated in FIG. 5 (synchronous modulation) is 9-pulse modulation, the number of modulation pulses per electrical angle period is 9 pulses. Therefore, in the present embodiment, the modulation frequency at the time when the modulation method is switched is higher in the synchronous modulation. That is, since the rotating speed of the rotating electrical machine 80 is high, the modulation frequency of the synchronous modulation is higher than the first carrier frequency cf1. In the present embodiment, the first carrier frequency cf1 is about half of the frequency of the modulation pulse of the synchronous modulation (9 pulse modulation) at this time.

図4に示す非同期変調では、変調周波数(キャリア周波数)が比較的低いことにも起因して、図5に示す同期変調よりも振幅の大きいリップルが交流電流に生じている。即ち、“非同期変調のリップルRP1>同期変調のリップルRP2”であり、シミュレーション結果では、“RP1”は“RP2”の約2倍となっている。また、非同期変調では、電気角の1周期当たりの変調パルスの数が同期変調より少なくなることや、電気角(回転電機80の回転)と変調パルスとが同期していないことにより、3相の交流電流波形にバラツキを生じ易い。換言すれば、3相の交流電流波形がアンバランスな状態となり易い。シミュレーション結果によれば、非同期変調の場合には、図4に示すように、3相の交流電流のピーク値に“UB1”の差を生じている。一方、同期変調では、電気角の1周期当たりの変調パルスの数が非同期変調より多いことや、電気角(回転電機80の回転)と変調パルスとが同期していることにより、3相の交流電流波形が安定し易い。シミュレーション結果によれば、同期変調の場合には、図5に示すように、3相の交流電流のピーク値の差“UB2”はほぼゼロである。   In the asynchronous modulation shown in FIG. 4, a ripple having a larger amplitude than that of the synchronous modulation shown in FIG. 5 is generated in the alternating current due to the relatively low modulation frequency (carrier frequency). That is, “asynchronous modulation ripple RP1> synchronous modulation ripple RP2”, and “RP1” is approximately twice “RP2” in the simulation result. In asynchronous modulation, the number of modulation pulses per cycle of the electrical angle is smaller than that of synchronous modulation, and the electrical angle (rotation of the rotating electrical machine 80) and the modulation pulse are not synchronized. The AC current waveform tends to vary. In other words, the three-phase alternating current waveform tends to be in an unbalanced state. According to the simulation result, in the case of asynchronous modulation, as shown in FIG. 4, a difference of “UB1” is generated in the peak value of the three-phase alternating current. On the other hand, in synchronous modulation, the number of modulation pulses per cycle of the electrical angle is larger than that of asynchronous modulation, and the electrical angle (rotation of the rotating electrical machine 80) and the modulation pulse are synchronized, so that three-phase AC The current waveform is easy to stabilize. According to the simulation result, in the case of the synchronous modulation, as shown in FIG. 5, the difference “UB2” in the peak value of the three-phase alternating current is almost zero.

図6は、このような特徴を有する変調方式を、好ましくない条件下において切換えた場合をシミュレーションしたものである。非同期変調と同期変調とでは、変調パルスの発生方法が異なるため、本実施形態では切換え時にV相のゲート駆動信号“Sv+”の信号レベルがハイ状態となる期間(V相の上段側スイッチング素子31がオン状態となる期間)が長くなっている。これにより、逆に、U相やW相では、ゲート駆動信号がハイレベルとなる期間が短くなる可能性がある。その結果、3相の交流電圧や3相の交流電流にバラツキが生じ易くなる。また、図6に例示するように、高回転速度領域での非同期変調による3相の交流電流の乱れ(アンバランス)は、変調方式が同期変調に移行した後の交流電流にも影響を与えている。   FIG. 6 is a simulation of a case where the modulation system having such characteristics is switched under unfavorable conditions. Since the modulation pulse generation method is different between asynchronous modulation and synchronous modulation, in this embodiment, the period during which the signal level of the V-phase gate drive signal “Sv +” is in a high state at the time of switching (V-phase upper switching element 31). The period during which is turned on) is long. Accordingly, on the contrary, in the U phase and the W phase, the period during which the gate drive signal is at a high level may be shortened. As a result, the three-phase AC voltage and the three-phase AC current tend to vary. In addition, as illustrated in FIG. 6, the disturbance (unbalance) of the three-phase alternating current due to the asynchronous modulation in the high rotation speed region also affects the alternating current after the modulation method shifts to the synchronous modulation. Yes.

また、図6に示したシミュレーション例では、W相の交流電流がピークとなる位相で変調方式を切換えているため、切換えの際に生じる過渡電流によって当該ピーク電流の値が非常に大きくなっている。換言すれば、過渡電流が重畳される際の交流電流の初期電流の値が高いために、過渡電流が重畳された後の交流電流の値も高くなっている。このピーク電流の値(絶対値)が、インバータ10の許容可能な最大電流(絶対値)を超えることは好ましくない。   In the simulation example shown in FIG. 6, since the modulation method is switched at a phase where the W-phase AC current reaches a peak, the value of the peak current is very large due to the transient current generated at the time of switching. . In other words, since the value of the initial current of the alternating current when the transient current is superimposed is high, the value of the alternating current after the transient current is superimposed is also high. It is not preferable that the peak current value (absolute value) exceeds the maximum allowable current (absolute value) of the inverter 10.

即ち、変調方式を切換える際の交流電流の最大値(絶対値)は、切換わる際の位相(電流位相や電圧位相)によっても異なる。図6を参照して上述したように、複数相の交流電流の何れか1相の電流が最大振幅である位相において変調方式が切換わると、当該最大電流に対して過渡電流が重畳されることになる。このため、交流電流の絶対値の最大値は大きくなる。従って、そのような位相で変調方式を切換えることを避け、より好ましい位相において変調方式を切換えると好適である。多くの場合、インバータ10は、電圧制御型であり、交流電圧の電圧位相や変調パルスの電圧位相によって変調方式を切換えるタイミングが規定されると好適である。   That is, the maximum value (absolute value) of the alternating current when the modulation method is switched differs depending on the phase (current phase or voltage phase) when switching. As described above with reference to FIG. 6, when the modulation method is switched in a phase in which any one of a plurality of alternating currents has a maximum amplitude, a transient current is superimposed on the maximum current. become. For this reason, the maximum absolute value of the alternating current increases. Therefore, it is preferable to avoid switching the modulation system at such a phase and switch the modulation system at a more preferable phase. In many cases, the inverter 10 is a voltage control type, and it is preferable that the timing for switching the modulation method is defined by the voltage phase of the AC voltage or the voltage phase of the modulation pulse.

例えば、インバータ10の交流側の相数が3相である場合、1相の電圧レベルが固定され、他の2相の電圧レベルが変化する2相変調のフェーズと、2相の電圧レベルが固定され、残りの1相の電圧レベルが変化する1相変調のフェーズとが発生し得る。図7は、図6に例示した形態において、変調方式が切換わる位相の近傍の変調パルスの拡大図である。図6に例示した形態では、1相変調のフェーズにおいて変調方式が切換えられている。詳細は後述するが、発明者らによる実験やシミュレーションによれば、1相変調の場合には、2相変調の場合に比べて、過渡電流の影響によって交流電流の絶対値が大きくなる傾向があることが認められた。   For example, when the number of phases on the AC side of the inverter 10 is three, the voltage level of one phase is fixed, the phase of two-phase modulation in which the voltage level of the other two phases changes, and the voltage level of the two phases is fixed And the phase of the one-phase modulation in which the voltage level of the remaining one phase changes may occur. FIG. 7 is an enlarged view of a modulation pulse in the vicinity of the phase at which the modulation method is switched in the form illustrated in FIG. In the form illustrated in FIG. 6, the modulation method is switched in the phase of one-phase modulation. Although details will be described later, according to experiments and simulations by the inventors, in the case of one-phase modulation, the absolute value of the alternating current tends to be larger due to the influence of the transient current than in the case of two-phase modulation. It was recognized that

上述したようなシミュレーション結果に基づけば、変調方式を切換える際の条件として以下の点に留意すると好適である。
(a)非同期変調の変調周波数(キャリア周波数)を高くして、リップルを低減すると共に、3相電流のアンバランスを低減する。
(b)電圧位相(或いは電流位相)が最適な位相において変調方式を切換えて、3相電流のアンバランスを低減すると共に、切換え時の初期電流の値を低くする。
これら、(a)及び(b)の条件を満たすような変調方式の切換えには、以下の(A)及び(B)のような形態がある。
Based on the simulation results as described above, it is preferable to pay attention to the following points as conditions for switching the modulation method.
(A) The modulation frequency (carrier frequency) of asynchronous modulation is increased to reduce ripples and to reduce the unbalance of the three-phase current.
(B) The modulation method is switched at a phase where the voltage phase (or current phase) is optimum to reduce the unbalance of the three-phase current, and the initial current value at the time of switching is lowered.
There are the following modes (A) and (B) for switching the modulation schemes that satisfy the conditions (a) and (b).

(A)変調方式を切換える場合に、第1キャリア周波数cf1よりも高い周波数である第2キャリア周波数cf2に基づいて変調パルスを生成する高周波非同期変調を経て変調方式を切換える(図8参照)。高周波非同期変調は、電流波形が安定する時間(安定時間(交流電流安定時間))、継続されることが好ましい。但し、より高い周波数の変調パルスによってスイッチング素子3がスイッチングされた場合、インバータ10の消費電力も増大し、発熱も大きくなる。従って、高周波非同期変調が行われる期間は、消費電力の増加に伴う発熱が許容可能な許容時間(温度上昇許容時間)内に限定されることが好ましい。本実施形態では、高周波非同期変調は、所定の実行時間T1(高周波非同期変調実行時間)の間、実行される。この実行時間T1は、安定時間(交流電流安定時間)以上、許容時間(温度上昇許容時間)未満の長さに設定されていると好適である(図18を参照して後述する。)。 (A) When switching the modulation scheme, the modulation scheme is switched through high-frequency asynchronous modulation that generates a modulation pulse based on the second carrier frequency cf2, which is higher than the first carrier frequency cf1 (see FIG. 8). The high-frequency asynchronous modulation is preferably continued for a time during which the current waveform is stabilized (stable time (alternating current for AC current)). However, when the switching element 3 is switched by a modulation pulse having a higher frequency, the power consumption of the inverter 10 increases and heat generation also increases. Therefore, it is preferable that the period during which high-frequency asynchronous modulation is performed is limited to an allowable time (temperature increase allowable time) in which heat generation accompanying an increase in power consumption is allowable. In the present embodiment, the high frequency asynchronous modulation is executed for a predetermined execution time T1 (high frequency asynchronous modulation execution time). The execution time T1 is preferably set to a length equal to or longer than the stabilization time (alternating current stabilization time) and less than the allowable time (temperature increase allowable time) (described later with reference to FIG. 18).

(B)変調方式の切換えは、3相の交流電圧の関係を表す電圧位相に基づいて規定される遷移期間TPに行われる(図9参照)。例えば、この遷移期間TPは、3相の交流電圧(3相の変調パルスと等価)の内の1相の信号レベルがハイレベル又はローレベルに固定され、当該1相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する2相変調の状態となる電圧位相の期間(TP1〜TP6)に設定されている。尚、このような電圧位相の期間(TP1〜TP6)は、変調方式が同期変調から非同期変調へと切換わる場合、同期変調における電圧位相に応じて設定される。一方、変調方式が非同期変調から同期変調へと切換わる場合には、この期間(TP1〜TP6)は、変調方式が切り替わった直後の同期変調における電圧位相に応じて設定されると好適である。換言すれば、変調方式が非同期変調から同期変調へと切換わる場合には、変調方式が同期変調であると仮定した場合の電圧位相に基づいて、この期間(TP1〜TP6)が設定されると好適である。 (B) The modulation method is switched during the transition period TP defined based on the voltage phase representing the relationship between the three-phase AC voltages (see FIG. 9). For example, during this transition period TP, the signal level of one phase of a three-phase AC voltage (equivalent to a three-phase modulation pulse) is fixed to a high level or a low level, and the signal level of the one phase is fixed. It is set to the voltage phase period (TP1 to TP6) in which the two-phase signal level changes during the period in which the two-phase signal levels change. Such a voltage phase period (TP1 to TP6) is set according to the voltage phase in the synchronous modulation when the modulation method is switched from the synchronous modulation to the asynchronous modulation. On the other hand, when the modulation method is switched from asynchronous modulation to synchronous modulation, this period (TP1 to TP6) is preferably set according to the voltage phase in the synchronous modulation immediately after the modulation method is switched. In other words, when the modulation method is switched from asynchronous modulation to synchronous modulation, this period (TP1 to TP6) is set based on the voltage phase when the modulation method is assumed to be synchronous modulation. Is preferred.

発明者らによるシミュレーションによれば、上記の(A)及び(B)の内、何れか一方だけを実施した場合であっても、交流電流の最大値(絶対値)が低減されることが確かめられている。当然ながら、(A)及び(B)の双方を適用して変調方式を切換えると、さらに効果は大きくなる。   According to the simulations by the inventors, it is confirmed that the maximum value (absolute value) of the alternating current is reduced even when only one of the above (A) and (B) is performed. It has been. Naturally, the effect is further increased if the modulation system is switched by applying both (A) and (B).

図10は、(A)を適用して変調方式を切換えた場合の波形を示している。図6と図10との比較により明らかなように、図10では図6に比べて非同期変調のキャリア周波数が高くなり、変調パルスが密になっている。その結果、交流電流のリップルは、“RP1”から“RP3”へと約半分に低減されている。また、3相の交流電流のアンバランス、具体的にはピーク値の差も“UB1”から“UB3”へと大きく低減されている。変調方式を切換える際の電圧位相は、図6と図10とで同じ位相“θb”であるが、リップルやアンバランスが低減されたことによって、切換え時の電流の絶対値が小さくなっている。即ち、変調方式の切換え時に、交流電流に過渡電流が重畳されても、(A)を適用することで、ピーク値(絶対値)が小さくなっている。   FIG. 10 shows a waveform when the modulation method is switched by applying (A). As is apparent from a comparison between FIG. 6 and FIG. 10, in FIG. 10, the carrier frequency of asynchronous modulation is higher than in FIG. 6, and the modulation pulses are dense. As a result, the ripple of the alternating current is reduced by about half from “RP1” to “RP3”. Further, the imbalance of the AC currents of the three phases, specifically, the difference in peak value is greatly reduced from “UB1” to “UB3”. The voltage phase at the time of switching the modulation method is the same phase “θb” in FIGS. 6 and 10, but the absolute value of the current at the time of switching is reduced by reducing ripples and imbalances. That is, even when the transient current is superimposed on the alternating current when the modulation method is switched, the peak value (absolute value) is reduced by applying (A).

上述したように、非同期変調において変調パルスを生成する基準となるキャリアの周波数が低い場合(第1キャリア周波数cf1の場合)には、キャリアの周波数が相対的に高い場合(第2キャリア周波数cf2の場合)に比べて、直流から交流への変換に当たっての分解能が低くなり、交流の電流における脈動(リップル)が大きくなる。また、非同期変調では、交流電圧や交流電流の位相と、変調パルスの位相とが、交流の各周期によって異なるため、交流波形も安定せず、アンバランスが生じることも多い。第2キャリア周波数cf2のキャリアを用いて非同期変調を行う高周波非同期変調を行うことによって、直流から交流への変換に当たっての分解能が高くなり、脈動も低減され、交流電流の波形もより安定する。   As described above, when the frequency of a carrier serving as a reference for generating a modulation pulse in asynchronous modulation is low (in the case of the first carrier frequency cf1), the carrier frequency is relatively high (in the second carrier frequency cf2). In the case of conversion from direct current to alternating current, the resolution is reduced and the pulsation (ripple) in the alternating current is increased. In asynchronous modulation, the phase of the alternating voltage or alternating current and the phase of the modulation pulse differ depending on the period of the alternating current, so that the alternating current waveform is not stable and unbalance is often generated. By performing high-frequency asynchronous modulation that performs asynchronous modulation using the carrier of the second carrier frequency cf2, the resolution for conversion from direct current to alternating current is increased, pulsation is reduced, and the waveform of the alternating current is further stabilized.

この第2キャリア周波数cf2は、第1キャリア周波数cf1よりも大きい値であり、“N”を1よりも大きい値として、“cf2=cf1×N”で示される周波数である。回転電機制御装置2の構成を簡素化する上では、第2キャリア周波数cf2は、第1キャリア周波数cf1の整数倍であると好適である。例えば、第2キャリア周波数cf2は、第1キャリア周波数cf1の2倍や3倍であると好適である。本実施形態(図6に対する図10、図13)では、第2キャリア周波数cf2が第1キャリア周波数cf1の2倍である形態を例示している。上述したように、本実施形態では、第1キャリア周波数cf1は、同期変調(9パルス変調)の変調周波数の約半分であるから、第2キャリア周波数cf2は、同期変調の変調周波数とほぼ等価となる。   The second carrier frequency cf2 is a value greater than the first carrier frequency cf1, and is a frequency represented by “cf2 = cf1 × N”, where “N” is greater than 1. In order to simplify the configuration of the rotating electrical machine control device 2, the second carrier frequency cf2 is preferably an integer multiple of the first carrier frequency cf1. For example, the second carrier frequency cf2 is preferably twice or three times the first carrier frequency cf1. In the present embodiment (FIGS. 10 and 13 with respect to FIG. 6), the second carrier frequency cf2 is twice the first carrier frequency cf1. As described above, in the present embodiment, since the first carrier frequency cf1 is about half of the modulation frequency of synchronous modulation (9-pulse modulation), the second carrier frequency cf2 is substantially equivalent to the modulation frequency of synchronous modulation. Become.

1つの態様として、第2キャリア周波数cf2は、変調方式を切換える際の同期変調の変調パルスの周波数に基づいて設定されていると好適である。図2及び図3を参照して上述したように、一般的には、相対的に回転電機80の回転速度が低回転速度の場合に非同期変調が用いられ、高回転速度の場合に同期変調が用いられる。従って、変調方式を切換えるときの回転電機80の回転速度は、比較的高回転速度側である場合が多い。第1キャリア周波数cf1による非同期変調では、回転電機80の回転速度に拘わらず、変調パルスの平均周波数(変調周波数)は同じである。一方、同期変調では、回転電機80の回転速度に応じて変調パルスの平均周波数は変化する。例えば、本実施形態においては、変調方式が切換わる時点の変調周波数は、同期変調の方が高く、同期変調の変調周波数は、第1キャリア周波数cf1よりも高い。   As one aspect, it is preferable that the second carrier frequency cf2 is set based on the frequency of the modulation pulse of the synchronous modulation when the modulation method is switched. As described above with reference to FIGS. 2 and 3, generally, asynchronous modulation is used when the rotational speed of the rotating electrical machine 80 is relatively low, and synchronous modulation is performed when the rotational speed is high. Used. Therefore, the rotational speed of the rotating electrical machine 80 when switching the modulation method is often on the relatively high rotational speed side. In the asynchronous modulation using the first carrier frequency cf1, the average frequency (modulation frequency) of the modulation pulses is the same regardless of the rotation speed of the rotating electrical machine 80. On the other hand, in synchronous modulation, the average frequency of the modulation pulse changes according to the rotation speed of the rotating electrical machine 80. For example, in the present embodiment, the modulation frequency at the time when the modulation method is switched is higher in the synchronous modulation, and the modulation frequency of the synchronous modulation is higher than the first carrier frequency cf1.

特に複数パルス変調が行われる場合には、交流電流の脈動の低減や、各相での振幅の安定化が考慮されてパルス数(変調周波数)が設定されていることが多い。従って、変調方式が切換わる際の同期変調の変調周波数に基づいて、交流電流の脈動が低減され、各相での振幅が安定するように、高周波非同期変調の変調周波数が設定されると好適である。本実施形態では、第1キャリア周波数cf1が、同期変調(9パルス変調)の変調パルスの周波数は、第1キャリア周波数cf1の約2倍であるから、この関係に基づいて、第2キャリア周波数cf2を、第1キャリア周波数cf1の2倍に設定すると好適である。   In particular, when multiple pulse modulation is performed, the number of pulses (modulation frequency) is often set in consideration of reduction of pulsation of alternating current and stabilization of amplitude in each phase. Therefore, it is preferable that the modulation frequency of the high-frequency asynchronous modulation is set so that the pulsation of the alternating current is reduced and the amplitude in each phase is stabilized based on the modulation frequency of the synchronous modulation when the modulation method is switched. is there. In the present embodiment, the frequency of the modulation pulse of the first carrier frequency cf1 for synchronous modulation (9-pulse modulation) is approximately twice the frequency of the first carrier frequency cf1, and based on this relationship, the second carrier frequency cf2 Is preferably set to twice the first carrier frequency cf1.

ところで、変調方式を切換える条件には、回転速度の他に直流リンク電圧Vdcや、回転電機80のトルクも加えられる場合がある。換言すれば、変調方式が切換わる際の同期変調(例えば9パルス変調)の変調周波数も変動する可能性がある。従って、第2キャリア周波数cf2は可変周波数であってもよい。1つの態様として、第2キャリア周波数cf2が、変調方式を切換える際の当該同期変調の変調パルスの周波数(変調周波数)に基づいて設定されている場合、第2キャリア周波数cf2が可変周波数であって、変調方式を切換える都度、当該切換えの際の同期変調の変調周波数に適合するように設定されてもよい。   By the way, as a condition for switching the modulation method, in addition to the rotational speed, the DC link voltage Vdc and the torque of the rotating electrical machine 80 may be applied. In other words, there is a possibility that the modulation frequency of synchronous modulation (for example, 9-pulse modulation) when the modulation method is switched also varies. Therefore, the second carrier frequency cf2 may be a variable frequency. As one aspect, when the second carrier frequency cf2 is set based on the frequency (modulation frequency) of the modulation pulse of the synchronous modulation when the modulation method is switched, the second carrier frequency cf2 is a variable frequency. Each time the modulation method is switched, it may be set so as to match the modulation frequency of the synchronous modulation at the time of switching.

但し、このように第2キャリア周波数cf2を可変周波数とすると、回転電機制御装置2の演算負荷を増大させる可能性もある。従って、第2キャリア周波数cf2は、インバータ10の動作条件が最悪条件となる場合において、変調方式が切換わる際の当該同期変調の変調周波数に応じた一定値として設定されていてもよい。具体的には、第2キャリア周波数cf2は、インバータ10の直流側端子に最大定格電圧が印加され、回転電機80が最大定格トルクを出力し、回転電機80の回転速度が最大定格トルクを出力可能な範囲の最高回転速度であるという条件における同期変調の変調パルスの周波数に応じて設定されていると好適である。この条件は、インバータ10の発熱が最大となる最悪条件ということができる。この条件下における変調周波数に応じて第2キャリア周波数cf2を規定することによって、耐熱等の条件を満たした状態で高周波非同期変調を実施することができる。   However, when the second carrier frequency cf2 is set to be a variable frequency in this way, there is a possibility that the calculation load of the rotating electrical machine control device 2 is increased. Therefore, the second carrier frequency cf2 may be set as a constant value according to the modulation frequency of the synchronous modulation when the modulation method is switched when the operating condition of the inverter 10 is the worst condition. Specifically, for the second carrier frequency cf2, the maximum rated voltage is applied to the DC side terminal of the inverter 10, the rotating electrical machine 80 outputs the maximum rated torque, and the rotational speed of the rotating electrical machine 80 can output the maximum rated torque. It is preferable that it is set in accordance with the frequency of the modulation pulse of the synchronous modulation under the condition that the maximum rotation speed is within a certain range. This condition can be said to be the worst condition in which the heat generation of the inverter 10 is maximized. By defining the second carrier frequency cf2 in accordance with the modulation frequency under these conditions, high-frequency asynchronous modulation can be performed while satisfying conditions such as heat resistance.

尚、変調方式は、少なくとも回転速度に基づいて行われるが、回転速度の変動によって変調方式が頻繁に切換わるハンチングを防止するために、非同期変調から同期変調への切換えの回転速度と、同期変調から非同期変調への切換えの回転速度とを異なる回転速度としてもよい。この場合、当該回転速度に対応する同期変調の変調周波数も異なる。従って、第2キャリア周波数cf2が固定周波数の場合であっても、少なくとも2種類の周波数が設定されていてもよい。   The modulation method is performed based on at least the rotational speed. In order to prevent hunting in which the modulation system is frequently switched due to fluctuations in the rotational speed, the rotational speed of switching from asynchronous modulation to synchronous modulation and synchronous modulation are used. The rotational speed for switching from to asynchronous modulation may be different from the rotational speed. In this case, the modulation frequency of the synchronous modulation corresponding to the rotation speed is also different. Therefore, even when the second carrier frequency cf2 is a fixed frequency, at least two types of frequencies may be set.

図11は、(B)の形態によって変調方式を切替えた場合の波形を示している。図6(及び図10)に例示した形態では、電圧位相が“θb”の時に変調方式を切換えていたが、本例では、電圧位相が“θa”の時に変調方式を切換えている。図11では、変調パルスが切換わっているために判りにくいが、電圧位相“θa”は、V相電圧(V相変調パルスと等価、以下同様)の信号レベルがハイ状態に固定され、当該固定期間中に、U相電圧及びW相電圧の信号レベルが変化する2相変調の状態となる位相範囲(遷移期間TP)に含まれている。換言すれば、図11に例示した形態において、非同期変調と同期変調との間での変調方式の切換えは、3相の交流電圧の関係を表す電圧位相に基づいて規定される遷移期間(TP)に行われている。   FIG. 11 shows a waveform when the modulation method is switched in the form (B). In the form illustrated in FIG. 6 (and FIG. 10), the modulation method is switched when the voltage phase is “θb”, but in this example, the modulation method is switched when the voltage phase is “θa”. In FIG. 11, although it is difficult to understand because the modulation pulse is switched, the signal level of the V-phase voltage (equivalent to the V-phase modulation pulse, hereinafter the same) is fixed to the high state in the voltage phase “θa”. During the period, it is included in the phase range (transition period TP) in which the signal level of the U-phase voltage and the W-phase voltage changes to a two-phase modulation state. In other words, in the form illustrated in FIG. 11, the switching of the modulation method between the asynchronous modulation and the synchronous modulation is a transition period (TP) defined based on the voltage phase representing the relationship between the three-phase AC voltages. Has been done.

また、電圧位相“θa”の直前には、V相電圧がローレベルとなる状態がある。この状態は、U,V,W相の3相全てがローレベルとなる状態であり、後述するように、“000”で示されるゼロベクトルの状態である。インバータ10の交流側の相数が3相である場合、当該3相の電圧位相(変調パルスの電圧位相とほぼ等価)によって8つの空間ベクトルを定義することができる。具体的には、100,010,001,110,101,011,111,000の8つの空間ベクトルを定義することができる。この内、111及び000はゼロベクトルと称され、他の6つはアクティブベクトルと称される。尚、空間ベクトルは、電圧位相と相関関係があるため、以下の説明において空間ベクトル(空間ベクトルの状態)及び電圧位相は、同じ条件を示す対象として用いる場合がある。   Further, immediately before the voltage phase “θa”, there is a state in which the V-phase voltage is at a low level. This state is a state in which all three phases of the U, V, and W phases are at a low level, and is a state of a zero vector indicated by “000” as described later. When the number of phases on the AC side of the inverter 10 is three, eight space vectors can be defined by the three-phase voltage phases (substantially equivalent to the voltage phase of the modulation pulse). Specifically, eight space vectors of 100, 010, 001, 110, 101, 011, 111,000 can be defined. Of these, 111 and 000 are called zero vectors, and the other six are called active vectors. Since the space vector has a correlation with the voltage phase, in the following description, the space vector (the state of the space vector) and the voltage phase may be used as targets indicating the same condition.

図12を参照して後述するように、発明者らによるシミュレーションによれば、変調方式の切換えの前後がアクティブベクトル期間である場合には、過渡電流の影響による交流電流の絶対値が大きくなる傾向があることが確認された。逆に、変調方式の切換えの前後がゼロベクトル期間である場合には、過渡電流の影響による交流電流の絶対値が小さい傾向がある。従って、3相の交流電圧がゼロベクトル状態となる期間が直前及び直後の少なくとも何れかに存在する電圧位相の期間が、遷移期間TPとして設定されていると好適である。電圧位相“θa”は、ゼロベクトル状態となる期間が、“θa”の直前及び直後の少なくとも何れかに存在する電圧位相の期間の中に含まれる。   As will be described later with reference to FIG. 12, according to simulations by the inventors, when the modulation scheme is switched before and after the active vector period, the absolute value of the alternating current tends to increase due to the influence of the transient current. It was confirmed that there is. On the contrary, when the modulation method is switched before and after the zero vector period, the absolute value of the alternating current due to the influence of the transient current tends to be small. Therefore, it is preferable that the voltage phase period in which the period in which the three-phase AC voltage is in the zero vector state exists at least immediately before and immediately after is set as the transition period TP. The voltage phase “θa” is included in the voltage phase period in which the period of the zero vector state exists at least immediately before and immediately after “θa”.

また、電圧位相“θa”は、U相電流がゼロとなる電圧位相でもある。このように、遷移期間TPの期間中であって、3相の交流電流の内の何れか1相の電流がゼロとなる電圧位相(例えばθa)を含む期間に変調方式を切換えると好適である。換言すれば、3相の交流電流の内の何れか1相の電流がゼロとなる電圧位相(例えば“θa”)を含む電圧位相の範囲であって、2相変調となる電圧位相の範囲(TP1〜TP6)、及び、ゼロベクトル状態となる期間が、直前及び直後の少なくとも何れかに存在する電圧位相の範囲(TP11〜TP16)、の何れかの中に含まれる電圧位相の範囲(図12のTP21〜TP26)が、遷移期間TPとして設定されていると好適である。   The voltage phase “θa” is also a voltage phase at which the U-phase current becomes zero. As described above, it is preferable to switch the modulation method during the transition period TP and include a voltage phase (for example, θa) in which any one of the three-phase alternating currents is zero. . In other words, a voltage phase range including a voltage phase (for example, “θa”) in which any one of the three-phase alternating currents becomes zero, and a voltage phase range (two-phase modulation) ( TP1 to TP6) and a voltage phase range included in any of the voltage phase ranges (TP11 to TP16) in which the period of the zero vector state exists at least immediately before and immediately after (TP11 to TP16) (FIG. 12). TP21 to TP26) are preferably set as the transition period TP.

3相の交流電流は平衡しており、理論的には3相電流の瞬時値はゼロである。従って、3相の内の1相の電流がゼロであるとき、他の2相は、正負それぞれに同じ値である。また、3相電流は、それぞれ位相が120度ずつずれているため、3相の内の1相の電流がゼロである位相では、他の2相の電流は振幅が最大となる位相ではない。従って、過渡電流が重畳されたとしても、ベースとなる電流の絶対値は比較的小さい値である。よって、相の交流電流の内の何れか1相の電流がゼロとなる電圧位相を含む期間に変調方式を切換えると好適である。図11と図6との比較により明らかなように、電圧位相が“θa”では、3相交流電流の何れもが、ピークではない。従って、変調方式の切換えの際に生じる過渡電流が3相交流電流に重畳されても、電流の絶対値を小さい値に留めることができる。   The three-phase alternating current is balanced, and the instantaneous value of the three-phase current is theoretically zero. Therefore, when the current of one of the three phases is zero, the other two phases have the same value for both positive and negative. In addition, since the phases of the three-phase currents are shifted by 120 degrees, in the phase where the current of one of the three phases is zero, the currents of the other two phases are not the phase where the amplitude is maximum. Therefore, even if the transient current is superimposed, the absolute value of the base current is a relatively small value. Therefore, it is preferable to switch the modulation method during a period including a voltage phase in which any one of the phase alternating currents is zero. As is clear from the comparison between FIG. 11 and FIG. 6, when the voltage phase is “θa”, none of the three-phase alternating currents is a peak. Therefore, even if the transient current generated when switching the modulation method is superimposed on the three-phase alternating current, the absolute value of the current can be kept small.

図12は、変調方式を切換える電圧位相と3相交流電流のピーク値(絶対値)との関係のシミュレーション結果を示している。図12の上段の折れ線グラフは、電気角0〜360度の間で、変調方式を切換える電圧位相を4度ずつずらすスイープシミュレーションを行って演算された3相交流電流のピーク値(絶対値)を示している。実線の折れ線グラフ“Ip1”は、(B)のみを適用した場合のシミュレーション結果を示しており、破線の折れ線グラフ“Ip2”は、(A)及び(B)を共に適用した場合のシミュレーション結果を示している。“Ip1”と“Ip2”との比較については後述する。図12の下段は、図9と同様に、3相電圧波形(上段側スイッチング素子31の変調パルスの波形と等価)を示している。   FIG. 12 shows a simulation result of the relationship between the voltage phase for switching the modulation method and the peak value (absolute value) of the three-phase alternating current. The upper line graph in FIG. 12 shows the peak value (absolute value) of the three-phase alternating current calculated by performing a sweep simulation in which the voltage phase for switching the modulation method is shifted by 4 degrees between electrical angles 0 to 360 degrees. Show. The solid line graph “Ip1” shows the simulation results when only (B) is applied, and the broken line graph “Ip2” shows the simulation results when both (A) and (B) are applied. Show. The comparison between “Ip1” and “Ip2” will be described later. The lower part of FIG. 12 shows the three-phase voltage waveform (equivalent to the waveform of the modulation pulse of the upper side switching element 31), as in FIG.

図9及び図12に示すように、遷移期間TPの一例としてのTP1〜TP6は、2相変調の状態となる電圧位相の期間に設定されている。図12の“Ip1”を参照すると、これらの期間TP1〜TP6は、ピーク電流の絶対値が大きい電圧位相をほぼ含まずに設定されていることがわかる。“TP1”や“TP5”には、ピーク電流の絶対値が大きい電圧位相も含まれているが、遷移期間TPは、好適にはさらに範囲が限定されたTP11〜TP16であることが好ましい。TP11〜TP16は、ピーク電流の絶対値が大きい電圧位相をほぼ含まずに設定されているから、遷移期間としてさらに好適である。尚、TP11〜TP16は、3相の交流電圧(3相の変調パルス)がゼロベクトル状態となる期間が直前及び直後の少なくとも何れかに存在する電圧位相の期間である。   As shown in FIGS. 9 and 12, TP1 to TP6 as examples of the transition period TP are set to a voltage phase period in which two-phase modulation is performed. Referring to “Ip1” in FIG. 12, it can be seen that these periods TP1 to TP6 are set so as not to substantially include a voltage phase having a large absolute value of the peak current. “TP1” and “TP5” include a voltage phase in which the absolute value of the peak current is large, but the transition period TP is preferably TP11 to TP16 with a further limited range. Since TP11 to TP16 are set without substantially including a voltage phase having a large absolute value of the peak current, they are more suitable as a transition period. TP11 to TP16 are voltage phase periods in which a period in which the three-phase AC voltage (three-phase modulation pulse) is in a zero vector state exists at least immediately before and immediately after.

また、遷移期間は、TP11〜TP16の中でさらに範囲が限定された電圧位相の範囲であると好適である。図12に示すように、TP11〜TP16の中央部において、TP11〜TP16の1/2〜1/3の電圧位相の範囲(TP21〜TP26)であると好適である。TP21〜TP26は、3相の交流電流の内の何れか1相の電流がゼロとなる電圧位相(例えば“θa”)を少なくとも含む電圧位相の範囲である。図12より明らかなように、これらの電圧位相の範囲(TP21〜TP26)におけるピーク電流の絶対値は、他の電圧位相でのピーク電流の絶対値に比べて全体的に小さい。   The transition period is preferably a voltage phase range in which the range is further limited among TP11 to TP16. As shown in FIG. 12, it is preferable that the voltage phase range (TP21 to TP26) is ½ to 3 of TP11 to TP16 at the center of TP11 to TP16. TP21 to TP26 are voltage phase ranges including at least a voltage phase (for example, “θa”) in which any one of the three-phase alternating currents becomes zero. As is clear from FIG. 12, the absolute values of the peak currents in these voltage phase ranges (TP21 to TP26) are generally smaller than the absolute values of the peak currents in other voltage phases.

図12から明らかなように、より適切なタイミングで変調方式を切換えるためには、遷移期間は適切な幅(位相幅)に制限されていることが好ましい。この位相幅は、回転電機制御装置2の制御周期と回転電機80の電気角との関係に基づいて設定されていると好適である。回転電機80を滑らかに回転させるためには、高回転時における1パルス変調などを除けば、電気角の1周期の間に、5〜9パルスの変調パルスが存在することが好ましい。図9及び図12等を参照すれば、変調パルスのパルス幅が長くなる期間も存在するので、概ね電気角の半周期に5〜9パルスが存在すると考えて、パルス幅(位相幅)を演算することができる。180度中に9パルス存在するとすれば、パルス幅(位相幅)は、20度となる。この位相幅は、概ねTP11〜TP16として例示した遷移期間に対応する。また、TP21〜Tp26として例示した遷移期間TPは、その1/3〜1/2であるから、その位相幅は概ね6〜10度となる。   As apparent from FIG. 12, in order to switch the modulation method at a more appropriate timing, the transition period is preferably limited to an appropriate width (phase width). This phase width is preferably set based on the relationship between the control cycle of the rotating electrical machine control device 2 and the electrical angle of the rotating electrical machine 80. In order to rotate the rotating electrical machine 80 smoothly, it is preferable that 5 to 9 modulation pulses exist in one cycle of the electrical angle except for one-pulse modulation during high rotation. Referring to FIG. 9 and FIG. 12 and the like, there is a period in which the pulse width of the modulation pulse becomes longer, so that the pulse width (phase width) is calculated on the assumption that 5 to 9 pulses exist in the half cycle of the electrical angle. can do. If there are 9 pulses in 180 degrees, the pulse width (phase width) is 20 degrees. This phase width generally corresponds to the transition period exemplified as TP11 to TP16. Further, since the transition period TP exemplified as TP21 to Tp26 is 1/3 to 1/2, the phase width is approximately 6 to 10 degrees.

上述したように、変調パルスのパルス幅(位相幅)は、キャリア周波数によっても変動する。また、変調パルスのパルス幅(位相幅)は、回転電機制御装置2の制御周期によっても異なる。本実施形態では、第1キャリア周波数cf1に対して第2キャリア周波数cf2が2倍の周波数である例を示した。従って、上述した遷移期間TPの位相幅も、約2倍の余裕を持って設定されていると好適である。上記においては、TP21〜Tp26として例示した遷移期間TPが、6〜10度となる形態を例示したが、この位相幅は、6〜20度程度の範囲内に設定されていると好適である。   As described above, the pulse width (phase width) of the modulation pulse varies depending on the carrier frequency. Further, the pulse width (phase width) of the modulation pulse varies depending on the control cycle of the rotating electrical machine control device 2. In the present embodiment, an example in which the second carrier frequency cf2 is twice the first carrier frequency cf1 is shown. Therefore, it is preferable that the phase width of the transition period TP described above is set with a margin of about twice. In the above description, the transition period TP exemplified as TP21 to Tp26 is exemplified to be 6 to 10 degrees, but it is preferable that the phase width is set within a range of about 6 to 20 degrees.

ところで、図12における“Ip2”は、(A)及び(B)の双方を適用して変調方式を切替えた場合のシミュレーション結果を示している。“Ip1”と“Ip2”とを比較すれば明らかなように、“Ip2”の方がピーク電流の絶対値が小さい。従って、(A)及び(B)の形態を共に適用することによって、変調方式を切換える際の3相交流電流のピーク値の絶対値をさらに低減することができる。   By the way, “Ip2” in FIG. 12 indicates a simulation result when the modulation method is switched by applying both (A) and (B). As is apparent from a comparison between “Ip1” and “Ip2”, “Ip2” has a smaller absolute value of the peak current. Therefore, by applying both modes (A) and (B), the absolute value of the peak value of the three-phase alternating current when the modulation method is switched can be further reduced.

図13は、(A)及び(B)の双方を適用して変調方式を切替えた場合の波形を示している。図13と図6との比較、図13と図10との比較、図13と図11との比較、さらにこれら3つの比較結果を俯瞰することから明らかなように、(A)及び(B)を共に適用することによって、変調方式を切換える際の3相交流電流のピーク値の絶対値を低減することができ、3相交流電流のアンバランスも低減することができる。   FIG. 13 shows waveforms when the modulation scheme is switched by applying both (A) and (B). As is clear from comparison between FIG. 13 and FIG. 6, comparison between FIG. 13 and FIG. 10, comparison between FIG. 13 and FIG. 11, and these three comparison results, (A) and (B) Is applied together, the absolute value of the peak value of the three-phase alternating current when switching the modulation method can be reduced, and the unbalance of the three-phase alternating current can also be reduced.

以上、変調方式を切換える際の原理について説明したが、以下、回転電機制御装置2による具体的な制御方法について、図14〜図17の状態遷移図を用いて説明する。図14は、(A)及び(B)の何れも行わずに変調方式を切換える場合の状態遷移を例示しており、図6に示した形態に対応する。図15は、(A)の形態を適用して変調方式を切換える場合の状態遷移を例示しており、図8及び図10に示した形態に対応する。図16は、(B)の形態を適用して変調方式を切換える場合の状態遷移を例示しており、図9、図11、図12(“Ip1”)に例示した形態に対応する。図17は、(A)及び(B)の形態を共に適用して変調方式を切換える場合の状態遷移を例示しており、図12(“Ip2”)及び図13の形態に対応する。尚、各状態遷移図において、SW周波数(スイッチング周波数)は、変調パルスの平均周波数(変調周波数)に相当する。   The principle of switching the modulation method has been described above. Hereinafter, a specific control method by the rotating electrical machine control device 2 will be described with reference to the state transition diagrams of FIGS. FIG. 14 exemplifies a state transition when the modulation method is switched without performing any of (A) and (B), and corresponds to the form shown in FIG. FIG. 15 illustrates state transitions when the modulation scheme is switched by applying the form (A), and corresponds to the forms shown in FIGS. 8 and 10. FIG. 16 exemplifies state transitions when the modulation scheme is switched by applying the mode (B), and corresponds to the modes illustrated in FIGS. 9, 11, and 12 (“Ip1”). FIG. 17 exemplifies a state transition when the modulation scheme is switched by applying both the forms (A) and (B), and corresponds to the forms shown in FIG. 12 (“Ip2”) and FIG. In each state transition diagram, the SW frequency (switching frequency) corresponds to the average frequency (modulation frequency) of the modulation pulse.

図14に示すように、回転電機制御装置2は、(A)、(B)の何れも行わずに変調方式を切換える場合には、回転速度及び変調率に基づいて変調方式を遷移させる。回転電機制御装置2は、変調パルスを非同期変調によって生成している場合には、回転速度が“ω2”を超え、且つ変調率が“M2”を超える場合に、同期変調に遷移させる(#11)。一方、回転電機制御装置2は、変調パルスを同期変調によって生成している場合には、回転速度が“ω1”未満、且つ変調率が“M1”未満の場合に、非同期変調に遷移させる(#21)。ここで、回転速度のしきい値は、“ω1<ω2”であり、変調率のしきい値は“M1<M2”である。このようにヒステリシスを設けることによって、しきい値の近傍で回転速度や変調率が変動した場合であっても、変調方式がハンチングを起こさないようになっている。   As shown in FIG. 14, the rotating electrical machine control device 2 transitions the modulation method based on the rotation speed and the modulation rate when switching the modulation method without performing either (A) or (B). The rotating electrical machine control device 2 makes a transition to synchronous modulation when the rotation speed exceeds “ω2” and the modulation rate exceeds “M2” when the modulation pulse is generated by asynchronous modulation (# 11). ). On the other hand, when the modulation pulse is generated by synchronous modulation, the rotating electrical machine control device 2 makes a transition to asynchronous modulation when the rotation speed is less than “ω1” and the modulation rate is less than “M1” (# 21). Here, the threshold value of the rotation speed is “ω1 <ω2”, and the threshold value of the modulation factor is “M1 <M2”. By providing the hysteresis in this way, the modulation method does not cause hunting even when the rotation speed and the modulation rate fluctuate near the threshold value.

この形態において、非同期変調における制御周期と、同期変調における制御周期とは、“CP1”の同じ周期である。尚、非同期変調における変調周波数(キャリア周波数)は、第1キャリア周波数cf1である。第1キャリア周波数cf1は、制御周期“CP1”の逆数の1/2である。つまり、1回の制御周期において信号レベルが1回変化するように変調パルスが生成される。   In this embodiment, the control period in asynchronous modulation and the control period in synchronous modulation are the same period of “CP1”. Note that the modulation frequency (carrier frequency) in asynchronous modulation is the first carrier frequency cf1. The first carrier frequency cf1 is ½ of the reciprocal of the control cycle “CP1”. That is, the modulation pulse is generated so that the signal level changes once in one control cycle.

図15に示すように、(A)の形態を適用して変調方式を切換える場合にも、回転速度及び変調率に基づいて変調方式を遷移させる。但し、この形態では、回転電機制御装置2は、高周波非同期変調を経て変調方式を切換える。この高周波非同期変調は、所定の実行時間T1の間、実行される。本実施形態では、高周波非同期変調における変調周波数(キャリア周波数)である第2キャリア周波数cf2は、第1キャリア周波数cf1のN倍である。よって、高周波非同期変調を実行する場合の制御周期も短くなり、“CP1”の1/Nの周期である“CP2”となる。   As shown in FIG. 15, even when the modulation scheme is switched by applying the form (A), the modulation scheme is changed based on the rotation speed and the modulation rate. However, in this embodiment, the rotating electrical machine control device 2 switches the modulation method through high-frequency asynchronous modulation. This high-frequency asynchronous modulation is executed for a predetermined execution time T1. In the present embodiment, the second carrier frequency cf2, which is a modulation frequency (carrier frequency) in high-frequency asynchronous modulation, is N times the first carrier frequency cf1. Therefore, the control cycle when high-frequency asynchronous modulation is performed is also shortened to “CP2”, which is 1 / N cycle of “CP1”.

回転電機制御装置2は、変調パルスを非同期変調によって生成している場合には、回転速度が“ω2”を超え、且つ変調率が“M2”を超える場合に、まず、高周波非同期変調に遷移させる(#11)。そして、回転電機制御装置2は、高周波非同期変調に遷移してからの経過時間が所定の実行時間T1以上となった場合に、同期変調に移行させる(#12)。尚、同期変調における制御周期は、高周波非同期変調の制御周期を引き継いで“CP2”であっても良いし、非同期変調と同様の“CP1”であってもよい。一方、回転電機制御装置2は、変調パルスを同期変調によって生成している場合には、回転速度が“ω1”未満、且つ変調率が“M1”未満の場合に、まず、非同期変調に遷移させる(#21)。そして、回転電機制御装置2は、高周波非同期変調に遷移してからの経過時間が所定の実行時間T1以上となった場合に、非同期変調に移行させる(#22)。   When the rotating electrical machine control device 2 generates a modulation pulse by asynchronous modulation, when the rotational speed exceeds “ω2” and the modulation rate exceeds “M2”, first, the rotating electrical machine control device 2 makes a transition to high-frequency asynchronous modulation. (# 11). Then, the rotating electrical machine control device 2 shifts to the synchronous modulation when the elapsed time after the transition to the high frequency asynchronous modulation becomes equal to or longer than the predetermined execution time T1 (# 12). The control period in the synchronous modulation may be “CP2” by taking over the control period of the high-frequency asynchronous modulation, or may be “CP1” similar to the asynchronous modulation. On the other hand, when the rotating electrical machine control device 2 generates the modulation pulse by synchronous modulation, when the rotational speed is less than “ω1” and the modulation rate is less than “M1”, first, the rotating electrical machine control device 2 transits to asynchronous modulation. (# 21). The rotating electrical machine control device 2 shifts to asynchronous modulation when the elapsed time after transition to high-frequency asynchronous modulation becomes equal to or longer than the predetermined execution time T1 (# 22).

回転電機制御装置2は、非同期変調から高周波非同期変調に遷移し、変調パルスを高周波非同期変調によって生成している状態で、回転速度が“ω1”未満、且つ変調率が“M1”未満、且つ、非同期変調から高周波非同期変調に遷移してからの経過時間が実行時間T1以上となった場合には、変調方式を再び非同期変調に遷移させる(#19)。また、回転電機制御装置2は、同期変調から高周波非同期変調に遷移し、変調パルスを高周波非同期変調によって生成している状態で、回転速度が“ω2”を超え、且つ変調率が“M2”を超え、且つ、同期変調から高周波非同期変調に遷移してからの経過時間が実行時間T1以上となった場合には、変調方式を再び同期変調に遷移させる(#29)。   The rotating electrical machine control device 2 transitions from asynchronous modulation to high-frequency asynchronous modulation, and in a state where a modulation pulse is generated by high-frequency asynchronous modulation, the rotational speed is less than “ω1”, the modulation factor is less than “M1”, and When the elapsed time from the transition from the asynchronous modulation to the high frequency asynchronous modulation becomes equal to or longer than the execution time T1, the modulation method is again switched to the asynchronous modulation (# 19). In addition, the rotating electrical machine control device 2 transitions from synchronous modulation to high-frequency asynchronous modulation, and in a state where a modulation pulse is generated by high-frequency asynchronous modulation, the rotation speed exceeds “ω2” and the modulation rate is “M2”. If the elapsed time after the transition from the synchronous modulation to the high-frequency asynchronous modulation becomes equal to or longer than the execution time T1, the modulation method is changed to the synchronous modulation again (# 29).

図16に示すように、(B)の形態を適用して変調方式を切換える場合にも、回転速度及び変調率に基づいて変調方式を遷移させる。但し、この形態では、回転電機制御装置2は、電圧位相が遷移期間TPの範囲内において変調方式を切換える。回転電機制御装置2は、変調パルスを非同期変調によって生成している場合には、回転速度が“ω2”を超え、且つ変調率が“M2”を超え、且つ、その際の電圧位相が遷移期間TPに含まれる場合に、同期変調に移行させる(#13)。一方、回転電機制御装置2は、変調パルスを同期変調によって生成している場合には、回転速度が“ω1”未満、且つ変調率が“M1”未満、且つ、その際の電圧位相が遷移期間TPに含まれる場合に、非同期変調に移行させる(#23)。   As shown in FIG. 16, also when the modulation scheme is switched by applying the form (B), the modulation scheme is changed based on the rotation speed and the modulation rate. However, in this embodiment, the rotating electrical machine control device 2 switches the modulation method within the range of the voltage phase within the transition period TP. When the rotating electrical machine control device 2 generates the modulation pulse by asynchronous modulation, the rotational speed exceeds “ω2”, the modulation rate exceeds “M2”, and the voltage phase at that time is in the transition period If it is included in the TP, it is shifted to synchronous modulation (# 13). On the other hand, when the rotating electrical machine control device 2 generates the modulation pulse by synchronous modulation, the rotation speed is less than “ω1”, the modulation rate is less than “M1”, and the voltage phase at that time is in the transition period. If it is included in TP, it is shifted to asynchronous modulation (# 23).

遷移期間TPは、図16(及び図9、図12)に例示するように、電気角1周期の間に、6箇所存在する。従って、図16に示すように、θ2を超えθ3未満の範囲、θ4を超えθ5未満の範囲、θ6を超えθ7未満の範囲、θ8を超えθ9未満の範囲、θ10を超えθ11未満の範囲、θ12を超え360度以下且つ0度以上θ1未満の範囲の何れかである場合に、変調方式を切換える。ここでは、遷移期間TPについて、nを偶数、mを奇数として、「θnを超えθm未満」の範囲と規定したが、当然ながら境界条件は「以上及び以下」でもよい。即ち、遷移期間TPは、「θn以上θm以下」の範囲や、「θnを超えθm以下」の範囲や、「θn以上θm未満」の範囲、として規定されてもよい。また、θ1〜θ12は、図9及び図12に例示したTP1〜TP6を規定する電圧位相であっても良いし、TP11〜TP16を規定する電圧位相であってもよい。当然ながら、図12に例示したTP21〜TP26を規定する電圧位相であってもよい。   As illustrated in FIG. 16 (and FIGS. 9 and 12), there are six transition periods TP in one electrical angle cycle. Accordingly, as shown in FIG. 16, a range exceeding θ2 and less than θ3, a range exceeding θ4 and less than θ5, a range exceeding θ6 and less than θ7, a range exceeding θ8 and less than θ9, a range exceeding θ10 and less than θ11, and a range θ12 Over the range of 360 degrees or less and 0 degrees or more and less than θ1, the modulation method is switched. Here, the transition period TP is defined as a range of “more than θn and less than θm”, where n is an even number and m is an odd number, but the boundary condition may naturally be “above and below”. That is, the transition period TP may be defined as a range of “θn or more and θm or less”, a range of “above θn or less than θm”, or a range of “θn or more and less than θm”. Further, θ1 to θ12 may be voltage phases that define TP1 to TP6 illustrated in FIGS. 9 and 12, or may be voltage phases that define TP11 to TP16. Of course, the voltage phase may define TP21 to TP26 illustrated in FIG.

図17に示すように、図15及び図16に例示した条件を組み合わせることによって、(A)及び(B)の形態を適用して変調方式を切換えることができる。回転電機制御装置2は、変調パルスを非同期変調によって生成している場合には、回転速度が“ω2”を超え、且つ変調率が“M2”を超える場合に、まず、高周波非同期変調に遷移させる(#11)。そして、回転電機制御装置2は、高周波非同期変調に遷移してからの経過時間が実行時間T1以上となり、且つ、その際の電圧位相が遷移期間TPに含まれる場合に、同期変調に移行させる(#15)。一方、回転電機制御装置2は、変調パルスを同期変調によって生成している場合には、回転速度が“ω1”未満、且つ変調率が“M1”未満、且つ、その際の電圧位相が遷移期間TPに含まれる場合に、まず、高周波非同期変調に移行させる(#23)。そして、回転電機制御装置2は、高周波非同期変調に遷移してからの経過時間が所定の実行時間T1以上となった場合に、非同期変調に移行させる(#22)。   As shown in FIG. 17, by combining the conditions illustrated in FIGS. 15 and 16, the modulation schemes can be switched by applying the modes (A) and (B). When the rotating electrical machine control device 2 generates a modulation pulse by asynchronous modulation, when the rotational speed exceeds “ω2” and the modulation rate exceeds “M2”, first, the rotating electrical machine control device 2 makes a transition to high-frequency asynchronous modulation. (# 11). The rotating electrical machine control device 2 shifts to synchronous modulation when the elapsed time after transition to high-frequency asynchronous modulation is equal to or longer than the execution time T1 and the voltage phase at that time is included in the transition period TP ( # 15). On the other hand, when the rotating electrical machine control device 2 generates the modulation pulse by synchronous modulation, the rotation speed is less than “ω1”, the modulation rate is less than “M1”, and the voltage phase at that time is in the transition period. When included in the TP, first, the high-frequency asynchronous modulation is shifted (# 23). The rotating electrical machine control device 2 shifts to asynchronous modulation when the elapsed time after transition to high-frequency asynchronous modulation becomes equal to or longer than the predetermined execution time T1 (# 22).

回転電機制御装置2は、非同期変調から高周波非同期変調に遷移し、変調パルスを高周波非同期変調によって生成している状態で、回転速度が“ω1”未満、且つ変調率が“M1”未満、且つ、非同期変調から高周波非同期変調に遷移してからの経過時間が実行時間T1以上となった場合には、変調方式を再び非同期変調に遷移させる(#19)。また、回転電機制御装置2は、同期変調から高周波非同期変調に遷移し、変調パルスを高周波非同期変調によって生成している状態で、回転速度が“ω2”を超え、且つ変調率が“M2”を超え、且つ、同期変調から高周波非同期変調に遷移してからの経過時間が実行時間T1以上であり、且つ、その際の電圧位相が遷移期間TPに含まれる場合には、変調方式を再び同期変調に遷移させる(#28)。   The rotating electrical machine control device 2 transitions from asynchronous modulation to high-frequency asynchronous modulation, and in a state where a modulation pulse is generated by high-frequency asynchronous modulation, the rotational speed is less than “ω1”, the modulation factor is less than “M1”, and When the elapsed time from the transition from the asynchronous modulation to the high frequency asynchronous modulation becomes equal to or longer than the execution time T1, the modulation method is again switched to the asynchronous modulation (# 19). In addition, the rotating electrical machine control device 2 transitions from synchronous modulation to high-frequency asynchronous modulation, and in a state where a modulation pulse is generated by high-frequency asynchronous modulation, the rotation speed exceeds “ω2” and the modulation rate is “M2”. If the elapsed time after the transition from synchronous modulation to high-frequency asynchronous modulation is equal to or longer than the execution time T1 and the voltage phase at that time is included in the transition period TP, the modulation method is synchronously modulated again. (# 28).

以下、高周波非同期変調が実行される所定の実行時間T1(高周波非同期変調実行時間)の設定条件について説明する。上述したように、実行時間T1は、安定時間(交流電流安定時間)以上、許容時間(温度上昇許容時間)未満の長さに設定されていると好適である。これらの安定時間及び許容時間は、回転電機駆動装置1、回転電機制御装置2、回転電機80などの仕様や、動作条件(環境条件)に基づいて、固定値として設定されていてもよいし、高周波非同期変調を実行する都度、その際の条件(仕様及び動作条件)に基づいて浮動値として設定されてもよい。   Hereinafter, a setting condition of a predetermined execution time T1 (high frequency asynchronous modulation execution time) in which high frequency asynchronous modulation is executed will be described. As described above, it is preferable that the execution time T1 is set to a length equal to or more than the stabilization time (alternating current stabilization time) and less than the allowable time (temperature rise allowable time). These stabilization time and allowable time may be set as fixed values based on the specifications and operating conditions (environmental conditions) of the rotating electrical machine driving device 1, the rotating electrical machine control device 2, the rotating electrical machine 80, Each time high-frequency asynchronous modulation is executed, it may be set as a floating value based on the conditions (specifications and operating conditions) at that time.

上述したように、変調周波数(キャリア周波数)が高くなると、より高い周波数の変調パルスによってスイッチング素子3がスイッチングされることになるため、インバータ10の消費電力も増大し、発熱も大きくなる。従って、高周波非同期変調の実行時間は、消費電力の増加に伴う発熱が許容可能な許容時間(温度上昇許容時間)内に限定されることが好ましい。この許容時間は、実行時間T1(高周波非同期変調実行時間)の最大値である。例えば、図18に例示するように、許容時間は、変調周波数(SW周波数)が高いほど短い時間となる。但し、許容可能な上昇温度は、高周波非同期変調の開始時のスイッチング素子3(インバータ10)の温度(初期温度)によって異なる。つまり、初期温度が低い場合には、初期温度が高い場合に比べて許容できる上昇温度も高くなる。従って、図18に例示すように初期温度に応じて異なる複数の周波数特性に基づいて、許容時間が規定されると好適である。図18には、それぞれ初期温度がTemp1、Temp2、Temp3の際の周波数特性を例示している。ここで、初期温度は、Temp1が最も低く、Temp3が最も高い。即ち、許容時間は、高周波非同期変調の開始時のスイッチング素子3(インバータ10)の初期温度が高いほど短く、高周波非同期変調の実行時の変調周波数(第2キャリア周波数)が高いほど短い時間である。   As described above, when the modulation frequency (carrier frequency) is increased, the switching element 3 is switched by a modulation pulse having a higher frequency, so that power consumption of the inverter 10 is increased and heat generation is also increased. Therefore, it is preferable that the execution time of the high-frequency asynchronous modulation is limited to an allowable time (temperature increase allowable time) in which heat generation accompanying an increase in power consumption is allowable. This allowable time is the maximum value of the execution time T1 (high frequency asynchronous modulation execution time). For example, as illustrated in FIG. 18, the allowable time is shorter as the modulation frequency (SW frequency) is higher. However, the allowable rise temperature varies depending on the temperature (initial temperature) of the switching element 3 (inverter 10) at the start of the high-frequency asynchronous modulation. That is, when the initial temperature is low, the allowable rise temperature is higher than when the initial temperature is high. Therefore, as shown in FIG. 18, it is preferable that the allowable time is defined based on a plurality of frequency characteristics that differ depending on the initial temperature. FIG. 18 illustrates frequency characteristics when the initial temperatures are Temp1, Temp2, and Temp3, respectively. Here, the initial temperature is the lowest in Temp1 and the highest in Temp3. That is, the allowable time is shorter as the initial temperature of the switching element 3 (inverter 10) at the start of high-frequency asynchronous modulation is higher, and is shorter as the modulation frequency (second carrier frequency) at the time of execution of high-frequency asynchronous modulation is higher. .

また、上述したように、高周波非同期変調は、電流波形が安定する時間(安定時間(交流電流安定時間))、継続されることが好ましい。この安定時間は、実行時間T1(高周波非同期変調実行時間)の最小値である。安定時間は、主として回転電機80の仕様に応じて規定される時間であり、回転電機80の安定性を確保できる最低限の時間である。この時間は、回転電機80の仕様(電磁気的なパラメータ)によって定まる。制御周期(CP)との関係では、3相交流の電圧のアンバランスによる電流のアンバランスが解消される制御周期の数(少なくとも1〜2周期)に対応する時間が安定時間として規定されると好適である。   Further, as described above, the high-frequency asynchronous modulation is preferably continued for a time during which the current waveform is stabilized (stable time (alternating current for AC current)). This stabilization time is the minimum value of the execution time T1 (high frequency asynchronous modulation execution time). The stabilization time is a time mainly defined according to the specifications of the rotating electrical machine 80, and is the minimum time that can ensure the stability of the rotating electrical machine 80. This time is determined by the specifications (electromagnetic parameters) of the rotating electrical machine 80. In relation to the control cycle (CP), when the time corresponding to the number of control cycles (at least 1 to 2 cycles) in which the current imbalance due to the voltage imbalance of the three-phase alternating current is eliminated is defined as the stabilization time Is preferred.

〔その他の実施形態〕
以下、その他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other Embodiments]
Hereinafter, other embodiments will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.

(1)上記においては、非同期変調と同期変調との間で変調方式を切換える形態として、空間ベクトルパルス幅変調と9パルス変調との間で変調方式を切換える形態を例示して説明した。しかし、非同期変調に空間ベクトルパルス幅変調以外の形態が存在すること、及び同期変調に9パルス変調以外の形態が存在することも上記において例示している。従って、非同期変調と同期変調との間で変調方式を切換える形態は、上述した形態に限定されるものではない。 (1) In the above description, the mode of switching the modulation method between the space vector pulse width modulation and the 9 pulse modulation has been described as an example of switching the modulation method between the asynchronous modulation and the synchronous modulation. However, the above also illustrates that there are forms other than space vector pulse width modulation in asynchronous modulation and forms other than 9 pulse modulation in synchronous modulation. Therefore, the mode of switching the modulation method between asynchronous modulation and synchronous modulation is not limited to the above-described mode.

(2)上記においては、第1キャリア周波数cf1が、変調方式を切換える際の同期変調の変調周波数の約1/2である場合を例示した(図6に対する図10、図13を参照)。また、第2キャリア周波数cf2は、第1キャリア周波数cf1の2倍の周波数である場合を例示した。第2キャリア周波数cf2は、変調方式を切換える際の同期変調の変調周波数よりも高くても良いし、低くてもよい。尚、第2キャリア周波数cf2が、変調方式を切換える際の同期変調の変調周波数よりも高い場合には、インバータ10の消費電力の増加により、発熱も増加する可能性がある。従って、上述した許容時間は短くなり、設定可能な実行時間T1の最大値も小さくなる。第2キャリア周波数cf2は、交流電流の波形が安定するために充分な時間が確保できる範囲内であれば、変調方式を切換える際の同期変調の変調周波数よりも高い周波数に設定可能である。 (2) In the above, the case where the first carrier frequency cf1 is about ½ of the modulation frequency of the synchronous modulation when the modulation method is switched is illustrated (see FIGS. 10 and 13 with respect to FIG. 6). Further, the case where the second carrier frequency cf2 is twice the frequency of the first carrier frequency cf1 is exemplified. The second carrier frequency cf2 may be higher or lower than the modulation frequency of synchronous modulation when switching the modulation method. When the second carrier frequency cf2 is higher than the modulation frequency of the synchronous modulation when switching the modulation method, the heat generation may increase due to the increase in power consumption of the inverter 10. Therefore, the allowable time mentioned above becomes short, and the maximum value of the set execution time T1 becomes small. The second carrier frequency cf2 can be set to a frequency higher than the modulation frequency of the synchronous modulation when switching the modulation method, as long as a sufficient time can be secured for stabilizing the waveform of the alternating current.

一方、同期変調の変調周波数は、インバータ10の温度上昇を考慮して設定されているため、第2キャリア周波数cf2が、変調方式を切換える際の同期変調の変調周波数よりも低い場合には、許容時間については気にする必要はない。但し、変調周波数が低いと、交流の電流波形が安定するまでの時間が長くなる傾向がある。従って、変調方式を切換える際の同期変調の変調周波数よりも低い周波数を第2キャリア周波数cf2とする場合には、回転電機80の制御の応答性を損なわない範囲の値が設定されることが好ましい。   On the other hand, since the modulation frequency of the synchronous modulation is set in consideration of the temperature increase of the inverter 10, if the second carrier frequency cf2 is lower than the modulation frequency of the synchronous modulation when switching the modulation method, it is acceptable. You don't have to worry about time. However, when the modulation frequency is low, the time until the AC current waveform stabilizes tends to be long. Therefore, when the second carrier frequency cf2 is set to a frequency lower than the modulation frequency of the synchronous modulation at the time of switching the modulation method, it is preferable to set a value in a range that does not impair the control response of the rotating electrical machine 80. .

(3)上記においては、変調方式が非同期変調から同期変調へと切換わる場合、遷移期間TPを変調方式が切り替わった直後の同期変調における電圧位相(変調方式が同期変調であると仮定した場合の電圧位相)に基づいて設定すると好適であると説明した。この形態の方が好ましいが、変調方式が非同期変調から同期変調へと切換わる場合、非同期変調によるパルスの電圧位相に基づいて遷移期間TPを設定することを妨げるものではない。 (3) In the above, when the modulation method is switched from asynchronous modulation to synchronous modulation, the transition phase TP is the voltage phase in synchronous modulation immediately after the modulation method is switched (when the modulation method is assumed to be synchronous modulation). It has been described that setting based on (voltage phase) is preferable. Although this form is preferred, when the modulation method is switched from asynchronous modulation to synchronous modulation, it does not prevent the transition period TP from being set based on the voltage phase of the pulse by asynchronous modulation.

〔実施形態の概要〕
以下、上記において説明した回転電機制御装置(2)の概要について簡単に説明する。
[Outline of Embodiment]
Hereinafter, the outline | summary of the rotary electric machine control apparatus (2) demonstrated above is demonstrated easily.

直流電力と3相の交流電力との間で電力変換するインバータ(10)を介して交流の回転電機(80)を制御する回転電機制御装置(2)は、1つの態様として、
前記回転電機(80)の回転に同期しないキャリア周波数(cf1)を有するキャリアに基づいて生成される変調パルスによって前記インバータ(10)をスイッチング制御する非同期変調と、前記回転電機(80)の回転に同期して生成される変調パルスによって前記インバータ(10)をスイッチング制御する同期変調と、を少なくとも前記回転電機(80)の回転速度を含む前記回転電機(80)の動作条件に応じて切換え、
前記非同期変調と前記同期変調との間での変調方式の切換えは、3相の交流電圧の関係を表す電圧位相に基づいて規定される遷移期間(TP)に行われ、前記遷移期間(TP)は、3相の交流電圧の内の1相の信号レベルがハイレベル又はローレベルに固定され、当該1相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する2相変調の状態となる前記電圧位相の期間に設定されている。
A rotating electrical machine control device (2) that controls an AC rotating electrical machine (80) via an inverter (10) that converts power between DC power and 3-phase AC power includes:
Asynchronous modulation for switching control of the inverter (10) by a modulation pulse generated based on a carrier having a carrier frequency (cf1) that is not synchronized with the rotation of the rotating electrical machine (80), and rotation of the rotating electrical machine (80) The synchronous modulation for controlling the switching of the inverter (10) with the modulation pulse generated in synchronization is switched according to the operating conditions of the rotating electrical machine (80) including at least the rotational speed of the rotating electrical machine (80).
Switching of the modulation method between the asynchronous modulation and the synchronous modulation is performed in a transition period (TP) defined based on a voltage phase representing a relationship between three-phase AC voltages, and the transition period (TP) The one-phase signal level of the three-phase AC voltage is fixed to the high level or the low level, and the signal level of the other two phases changes during the period in which the one-phase signal level is fixed 2. The voltage phase is set during the phase modulation state.

複数相の交流電流の何れか1相の電流が最大振幅である位相において変調方式が切換わると、当該最大電流に対して過渡電流が重畳されることになるので、交流電流の絶対値の最大値は大きくなる。従って、そのような位相で変調方式を切換えることを避け、より好ましい位相において変調方式を切換えると好適である。多くの場合、インバータ(10)は、電圧制御型であり、交流電圧の電圧位相(変調パルスの電圧位相とほぼ等価)によって変調方式を切換えるタイミングが規定されると好適である。インバータ(10)の交流側の相数が3相である場合、1相の電圧レベルが固定され、他の2相の電圧レベルが変化する2相変調のフェーズと、2相の電圧レベルが固定され、残りの1相の電圧レベルが変化する1相変調のフェーズとが発生し得る。1相変調のフェーズでは、3相の内の何れか1相の電流の振幅が大きくなり、過渡電流が重畳される基本電流の絶対値が大きくなる。発明者らによる実験やシミュレーションによれば、1相変調のフェーズで変調方式を切換えると、2相変調のフェーズで変調方式を切換える場合に比べて、過渡電流の影響によって交流電流の絶対値が大きくなる傾向があることが確認されている。従って、変調方式の切換えは、2相変調の状態となる電圧位相の期間に行われることが好ましい。   When the modulation method is switched in a phase where the current of any one of the multiple-phase alternating currents has the maximum amplitude, the transient current is superimposed on the maximum current, so the maximum absolute value of the alternating current is maximum. The value gets bigger. Therefore, it is preferable to avoid switching the modulation system at such a phase and switch the modulation system at a more preferable phase. In many cases, the inverter (10) is of the voltage control type, and it is preferable that the timing for switching the modulation method is defined by the voltage phase of the AC voltage (substantially equivalent to the voltage phase of the modulation pulse). When the number of phases on the AC side of the inverter (10) is three, the voltage level of one phase is fixed, the phase of two-phase modulation in which the voltage level of the other two phases changes, and the voltage level of the two phases is fixed And the phase of the one-phase modulation in which the voltage level of the remaining one phase changes may occur. In the phase of one-phase modulation, the amplitude of the current of any one of the three phases increases, and the absolute value of the basic current on which the transient current is superimposed increases. According to experiments and simulations by the inventors, when the modulation method is switched in the phase of one-phase modulation, the absolute value of the alternating current is larger due to the influence of the transient current than in the case of switching the modulation method in the phase of two-phase modulation. It has been confirmed that there is a tendency to become. Therefore, it is preferable that the switching of the modulation system is performed during the voltage phase period in which the two-phase modulation is performed.

また、3相の交流電圧の全ての信号レベルがハイレベル、又は3相の交流電圧の全ての信号レベルがローレベルである状態をゼロベクトル状態として、前記3相の交流電圧が前記ゼロベクトル状態となる期間が直前及び直後の少なくとも何れかに存在する前記電圧位相の期間に、前記遷移期間(TP)が設定されていると好適である。インバータ(10)の交流側の相数が3相である場合、当該3相の電圧位相(変調パルスの電圧位相とほぼ等価)によって8つの空間ベクトルが実現される。具体的には、100,010,001,110,101,011,111,000の8つの空間ベクトルが実現できる。この内、111及び000はゼロベクトルと称され、他の6つはアクティブベクトルと称される。発明者らによるシミュレーションによれば、変調方式の切換えの前後がアクティブベクトル期間である場合には、過渡電流の影響による交流電流の絶対値が大きくなる傾向があることが確認されている。逆に、変調方式の切換えの前後がゼロベクトル期間である場合には、過渡電流の影響による交流電流の絶対値が小さい傾向がある。従って、上述したように遷移期間(TP)が設定されていると好適である。   Further, a state where all the signal levels of the three-phase AC voltage are high level or all the signal levels of the three-phase AC voltage are low level is defined as a zero vector state, and the three-phase AC voltage is the zero vector state. It is preferable that the transition period (TP) is set in the period of the voltage phase in which the period becomes at least one immediately before and immediately after. When the number of phases on the AC side of the inverter (10) is three, eight space vectors are realized by the three-phase voltage phase (substantially equivalent to the voltage phase of the modulation pulse). Specifically, eight space vectors of 100, 010, 001, 110, 101, 011, 111,000 can be realized. Of these, 111 and 000 are called zero vectors, and the other six are called active vectors. According to the simulations by the inventors, it has been confirmed that the absolute value of the alternating current tends to increase when the modulation method is switched before and after the active vector period. On the contrary, when the modulation method is switched before and after the zero vector period, the absolute value of the alternating current due to the influence of the transient current tends to be small. Accordingly, it is preferable that the transition period (TP) is set as described above.

また、回転電機制御装置(2)は、前記遷移期間(TP)の期間中であって、3相の交流電流の内の何れか1相の電流がゼロとなる前記電圧位相を含む期間に前記変調方式を切換えると好適である。3相の交流電流は平衡しており、理論的には3相電流の瞬時値はゼロである。従って、3相の内の1相の電流がゼロであるとき、他の2相は、正負それぞれに同じ値である。また、3相電流は、それぞれ位相が120度ずつずれているため、3相の内の1相の電流がゼロである位相では、他の2相の電流は振幅が最大となる位相ではない。従って、過渡電流が重畳されたとしても、ベースとなる電流の絶対値は最大振幅ではない。よって、3相の交流電流の内の何れか1相の電流がゼロとなる電圧位相を含む期間に変調方式を切換えると好適である。   The rotating electrical machine control device (2) includes the voltage phase during the transition period (TP) and including the voltage phase in which any one of the three-phase alternating currents is zero. It is preferable to switch the modulation method. The three-phase alternating current is balanced, and the instantaneous value of the three-phase current is theoretically zero. Therefore, when the current of one of the three phases is zero, the other two phases have the same value for both positive and negative. In addition, since the phases of the three-phase currents are shifted by 120 degrees, in the phase where the current of one of the three phases is zero, the currents of the other two phases are not the phase where the amplitude is maximum. Therefore, even if the transient current is superimposed, the absolute value of the base current is not the maximum amplitude. Therefore, it is preferable to switch the modulation method during a period including a voltage phase in which any one of the three-phase alternating currents is zero.

また、1つの態様として、回転電機制御装置(2)は、前記非同期変調における前記キャリア周波数(cf1)を第1キャリア周波数(cf1)とし、前記非同期変調と前記同期変調との間で変調方式を切換える場合に、前記第1キャリア周波数(cf1)よりも高い周波数である第2キャリア周波数(cf2)に基づいて変調パルスを生成する高周波非同期変調を経て変調方式を切換え、前記高周波非同期変調と前記同期変調との間での変調方式の切換えが、前記遷移期間(TP)に行われると好適である。   Also, as one aspect, the rotating electrical machine control device (2) sets the carrier frequency (cf1) in the asynchronous modulation as a first carrier frequency (cf1), and sets a modulation method between the asynchronous modulation and the synchronous modulation. When switching, the modulation scheme is switched through high-frequency asynchronous modulation that generates a modulation pulse based on the second carrier frequency (cf2) that is higher than the first carrier frequency (cf1), and the high-frequency asynchronous modulation and the synchronization It is preferable that switching of the modulation system between the modulation is performed during the transition period (TP).

非同期変調において変調パルスを生成する基準となるキャリアの周波数が相対的に低い場合には、直流から交流への変換に当たって分解能が相対的に低くなるため、キャリアの周波数が相対的に高い場合に比べて、交流の電流における脈動(リップル)が大きくなる。このような脈動成分により交流電流の絶対値が大きくなっている位相において、変調方式の切換えに起因する過渡電流が重畳されると、さらに交流電流の絶対値が大きくなる可能性がある。また、非同期変調では、交流電圧や交流電流の位相と、変調パルスの位相とが、交流の各周期によって異なるため、交流電圧や交流電流の波形も安定していない。換言すれば、複数相の各相、さらには同一相であっても周期ごとに交流電流の最大振幅が異なることがある。交流電流の最大振幅が大きくなっている周期において、波形のピークの近くに過渡電流が重畳されると、交流電流の絶対値が大きくなる。しかし、本構成のように、変調方式を切換える際に、キャリアの周波数を高くした高周波非同期変調が実行されると、直流から交流への変換に当たっての分解能も高くなるため、上述したような脈動も低減され、交流電流の波形もより安定する。その結果、非同期変調と同期変調とを切り替える際に生じる過渡電流の影響による交流電流の絶対値の最大値を低減することができる。   Compared to the case where the carrier frequency is relatively high when the carrier frequency, which is the reference for generating the modulation pulse in asynchronous modulation, is relatively low when converting from DC to AC. Thus, the pulsation (ripple) in the alternating current increases. In the phase where the absolute value of the alternating current is large due to such a pulsating component, if the transient current resulting from the switching of the modulation method is superimposed, the absolute value of the alternating current may be further increased. In asynchronous modulation, the AC voltage or AC current phase and the modulation pulse phase differ depending on the AC cycle, and the AC voltage and AC current waveforms are not stable. In other words, the maximum amplitude of the alternating current may be different for each period even if each phase is a plurality of phases or even the same phase. In the period in which the maximum amplitude of the alternating current is large, if a transient current is superimposed near the peak of the waveform, the absolute value of the alternating current increases. However, when high-frequency asynchronous modulation with a high carrier frequency is performed when switching the modulation method as in this configuration, the resolution in conversion from direct current to alternating current increases, so the pulsation as described above is also caused. The AC current waveform is more stable. As a result, the maximum value of the absolute value of the alternating current due to the influence of the transient current that occurs when switching between asynchronous modulation and synchronous modulation can be reduced.

ここで、前記同期変調の変調パルスは、前記回転電機(80)の回転速度に応じた周波数を有し、前記第2キャリア周波数(cf2)は、変調方式を切換える際の当該同期変調の変調パルスの周波数に基づいて設定されていると好適である。一般的には、相対的に回転電機(80)の回転速度が低回転速度の場合に非同期変調が用いられ、高回転速度の場合に同期変調が用いられる。従って、変調方式を切換えるときの回転電機(80)の回転速度は、比較的高回転速度側である場合が多い。第1キャリア周波数(cf1)による非同期変調では、回転電機(80)の回転速度に拘わらず、変調パルスの平均周波数(変調周波数)は同じであるから、回転電機(80)の回転速度が高くなるほど、電気角1周期当たりの変調パルスの数が少なくなる。一方、同期変調(1パルスはもちろん、複数パルス変調でも)では、回転電機(80)の回転速度に拘わらず、電気角1周期当たりの変調パルスの数は一定であり、回転速度に応じて変調パルスの平均周波数は変化する。このため、比較的高回転速度側で変調方式が切換わるときには、非同期変調に比べて同期変調の方が、変調周波数が高い場合が多い。特に複数パルス変調が行われる場合には、交流電流の脈動の低減や、各相での振幅の安定化が考慮されてパルス数(変調周波数)が設定されていることが多い。従って、変調方式が切換わる際の同期変調の変調周波数に基づいて高周波非同期変調の変調周波数が設定されると、交流電流の脈動が低減され、各相での振幅を安定させることができる。   Here, the modulation pulse of the synchronous modulation has a frequency corresponding to the rotation speed of the rotating electrical machine (80), and the second carrier frequency (cf2) is the modulation pulse of the synchronous modulation when the modulation method is switched. It is preferable that the frequency is set based on the frequency. In general, asynchronous modulation is used when the rotational speed of the rotating electrical machine (80) is relatively low, and synchronous modulation is used when the rotational speed is high. Therefore, the rotational speed of the rotating electrical machine (80) when switching the modulation method is often on the relatively high rotational speed side. In the asynchronous modulation using the first carrier frequency (cf1), the average frequency (modulation frequency) of the modulation pulse is the same regardless of the rotation speed of the rotating electrical machine (80), so that the rotating speed of the rotating electrical machine (80) increases. The number of modulation pulses per electrical angle cycle is reduced. On the other hand, in synchronous modulation (single pulse as well as multi-pulse modulation), the number of modulation pulses per electrical angle period is constant regardless of the rotation speed of the rotating electrical machine (80), and modulation is performed according to the rotation speed. The average frequency of the pulse varies. For this reason, when the modulation method is switched on the relatively high rotational speed side, the modulation frequency is often higher in the synchronous modulation than in the asynchronous modulation. In particular, when multiple pulse modulation is performed, the number of pulses (modulation frequency) is often set in consideration of reduction of pulsation of alternating current and stabilization of amplitude in each phase. Therefore, when the modulation frequency of high-frequency asynchronous modulation is set based on the modulation frequency of synchronous modulation when the modulation method is switched, the pulsation of alternating current is reduced and the amplitude in each phase can be stabilized.

ここで、前記第2キャリア周波数(cf2)が、変調方式を切換える際の当該同期変調の変調パルスの周波数に基づいて設定されている場合において、さらに、前記第2キャリア周波数(cf2)は、前記インバータ(10)の直流側端子に最大定格電圧が印加され、前記回転電機(80)が最大定格トルクを出力し、前記回転電機(80)の回転速度が前記最大定格トルクを出力可能な範囲の最高回転速度であるという条件における前記同期変調の変調パルスの周波数に応じて設定されていると好適である。この条件は、インバータ(10)の発熱が最大となる最悪条件ということができる。この条件下における同期変調の変調周波数に応じて第2キャリア周波数(cf2)を規定することによって、耐熱等の条件を満たした状態で高周波非同期変調を実施することができる。   Here, in the case where the second carrier frequency (cf2) is set based on the frequency of the modulation pulse of the synchronous modulation when switching the modulation method, the second carrier frequency (cf2) is further A maximum rated voltage is applied to the DC side terminal of the inverter (10), the rotating electrical machine (80) outputs a maximum rated torque, and the rotational speed of the rotating electrical machine (80) is within a range in which the maximum rated torque can be output. It is preferable that the speed is set in accordance with the frequency of the modulation pulse of the synchronous modulation under the condition of the maximum rotation speed. This condition can be said to be the worst condition in which the heat generation of the inverter (10) is maximized. By defining the second carrier frequency (cf2) according to the modulation frequency of the synchronous modulation under these conditions, the high-frequency asynchronous modulation can be performed in a state where the conditions such as heat resistance are satisfied.

また、前記第2キャリア周波数(cf2)が、変調方式を切換える際の当該同期変調の変調パルスの周波数に基づいて設定されている場合において、前記第2キャリア周波数(cf2)が、可変周波数であり、変調方式を切換える都度、当該切換えの際の前記同期変調の変調パルスの周波数に適合するように設定されると好適である。変調方式は、少なくとも回転速度に基づいて切換えられるが、回転速度の変動によって頻繁に変調方式が切換わること(ハンチング)を防止するために、非同期変調から同期変調への切換えの回転速度と、同期変調から非同期変調への切換えの回転速度とが異なる場合もある。また、変調方式の切換えは、回転速度だけではなく、回転電機(80)の出力トルクや、インバータ(10)の直流側端子の電圧(直流リンク電圧(Vdc))も含めた条件によって行われる場合もある。このため、変調方式が切換わる際の同期変調による変調周波数は一定とは限らない。従って、高周波非同期変調の際の変調周波数(第2キャリア周波数(cf2))も一定である必要はない。変調方式が切換わる際の同期変調による変調周波数に応じて、その都度、第2キャリア周波数(cf2)を設定することも好適な形態である。   Further, when the second carrier frequency (cf2) is set based on the frequency of the modulation pulse of the synchronous modulation when switching the modulation method, the second carrier frequency (cf2) is a variable frequency. Whenever the modulation system is switched, it is preferable that the modulation system is set so as to match the frequency of the modulation pulse of the synchronous modulation at the time of the switching. The modulation method is switched based on at least the rotational speed, but in order to prevent frequent switching of the modulation method due to fluctuations in the rotational speed (hunting), the rotational speed of switching from asynchronous modulation to synchronous modulation is synchronized with The rotational speed of switching from modulation to asynchronous modulation may be different. Further, the switching of the modulation method is performed not only by the rotation speed but also by conditions including the output torque of the rotating electrical machine (80) and the voltage at the DC side terminal of the inverter (10) (DC link voltage (Vdc)). There is also. For this reason, the modulation frequency by the synchronous modulation when the modulation method is switched is not always constant. Therefore, the modulation frequency (second carrier frequency (cf2)) at the time of high-frequency asynchronous modulation need not be constant. It is also a preferable form to set the second carrier frequency (cf2) each time according to the modulation frequency by the synchronous modulation when the modulation method is switched.

ところで、高周波非同期変調は、電流波形が安定する時間、継続されることが好ましい。但し、より高い周波数の変調パルスによってインバータ(10)のスイッチング素子(3)がスイッチングされた場合、インバータ(10)の消費電力も増大し、発熱も大きくなる。従って、高周波非同期変調の実行時間(T1)は、消費電力の増加に伴う発熱が許容可能な許容時間内であることが好ましい。この許容時間は、変調周波数(キャリア周波数)が高いほど短い時間となる。また、許容可能な上昇温度は、高周波非同期変調の開始時のインバータ(10)の温度(初期温度)によって異なる。つまり、初期温度が低い場合には、初期温度が高い場合に比べて許容できる上昇温度も高くなる。従って、前記高周波非同期変調の実行時間(T1)は、前記高周波非同期変調の開始時のインバータ(10)の温度が高くなるのに応じて短く、第2キャリア周波数(cf2)が高くなるのに応じて短い時間であると好適である。   By the way, the high-frequency asynchronous modulation is preferably continued for a time during which the current waveform is stabilized. However, when the switching element (3) of the inverter (10) is switched by a modulation pulse having a higher frequency, the power consumption of the inverter (10) increases and the heat generation increases. Therefore, it is preferable that the execution time (T1) of the high-frequency asynchronous modulation is within an allowable time in which heat generation accompanying an increase in power consumption is allowable. This allowable time becomes shorter as the modulation frequency (carrier frequency) is higher. Further, the allowable rise temperature varies depending on the temperature (initial temperature) of the inverter (10) at the start of the high-frequency asynchronous modulation. That is, when the initial temperature is low, the allowable rise temperature is higher than when the initial temperature is high. Accordingly, the execution time (T1) of the high-frequency asynchronous modulation is shortened as the temperature of the inverter (10) at the start of the high-frequency asynchronous modulation is increased, and the second carrier frequency (cf2) is increased. And a short time is preferred.

2 :回転電機制御装置
3 :スイッチング素子
10 :インバータ
11 :高圧バッテリ
80 :回転電機
T1 :実行時間
TP :遷移期間
cf1 :第1キャリア周波数
cf2 :第2キャリア周波数
2: rotating electrical machine control device 3: switching element 10: inverter 11: high voltage battery 80: rotating electrical machine T1: execution time TP: transition period cf1: first carrier frequency cf2: second carrier frequency

Claims (9)

直流電力と3相の交流電力との間で電力変換するインバータを介して交流の回転電機を制御する回転電機制御装置であって、
前記回転電機の回転に同期しないキャリア周波数を有するキャリアに基づいて生成される変調パルスによって前記インバータをスイッチング制御する非同期変調と、
前記回転電機の回転に同期して生成される変調パルスによって前記インバータをスイッチング制御する同期変調と、を少なくとも前記回転電機の回転速度を含む前記回転電機の動作条件に応じて切換え、
前記非同期変調と前記同期変調との間での変調方式の切換えは、当該切換えのタイミングが、3相の交流電圧の関係を表す電圧位相に基づいて規定される遷移期間となるように制御され
前記遷移期間は、3相の交流電圧の内の1相の信号レベルがハイレベル又はローレベルに固定され、当該1相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する2相変調の状態となる前記電圧位相の期間に設定されている回転電機制御装置。
A rotating electrical machine control device that controls an AC rotating electrical machine via an inverter that converts power between DC power and 3-phase AC power,
Asynchronous modulation for switching control of the inverter by a modulation pulse generated based on a carrier having a carrier frequency not synchronized with the rotation of the rotating electrical machine;
Switching synchronous modulation for switching control of the inverter by a modulation pulse generated in synchronization with rotation of the rotating electrical machine according to an operating condition of the rotating electrical machine including at least the rotational speed of the rotating electrical machine,
Switching of the modulation scheme between said synchronous modulation and said asynchronous modulation, timing of the switching is controlled such that the transition period is defined based on the voltage phase representing the relationship between the AC voltage 3-phase,
In the transition period, the signal level of one phase of the three-phase AC voltage is fixed to a high level or a low level, and the signal level of the other two phases is changed during the period in which the signal level of the one phase is fixed. The rotating electrical machine control apparatus set in the period of the voltage phase in which the two-phase modulation state is changed.
直流電力と3相の交流電力との間で電力変換するインバータを介して交流の回転電機を制御する回転電機制御装置であって、
前記回転電機の回転に同期しないキャリア周波数を有するキャリアに基づいて生成される変調パルスによって前記インバータをスイッチング制御する非同期変調と、
前記回転電機の回転に同期して生成される変調パルスによって前記インバータをスイッチング制御する同期変調と、を少なくとも前記回転電機の回転速度を含む前記回転電機の動作条件に応じて切換え、
前記非同期変調及び前記同期変調では、3相のうちの何れか1相のスイッチングを休止することなく3相をスイッチングして、
3相の交流電圧の内の1相の信号レベルがハイレベル又はローレベルに固定され、当該1相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する状態、3相の交流電圧の内の2相の信号レベルがハイレベル又はローレベルに固定され、当該2相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する状態、3相全ての交流電圧の信号レベルがハイレベル又はローレベルに固定されている状態を発生させ、
前記非同期変調と前記同期変調との間での変調方式の切換えは、3相の交流電圧の関係を表す電圧位相に基づいて規定される遷移期間に行われ、
前記遷移期間は、3相の交流電圧の内の1相の信号レベルがハイレベル又はローレベルに固定され、当該1相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する2相変調の状態となる前記電圧位相の期間に設定されている回転電機制御装置。
A rotating electrical machine control device that controls an AC rotating electrical machine via an inverter that converts power between DC power and 3-phase AC power,
Asynchronous modulation for switching control of the inverter by a modulation pulse generated based on a carrier having a carrier frequency not synchronized with the rotation of the rotating electrical machine;
Switching synchronous modulation for switching control of the inverter by a modulation pulse generated in synchronization with rotation of the rotating electrical machine according to an operating condition of the rotating electrical machine including at least the rotational speed of the rotating electrical machine,
In the asynchronous modulation and the synchronous modulation, the three phases are switched without stopping the switching of any one of the three phases,
A state in which the signal level of one phase of the three-phase AC voltage is fixed to the high level or the low level, and the signal level of the other two phases changes during the period in which the signal level of the one phase is fixed. The two-phase signal level of the AC voltage of the phase is fixed to the high level or the low level, and the signal level of the other two phases changes during the period in which the two-phase signal level is fixed. Generates a state where the signal level of all AC voltages is fixed at high level or low level,
The switching of the modulation method between the asynchronous modulation and the synchronous modulation is performed in a transition period defined based on a voltage phase representing a relationship between three-phase AC voltages,
In the transition period, the signal level of one phase of the three-phase AC voltage is fixed to a high level or a low level, and the signal level of the other two phases is changed during the period in which the signal level of the one phase is fixed. The rotating electrical machine control apparatus set in the period of the voltage phase in which the two-phase modulation state is changed.
直流電力と3相の交流電力との間で電力変換するインバータを介して交流の回転電機を制御する回転電機制御装置であって、
前記回転電機の回転に同期しないキャリア周波数を有するキャリアに基づいて生成される変調パルスによって前記インバータをスイッチング制御する非同期変調と、
前記回転電機の回転に同期して生成される変調パルスによって前記インバータをスイッチング制御する同期変調と、を少なくとも前記回転電機の回転速度を含む前記回転電機の動作条件に応じて切換え、
前記非同期変調と前記同期変調との間での変調方式の切換えは、3相の交流電圧の関係を表す電圧位相に基づいて規定される遷移期間に行われ、
前記遷移期間は、3相の交流電圧の内の1相の信号レベルがハイレベル又はローレベルに固定され、当該1相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する2相変調の状態となる前記電圧位相の期間に設定され、
3相の交流電圧の全ての信号レベルがハイレベル、又は3相の交流電圧の全ての信号レベルがローレベルである状態をゼロベクトル状態として、
3相の交流電圧が前記ゼロベクトル状態となる期間が直前及び直後の少なくとも何れかに存在する前記電圧位相の期間に、前記遷移期間が設定されている回転電機制御装置。
A rotating electrical machine control device that controls an AC rotating electrical machine via an inverter that converts power between DC power and 3-phase AC power,
Asynchronous modulation for switching control of the inverter by a modulation pulse generated based on a carrier having a carrier frequency not synchronized with the rotation of the rotating electrical machine;
Switching synchronous modulation for switching control of the inverter by a modulation pulse generated in synchronization with rotation of the rotating electrical machine according to an operating condition of the rotating electrical machine including at least the rotational speed of the rotating electrical machine,
The switching of the modulation method between the asynchronous modulation and the synchronous modulation is performed in a transition period defined based on a voltage phase representing a relationship between three-phase AC voltages,
In the transition period, the signal level of one phase of the three-phase AC voltage is fixed to a high level or a low level, and the signal level of the other two phases is changed during the period in which the signal level of the one phase is fixed. Set to the period of the voltage phase to be in a changing two-phase modulation state,
A state in which all the signal levels of the three-phase AC voltage are high level or all the signal levels of the three-phase AC voltage are low level is defined as a zero vector state.
The AC voltage 3-phase period of the voltage phase period to be the zero vector state is present in at least one of immediately before and after the transition period that is set rotating electric machine control device.
直流電力と3相の交流電力との間で電力変換するインバータを介して交流の回転電機を制御する回転電機制御装置であって、
前記回転電機の回転に同期しないキャリア周波数を有するキャリアに基づいて生成される変調パルスによって前記インバータをスイッチング制御する非同期変調と、
前記回転電機の回転に同期して生成される変調パルスによって前記インバータをスイッチング制御する同期変調と、を少なくとも前記回転電機の回転速度を含む前記回転電機の動作条件に応じて切換え、
前記非同期変調と前記同期変調との間での変調方式の切換えは、3相の交流電圧の関係を表す電圧位相に基づいて規定される遷移期間に行われ、
前記遷移期間は、3相の交流電圧の内の1相の信号レベルがハイレベル又はローレベルに固定され、当該1相の信号レベルが固定されている期間中に他の2相の信号レベルが変化する2相変調の状態となる前記電圧位相の期間に設定され、
前記遷移期間の期間中であって、3相の交流電流の内の何れか1相の電流がゼロとなる前記電圧位相を含む期間に前記変調方式を切換える回転電機制御装置。
A rotating electrical machine control device that controls an AC rotating electrical machine via an inverter that converts power between DC power and 3-phase AC power,
Asynchronous modulation for switching control of the inverter by a modulation pulse generated based on a carrier having a carrier frequency not synchronized with the rotation of the rotating electrical machine;
Switching synchronous modulation for switching control of the inverter by a modulation pulse generated in synchronization with rotation of the rotating electrical machine according to an operating condition of the rotating electrical machine including at least the rotational speed of the rotating electrical machine,
The switching of the modulation method between the asynchronous modulation and the synchronous modulation is performed in a transition period defined based on a voltage phase representing a relationship between three-phase AC voltages,
In the transition period, the signal level of one phase of the three-phase AC voltage is fixed to a high level or a low level, and the signal level of the other two phases is changed during the period in which the signal level of the one phase is fixed. Set to the period of the voltage phase to be in a changing two-phase modulation state,
A duration of the transition period, switching Ru rotary electric machine control apparatus the modulation scheme in a period including the voltage phase of any one phase of the current of the alternating current of three phases becomes zero.
前記非同期変調における前記キャリア周波数を第1キャリア周波数とし、
前記非同期変調と前記同期変調との間で変調方式を切換える場合に、前記第1キャリア周波数よりも高い周波数である第2キャリア周波数に基づいて変調パルスを生成する高周波非同期変調を経て変調方式を切換え、
前記高周波非同期変調と前記同期変調との間での変調方式の切換えが、前記遷移期間に行われる請求項1からの何れか一項に記載の回転電機制御装置。
The carrier frequency in the asynchronous modulation is a first carrier frequency,
When switching the modulation method between the asynchronous modulation and the synchronous modulation, the modulation method is switched through high-frequency asynchronous modulation that generates a modulation pulse based on a second carrier frequency that is higher than the first carrier frequency. ,
The rotating electrical machine control device according to any one of claims 1 to 4 , wherein switching of a modulation method between the high-frequency asynchronous modulation and the synchronous modulation is performed in the transition period.
前記同期変調の変調パルスは、前記回転電機の回転速度に応じた周波数を有し、
前記第2キャリア周波数は、変調方式を切換える際の当該同期変調の変調パルスの周波数に基づいて設定されている請求項に記載の回転電機制御装置。
The modulation pulse of the synchronous modulation has a frequency according to the rotation speed of the rotating electrical machine,
The rotating electrical machine control device according to claim 5 , wherein the second carrier frequency is set based on a frequency of a modulation pulse of the synchronous modulation when the modulation method is switched.
前記第2キャリア周波数は、前記インバータの直流側端子に最大定格電圧が印加され、前記回転電機が最大定格トルクを出力し、前記回転電機の回転速度が前記最大定格トルクを出力可能な範囲の最高回転速度であるという条件における前記同期変調の変調パルスの周波数に応じて設定されている請求項に記載の回転電機制御装置。 The second carrier frequency has a maximum rated voltage applied to the DC side terminal of the inverter, the rotating electrical machine outputs a maximum rated torque, and the rotational speed of the rotating electrical machine is the highest in a range where the maximum rated torque can be output. The rotating electrical machine control device according to claim 6 , wherein the rotating electrical machine control device is set according to a frequency of a modulation pulse of the synchronous modulation under a condition that the rotation speed is set. 前記第2キャリア周波数は、可変周波数であり、変調方式を切換える都度、当該切換えの際の前記同期変調の変調パルスの周波数に適合するように設定される請求項に記載の回転電機制御装置。 The rotating electrical machine control device according to claim 6 , wherein the second carrier frequency is a variable frequency, and is set to match the frequency of the modulation pulse of the synchronous modulation at the time of switching each time the modulation method is switched. 前記高周波非同期変調の実行時間は、前記高周波非同期変調の開始時の前記インバータの温度が高くなるのに応じて短く、前記第2キャリア周波数が高くなるのに応じて短い時間である請求項からの何れか一項に記載の回転電機制御装置。 The high frequency asynchronous modulation execution time is shorter in response to the temperature of the inverter at the high frequency asynchronous modulation start is high, claim 5 is shorter in response to the higher is the second carrier frequency rotary electric machine control device according to any one of 8.
JP2015115159A 2015-06-05 2015-06-05 Rotating electrical machine control device Active JP6468082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115159A JP6468082B2 (en) 2015-06-05 2015-06-05 Rotating electrical machine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115159A JP6468082B2 (en) 2015-06-05 2015-06-05 Rotating electrical machine control device

Publications (2)

Publication Number Publication Date
JP2017005810A JP2017005810A (en) 2017-01-05
JP6468082B2 true JP6468082B2 (en) 2019-02-13

Family

ID=57752026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115159A Active JP6468082B2 (en) 2015-06-05 2015-06-05 Rotating electrical machine control device

Country Status (1)

Country Link
JP (1) JP6468082B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142877A1 (en) * 2018-01-18 2019-07-25 アイシン・エィ・ダブリュ株式会社 Rotary electric machine control device
JP7135604B2 (en) 2018-08-31 2022-09-13 株式会社アイシン Rotating electric machine controller
JP7264037B2 (en) * 2019-12-17 2023-04-25 株式会社明電舎 power conversion system
JP7317064B2 (en) * 2021-03-30 2023-07-28 株式会社アイシン Rotating electric machine controller
CN114825973B (en) * 2022-06-29 2022-10-28 天津大学 Matrix converter carrier frequency modulation method, equipment and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086920A (en) * 2003-09-09 2005-03-31 Fuji Electric Systems Co Ltd Method for controlling synchronous motor-driving device
JP4139852B1 (en) * 2007-04-20 2008-08-27 三菱電機株式会社 Inverter control device

Also Published As

Publication number Publication date
JP2017005810A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6414513B2 (en) Rotating electrical machine control device
JP6468363B2 (en) Power converter
JP6468082B2 (en) Rotating electrical machine control device
US8278865B2 (en) Control device
JP6477915B2 (en) Power converter
US10396702B2 (en) Motor drive control device
JP5803559B2 (en) Rotating electrical machine control device
JP2007282297A (en) Controller polyphase rotating-electric machine
JP5500136B2 (en) Semiconductor power converter
US20120286705A1 (en) Apparatus and method for controlling rotary electric machine
JP6742393B2 (en) Electric power conversion device, generator motor control device, and electric power steering device
JP2009232604A (en) Rotating electric machine control system
JP7354962B2 (en) Inverter control device and program
JP5515787B2 (en) Rotating electrical machine control system
JP7504230B2 (en) Power Conversion Equipment
JP5708283B2 (en) vehicle
JP5648853B2 (en) Rotating electrical machine control device
JP2010166681A (en) Ac machine controller
WO2022209315A1 (en) Rotating electrical machine control device
JP7367628B2 (en) Inverter control device
WO2021224976A1 (en) Power conversion device and control method thereof
WO2024042594A1 (en) Rotary machine control device
JP2023042936A (en) Inverter control device and program
JP2023042938A (en) Inverter control device and program
JP2022132051A (en) power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R150 Certificate of patent or registration of utility model

Ref document number: 6468082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150