JP2005086920A - Method for controlling synchronous motor-driving device - Google Patents

Method for controlling synchronous motor-driving device Download PDF

Info

Publication number
JP2005086920A
JP2005086920A JP2003316894A JP2003316894A JP2005086920A JP 2005086920 A JP2005086920 A JP 2005086920A JP 2003316894 A JP2003316894 A JP 2003316894A JP 2003316894 A JP2003316894 A JP 2003316894A JP 2005086920 A JP2005086920 A JP 2005086920A
Authority
JP
Japan
Prior art keywords
pwm control
synchronous
synchronous motor
control
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003316894A
Other languages
Japanese (ja)
Inventor
Fukashi Uehara
深志 上原
Hisafumi Nomura
尚史 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003316894A priority Critical patent/JP2005086920A/en
Publication of JP2005086920A publication Critical patent/JP2005086920A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method which is suitable, when a desired AC voltage is output from an inverter in order to execute variable speed control to a synchronous motor to a region exceeding the basic number of revolutions, for example, by executing one of the non-synchronous PWM control of a carrier frequency of 10 kHz, the synchronous PWM control of five pulses, the synchronous PWM control of three pulses, or the synchronous PWM control of one pulse. <P>SOLUTION: The output of proportional integrating circuits 33, 34 during the synchronous PWM control is limited by a prescribed limit value by the control mode discriminating circuit 19, constituting a controller 30 for the synchronous motor 3 and either of the output limitation circuit 31 and the output limitation circuit 32, when the non-synchronous PWM control and the synchronous PWM control are switched. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、永久磁石形同期電動機をインバータにより可変速駆動する同期電動機駆動装置の制御方法に関する。   The present invention relates to a method for controlling a synchronous motor driving apparatus that drives a permanent magnet synchronous motor at a variable speed by an inverter.

例えば、電気自動車の車両駆動用電動機として使用される永久磁石形同期電動機を、より広い回転数領域でインバータを介して可変速駆動するための制御装置に対して、下記特許文献1など種々の制御方法が知られている。   For example, for a control device for driving a permanent magnet type synchronous motor used as a vehicle driving motor of an electric vehicle via an inverter in a wider rotational speed range, various controls such as the following Patent Document 1 are provided. The method is known.

図4は、この種の同期電動機駆動装置の従来例を示す回路構成図であり、この図において、1は蓄電池,整流電源などの直流電源、2は半導体電力変換回路などから構成されるインバータ、3はインバータ2より給電される永久磁石形同期電動機などの同期電動機、4は直流電源1の端子電圧VDCを検出する電圧検出器、5はインバータ2から同期電動機3への電流を検出する電流検出器、6は同期電動機3の回転数N,磁極位置θを検出するためのレゾルバなどの位置検出器、8は運転指令回路、10はインバータ2を介して可変速駆動される同期電動機3が運転指令回路8からのトルク指令T* に基づいたトルクを出力しつつ回転するための制御装置である。 FIG. 4 is a circuit configuration diagram showing a conventional example of this type of synchronous motor drive device, in which 1 is a DC power source such as a storage battery and a rectifying power source, 2 is an inverter composed of a semiconductor power conversion circuit, etc. 3 is a synchronous motor such as a permanent magnet type synchronous motor fed by an inverter 2, 4 is a voltage detector for detecting a terminal voltage V DC of the DC power source 1, and 5 is a current for detecting a current from the inverter 2 to the synchronous motor 3. A detector, 6 is a position detector such as a resolver for detecting the rotational speed N of the synchronous motor 3 and the magnetic pole position θ, 8 is an operation command circuit, and 10 is a synchronous motor 3 driven at a variable speed via the inverter 2. This is a control device for rotating while outputting torque based on the torque command T * from the operation command circuit 8.

この制御装置10には電流指令回路11、3相/2相変換回路12、加算演算器13,14、比例積分回路15,16、軸電圧演算回路17、電圧演算回路18、制御モード判別回路19、速度検出回路20、電圧指令回路21、過電流検出回路22を備えている。なお、これらの制御要素は全て周知の技術により形成されている。   The control device 10 includes a current command circuit 11, a three-phase / two-phase conversion circuit 12, addition calculators 13 and 14, proportional integration circuits 15 and 16, an axial voltage calculation circuit 17, a voltage calculation circuit 18, and a control mode determination circuit 19. A speed detection circuit 20, a voltage command circuit 21, and an overcurrent detection circuit 22. These control elements are all formed by a well-known technique.

図4に示した同期電動機駆動装置の動作を、図面を参照しつつ、以下に説明する。   The operation of the synchronous motor driving device shown in FIG. 4 will be described below with reference to the drawings.

図5は、インバータ2を介して可変速駆動される同期電動機3としての永久磁石形同期電動機の回転数に対する代表的な特性図である。この図の例では、同期電動機3の回転数が零から基底回転数Nb まで、すなわち図示の特性域1の区間では全界磁制御のトルク一定運転を行い、また、基底回転数Nb から許容最高回転数NMAX まで、すなわち図示の特性域2の区間では弱め界磁制御の定出力運転を行うことを示している。従って、特性域1の区間では同期電動機3の回転数の上昇に応じてその誘起電圧も上昇するので、同期電動機3から所定のトルクが得られるように、インバータ2が出力する電圧も同期電動機3の回転数の上昇に応じて高くなるように制御している。 FIG. 5 is a typical characteristic diagram with respect to the number of rotations of a permanent magnet type synchronous motor as the synchronous motor 3 driven at a variable speed via the inverter 2. In the example of this figure, the constant-torque operation of all field control is performed from zero to the base rotational speed N b , that is, in the section of the characteristic region 1 shown in the figure, and the allowable maximum is determined from the base rotational speed N b. It shows that constant output operation of field weakening control is performed up to the rotation speed N MAX , that is, in the section of the characteristic region 2 shown in the figure. Accordingly, in the section of the characteristic area 1, the induced voltage increases as the rotational speed of the synchronous motor 3 increases, so that the voltage output from the inverter 2 is also the synchronous motor 3 so that a predetermined torque can be obtained from the synchronous motor 3. It is controlled so as to increase as the number of revolutions increases.

図6は、同期電動機3の基底回転数Nb 付近でのインバータ2のPWM制御を説明する波形図である。 Figure 6 is a waveform diagram for explaining the PWM control of the inverter 2 in the vicinity of base speed N b of the synchronous motor 3.

図6において、同期電動機3の回転数が零から図示のN1 までは、例えば、キャリア周波数が10kHzの非同期PWM制御により所望の交流電圧をインバータ2が出力し、前記回転数がN1 を越えると前記非同期PWM制御から5パルスの同期PWM制御に切替わり、この5パルスの同期PWM制御により所望の交流電圧をインバータ2が出力し、また、前記回転数が図示のN2 を越えると前記5パルスの同期PWM制御から3パルスの同期PWM制御に切替わり、この3パルスの同期PWM制御により所望の交流電圧をインバータ2が出力し、さらに、前記回転数が基底回転数Nb を越えると1パルスの同期PWM制御を行うようにしている。 In FIG. 6, when the rotational speed of the synchronous motor 3 is from zero to N 1 in the figure, for example, the inverter 2 outputs a desired AC voltage by asynchronous PWM control with a carrier frequency of 10 kHz, and the rotational speed exceeds N 1 . The asynchronous PWM control is switched to the 5-pulse synchronous PWM control, and the inverter 2 outputs a desired AC voltage by the 5-pulse synchronous PWM control. When the rotational speed exceeds N 2 in the figure, the 5 switching instead the synchronous PWM control to the synchronous PWM control of the three pulses of the pulse, a desired AC voltage by the synchronous PWM control of the three pulses output by the inverter 2, further wherein the rotational speed exceeds the base speed N b when 1 Pulse synchronous PWM control is performed.

すなわち、図6に示すように、非同期PWM制御における変調率がλ1 に達したら(回転数N1 )、非同期PWM制御から5パルスの同期PWM制御に切替え、また、5パルスの同期PWM制御での変調率がλ2 に達したら(回転数N2 )、5パルスの同期PWM制御からの3パルスの同期PWM制御に切替え、さらに、3パルスの同期PWM制御での変調率がλ3 に達したら(回転数N3 )、1パルスの同期PWM制御に切替えている。このとき、上述のそれぞれの切替点で、インバータ2が出力する交流電圧に変動が生じないように、切替後のPWM制御の変調率を調整している。なお図6において、同期電動機3が基底回転数Nb 以上の高速域(図5の特性域2)で1パルスの同期PWM制御を行っているのは、インバータ2から出力できる交流電圧がより高くできるためである。 That is, as shown in FIG. 6, when the modulation rate in the asynchronous PWM control reaches λ 1 (rotation speed N 1 ), the asynchronous PWM control is switched to the 5-pulse synchronous PWM control, and the 5-pulse synchronous PWM control is performed. When the modulation factor reaches lambda 2 (rotational speed N 2), switches to 3 pulses of the synchronous PWM control of the synchronous PWM control of the 5 pulse, further reach the third modulation rate lambda in the synchronous PWM control of the three-pulse Then (rotation speed N 3 ), it is switched to synchronous PWM control of 1 pulse. At this time, the modulation rate of the PWM control after switching is adjusted so that the AC voltage output from the inverter 2 does not vary at each switching point described above. In FIG. 6, the synchronous motor 3 is performing synchronous PWM control of one pulse at base speed N b or more high speed region (characteristic region 2 in FIG. 5) is higher AC voltage that can be output from the inverter 2 This is because it can.

図7は、図5に示した特性域1での同期電動機3のフェザー図である。この図では同期電動機3の突極比が1(d軸成分のリアクタンスとq軸成分のリアクタンスの比率が1)で、同期電動機3の巻線抵抗による電圧降下分を無視したときの状態を示し、また、Vmは同期電動機3の誘起電圧、Viはインバータ2の出力電圧、Iq はトルク電流(q軸電流とも称する)、Xq はq軸成分のリアクタンスをそれぞれ示している。 FIG. 7 is a feather diagram of the synchronous motor 3 in the characteristic region 1 shown in FIG. This figure shows a state where the salient pole ratio of the synchronous motor 3 is 1 (the ratio of the reactance of the d-axis component and the reactance of the q-axis component is 1) and the voltage drop due to the winding resistance of the synchronous motor 3 is ignored. Further, Vm is an induced voltage of the synchronous motor 3, Vi is an output voltage of the inverter 2, Iq is a torque current (also referred to as a q-axis current), and Xq is a reactance of the q-axis component.

すなわち、特性域1では同期電動機3の回転数が増大して、同期電動機3の誘起電圧がVm1 からVm2 に増大すると、インバータ2の出力電圧もVi1 からVi2 に増大させて、トルク電流Iq が常に一定になるような制御をしている。従って、特性域1では同期電動機3が所望の出力トルク(トルク電流Iq )になるために、インバータ2の出力電圧Vmを制御する。また、このときには同期電動機3は全界磁運転するために、減磁電流Id (d軸電流Id とも称する)は流さない。 That is, when the rotational speed of the synchronous motor 3 is increased in the characteristic region 1 and the induced voltage of the synchronous motor 3 is increased from Vm 1 to Vm 2 , the output voltage of the inverter 2 is also increased from Vi 1 to Vi 2. Control is performed so that the current I q is always constant. Accordingly, in the characteristic area 1, the output voltage Vm of the inverter 2 is controlled so that the synchronous motor 3 has a desired output torque (torque current I q ). At this time, since the synchronous motor 3 is operated in the whole field, no demagnetizing current I d (also referred to as d-axis current I d ) flows.

図8は、図5に示した特性域2での同期電動機3のフェザー図である。この図では、図7と同様に、同期電動機3の突極比が1で、巻線抵抗による電圧降下分を無視したときの状態を示し、Vmは同期電動機3の誘起電圧、Viはインバータ2の出力電圧、Vq はq軸成分の電圧、Vd はd軸成分の電圧、Iq はトルク電流、Id は減磁電流、Xq はq軸成分のリアクタンス、Xd はd軸成分のリアクタンスをそれぞれ示している。 FIG. 8 is a feather diagram of the synchronous motor 3 in the characteristic region 2 shown in FIG. In this figure, as in FIG. 7, the salient pole ratio of the synchronous motor 3 is 1, and the voltage drop due to the winding resistance is ignored. Vm is the induced voltage of the synchronous motor 3, Vi is the inverter 2 Output voltage, V q is q-axis component voltage, V d is d-axis component voltage, I q is torque current, I d is demagnetizing current, X q is q-axis component reactance, X d is d-axis component The reactances are shown respectively.

すなわち、特性域2では同期電動機3の誘起電圧Vmはインバータ2の出力電圧Viの最大値より大きいので、減磁電流Id を流す制御を行う。このときは、前記出力電圧Vmと誘起電圧Viとこれらの電圧間の位相角βとに対応したトルク電流Iq および減磁電流Id が流れ、それぞれのリアクタンスによる電圧成分Id ・Xd およびIq ・Xq も図示のようになる。従って、この特性域2では前記位相角βを調整することにより、同期電動機3が所望の出力トルク(トルク電流Iq )になる制御が行われる。 That is, the induced voltage Vm of the characteristic region 2 synchronous motor 3 is greater than the maximum value of the output voltage Vi of the inverter 2 performs control to flow a demagnetizing current I d. At this time, a torque current I q and a demagnetizing current I d corresponding to the output voltage Vm, the induced voltage Vi, and the phase angle β between these voltages flow, and voltage components I d · X d and I q and X q are as shown in the figure. Therefore, in this characteristic region 2, the synchronous motor 3 is controlled to have a desired output torque (torque current I q ) by adjusting the phase angle β.

制御装置10を構成する電流指令回路11では、運転指令回路8からの運転指令としてのトルク指令T* (トルクの大きさとその極性)と速度検出回路20により得られる同期電動機3の回転角速度ωなどから下記数1式の演算に基づいて、q軸電流の指令値Iq *とd軸電流の指令値Id *とを導出している。
[数1]
*=pnΦIq *+pn(Ld−Lq)Id *・Iq *
ここで、pn は同期電動機3の極対数、Φは同期電動機3の電機子鎖交磁束数、Ld はd軸成分のインダクタンス、Lq はq軸成分のインダクタンスである。
In the current command circuit 11 constituting the control device 10, the torque command T * (the magnitude of the torque and its polarity) as the operation command from the operation command circuit 8, the rotational angular velocity ω of the synchronous motor 3 obtained by the speed detection circuit 20, etc. The q-axis current command value I q * and the d-axis current command value I d * are derived from the following equation (1).
[Equation 1]
T * = p n ΦI q * + p n (L d −L q ) I d * · I q *
Here, pn is the number of pole pairs of the synchronous motor 3, Φ is the number of armature linkage magnetic fluxes of the synchronous motor 3, L d is the d-axis component inductance, and L q is the q-axis component inductance.

また制御装置10を構成する軸電圧演算回路17では、q軸成分の電圧指令Vq *とd軸成分の電圧指令Vd *とを導出するために、下記数2式の演算を行っている。 In addition, the shaft voltage calculation circuit 17 constituting the control device 10 performs the calculation of the following formula 2 in order to derive the q-axis component voltage command V q * and the d-axis component voltage command V d * . .

Figure 2005086920
ここで、rは同期電動機3の電機子抵抗、ωは同期電動機3の回転角速度、Ld はd軸成分のインダクタンス、Lq はq軸成分のインダクタンス、Φは同期電動機3の電機子鎖交磁束数であり、また、I1 は比例積分回路15の出力値、I2 は比例積分回路16の出力値である。
Figure 2005086920
Here, r is the armature resistance of the synchronous motor 3, ω is the rotational angular velocity of the synchronous motor 3, L d is the d-axis component inductance, L q is the q-axis component inductance, and Φ is the armature linkage of the synchronous motor 3. The number of magnetic fluxes, I 1 is the output value of the proportional integration circuit 15, and I 2 is the output value of the proportional integration circuit 16.

また制御装置10を構成する電圧演算回路18では、軸電圧演算回路17の出力であるq軸成分の電圧指令Vq *とd軸成分の電圧指令Vd *と電圧検出器4で検出された直流電源1の端子電圧VDCとからインバータ2が出力電圧Viの大きさに相当する前記変調率λと位相角βとを演算している。この演算の際に、後述の制御モード判別回路19の出力により、図6で説明したそれぞれ切替点におけるインバータ2の出力電圧Viに変動が生じないように、切替直後の変調率λを調整している。 In the voltage calculating circuit 18 constituting a control device 10 was also detected by the voltage command V d * and the voltage detector 4 of the voltage command V q * and d-axis component of the q-axis component, which is the output axis voltage calculation circuit 17 From the terminal voltage V DC of the DC power supply 1, the inverter 2 calculates the modulation factor λ and the phase angle β corresponding to the magnitude of the output voltage Vi. During this calculation, the modulation rate λ immediately after switching is adjusted so that the output voltage Vi of the inverter 2 at each switching point described in FIG. Yes.

すなわち、制御モード判別回路19では、電圧演算回路18からの変調率λと速度検出回路20が出力する同期電動機3の回転数Nに対応する回転角速度ωと電圧検出器4で検出された直流電源1の端子電圧VDCとから先述の非同期PWM制御、5パルスの同期PWM制御、3パルスの同期PWM制御、1パルスの同期PWM制御の内のいずれを行うかを判定し、その判定結果を出力している。 That is, in the control mode discriminating circuit 19, the modulation power λ from the voltage calculation circuit 18, the rotational angular velocity ω corresponding to the rotation speed N of the synchronous motor 3 output from the speed detection circuit 20, and the DC power source detected by the voltage detector 4. 1 terminal voltage V DC is used to determine whether asynchronous PWM control, 5-pulse synchronous PWM control, 3-pulse synchronous PWM control, or 1-pulse synchronous PWM control is performed, and the determination result is output. doing.

さらに、制御装置10を構成する電圧指令回路21では前記判定結果と、電圧演算回路18からの変調率λと位相角βと、速度検出回路20により得られる同期電動機3の回転角速度ωと磁極位置θとに基づきインバータ2の出力電圧Viに対応するPWM制御された電圧指令Vi* を生成している。 Further, in the voltage command circuit 21 constituting the control device 10, the determination result, the modulation factor λ and the phase angle β from the voltage calculation circuit 18, the rotational angular velocity ω and the magnetic pole position of the synchronous motor 3 obtained by the speed detection circuit 20. Based on θ, a PWM-controlled voltage command Vi * corresponding to the output voltage Vi of the inverter 2 is generated.

また、過電流検出回路22ではインバータ2から同期電動機3への電流が予め定めた上限値を越えたときに、これを検知して、例えば、インバータ2の電力変換動作を停止させ、インバータ2を構成するスイッチング素子などの損傷を防止するようにしている。
特開平9−47100号公報 (第4〜5頁,第1図など)
Further, the overcurrent detection circuit 22 detects when the current from the inverter 2 to the synchronous motor 3 exceeds a predetermined upper limit value, for example, stops the power conversion operation of the inverter 2 and turns off the inverter 2. Damage to the constituent switching elements is prevented.
Japanese Patent Laid-Open No. 9-47100 (pages 4-5, FIG. 1, etc.)

図4に示した従来の同期電動機駆動装置では、同期電動機3の電流に基づくフイードフォワード補償制御を行っている。すなわち、運転指令回路8からの同期電動機3へのトルク指令T* に対応するq軸電流の指令値Iq *およびd軸電流の指令値Id *と、同期電動機3の前記電流を3相/2相変換して得られるq軸電流Iq およびd軸電流Id との偏差を加算演算器13,14で求め、それぞれの偏差が零になるように比例積分回路15,16で調節演算し、それぞれの演算結果からq軸成分の電圧指令Vq *とd軸成分の電圧指令Vd *とを導出している。 In the conventional synchronous motor driving device shown in FIG. 4, feedforward compensation control based on the current of the synchronous motor 3 is performed. That is, the q-axis current command value I q * and the d-axis current command value I d * corresponding to the torque command T * from the operation command circuit 8 to the synchronous motor 3 and the current of the synchronous motor 3 are three-phased. A deviation between the q-axis current I q and the d-axis current I d obtained by the two-phase conversion is obtained by the addition computing units 13 and 14 and adjusted by the proportional integration circuits 15 and 16 so that each deviation becomes zero. The q-axis component voltage command V q * and the d-axis component voltage command V d * are derived from the respective calculation results.

しかしながら、先述の非同期PWM制御から同期PWM制御に切替わるとき、または同期PWM制御から非同期PWM制御に切替わるとき、若しくは同期電動機3が基底回転数Nb を越えた領域で動作中に比例積分回路15,16のうちの何れかの出力が飽和状態になると、電圧演算回路18が出力する位相角βが適正値を逸脱し、その結果、インバータ2へのPWM制御された電圧指令Vm* も適正値を外れ、インバータ2から同期電動機3への電流に擾乱が発生する恐れがあった。 However, when the mode changes to the synchronous PWM control from the asynchronous PWM control described above, or synchronization is performed when the mode changes to the asynchronous PWM control from the PWM control or synchronous motor 3 is proportional integrating circuit during operation in the region beyond the base speed N b When the output of any one of 15 and 16 is saturated, the phase angle β output from the voltage calculation circuit 18 deviates from an appropriate value, and as a result, the PWM-controlled voltage command Vm * to the inverter 2 is also appropriate. There was a possibility that the current from the inverter 2 to the synchronous motor 3 might be disturbed.

この発明の目的は、前記問題点を解決する同期電動機駆動装置の制御方法を提供することにある。   An object of the present invention is to provide a method for controlling a synchronous motor drive apparatus that solves the above-described problems.

この第1の発明は、同期電動機が所定の回転数より低い回転数領域ではインバータから非同期PWM制御により出力される交流電力を給電し、前記電動機が前記所定の回転数より高い回転数領域では前記インバータから1パルス運転を含む同期PWM制御により出力される交流電力を給電することにより前記電動機を可変速駆動する同期電動機駆動装置において、
前記非同期PWM制御から同期PWM制御に切替わるときには、前記同期電動機の電流に基づくフイードフォワード補償制御のための比例積分演算結果の値に対して予め定めた制限値に基づく制限動作を行わせ、前記同期PWM制御から非同期PWM制御に切替わるときには、前記制限動作を解除することを特徴とする制御方法を行う。
In the first aspect of the invention, AC power is supplied from the inverter by asynchronous PWM control when the synchronous motor is lower than the predetermined rotational speed, and the motor is operated when the electric motor is higher than the predetermined rotational speed. In the synchronous motor drive device that drives the electric motor at a variable speed by supplying AC power output by synchronous PWM control including one-pulse operation from an inverter,
When switching from the asynchronous PWM control to the synchronous PWM control, a limit operation based on a predetermined limit value is performed on the value of the proportional-integral calculation result for the feedforward compensation control based on the current of the synchronous motor, When switching from the synchronous PWM control to the asynchronous PWM control, the control method is characterized in that the limiting operation is released.

また第2の発明は前記同期電動機駆動装置において、
前記非同期PWM制御から同期PWM制御に切替わるときには、前記同期電動機の電流に基づくフイードフォワード補償制御のための比例積分演算結果の値に対して予め定めた第1制限値に基づく制限動作を行わせ、その後、前記制限動作を第2制限値(第1制限値≧第2制限値)に到達するまで所定の時間勾配で継続させ、前記同期PWM制御から非同期PWM制御に切替わるときには、前記制限動作を解除することを特徴とする制御方法を行う。
According to a second aspect of the present invention, there is provided the synchronous motor drive device,
When switching from the asynchronous PWM control to the synchronous PWM control, a limiting operation based on a predetermined first limiting value is performed on the value of the proportional-integral calculation result for the feedforward compensation control based on the current of the synchronous motor. After that, the limit operation is continued at a predetermined time gradient until reaching the second limit value (first limit value ≧ second limit value), and when the synchronous PWM control is switched to the asynchronous PWM control, the limit operation is performed. A control method characterized by canceling the operation is performed.

この発明の同期電動機駆動装置の制御方法によれば、前記制限値を設けることにより、非同期PWM制御動作中の同期電動機のトルク制御精度が向上すると共に、非同期PWM制御から同期PWM制御へ切替わる動作、または同期PWM制御から非同期PWM制御へ切替わる動作を滑らかに行うことができる。   According to the control method of the synchronous motor drive device of the present invention, by providing the limit value, the torque control accuracy of the synchronous motor during the asynchronous PWM control operation is improved and the operation for switching from the asynchronous PWM control to the synchronous PWM control is performed. Alternatively, the operation for switching from synchronous PWM control to asynchronous PWM control can be performed smoothly.

図1は、この発明の実施の形態を示す同期電動機駆動装置の回路構成図であり、図4に示した従来例構成と同一機能を有するものには同一符号を付して、その説明を省略する。   FIG. 1 is a circuit configuration diagram of a synchronous motor drive device showing an embodiment of the present invention. Components having the same functions as those of the conventional configuration shown in FIG. To do.

すなわち、図1に示した制御装置30には、電流指令回路11、3相/2相変換回路12、加算演算器13,14、軸電圧演算回路17、電圧演算回路18、制御モード判別回路19、速度検出回路20、電圧指令回路21、過電流検出回路22の他に、出力制限回路31または出力制限回路32のいずれかが追加され、さらに、比例積分回路15,16に代えて、出力制限動作機能を有する比例積分回路33,34を備えている。   That is, the control device 30 shown in FIG. 1 includes a current command circuit 11, a three-phase / two-phase conversion circuit 12, an addition calculator 13 and 14, an axis voltage calculation circuit 17, a voltage calculation circuit 18, and a control mode determination circuit 19. In addition to the speed detection circuit 20, the voltage command circuit 21, and the overcurrent detection circuit 22, either the output limiting circuit 31 or the output limiting circuit 32 is added, and the output limiting circuit is replaced with the proportional integration circuits 15 and 16. Proportional integration circuits 33 and 34 having an operation function are provided.

図2は、この発明の同期電動機駆動装置の第1の実施例を説明する波形図であり、図1に示した出力制限回路31と比例積分回路15,16に関連した動作波形図である。   FIG. 2 is a waveform diagram for explaining the first embodiment of the synchronous motor driving device of the present invention, and is an operation waveform diagram related to the output limiting circuit 31 and the proportional integration circuits 15 and 16 shown in FIG.

すなわち、図2において、同期電動機3の回転数Nが上昇し、時刻t1 で回転数がN1 になると、制御モード判別回路19がこれを検知して制御モード切替信号を出力し、非同期PWM制御から5パルスの同期PWM制御に移行すると共に、比例積分回路33,34は、出力制限回路31からの制限指令により、それぞれの出力値を図示の制限値Aに制限する。その後、比例積分回路33,34の出力を制限値Aに制限したまま、同期電動機3の回転数Nが時刻t2 で回転数がN2 になると、5パルスの同期PWM制御から3パルスの同期PWM制御に移行し、また、同期電動機3の回転数Nが時刻t3 で回転数がN3 、すなわち、基底回転数Nb になると、3パルスの同期PWM制御から1パルスの同期PWM制御に移行し、時刻t4 で回転数がN4 になるまで上昇する。 That is, in FIG. 2, when the rotational speed N of the synchronous motor 3 rises and the rotational speed reaches N 1 at time t 1 , the control mode determination circuit 19 detects this and outputs a control mode switching signal, and the asynchronous PWM While shifting from control to 5-pulse synchronous PWM control, the proportional integration circuits 33 and 34 limit each output value to the illustrated limit value A in response to a limit command from the output limit circuit 31. After that, when the rotation speed N of the synchronous motor 3 becomes N 2 at time t 2 while the outputs of the proportional integration circuits 33 and 34 are limited to the limit value A, the synchronization of 3 pulses is started from the 5-pulse synchronous PWM control. When the control shifts to PWM control, and the rotation speed N of the synchronous motor 3 reaches the rotation speed N 3 at the time t 3 , that is, the base rotation speed N b , the three-pulse synchronous PWM control changes to the one-pulse synchronous PWM control. The rotational speed increases until the rotational speed reaches N 4 at time t 4 .

次に、同期電動機3の回転数がN4 から時刻t5 でN5 、すなわち、基底回転数Nb に下降すると、1パルスの同期PWM制御から3パルスの同期PWM制御に移行し、また、時刻t6 で回転数がN6 に下降すると、3パルスの同期PWM制御から5パルスの同期PWM制御に移行し、さらに、時刻t7 で回転数がN7 に下降すると、制御モード判別回路19がこれを検知して制御モード切替信号を消滅させ、5パルスの同期PWM制御から非同期PWM制御に移行すると共に、比例積分回路33,34は制限値Aでの制限動作が解除され、時刻t8 でほぼ定常状態に戻る。 Then, N 5 at time t 5 speed from N 4 of the synchronous motor 3, i.e., when lowered to the base speed N b, shifts from the synchronous PWM control of one pulse to the synchronous PWM control of the three pulses, also, When the rotation speed at time t 6 is lowered to the N 6, 3 pulses of the synchronization shifts from the PWM control to the synchronous PWM control of the 5 pulse, further, when the rotation speed at time t 7 is lowered to the N 7, the control mode determination circuit 19 Is detected, the control mode switching signal is extinguished, and the 5-pulse synchronous PWM control is shifted to the asynchronous PWM control, and the proportional integration circuits 33 and 34 are released from the limiting operation at the limiting value A, and time t 8 Almost return to the steady state.

すなわち、図2の実施例1の動作波形図に示したように、制限値Aを設けることにより、電圧演算回路18が出力する位相角βが適正値になるのでインバータ2が非同期PWM制御動作中の同期電動機3のトルク制御精度が向上すると共に、非同期PWM制御−同期PWM制御間の切替動作を滑らかに行うことができる。なお、上述の制限値Aの値は、同期電動機3の負荷の状態、すなわち、同期電動機3が出力すべきトルクなどから、実験により設定することが行われる。   That is, as shown in the operation waveform diagram of the first embodiment of FIG. 2, by providing the limit value A, the phase angle β output from the voltage calculation circuit 18 becomes an appropriate value, so that the inverter 2 is in the asynchronous PWM control operation. The torque control accuracy of the synchronous motor 3 can be improved, and the switching operation between the asynchronous PWM control and the synchronous PWM control can be performed smoothly. Note that the value of the limit value A is set by experiment from the load state of the synchronous motor 3, that is, the torque that the synchronous motor 3 should output.

図3は、この発明の同期電動機駆動装置の第2の実施例を説明する波形図であり、図1に示した出力制限回路32と比例積分回路15,16に関連した動作波形図である。   FIG. 3 is a waveform diagram for explaining a second embodiment of the synchronous motor driving apparatus of the present invention, and is an operation waveform diagram related to the output limiting circuit 32 and the proportional integration circuits 15 and 16 shown in FIG.

すなわち、図3において、同期電動機3の回転数Nが上昇し、時刻t1 で回転数がN1 になると、制御モード判別回路19がこれを検知して制御モード切替信号を出力し、非同期PWM制御から5パルスの同期PWM制御に移行すると共に、比例積分回路33,34は、出力制限回路32からの制限指令により、それぞれの出力値を図示の制限値Bに制限する。その後、比例積分回路33,34の出力を制限値Bから図示の時間Tで制限値Cに達する制限動作を行いつつ、同期電動機3の回転数Nが時刻t2 で回転数がN2 になると、5パルスの同期PWM制御から3パルスの同期PWM制御に移行し、また、同期電動機3の回転数Nが時刻t3 で回転数がN3 、すなわち、基底回転数Nb になると、3パルスの同期PWM制御から1パルスの同期PWM制御に移行し、時刻t4 で回転数がN4 になるまで上昇する。 That is, in FIG. 3, when the rotational speed N of the synchronous motor 3 increases and the rotational speed reaches N 1 at time t 1 , the control mode determination circuit 19 detects this and outputs a control mode switching signal. The control is shifted from the control to the 5-pulse synchronous PWM control, and the proportional integration circuits 33 and 34 limit the respective output values to the illustrated limit value B by the limit command from the output limit circuit 32. After that, when the output of the proportional integration circuits 33 and 34 is limited to reach the limit value C at the time T shown in the figure from the limit value B, the rotational speed N of the synchronous motor 3 becomes N 2 at time t 2. , 5 pulse shifts from the synchronous PWM control to the synchronous PWM control of the three pulses, also speed N 3 rotational speed N of the synchronous motor 3 at time t 3, i.e., at a base speed N b, 3 pulses From the synchronous PWM control to the one-pulse synchronous PWM control, and the rotational speed is increased to N 4 at time t 4 .

次に、同期電動機3の回転数がN4 から時刻t5 でN5 、すなわち、基底回転数Nb に下降すると、1パルスの同期PWM制御から3パルスの同期PWM制御に移行し、また、時刻t6 で回転数がN6 に下降すると、3パルスの同期PWM制御から5パルスの同期PWM制御に移行し、さらに、時刻t7 で回転数がN7 に下降すると、制御モード判別回路19がこれを検知して制御モード切替信号を消滅させ、5パルスの同期PWM制御から非同期PWM制御に移行すると共に、比例積分回路33,34は制限値Cでの制限動作が解除され、時刻t8 でほぼ定常状態に戻る。 Then, N 5 at time t 5 speed from N 4 of the synchronous motor 3, i.e., when lowered to the base speed N b, shifts from the synchronous PWM control of one pulse to the synchronous PWM control of the three pulses, also, When the rotation speed at time t 6 is lowered to the N 6, 3 pulses of the synchronization shifts from the PWM control to the synchronous PWM control of the 5 pulse, further, when the rotation speed at time t 7 is lowered to the N 7, the control mode determination circuit 19 Is detected, the control mode switching signal is extinguished, and the 5-pulse synchronous PWM control is shifted to the asynchronous PWM control, and the proportional integration circuits 33 and 34 are released from the limiting operation at the limit value C, and time t 8 Almost return to the steady state.

すなわち、図3の実施例2の動作波形図に示したように、制限値Bおよび制限値Cと時間Tを設けることにより、電圧演算回路18が出力する位相角βがより適正値になるのでインバータ2が非同期PWM制御動作中の同期電動機3のトルク制御精度が向上すると共に、非同期PWM制御から同期PWM制御への切替動作をより滑らかに行うことができ、また、非同期PWM制御から同期PWM制御への切替動作も滑らかに行うことができる。なお、上述の制限値BおよびCの値と時間Tの値は、同期電動機3の負荷の状態、すなわち、同期電動機3が出力すべきトルクなどから、実験により設定することが行われる。   That is, as shown in the operation waveform diagram of the second embodiment in FIG. 3, by providing the limit value B, the limit value C, and the time T, the phase angle β output from the voltage calculation circuit 18 becomes a more appropriate value. The torque control accuracy of the synchronous motor 3 during the asynchronous PWM control operation of the inverter 2 is improved, the switching operation from the asynchronous PWM control to the synchronous PWM control can be performed more smoothly, and the asynchronous PWM control to the synchronous PWM control can be performed. Switching operation to can be performed smoothly. Note that the above-described limit values B and C and the value of time T are set by experiment from the load state of the synchronous motor 3, that is, the torque to be output by the synchronous motor 3.

なお、上述の動作説明では、永久磁石形同期電動機などの同期電動機3の突極比が1の例で説明したが、この発明の制御方法は、埋込磁石形同期電動機など逆突極性を有する同期電動機にも適用でき、さらに、直流電源1を整流電源とした一般産業用の同期電動機駆動装置にも適用できる。   In the above description of the operation, the example in which the salient pole ratio of the synchronous motor 3 such as a permanent magnet type synchronous motor is 1 has been described. However, the control method of the present invention has a reverse saliency such as an embedded magnet type synchronous motor. The present invention can also be applied to a synchronous motor, and can also be applied to a general industrial synchronous motor driving apparatus using a DC power source 1 as a rectifying power source.

この発明の実施の形態を示す同期電動機駆動装置の回路構成図1 is a circuit configuration diagram of a synchronous motor driving device showing an embodiment of the present invention. この発明の第1の実施例の動作を説明する波形図Waveform diagram for explaining the operation of the first embodiment of the present invention この発明の第2の実施例の動作を説明する波形図Waveform diagram for explaining the operation of the second embodiment of the present invention 従来例を示す同期電動機駆動装置の回路構成図Circuit diagram of a synchronous motor driving device showing a conventional example 図4の動作を説明する特性図Characteristic diagram for explaining the operation of FIG. 図4の動作を説明する波形図Waveform diagram explaining the operation of FIG. 図4の動作を説明するフェザー図Feather diagram explaining the operation of FIG. 図4の動作を説明するフェザー図Feather diagram explaining the operation of FIG.

符号の説明Explanation of symbols

1…直流電源、2…インバータ、3…同期電動機、4…電圧検出器、5…電流検出器、6…位置検出器、8…運転指令回路、10…制御装置、11…電流指令回路、12…3相/2相変換回路、13,14…加算演算器、15,16…比例積分回路、17…軸電圧演算回路、18…電圧演算回路、19…制御モード判別回路、20…速度検出回路、21…電圧指令回路、22…過電流検出回路、30…制御装置、31,32…出力制限回路、33,34…比例積分回路。
DESCRIPTION OF SYMBOLS 1 ... DC power source, 2 ... Inverter, 3 ... Synchronous motor, 4 ... Voltage detector, 5 ... Current detector, 6 ... Position detector, 8 ... Operation command circuit, 10 ... Control apparatus, 11 ... Current command circuit, 12 ... 3 phase / 2 phase conversion circuit, 13, 14 ... addition calculator, 15, 16 ... proportional integration circuit, 17 ... shaft voltage calculation circuit, 18 ... voltage calculation circuit, 19 ... control mode discrimination circuit, 20 ... speed detection circuit , 21 ... voltage command circuit, 22 ... overcurrent detection circuit, 30 ... control device, 31, 32 ... output limiting circuit, 33, 34 ... proportional integration circuit.

Claims (2)

同期電動機が所定の回転数より低い回転数領域ではインバータから非同期PWM制御により出力される交流電力を給電し、前記電動機が前記所定の回転数より高い回転数領域では前記インバータから1パルス運転を含む同期PWM制御により出力される交流電力を給電することにより前記電動機を可変速駆動する同期電動機駆動装置において、
前記非同期PWM制御から同期PWM制御に切替わるときには、前記同期電動機の電流に基づくフイードフォワード補償制御のための比例積分演算結果の値に対して予め定めた制限値に基づく制限動作を行わせ、
前記同期PWM制御から非同期PWM制御に切替わるときには、前記制限動作を解除することを特徴とする同期電動機駆動装置の制御方法。
The synchronous motor supplies AC power output by the asynchronous PWM control from the inverter when the rotational speed is lower than the predetermined rotational speed, and includes one pulse operation from the inverter when the electric motor is higher than the predetermined rotational speed. In a synchronous motor driving device that drives the electric motor at a variable speed by feeding AC power output by synchronous PWM control,
When switching from the asynchronous PWM control to the synchronous PWM control, a limit operation based on a predetermined limit value is performed on the value of the proportional-integral calculation result for the feedforward compensation control based on the current of the synchronous motor,
The control method for a synchronous motor drive device, wherein the restriction operation is canceled when the synchronous PWM control is switched to the asynchronous PWM control.
同期電動機が所定の回転数より低い回転数領域ではインバータから非同期PWM制御により出力される交流電力を給電し、前記電動機が前記所定の回転数より高い回転数領域では前記インバータから1パルス運転を含む同期PWM制御により出力される交流電力を給電することにより前記電動機を可変速駆動する同期電動機駆動装置において、
前記非同期PWM制御から同期PWM制御に切替わるときには、前記同期電動機の電流に基づくフイードフォワード補償制御のための比例積分演算結果の値に対して予め定めた第1制限値に基づく制限動作を行わせ、その後、前記制限動作を第2制限値(第1制限値≧第2制限値)に到達するまで所定の時間勾配で継続させ、
前記同期PWM制御から非同期PWM制御に切替わるときには、前記制限動作を解除することを特徴とする同期電動機駆動装置の制御方法。
The synchronous motor supplies AC power output by the asynchronous PWM control from the inverter when the rotational speed is lower than the predetermined rotational speed, and includes one pulse operation from the inverter when the electric motor is higher than the predetermined rotational speed. In a synchronous motor driving device that drives the electric motor at a variable speed by feeding AC power output by synchronous PWM control,
When switching from the asynchronous PWM control to the synchronous PWM control, a limiting operation based on a predetermined first limiting value is performed on the value of the proportional-integral calculation result for the feedforward compensation control based on the current of the synchronous motor. Then, the limit operation is continued at a predetermined time gradient until the second limit value (first limit value ≧ second limit value) is reached,
The control method for a synchronous motor drive device, wherein the restriction operation is canceled when the synchronous PWM control is switched to the asynchronous PWM control.
JP2003316894A 2003-09-09 2003-09-09 Method for controlling synchronous motor-driving device Pending JP2005086920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316894A JP2005086920A (en) 2003-09-09 2003-09-09 Method for controlling synchronous motor-driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316894A JP2005086920A (en) 2003-09-09 2003-09-09 Method for controlling synchronous motor-driving device

Publications (1)

Publication Number Publication Date
JP2005086920A true JP2005086920A (en) 2005-03-31

Family

ID=34416651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316894A Pending JP2005086920A (en) 2003-09-09 2003-09-09 Method for controlling synchronous motor-driving device

Country Status (1)

Country Link
JP (1) JP2005086920A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028793A (en) * 2005-07-15 2007-02-01 Hitachi Ltd Ac motor driver and control method of the same
JP2008029148A (en) * 2006-07-24 2008-02-07 Toshiba Corp Variable magnetic flux drive system
WO2009040884A1 (en) * 2007-09-25 2009-04-02 Mitsubishi Electric Corporation Controller for electric motor
JP2009177966A (en) * 2008-01-25 2009-08-06 Renesas Technology Corp Motor drive unit and semiconductor integrated circuit device
US8884576B2 (en) 2006-07-24 2014-11-11 Kabushiki Kaisha Toshiba Variable-flux motor drive system
JP5866065B2 (en) * 2013-04-23 2016-02-17 三菱電機株式会社 AC motor control device
JP2017005810A (en) * 2015-06-05 2017-01-05 アイシン・エィ・ダブリュ株式会社 Rotary electric machine control device
CN114514691A (en) * 2020-08-28 2022-05-17 日产自动车株式会社 Motor control device and motor control method
EP4071998A4 (en) * 2019-12-03 2023-12-13 Hitachi, Ltd. Pwm inverter control device and control method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028793A (en) * 2005-07-15 2007-02-01 Hitachi Ltd Ac motor driver and control method of the same
JP2008029148A (en) * 2006-07-24 2008-02-07 Toshiba Corp Variable magnetic flux drive system
US8884576B2 (en) 2006-07-24 2014-11-11 Kabushiki Kaisha Toshiba Variable-flux motor drive system
US9680406B2 (en) 2006-07-24 2017-06-13 Kabushiki Kaisha Toshiba Variable-flux motor drive system
WO2009040884A1 (en) * 2007-09-25 2009-04-02 Mitsubishi Electric Corporation Controller for electric motor
KR101157732B1 (en) 2007-09-25 2012-06-25 미쓰비시덴키 가부시키가이샤 Controller for electric motor
US8222857B2 (en) 2007-09-25 2012-07-17 Mitsubishi Electric Corporation Motor controlling device
JP2009177966A (en) * 2008-01-25 2009-08-06 Renesas Technology Corp Motor drive unit and semiconductor integrated circuit device
US10103675B2 (en) 2013-04-23 2018-10-16 Mitsubishi Electric Corporation Control device of alternating-current electric motor
JP5866065B2 (en) * 2013-04-23 2016-02-17 三菱電機株式会社 AC motor control device
JPWO2014174597A1 (en) * 2013-04-23 2017-02-23 三菱電機株式会社 AC motor control device
JP2017005810A (en) * 2015-06-05 2017-01-05 アイシン・エィ・ダブリュ株式会社 Rotary electric machine control device
EP4071998A4 (en) * 2019-12-03 2023-12-13 Hitachi, Ltd. Pwm inverter control device and control method
CN114514691A (en) * 2020-08-28 2022-05-17 日产自动车株式会社 Motor control device and motor control method
EP4207587A4 (en) * 2020-08-28 2023-10-11 Nissan Motor Co., Ltd. Motor control device and motor control method
US11855566B2 (en) 2020-08-28 2023-12-26 Nissan Motor Co., Ltd. Electric motor control apparatus and electric motor control method

Similar Documents

Publication Publication Date Title
US6900613B2 (en) Motor control apparatus
JP5862125B2 (en) Control device for power converter
JP6275214B2 (en) Control device and control method for rotating electrical machine for vehicle
JP5870591B2 (en) Control device and control method for synchronous motor
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JPH066992A (en) Vector controller for induction motor
US11396092B2 (en) Electric power tool provided with motor controller controlling motor including limiter for limitting current contributing to torque generation
JP2013183468A (en) Motor control device and motor control program
JP2003284389A (en) Drive unit for stepping motor
JP2005086920A (en) Method for controlling synchronous motor-driving device
JP4590761B2 (en) Control device for permanent magnet type synchronous motor
JP3333442B2 (en) Drive device for brushless motor
JP2019208329A (en) Sensorless vector control device and sensorless vector control method
JP4811290B2 (en) Motor control drive device
JP2005210813A (en) Brushless dc motor system and brushless dc motor drive method
JP5131725B2 (en) Control device for power converter
JP2005110470A (en) Operation controller for motor
JP2003033071A (en) Motor controller
JP5019182B2 (en) Permanent magnet synchronous motor drive device
JP6265043B2 (en) Sensorless drive device for synchronous motor
JP2021164377A (en) Controller for motor
JP6681266B2 (en) Electric motor control device and electric vehicle equipped with the same
JP2005130638A (en) Power conversion device for electric vehicle
JP2006020399A (en) Controller of brushless motor
JP2003209999A (en) Motor controller