JP6464832B2 - 車両用化学蓄熱システム - Google Patents

車両用化学蓄熱システム Download PDF

Info

Publication number
JP6464832B2
JP6464832B2 JP2015042795A JP2015042795A JP6464832B2 JP 6464832 B2 JP6464832 B2 JP 6464832B2 JP 2015042795 A JP2015042795 A JP 2015042795A JP 2015042795 A JP2015042795 A JP 2015042795A JP 6464832 B2 JP6464832 B2 JP 6464832B2
Authority
JP
Japan
Prior art keywords
aqueous solution
temperature
heat storage
heat
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015042795A
Other languages
English (en)
Other versions
JP2016160898A (ja
Inventor
佑介 江端
佑介 江端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2015042795A priority Critical patent/JP6464832B2/ja
Publication of JP2016160898A publication Critical patent/JP2016160898A/ja
Application granted granted Critical
Publication of JP6464832B2 publication Critical patent/JP6464832B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、車両用化学蓄熱システムに関する。
従来、蓄熱材が収容された反応器を備える車両用化学蓄熱システムが知られている(たとえば、特許文献1参照)。
上記特許文献1には、脱水反応により蓄熱し、水和反応により放熱する反応材が収容された反応器と、水蒸気が流通する連通路を介して反応器と接続され、水が収容された凝縮器と、を備えた車両用化学蓄熱システムが開示されている。この車両用化学蓄熱システムでは、反応器の反応材は、エンジンからの排熱により水蒸気を凝縮器に放出して蓄熱するとともに、凝縮器からの水蒸気を吸収することによってエンジン冷却水に熱を放出するように構成されている。また、車両用化学蓄熱システムでは、エンジンの暖機状態や反応材の蓄熱量、車内冷暖房の有無(車両状態)に応じて、反応材において、蓄熱を行うか、放熱を行うか、または、いずれの反応も行わないのかが判断されるように構成されている。
特許5219020号公報
しかしながら、上記特許文献1に記載された車両用化学蓄熱システムでは、車両用化学蓄熱システムを搭載した車両が水の凝固点(0℃)以下などの低温環境下に配置された場合には、凝縮器に収容された水が凍結してしまうという不都合がある。このため、車両用化学蓄熱システムでは、氷(凍結した水)を溶解させる必要があるので、凝縮器における水の蒸発および凝縮が行われにくくなる。この結果、車両用化学蓄熱システムにおける蓄放熱の性能が低下するという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、低温環境下であっても車両用化学蓄熱システムにおける蓄放熱の性能が低下するのを抑制することが可能な車両用化学蓄熱システムを提供することである。
上記目的を達成するために、この発明の一の局面における車両用化学蓄熱システムは、車両の排熱を脱水反応により蓄熱するとともに蓄熱した熱を水和反応により放熱する第1蓄熱材が収容された第1反応器と、第1反応器と接続され、不凍水溶液が内部に貯留されるとともに、第1蓄熱材の脱水反応時に発生する水蒸気を回収して凝縮し、かつ、第1蓄熱材の水和反応時に水蒸気を供給する凝縮蒸発器と、不凍水溶液または不凍水溶液の周辺の温度を検知する温度検知部と、不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下の場合または所定の温度以下になると予測される場合に、凝縮蒸発器から第1反応器の第1蓄熱材に水蒸気を供給して水和反応させることにより、凝縮蒸発器の不凍水溶液の濃度を高くする制御を行う制御部と、を備える。なお、「脱水反応」は、化学的に反応して水蒸気(水)を放出するだけでなく、吸着していた水蒸気(水)を放出する反応も含む広い概念である。同様に、「水和反応」は、水蒸気(水)と化学的に反応するだけでなく、水蒸気(水)が吸着される反応も含む広い概念である。
この発明の一の局面による車両用化学蓄熱システムでは、上記のように、制御部により、温度検知部により検知された不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下の場合または所定の温度以下になると予測される場合に、凝縮蒸発器から第1反応器の第1蓄熱材に水蒸気を供給して水和反応させることにより、凝縮蒸発器の不凍水溶液の濃度を高くする制御を行う。これにより、不凍水溶液または不凍水溶液の周辺の温度が、不凍水溶液が凍結するような所定の温度以下である場合や、不凍水溶液が凍結するような所定の温度以下になると予測される場合に、不凍水溶液の濃度を高くする制御を行うことによって不凍水溶液の凝固点を低下させることができるので、不凍水溶液が凍結するのを抑制することができる。したがって、所定の温度以下の低温環境下であっても、凍結した不凍水溶液を溶解させて液状に戻す必要がなくなるので、車両用化学蓄熱システムにおける蓄放熱の性能が低下するのを抑制することができる。
上記一の局面による車両用化学蓄熱システムにおいて、好ましくは、凝縮蒸発器と第1反応器との間に設けられ、凝縮蒸発器と第1反応器との間の水蒸気の流通を制御する弁をさらに備え、制御部は、不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下の場合または所定の温度以下になると予測される場合に、弁を開くように制御することにより、凝縮蒸発器から第1反応器の第1蓄熱材に水蒸気を供給して水和反応させて、凝縮蒸発器の不凍水溶液の濃度を高くする制御を行うように構成されている。
このように構成すれば、弁を開く制御を行うことにより、容易に、水蒸気を凝縮蒸発器から第1反応器に移動させて、不凍水溶液の濃度を高くすることができる。
上記一の局面による車両用化学蓄熱システムにおいて、好ましくは、凝縮蒸発器の不凍水溶液の濃度を検出する濃度検出部をさらに備え、制御部は、不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下の場合または所定の温度以下になると予測される場合に、濃度検出部により検出される不凍水溶液の濃度が所定の濃度に上昇するまで、凝縮蒸発器から第1反応器の第1蓄熱材に水蒸気を供給して水和反応させる制御を行うように構成されている。
このように構成すれば、不凍水溶液の濃度が十分に高くならずに不凍水溶液が凍結してしまうのを確実に抑制することができる。
上記一の局面による車両用化学蓄熱システムにおいて、好ましくは、制御部は、不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下の場合または所定の温度以下になると予測される場合に、凝縮蒸発器の不凍水溶液の濃度を高くする制御を行った後、車両の排熱により第1反応器の第1蓄熱材に脱水反応を生じさせて発生した水蒸気を凝縮蒸発器により凝縮させることにより、不凍水溶液の濃度を低くする制御を行うように構成されている。
このように構成すれば、車両が駆動されることなどにより生じる車両の排熱を用いて、水和反応により放熱した第1蓄熱材を再度水和反応が可能な状態に再生させることができる。また、不凍水溶液の濃度を低くすることによって、不凍水溶液の蒸気圧を高くすることができるので、不凍水溶液から水蒸気を発生させやすくすることができる。これにより、車両用化学蓄熱システムにおける蓄放熱の性能を向上させることができる。
上記一の局面による車両用化学蓄熱システムにおいて、好ましくは、車両の排熱は、排気ガス熱である。
このように構成すれば、車両の外部に排出される排気ガスの熱を有効に用いて、水和反応により放熱した第1蓄熱材を再度水和反応が可能な状態に再生させることができる。
上記一の局面による車両用化学蓄熱システムにおいて、好ましくは、第1反応器には、比較的低温で作動する第1蓄熱材が収容されており、比較的高温で作動する第2蓄熱材が収容された第2反応器をさらに備え、制御部は、不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下の場合または所定の温度以下になると予測される場合に、凝縮蒸発器から第1反応器の第1蓄熱材に水蒸気を供給して水和反応させることにより、凝縮蒸発器の不凍水溶液の濃度を高くする制御を行うとともに、不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下でなく、かつ、所定の温度以下にならないと予測される場合に、第2反応器を用いて、車両の排熱に基づく脱水反応による蓄熱および水和反応による放熱を行うように制御するように構成されている。なお、「作動する」とは、第1蓄熱材または第2蓄熱材において脱水反応(蓄熱反応)が生じ始めることを意味している。
このように構成すれば、不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下の場合または所定の温度以下になると予測される場合に、比較的低温で作動する第1蓄熱材を用いて不凍水溶液の濃度を高くすることによって、比較的高温で作動する第2蓄熱材を用いる場合と比べて、車両の排熱が小さい場合であっても、比較的低温で作動する第1蓄熱材に脱水反応を生じさせることができる。これにより、水和反応により放熱した第1蓄熱材を再度水和反応が可能な状態に容易に再生させることができる。また、不凍水溶液または不凍水溶液の周辺の温度が所定の温度以下でなく、かつ、所定の温度以下にならないと予測される場合には、凝縮蒸発器の不凍水溶液の濃度を高くする必要がない。したがって、そのような場合に比較的高温で作動する第2蓄熱材を用いることによって、たとえば、排気ガス熱などの比較的高温の熱を効率的に蓄熱することができる。
なお、上記一の局面による車両用化学蓄熱システムにおいて以下のような構成も考えられる。
(付記項)
すなわち、上記比較的高温で作動する第2蓄熱材が収容された第2反応器をさらに備える構成において、第2反応器の下流に配置され、第2反応器を通過した車両の排熱を回収する排熱回収器をさらに備える。
本発明の第1実施形態による車両に搭載された車両用化学蓄熱システムの概略構成を示した図である。 本発明の第1実施形態による車両用化学蓄熱システムを模式的に示した図である。 本発明の第1実施形態による車両用化学蓄熱システムにおいて、氷点下時(氷点下予測時)におけるエンジン未始動時の状態を示した模式図である。 本発明の第1実施形態による車両用化学蓄熱システムにおいて、氷点下時(氷点下予測時)におけるエンジン始動時の状態を示した模式図である。 本発明の第1実施形態による車両用化学蓄熱システムにおいて、エンジン暖機完了初期で、かつ、熱回収要求なしの場合における状態を示した模式図である。 本発明の第1実施形態による車両用化学蓄熱システムにおいて、エンジン暖機完了初期で、かつ、熱回収要求ありの場合における状態を示した模式図である。 本発明の第1実施形態による車両用化学蓄熱システムにおいて、エンジン暖機完了後期で、かつ、熱回収要求なしの場合における状態を示した模式図である。 本発明の第1実施形態による車両用化学蓄熱システムにおいて、エンジン暖機完了後期で、かつ、熱回収要求ありの場合における状態を示した模式図である。 本発明の第2実施形態による車両用化学蓄熱システムを模式的に示した図である。 本発明の第2実施形態による車両用化学蓄熱システムにおいて、氷点下時(氷点下予測時)におけるエンジン未始動時の状態を示した模式図である。 本発明の第2実施形態による車両用化学蓄熱システムにおいて、エンジン暖機中における状態を示した模式図である。
以下、本発明の実施形態を図面に基づいて説明する。
[第1実施形態]
(車両用化学蓄熱システムの構成)
図1および図2を参照して、本発明の第1実施形態による車両用化学蓄熱システム100について説明する。
車両用化学蓄熱システム100は、図1に示すように、エンジン2を有する自動車などの車両1に搭載されるように構成されている。この車両用化学蓄熱システム100は、エンジン2から排出される排気ガス熱(排熱)を利用して蓄熱を行うとともに、エンジン2の暖機完了前や車両1の暖房要求時などの熱回収の要求がある際には、蓄熱した熱を放出して、エンジン2の暖機補助や車両1の暖房のための熱を供給する機能を有している。なお、エンジン2から排出される排気ガスの温度は、暖機完了後に300℃〜500℃程度になる。また、車両1には、車両1の制御を行うためのECU(Engine Control Unit)3(図2参照)が設けられている。
車両用化学蓄熱システム100は、図2に示すように、2つの反応器(高温反応器10および低温反応器20)と、凝縮蒸発器30と、熱交換器40とを備えている。また、車両用化学蓄熱システム100は、高温反応器10および低温反応器20と、凝縮蒸発器30とを接続するとともに、水蒸気が流通する蒸気配管50と、エンジン2から排出される排気ガスが流通する排気管60とをさらに備えている。また、ECU3は、車両用化学蓄熱システム100の制御も行うように構成されている。なお、高温反応器10および低温反応器20は、それぞれ、本発明の「第2反応器」および「第1反応器」の一例であり、ECU3は、本発明の「制御部」の一例である。
高温反応器10は、車両用化学蓄熱システム100における蓄放熱において主に用いられる反応器である。この高温反応器10には、比較的高温で作動する高温蓄熱材11が収容されている。高温蓄熱材11は、300℃付近で蓄熱反応(脱水反応)が生じ始める粒状の酸化カルシウム(CaO)から構成されている。この酸化カルシウムは、放熱時において、凝縮蒸発器30から供給される水蒸気と水和反応することによって、水酸化カルシウム(Ca(OH))になるとともに、蓄熱した熱を放出する(放熱する)。また、水酸化カルシウムは、蓄熱時において、脱水反応により水蒸気を放出するとともに、300℃〜500℃程度の排気ガス熱を吸収する(蓄熱する)ことによって、再度酸化カルシウムに再生される。なお、高温蓄熱材11は、本発明の「第2蓄熱材」の一例である。
低温反応器20は、車両用化学蓄熱システム100における後述する不凍水溶液31の凍結防止において主に用いられる反応器である。この低温反応器20には、比較的低温で作動する低温蓄熱材21が収容されている。低温蓄熱材21は、100℃付近で蓄熱反応(脱水反応)が生じ始める粒状の硫酸カルシウム無水和物(CaSO、無水石膏)から構成されている。この硫酸カルシウム無水和物は、放熱時において、凝縮蒸発器30から供給される水蒸気と水和反応することによって、硫酸カルシウム1/2水和物(CaSO・1/2HO、半水石膏)になるとともに、蓄熱した熱を放出する(放熱する)。また、硫酸カルシウム1/2水和物は、蓄熱時において、脱水反応により水蒸気を放出するとともに、排気ガス熱を吸収する(蓄熱する)ことによって、再度硫酸カルシウム無水和物に再生される。なお、低温蓄熱材21は、本発明の「第1蓄熱材」の一例である。
凝縮蒸発器30は、車両用化学蓄熱システム100において、高温反応器10の高温蓄熱材11または低温反応器20の低温蓄熱材21の放熱時に、水蒸気を高温蓄熱材11または低温蓄熱材21に供給するとともに、蓄熱時に高温蓄熱材11または低温蓄熱材21において発生した水蒸気を凝縮する機能を有する。
凝縮蒸発器30の内部には、不凍水溶液31が貯留されている。この不凍水溶液31は、溶媒としての水と、水が凍結するのを抑制するための溶質とから構成されている。溶質としては、塩化カルシウムやエチレングリコール、グリセリン、塩化マグネシウム、塩化リチウムなどを用いることが可能である。ここで、不凍水溶液31の濃度は、不凍水溶液31が最も希釈された状態(高温蓄熱材11および低温蓄熱材21が完全に蓄熱した状態(脱水反応が完了した状態))において、不凍水溶液31の凝固点が約−10℃以上約0℃未満の温度になるような濃度に調整されている。また、低温蓄熱材21が完全に放熱した状態(水和反応が完了した状態)において、不凍水溶液31の凝固点が約−30℃になるように、低温反応器20における低温蓄熱材21の収容量が調整されている。
また、凝縮蒸発器30には、液面センサ32と、温度センサ33とが取り付けられている。なお、液面センサ32および温度センサ33は、それぞれ、本発明の「濃度検出部」および「温度検知部」の一例である。
液面センサ32は、凝縮蒸発器30に貯留された不凍水溶液31の液面位置を検出することによって、不凍水溶液31の濃度を検出するように構成されている。ここで、不凍水溶液31中の溶質の量は不凍水溶液31の溶媒(水)の量の変化に拘わらず略一定であるため、不凍水溶液31の濃度は、不凍水溶液31の液面位置に基づく不凍水溶液31の体積から求めることが可能である。また、液面センサ32としては、静電容量式、フロート式、光学式、超音波式などの各種液面センサを用いることが可能である。また、液面センサ32は、検出した不凍水溶液31の液面位置に関する液面(濃度)情報をECU3に送信するように構成されている。
温度センサ33は、不凍水溶液31の温度を検知する機能を有する。この温度センサ33は、検知した不凍水溶液31の温度に関する温度情報をECU3に送信するように構成されている。
熱交換器40は、熱交換媒体(図示せず)が流通しており、熱交換媒体が排気ガスから熱を回収することが可能に構成されている。また、熱交換器40は、熱交換媒体が流通するとともに、エンジン2や、車両1内の暖房に用いるヒータコア(図示せず)、オイル(図示せず)などに対して熱を供給するための熱交換回路40aに接続されている。これにより、熱交換器40において回収した熱は、エンジン2や、ヒータコア、オイルなどの加熱に用いられる。
蒸気配管50は、高温反応器10と凝縮蒸発器30とを接続する主配管51と、主配管51の高温反応器10と凝縮蒸発器30との間から分岐するとともに、低温反応器20と凝縮蒸発器30とを接続する分岐配管52とを含んでいる。また、主配管51の分岐位置よりも高温反応器10側には、高温反応器10と凝縮蒸発器30との間の水蒸気の流通を制御する弁51aが設けられている。また、低温反応器20と凝縮蒸発器30との間の分岐配管52には、低温反応器20と凝縮蒸発器30との間の水蒸気の流通を制御する弁52aが設けられている。これらの弁51aおよび52aは、ECU3により開閉が切り替えられるように構成されている。
なお、高温反応器10、低温反応器20および凝縮蒸発器30と、蒸気配管50との内部は、大気圧よりも圧力の小さい真空状態になるように構成されている。これにより、不凍水溶液31の温度が低い場合であっても、不凍水溶液31から水蒸気が発生しやすくなるように構成されている。
排気管60は、主配管61と、迂回配管62と、主配管61と迂回配管62との分岐位置に設けられた三方弁63とを含んでいる。主配管61では、三方弁63よりも上流側(エンジン2側)に高温反応器10が配置されているとともに、三方弁63よりも下流側(エンジン2と反対側)に低温反応器20が配置されている。高温反応器10よりも下流側の迂回配管62には、熱交換器40が配置されている。これにより、高温反応器10および低温反応器20において、排気ガス熱(排熱)を蓄熱することが可能であるとともに、熱交換器40において、排気ガス熱(排熱)を回収することが可能である。三方弁63は、ECU3により開閉が切り替えられるように構成されている。また、主配管61の外部への排出部分の近傍には、排気ガスを浄化するための触媒4(図1参照)が取り付けられている。
ECU3は、液面センサ32および温度センサ33からそれぞれ送信される液面(濃度)情報および温度情報に基づいて、車両用化学蓄熱システム100における蓄放熱の制御を行うように構成されている。このECU3は、図示しないバッテリからエンジン2の駆動の有無にかかわらず電力が供給されることによって、エンジン2の未始動の状態であっても、車両用化学蓄熱システム100における蓄放熱の制御を行うことが可能である。
また、ECU3は、温度情報から不凍水溶液31の温度を取得して、不凍水溶液31の温度が0℃以下(氷点下)になるか否かを予測する制御を行うように構成されている。たとえば、現在の不凍水溶液31の温度が約5℃以下で、かつ、時間当たりの温度の低下率が所定の低下率よりも大きくなった場合に、ECU3は、不凍水溶液31の温度が氷点下になると予測するように構成されている。なお、0℃は、本発明の「所定の温度」の一例である。
(氷点下時(氷点下予測時)における蓄放熱制御)
次に、図3〜図8を参照して、氷点下時(氷点下予測時)における車両用化学蓄熱システム100の蓄放熱制御について説明する。
初期状態としては、エンジン2が未始動の状態であり、かつ、高温反応器10の高温蓄熱材11および低温反応器20の低温蓄熱材21の双方とも排熱可能な状態(蓄熱状態)である。つまり、初期状態では、高温反応器10には蓄熱状態の酸化カルシウムからなる高温蓄熱材11が収容されており、低温反応器20には蓄熱状態の硫酸カルシウム無水和物が収容されている。また、主配管51の弁51aおよび分岐配管52の弁52aは、いずれも閉状態である。
また、ECU3は、温度センサ33から送信される温度情報に基づいて、温度センサ33により検知された不凍水溶液31の温度を監視している。
ここで、第1実施形態では、ECU3は、温度センサ33により検知された不凍水溶液31の温度が氷点下(0℃以下)の場合または氷点下になると予測される場合に、図3に示すように、凝縮蒸発器30から低温反応器20の低温蓄熱材21に水蒸気を供給して水和反応させることにより、凝縮蒸発器30の不凍水溶液31の濃度を高くする制御を行う。
具体的には、不凍水溶液31の温度が氷点下の場合または氷点下になると予測される場合には、ECU3は、分岐配管52の弁52aを開くように制御する。ここで、低温反応器20および凝縮蒸発器30と蒸気配管50との内部は真空状態であるとともに、不凍水溶液31の凝固点は低下しているので、不凍水溶液31の温度が低い場合であっても不凍水溶液31から水蒸気が発生する。この水蒸気が、凝縮蒸発器30から主配管51および分岐配管52を介して、低温反応器20の低温蓄熱材21に供給される。これにより、低温蓄熱材21は、水蒸気との水和反応により熱を放出(放熱)して、硫酸カルシウム1/2水和物になる。一方で、凝縮蒸発器30では、水蒸気が放出される分、不凍水溶液31中の溶媒(水)の量が減少するため、不凍水溶液31の液面位置が低下する(黒矢印)とともに、不凍水溶液31の濃度が高くなる。これにより、不凍水溶液31の凝固点が低下し、その結果、不凍水溶液31の凍結が抑制される。
この制御は、後述するエンジン2の始動後を除いて、液面センサ32により不凍水溶液31の濃度が所定の濃度(不凍水溶液31の凝固点が約−30℃になる濃度)まで上昇するまで継続される。そして、不凍水溶液31の濃度が所定の濃度まで上昇したことを検出した際に、ECU3は、弁52aを閉めるように制御する。この結果、不凍水溶液31の濃度が所定の濃度まで上昇するまで、低温蓄熱材21の水和反応と、不凍水溶液31の濃度の上昇とが継続される。ここで、ECU3は、液面センサ32により検出される不凍水溶液31の液面位置が所定の高さ位置まで低下したことに基づいて、不凍水溶液31の凝固点が約−30℃になる所定の濃度に不凍水溶液31の濃度が上昇したと判断する。
なお、不凍水溶液31の温度の低下が生じなくなった際には、ECU3は、不凍水溶液31が所定の濃度(不凍水溶液31の凝固点が約−30℃になる濃度)よりも低い濃度であっても、弁52aを閉めるように制御してもよい。これにより、不凍水溶液31の濃度が高くなるのを抑制することができるので、不凍水溶液31の蒸気圧の低下を抑制して、不凍水溶液31から水蒸気を発生させやすくすることが可能である。
この図3の状態(氷点下時(氷点下予測時))から、エンジン2が始動された際には、図4に示すように、ECU3は、主配管51の弁51aを開くとともに、分岐配管52の弁52aを閉めるように制御する。これにより、凝縮蒸発器30からの水蒸気が主配管51を介して高温反応器10の高温蓄熱材11に供給される。これにより、高温蓄熱材11は、水蒸気との水和反応により熱を放出(放熱)して、水酸化カルシウムになる。この結果、エンジン2から排気管60に排出される低温の排気ガスに高温蓄熱材11からの熱が供給されて、排気ガスが昇温される。また、凝縮蒸発器30では、不凍水溶液31中の溶媒(水)の量が減少するため、不凍水溶液31の液面位置がさらに低下する(黒矢印)とともに、不凍水溶液31の濃度がさらに高くなる。
また、この際、ECU3は、排気管60の三方弁63のうち、迂回配管62側を開け、主配管61側を閉めるように制御する。これにより、迂回配管62を昇温された排気ガスが通過することによって、迂回配管62に配置された熱交換器40から排気ガス熱が回収されて、熱交換媒体が昇温される。この結果、エンジン2の暖機の補助や、車両1内の暖房、オイルの加熱などが行われる。そして、熱交換器40を通過することによって温度が低くなった排気ガスが外部に排出される。
この図4の状態から、エンジン2が駆動され続けることによって、排気ガスの温度が高温蓄熱材11に蓄熱可能な程度(約300℃)に十分に上昇した際(エンジン2の暖機完了初期)には、図5および図6に示すように、排気ガス熱により、高温反応器10の高温蓄熱材11は、脱水反応により水蒸気を放出して蓄熱する。これにより、高温蓄熱材11が蓄熱状態(酸化カルシウム)に再生される。そして、高温反応器10から放出された水蒸気は、主配管51を介して凝縮蒸発器30に供給されて、凝縮蒸発器30内で凝縮されて不凍水溶液31に戻される。これにより、凝縮蒸発器30では、水蒸気が凝縮される分、不凍水溶液31中の溶媒(水)の量が増加するため、不凍水溶液31の液面位置が上昇する(黒矢印)とともに、不凍水溶液31の濃度が低くなる。なお、この際、ECU3は、主配管51の弁51aを開くとともに、分岐配管52の弁52aを閉める制御を維持する。
また、ECU3は、暖房要求がない場合など、熱交換器40において熱を回収する必要がない場合(熱回収要求なしの場合)には、図5に示すように、排気管60の三方弁63のうち、主配管61側を開け、迂回配管62側を閉めるように制御する。これにより、排気ガス熱により、低温反応器20の低温蓄熱材21は、脱水反応により水蒸気を放出して蓄熱する。なお、低温反応器20を通過する排気ガスは、高温反応器10を通過する際に高温蓄熱材11に放熱したことにより降温している。しかしながら、低温蓄熱材21は100℃程度の比較的低温で脱水反応が生じ始めるので、温度が低下した排気ガス熱であっても、十分に脱水反応を生じることが可能である。なお、分岐配管52の弁52aは閉じられているため、低温反応器20の温度の上昇に伴い、一部の低温蓄熱材21が蓄熱状態(硫酸カルシウム無水和物)に再生されて、多くの水蒸気が低温反応器20内に充満する。この水蒸気は、後述するエンジンの暖機完了後期において、弁52aが開けられた際に、凝縮蒸発器30側に移動する。
また、ECU3は、暖房要求がある場合など、熱交換器40において熱を回収する必要がある場合(熱回収要求ありの場合)には、図6に示すように、排気管60の三方弁63のうち、迂回配管62側を開け、主配管61側を閉めるように制御する。これにより、迂回配管62に配置された熱交換器40から熱が回収されて、熱交換媒体が昇温される。なお、図5の熱回収要求なしの場合と図6の熱回収要求ありの場合とは、車両1の状態によって適宜切り替えられる。
この図5の状態(熱回収要求なしの場合)から、エンジン2が駆動され続けることによって、高温蓄熱材11から水蒸気が供給されなくなった際(エンジン2の暖機完了後期)には、図7に示すように、ECU3は、主配管51の弁51aを閉めるとともに、分岐配管52の弁52aを開くように制御する。これにより、排気ガス熱により、低温反応器20の低温蓄熱材21は、脱水反応により水蒸気を放出して蓄熱する。これにより、低温蓄熱材21が蓄熱状態(硫酸カルシウム無水和物)に再生される。そして、低温蓄熱材21から放出された水蒸気は、低温反応器20に溜められていた水蒸気とともに、主配管51を介して凝縮蒸発器30に供給され、凝縮蒸発器30内で凝縮されて不凍水溶液31に戻される。これにより、凝縮蒸発器30では、水蒸気が凝縮される分、不凍水溶液31の液面位置がさらに上昇する(黒矢印)とともに、不凍水溶液31の濃度がさらに低くなる。
なお、高温蓄熱材11から水蒸気が供給されなくなったか否かは、液面センサ32により検出される液面位置から、高温蓄熱材11が吸収可能な水分量だけ不凍水溶液31の体積が増加したか否かを判断することによって、検出することが可能である。また、高温蓄熱材11から水蒸気が供給されなくなったか否かは、蓄熱終了により高温蓄熱材11の温度が上昇し始めたことを検出することによっても、検出することが可能である。
その後、エンジン2が駆動され続けることによって、低温蓄熱材21から水蒸気が供給されなくなった際には、ECU3は、分岐配管52の弁52aを閉めるように制御する。なお、低温蓄熱材21から水蒸気が供給されなくなったか否かは、上記高温蓄熱材11から水蒸気が供給されなくなったか否かと同様の方法で検出することが可能である。
また、図6の状態(熱回収要求ありの場合)から、高温蓄熱材11から水蒸気が供給されなくなった際(エンジン2の暖機完了後期)には、図8に示すように、ECU3は、主配管51の弁51aを閉めるように制御する。これにより、迂回配管62に配置された熱交換器40から排気ガス熱が回収されて、熱交換媒体が昇温される。なお、図7の熱回収要求なしの場合と図8の熱回収要求ありの場合とは、車両1の状態によって適宜切り替えられる。
(通常時における蓄放熱制御)
次に、図4〜図6を参照して、氷点下でなく、かつ、氷点下にならないと予測される場合(通常時)における車両用化学蓄熱システム100の蓄放熱制御について説明する。
通常時においては、ECU3は、主配管51の弁51aを開き、分岐配管52の弁52aを閉める制御を維持する。つまり、ECU3は、通常時においては、低温反応器20を用いずに高温反応器10を用いて、車両1の排熱に基づく脱水反応による蓄熱および水和反応による放熱を行うように制御する。
具体的には、熱回収の要求がある場合(放熱時)には、図4に示すように、氷点下(氷点下予測)時におけるエンジン2の始動時と同様になる。つまり、ECU3は、排気管60の三方弁63のうち、迂回配管62側を開け、主配管61側を閉めるように制御する。これにより、凝縮蒸発器30からの水蒸気が主配管51を介して高温反応器10に供給されて、高温反応器10の高温蓄熱材11は、水蒸気との水和反応により熱を放出(放熱)して、水酸化カルシウムになる。この結果、排気管60に排出される排気ガスを介して、熱交換器40により熱が回収されて、エンジン2の暖機の補助や、車両1内の暖房、オイルの加熱などが行われる。
また、通常時において、排気ガスの温度が高温蓄熱材11に蓄熱可能な程度(約300℃)に十分に上昇した際(蓄熱時)には、図5および図6に示すように、氷点下(氷点下予測)時におけるエンジン2の暖機完了初期と同様になる。つまり、排気ガス熱により、高温反応器10の高温蓄熱材11は、脱水反応により水蒸気を放出して蓄熱する。これにより、高温蓄熱材11が蓄熱状態(酸化カルシウム)に再生される。なお、熱回収の要求がない場合には、図5に示すように、ECU3は、排気管60の三方弁63のうち、主配管61側を開け、迂回配管62側を閉めるように制御する。また、熱回収の要求がある場合には、図6に示すように、ECU3は、排気管60の三方弁63のうち、主配管61側を閉め、迂回配管62側を開けるように制御する。
(第1施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、ECU3により、不凍水溶液31の温度が氷点下(0℃以下)の場合または氷点下になると予測される場合に、凝縮蒸発器30から低温反応器20の低温蓄熱材21に水蒸気を供給して水和反応させることにより、凝縮蒸発器30の不凍水溶液31の濃度を高くする制御を行う。これにより、不凍水溶液31の温度が、不凍水溶液31が凍結するような氷点下の場合や、不凍水溶液31が凍結するような氷点下になると予測される場合に、不凍水溶液31の濃度を高くする制御を行うことによって不凍水溶液31の凝固点を低下させることができるので、不凍水溶液31が凍結するのを抑制することができる。したがって、氷点下の低温環境下であっても、凍結した不凍水溶液31を溶解させて液状に戻す必要がなくなるので、車両用化学蓄熱システム100における蓄放熱の性能が低下するのを抑制することができる。
また、第1実施形態では、ECU3により、不凍水溶液31の温度が氷点下(0℃以下)の場合または氷点下になると予測される場合に、弁52aを開くように制御することにより、凝縮蒸発器30から低温反応器20の低温蓄熱材21に水蒸気を供給して水和反応させて、凝縮蒸発器30の不凍水溶液31の濃度を高くするように制御を行う。これにより、容易に、水蒸気を凝縮蒸発器30から低温反応器20に移動させて、不凍水溶液31の濃度を高くすることができる。
また、第1実施形態では、ECU3により、不凍水溶液31の温度が氷点下(0℃以下)の場合または氷点下になると予測される場合に、液面センサ32により検出される不凍水溶液31の濃度が所定の濃度に上昇するまで、凝縮蒸発器30から低温反応器20の低温蓄熱材21に水蒸気を供給して水和反応させる制御を行う。これにより、不凍水溶液31の濃度が十分に高くならずに不凍水溶液31が凍結してしまうのを確実に抑制することができる。
また、第1実施形態では、ECU3により、不凍水溶液31の温度が氷点下(0℃以下)の場合または氷点下になると予測される場合に、凝縮蒸発器30の不凍水溶液31の濃度を高くする制御を行った後、エンジン2の暖機完了時において、車両1の排熱により低温反応器20の低温蓄熱材21に脱水反応を生じさせて発生した水蒸気を凝縮蒸発器30により凝縮させることにより、不凍水溶液31の濃度を低くする制御を行う。これにより、車両1が駆動されることなどにより生じる車両1の排熱を用いて、水和反応により放熱した低温蓄熱材21(硫酸カルシウム1/2水和物)を再度水和反応が可能な状態(硫酸カルシウム無水和物)に再生させることができる。また、不凍水溶液31の濃度を低くすることによって、不凍水溶液31の蒸気圧を高くすることができるので、不凍水溶液31から水蒸気を発生させやすくすることができる。これにより、車両用化学蓄熱システム100における蓄放熱の性能を向上させることができる。
また、第1実施形態では、車両1の排熱として排気ガス熱を用いることによって、車両1の外部に排出される排気ガスの熱を有効に用いて、水和反応により放熱した低温蓄熱材21を再度水和反応が可能な状態に再生させることができる。
また、第1実施形態では、ECU3により、不凍水溶液31の温度が氷点下(0℃以下)の場合または氷点下になると予測される場合に、凝縮蒸発器30から低温反応器20の比較的低温で作動する低温蓄熱材21に水蒸気を供給して水和反応させることにより、凝縮蒸発器30の不凍水溶液31の濃度を高くする制御を行う。これにより、比較的高温で作動する高温蓄熱材11を用いる場合と比べて、車両1の排熱が小さい場合であっても、比較的低温で作動する低温蓄熱材21に脱水反応を生じさせることができる。この結果、水和反応により放熱した低温蓄熱材21を再度水和反応が可能な状態に容易に再生させることができる。また、ECU3により、不凍水溶液31の温度が氷点下でなく、かつ、氷点下にならないと予測される場合に、高温反応器10を用いて、車両1の排熱に基づく脱水反応による蓄熱および水和反応による放熱を行うように制御する。これにより、排気ガス熱などの比較的高温の熱を効率的に蓄熱することができる。
また、第1実施形態では、排気管60において、高温反応器10の下流に、高温反応器10を通過した車両1の排熱(排気ガス熱)を回収する熱交換器40を設けることによって、高温反応器10を単に通過した排気ガス熱を回収することができるだけでなく、高温蓄熱材11の水和反応により高温反応器10から放出された熱も、昇温された排気ガス熱を介して回収することができる。これにより、車両1の排熱を有効に利用することができる。
[第2実施形態]
(車両用化学蓄熱システムの構成)
次に、図9を参照して、本発明の第2実施形態による車両用化学蓄熱システム200について説明する。この第2実施形態による車両用化学蓄熱システム200では、上記第1実施形態の車両用化学蓄熱システム100とは異なり、反応器が1つしか設けられていない場合について説明する。なお、第1実施形態と同一の構成については、同一の符号を付すとともに説明を省略する。
第2実施形態における車両用化学蓄熱システム200は、図9に示すように、1つの反応器120と、凝縮蒸発器30とを備えている。また、車両用化学蓄熱システム200は、反応器120と凝縮蒸発器30とを接続するとともに、水蒸気が流通する蒸気配管150と、エンジン2から排出される排気ガスが流通する排気管160とをさらに備えている。つまり、上記第1実施形態の車両用化学蓄熱システム100とは異なり、車両用化学蓄熱システム200には、反応器が1つしか設けられていないとともに、熱交換器が設けられていない。また、ECU103により、車両用化学蓄熱システム200の制御が行われる。なお、反応器120およびECU103は、それぞれ、本発明の「第1反応器」および「制御部」の一例である。
反応器120は、上記第1実施形態における低温反応器20と同様の構成を有する。つまり、反応器120には、比較的低温で作動する蓄熱材121(100℃付近で蓄熱反応(脱水反応)が生じ始める粒状の硫酸カルシウム無水和物(CaSO、無水石膏))が収容されている。なお、蓄熱材121は、本発明の「第1蓄熱材」の一例である。
凝縮蒸発器30の内部には、上記第1実施形態と同様に、不凍水溶液31が貯留されている。また、凝縮蒸発器30には、液面センサ32と温度センサ33とが取り付けられている。
蒸気配管150は、反応器120と凝縮蒸発器30とを接続するように構成されている。また、蒸気配管150の反応器120と凝縮蒸発器30との間には、反応器120と凝縮蒸発器30との間の水蒸気の流通を制御する弁150aが設けられている。この弁150aは、ECU103により開閉が切り替えられるように構成されている。
排気管160には、反応器120が配置されており、反応器120においてエンジン2からの排気ガス熱(排熱)を蓄熱することが可能である。ECU103は、液面センサ32および温度センサ33からそれぞれ送信される液面(濃度)情報および温度情報に基づいて、車両用化学蓄熱システム200における蓄放熱の制御を行うとともに、温度情報から不凍水溶液31の温度を取得して、不凍水溶液31の温度が0℃以下(氷点下)になるか否かを予測する制御を行うように構成されている。
(氷点下時(氷点下予測時)における蓄放熱制御)
次に、図10および図11を参照して、車両用化学蓄熱システム200の蓄放熱制御について説明する。
初期状態としては、エンジン2が未始動の状態であり、かつ、反応器120の蓄熱材121が排熱可能な状態(蓄熱状態)である。つまり、初期状態では、反応器120には硫酸カルシウム無水和物が収容されており、蒸気配管150の弁150aは閉状態である。また、ECU103は、温度センサ33から送信される温度情報に基づいて、温度センサ33により検知された不凍水溶液31の温度を監視している。
ここで、第2実施形態では、上記第1実施形態と同様に、ECU103は、温度センサ33により検知された不凍水溶液31の温度が氷点下(0℃以下)の場合または氷点下になると予測される場合に、図10に示すように、凝縮蒸発器30から反応器120の蓄熱材121に水蒸気を供給して水和反応させることにより、凝縮蒸発器30の不凍水溶液31の濃度を高くする制御を行う。
具体的には、不凍水溶液31の温度が氷点下または氷点下になると予測される場合には、ECU103は、蒸気配管150の弁150aを開くように制御する。これにより、不凍水溶液31の水蒸気が、蒸気配管150を介して、反応器120の蓄熱材121に供給される。これにより、蓄熱材121は、水蒸気との水和反応により熱を放出(放熱)して、硫酸カルシウム1/2水和物になる。一方で、凝縮蒸発器30では、水蒸気が放出される分、不凍水溶液31の液面位置が低下する(黒矢印)とともに、不凍水溶液31の濃度が高くなる。
この制御は、液面センサ32により不凍水溶液31の濃度が所定の濃度(不凍水溶液31の凝固点が約−30℃になる濃度)まで上昇するまで継続される。また、この制御は、エンジン2の始動後であっても、エンジン2が始動されて、エンジン2から排出される排気ガスが100℃程度に上昇するまで継続される。
そして、排気ガスの温度が蓄熱材121に蓄熱可能な程度(約100℃)に十分に上昇した際(エンジン2の暖機中)には、図11に示すように、排気ガス熱により、反応器120の蓄熱材121は、脱水反応により水蒸気を放出して蓄熱する。これにより、蓄熱材121が蓄熱状態(硫酸カルシウム無水和物)に再生される。そして、反応器120から放出された水蒸気は、蒸気配管150を介して凝縮蒸発器30に供給されて、凝縮蒸発器30内で凝縮されて不凍水溶液31に戻される。これにより、凝縮蒸発器30では、水蒸気が凝縮される分、不凍水溶液31の液面位置が上昇する(黒矢印)とともに、不凍水溶液31の濃度が低くなる。
そして、蓄熱材121から水蒸気が供給されなくなった際には、ECU103は、蒸気配管150の弁150aを閉めるように制御する。
(第2施形態の効果)
第2実施形態では、以下のような効果を得ることができる。
第2実施形態では、ECU103により、温度センサ33により検知された不凍水溶液31の温度が氷点下(0℃以下)または氷点下になると予測される場合に、凝縮蒸発器30から反応器120の蓄熱材121に水蒸気を供給して水和反応させることにより、凝縮蒸発器30の不凍水溶液31の濃度を高くする制御を行う。これにより、上記第1実施形態と同様に、氷点下の低温環境下であっても車両用化学蓄熱システム200における蓄放熱の性能が低下するのを抑制することができる。
また、第2実施形態では、車両用化学蓄熱システム200において、反応器120を1つしか設けないとともに、熱交換器を設けないことによって、より簡素な構成で、不凍水溶液31が凍結するのを抑制することができる。
[変形例]
今回開示された実施形態は、全ての点で例示であり制限的なものではないと考えられるべきである。本発明の範囲は上記実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1および第2実施形態では、温度センサ33が不凍水溶液31の温度を検知する例を示したが、本発明はこれに限られない。本発明では、温度センサを不凍水溶液の温度を検知するのではなく、不凍水溶液の周辺の温度を検知するように構成してもよい。たとえば、温度センサにより車両の外の気温を検知してもよい。
また、上記第1および第2実施形態では、液面センサ32を用いて不凍水溶液31の液面位置から間接的に不凍水溶液31の濃度を検出した例を示したが、本発明はこれに限られない。本発明では、不凍水溶液の濃度を直接的に検出可能な機器を用いて不凍水溶液の濃度を直接的に検出してもよい。
また、上記第1および第2実施形態では、エンジン2からの排気ガス熱により蓄熱材に蓄熱させた例を示したが、本発明はこれに限られない。本発明では、車両の排熱により蓄熱材に蓄熱させればよく、たとえば、エンジン自体からの排熱やモータの排熱などを用いてもよい。なお、車両が燃料電池車である場合には、燃料電池からの排熱を用いて蓄熱材に蓄熱させるように構成してもよい。
また、上記第1および第2実施形態では、不凍水溶液31の温度が氷点下(0℃以下)の場合または氷点下になると予測される場合に、凝縮蒸発器30の不凍水溶液31の濃度を高くする制御を行う例を示したが、本発明はこれに限られない。本発明では、不凍水溶液の温度が0℃以外の所定の温度以下の場合または0℃以外の所定の温度になると予測される場合に、不凍水溶液の濃度を高くする制御を行ってもよい。たとえば、不凍水溶液の温度が、最も希釈した場合の不凍水溶液の濃度における凝固点(0℃未満の所定の温度)以下の場合または凝固点以下になると予測される場合に、不凍水溶液の濃度を高くする制御を行ってもよい。
また、上記第1実施形態では、高温蓄熱材11として酸化カルシウム(蓄熱状態)を用いた例について示したが、本発明はこれに限られない。本発明では、高温蓄熱材として、酸化カルシウム(蓄熱状態)以外の化学蓄熱可能な蓄熱材を用いてもよい。この際、高温蓄熱材は、脱水反応により蓄熱可能で、かつ、水和反応により放熱可能な蓄熱材であればよい。また、高温蓄熱材は、300℃〜500℃程度の排気ガス熱を効果的に蓄熱可能な蓄熱材であるのが好ましい。具体的には、高温蓄熱材として、酸化マグネシウム(蓄熱状態)を用いてもよい。
また、上記第1および第2実施形態では、低温蓄熱材21および蓄熱材121(第1蓄熱材)として硫酸カルシウム無水和物(蓄熱状態)を用いた例について示したが、本発明はこれに限られない。本発明では、第1蓄熱材として、硫酸カルシウム無水和物(蓄熱状態)以外の化学蓄熱可能な蓄熱材を用いてもよい。この際、第1蓄熱材は、脱水反応により蓄熱可能で、かつ、水和反応により放熱可能な蓄熱材であればよい。また、第1蓄熱材は、100℃程度の熱を効果的に蓄熱可能な蓄熱材であるのが好ましい。具体的には、第1蓄熱材として、水蒸気を吸着可能なゼオライトを用いてもよい。
また、上記第2実施形態では、蓄熱材121として硫酸カルシウム無水和物(蓄熱状態)を用いた例について示したが、本発明はこれに限られない。本発明では、蓄熱材として、比較的高温で作動する酸化カルシウム(蓄熱状態)や酸化マグネシウム(蓄熱状態)を用いてもよい。
また、上記第1および第2実施形態において、低温反応器20および反応器120(第1反応器)の下流側に熱交換器を配置してもよい。この場合、第1反応器から放出された熱を回収することができるので、より効率的に熱を利用することが可能である。
また、上記第1および第2実施形態では、本発明の「制御部」として、車両1の制御を行うためのECU3(103)を用いた例について示したが、本発明はこれに限られない。本発明では、ECUとは別に車両用化学蓄熱システムを制御する制御部を設けてもよい。
1 車両
3、103 ECU(制御部)
10 高温反応器(第2反応器)
11 高温蓄熱材(第2蓄熱材)
20 低温反応器(第1反応器)
21 低温蓄熱材(第1蓄熱材)
30 凝縮蒸発器
31 不凍水溶液
32 液面センサ(濃度検出部)
33 温度センサ(温度検知部)
52a 弁
100、200 車両用化学蓄熱システム
120 反応器(第1反応器)
121 蓄熱材(第1蓄熱材)

Claims (6)

  1. 車両の排熱を脱水反応により蓄熱するとともに蓄熱した熱を水和反応により放熱する第1蓄熱材が収容された第1反応器と、
    前記第1反応器と接続され、不凍水溶液が内部に貯留されるとともに、前記第1蓄熱材の脱水反応時に発生する水蒸気を回収して凝縮し、かつ、前記第1蓄熱材の水和反応時に水蒸気を供給する凝縮蒸発器と、
    前記不凍水溶液または前記不凍水溶液の周辺の温度を検知する温度検知部と、
    前記不凍水溶液または前記不凍水溶液の周辺の温度が所定の温度以下の場合または前記所定の温度以下になると予測される場合に、前記凝縮蒸発器から前記第1反応器の前記第1蓄熱材に水蒸気を供給して水和反応させることにより、前記凝縮蒸発器の前記不凍水溶液の濃度を高くする制御を行う制御部と、を備える、車両用化学蓄熱システム。
  2. 前記凝縮蒸発器と前記第1反応器との間に設けられ、前記凝縮蒸発器と前記第1反応器との間の水蒸気の流通を制御する弁をさらに備え、
    前記制御部は、前記不凍水溶液または前記不凍水溶液の周辺の温度が前記所定の温度以下の場合または前記所定の温度以下になると予測される場合に、前記弁を開くように制御することにより、前記凝縮蒸発器から前記第1反応器の前記第1蓄熱材に水蒸気を供給して水和反応させて、前記凝縮蒸発器の前記不凍水溶液の濃度を高くする制御を行うように構成されている、請求項1に記載の車両用化学蓄熱システム。
  3. 前記凝縮蒸発器の前記不凍水溶液の濃度を検出する濃度検出部をさらに備え、
    前記制御部は、前記不凍水溶液または前記不凍水溶液の周辺の温度が前記所定の温度以下の場合または前記所定の温度以下になると予測される場合に、前記濃度検出部により検出される前記不凍水溶液の濃度が所定の濃度に上昇するまで、前記凝縮蒸発器から前記第1反応器の前記第1蓄熱材に水蒸気を供給して水和反応させる制御を行うように構成されている、請求項1または2に記載の車両用化学蓄熱システム。
  4. 前記制御部は、前記不凍水溶液または前記不凍水溶液の周辺の温度が前記所定の温度以下の場合または前記所定の温度以下になると予測される場合に、前記凝縮蒸発器の前記不凍水溶液の濃度を高くする制御を行った後、前記車両の排熱により前記第1反応器の前記第1蓄熱材に脱水反応を生じさせて発生した水蒸気を前記凝縮蒸発器により凝縮させることにより、前記不凍水溶液の濃度を低くする制御を行うように構成されている、請求項1〜3のいずれか1項に記載の車両用化学蓄熱システム。
  5. 前記車両の排熱は、排気ガス熱である、請求項1〜4のいずれか1項に記載の車両用化学蓄熱システム。
  6. 前記第1反応器には、比較的低温で作動する前記第1蓄熱材が収容されており、
    比較的高温で作動する第2蓄熱材が収容された第2反応器をさらに備え、
    前記制御部は、前記不凍水溶液または前記不凍水溶液の周辺の温度が前記所定の温度以下の場合または前記所定の温度以下になると予測される場合に、前記凝縮蒸発器から前記第1反応器の前記第1蓄熱材に水蒸気を供給して水和反応させることにより、前記凝縮蒸発器の前記不凍水溶液の濃度を高くする制御を行うとともに、前記不凍水溶液または前記不凍水溶液の周辺の温度が前記所定の温度以下でなく、かつ、前記所定の温度以下にならないと予測される場合に、前記第2反応器を用いて、前記車両の排熱に基づく脱水反応による蓄熱および水和反応による放熱を行うように制御するように構成されている、請求項1〜5のいずれか1項に記載の車両用化学蓄熱システム。
JP2015042795A 2015-03-04 2015-03-04 車両用化学蓄熱システム Expired - Fee Related JP6464832B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015042795A JP6464832B2 (ja) 2015-03-04 2015-03-04 車両用化学蓄熱システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015042795A JP6464832B2 (ja) 2015-03-04 2015-03-04 車両用化学蓄熱システム

Publications (2)

Publication Number Publication Date
JP2016160898A JP2016160898A (ja) 2016-09-05
JP6464832B2 true JP6464832B2 (ja) 2019-02-06

Family

ID=56844694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042795A Expired - Fee Related JP6464832B2 (ja) 2015-03-04 2015-03-04 車両用化学蓄熱システム

Country Status (1)

Country Link
JP (1) JP6464832B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265948B2 (ja) * 2019-07-18 2023-04-27 株式会社小松製作所 予測装置、予測方法および作業車両
JP7251564B2 (ja) * 2021-02-25 2023-04-04 いすゞ自動車株式会社 排気熱回収機構

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046674A (ja) * 2004-07-30 2006-02-16 Mitsubishi Heavy Ind Ltd 潜熱蓄熱システム、潜熱蓄熱方法及び収脱着槽
JP5219020B2 (ja) * 2007-09-03 2013-06-26 カルソニックカンセイ株式会社 車両用化学蓄熱システム
JP5569603B2 (ja) * 2013-01-15 2014-08-13 株式会社豊田中央研究所 車両用化学蓄熱システム

Also Published As

Publication number Publication date
JP2016160898A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5217595B2 (ja) 車両用化学蓄熱システム
US20140374058A1 (en) System for thermal management of a vehicle and method for vehicle cold start
JP2007263401A (ja) 蓄熱装置
KR20130024079A (ko) 고체 scr 시스템 및 이를 이용한 고체상의 환원제 가열 방법
JP5217593B2 (ja) 車両用化学蓄熱システム
JP5511494B2 (ja) 車両用化学蓄熱システム
WO2011113593A1 (en) Method and device for controlling effective heat transfer in a solid gas storage system
JP6464832B2 (ja) 車両用化学蓄熱システム
JP5086947B2 (ja) 第二種吸収ヒートポンプシステム
CN110005550B (zh) 排气再循环冷却器
JP5239678B2 (ja) エンジンの排気浄化装置
JP5817617B2 (ja) 化学蓄熱システム
JP5569603B2 (ja) 車両用化学蓄熱システム
JP2007085195A (ja) 廃熱回生装置
JP2010140658A (ja) 燃料電池システムの冷却装置
JP2009228430A (ja) 車両用暖機システム
JP4844797B2 (ja) 燃料電池スタックの暖機装置
JP5018715B2 (ja) 廃熱回収装置
JP2012127323A (ja) 車両の熱制御装置
KR101124638B1 (ko) 태양열을 이용하여 직접 난방 및 급탕을 수행하는 수축열 시스템
JP6061462B2 (ja) 化学蓄熱装置
JP2004092585A (ja) 暖機装置
JP5590160B2 (ja) 車両用化学蓄熱システム
JP5201471B2 (ja) 温水装置
JP2007115543A (ja) 燃料電池のオフガス燃焼装置、燃料電池システム、オフガス燃焼部のパージ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R151 Written notification of patent or utility model registration

Ref document number: 6464832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees