JP6463999B2 - Air battery system - Google Patents

Air battery system Download PDF

Info

Publication number
JP6463999B2
JP6463999B2 JP2015049702A JP2015049702A JP6463999B2 JP 6463999 B2 JP6463999 B2 JP 6463999B2 JP 2015049702 A JP2015049702 A JP 2015049702A JP 2015049702 A JP2015049702 A JP 2015049702A JP 6463999 B2 JP6463999 B2 JP 6463999B2
Authority
JP
Japan
Prior art keywords
air battery
tank
air
electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015049702A
Other languages
Japanese (ja)
Other versions
JP2016170965A (en
Inventor
勲 阿部
勲 阿部
芳延 平
芳延 平
隆 齊藤
隆 齊藤
泰昭 小濱
泰昭 小濱
浩幸 柴田
浩幸 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Furukawa Battery Co Ltd
Original Assignee
Tohoku University NUC
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Furukawa Battery Co Ltd filed Critical Tohoku University NUC
Priority to JP2015049702A priority Critical patent/JP6463999B2/en
Publication of JP2016170965A publication Critical patent/JP2016170965A/en
Application granted granted Critical
Publication of JP6463999B2 publication Critical patent/JP6463999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、空気電池の放電/放電停止を切り替えるための空気電池システムに関する。   The present invention relates to an air battery system for switching discharge / discharge stop of an air battery.

空気電池には、金属極と空気極と充電用補助極と電解液とを有し、充電開始時と放電開始時に電解液の比重が所定範囲であるよう電解液をサイフォン式給排液機構で入れ替え調整し、充放電を行うものが提案されている(例えば、特許文献1)。この入れ替え調整は、充放電ごとにサイフォン式給排液機構を用いて電解液を容器に引き出し、電解液の比重を調整後に電池内に供給することが記載されている。   The air battery has a metal electrode, an air electrode, a charging auxiliary electrode, and an electrolyte solution. The electrolyte solution is siphon type supply / drainage mechanism so that the specific gravity of the electrolyte solution is within a predetermined range at the start of charging and discharging. There has been proposed one that performs replacement adjustment and charges and discharges (for example, Patent Document 1). In this replacement adjustment, it is described that an electrolytic solution is drawn into a container using a siphon-type supply / drainage mechanism for each charge / discharge, and the specific gravity of the electrolytic solution is adjusted and supplied into the battery.

特公昭57−43982号公報Japanese Patent Publication No.57-43982

ところで、上記空気電池は二次電池であり、従来の一次電池に構成された空気電池は、電解液を注入して反応が始まると反応を止めることができなかった。このため、電池容量全ては必要ないが、少しの電力が必要となった場合でも、電解液を注入して放電反応が始まると、放電反応を止めることができず、必要過多の電力が無駄になってしまう。
この場合、再び電力を取り出そうとしても、電力を使い切った後で取り出せないという事態が生じ、再び使いたいときは、新しい電池を用意しなければならなかった。
By the way, the air battery is a secondary battery, and the air battery configured as a conventional primary battery cannot stop the reaction when the reaction is started by injecting the electrolytic solution. For this reason, not all the battery capacity is required, but even if a small amount of power is required, if the discharge reaction starts after injecting the electrolyte, the discharge reaction cannot be stopped, and excessive power is wasted. turn into.
In this case, even if it tried to take out the power again, there was a situation where it could not be taken out after the power was used up, and when it was desired to use it again, a new battery had to be prepared.

一方、従来の二次電池のサイフォン式給排液機構を用いて、空気電池から電解液を抜くことができれば放電反応を停止できる可能性がある。
しかし、従来のサイフォン式給排液機構を用いた空気電池は、複数の電池を構成する複数の直立管と、これらの上端を連結して一括に給排液する連結管と、連結管に接続された給液槽とで構成されるため、隣接する電池同士の電解液による短絡、つまり、液絡が生じるおそれがある。そもそも従来の構成は、充放電ごとに電解液の比重を調整するものであるため、放電反応が停止するまで電解液を抜くことを意図していない。
On the other hand, there is a possibility that the discharge reaction can be stopped if the electrolyte solution can be extracted from the air battery using the conventional siphon type supply / drainage mechanism of the secondary battery.
However, a conventional air battery using a siphon-type supply / drainage mechanism is connected to a plurality of upright pipes constituting a plurality of batteries, a connection pipe connecting these upper ends and supplying and discharging liquids in a lump, and a connection pipe Therefore, there is a possibility that a short circuit due to the electrolyte between adjacent batteries, that is, a liquid junction may occur. In the first place, the conventional configuration is intended to adjust the specific gravity of the electrolytic solution for each charge and discharge, and is not intended to withdraw the electrolytic solution until the discharge reaction stops.

本発明は、上述した事情を鑑みてなされたものであり、空気電池の放電/放電停止を容易に切り替え可能で、且つ、液絡の防止に有利な空気電池システムを提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an air battery system that can easily switch between discharge and discharge stop of an air battery and that is advantageous for preventing liquid junctions. .

上述した課題を解決するため、本発明は、空気極と金属極と前記金属極よりも下方に設けられた底空間部とを備える空気電池と、前記空気電池の電解液を貯留するタンクと、前記空気電池の前記底空間部と前記タンクとをつなぐ配管とを備え、前記タンクが前記底空間部よりも上方にある場合に前記タンクから前記空気電池に電解液を流入させ空気極と金属極とが電解液に浸かることにより前記空気電池が放電開始し、前記タンクが前記底空間部よりも下方にある場合に前記空気電池から電解液を排出させ前記タンクに移動させることにより前記空気電池が放電停止するように前記タンクと前記空気電池との少なくともいずれかを上下動可能に構成し、前記タンクは、複数の前記空気電池の電解液を貯留するタンクであり、前記タンク内を、前記空気電池ごとの電解液を貯留する複数の室に仕切る仕切り部を備え、前記複数の室が、独立した前記配管を介して前記空気電池にそれぞれ接続されていることを特徴とする。 In order to solve the above-described problem, the present invention provides an air battery including an air electrode, a metal electrode, and a bottom space portion provided below the metal electrode, and a tank for storing an electrolyte solution of the air battery; A pipe connecting the bottom space portion of the air battery and the tank, and when the tank is located above the bottom space portion , an electrolyte is caused to flow into the air battery from the tank and the air electrode and the metal electrode. And the air battery starts discharging, and when the tank is below the bottom space, the air battery is discharged from the air battery and moved to the tank. and said tank so as to discharge stop at least one of said air cell and vertically movable structure, said tank is a tank for storing an electrolytic solution of a plurality of said air cell, the said tank, Serial includes a partition portion for partitioning into a plurality of chambers for storing the electrolytic solution of each air cell, wherein the plurality of chambers, characterized in that via a separate said pipes are connected to the air cell.

また、空気極と金属極と前記金属極よりも下方に設けられた底空間部とを備える空気電池と、前記空気電池の電解液を貯留するタンクと、前記空気電池の前記底空間部と前記タンクとをつなぐ配管とを備え、前記タンクが前記底空間部よりも上方にある場合に前記タンクから前記空気電池に電解液を流入させ空気極と金属極とが電解液に浸かることにより前記空気電池が放電開始し、前記タンクが前記底空間部よりも下方にある場合に前記空気電池から電解液を排出させ前記タンクに移動させることにより前記空気電池が放電停止するように前記タンクと前記空気電池との少なくともいずれかを上下動可能に構成し、前記タンクは、複数の前記空気電池の電解液を貯留するタンクであり、前記複数の空気電池内の電解液の水位を揃えるように前記空気電池同士をつなぐ連通管を備え、前記連通管は、隣り合う前記空気電池の異なる高さに電解液の流出部と流入部を備えると共に、上方凸に屈曲する屈曲部を備え、前記連通管の流出部が前記空気極の上端部より上方に形成されるようにしても良い。 An air battery comprising an air electrode, a metal electrode, and a bottom space provided below the metal electrode, a tank for storing an electrolyte of the air battery, the bottom space of the air battery, and the A pipe connecting the tank, and when the tank is above the bottom space, the air flows into the air battery from the tank, and the air electrode and the metal electrode are immersed in the electrolyte so that the air When the battery starts to discharge and the tank is below the bottom space, the tank and the air are discharged so that the air battery stops discharging by discharging the electrolyte from the air battery and moving it to the tank. and vertically movable structure at least one of a battery, the tank is a tank for storing the electrolytic solution of the plurality of the air cells, so as to align the water level of the electrolytic solution in said plurality of air cells A communication pipe connecting the air cells to each other, and the communication pipe includes an electrolyte outflow portion and an inflow portion at different heights of the adjacent air cells, and includes a bent portion bent upward. You may make it the outflow part of a pipe | tube form above the upper end part of the said air electrode.

また、上記構成において、前記金属極は、ASTM規格で規定されるAMX材で形成されるようにしても良い。   In the above configuration, the metal electrode may be formed of an AMX material defined by ASTM standards.

また、上記構成において、前記空気電池から前記配管を経由して前記タンクに至る経路に、前記空気電池の放電反応により生成される反応生成物の前記空気電池から前記タンクへの移動を遮断するフィルタを設けるようにしても良い。   Further, in the above configuration, a filter that blocks a reaction product generated by a discharge reaction of the air battery from the air battery to the tank in a path from the air battery to the tank via the pipe. May be provided.

本発明によれば、空気電池の放電/放電停止を容易に切り替え可能で、且つ、液絡の防止に有利な空気電池システムを提供することができる。 According to the present invention, it can be switched easily discharge / discharge stop of the air cell, and can provide a favorable air battery system to prevent liquid junction.

本発明の第1実施形態に係る空気電池システムを示した図である。It is the figure which showed the air battery system which concerns on 1st Embodiment of this invention. 空気電池の構造を模式的に示した図である。It is the figure which showed the structure of the air battery typically. 空気電池とタンクとを模式的に示した図であり、図3(A)はタンクを上昇させた図、図3(B)はタンクを下降させた図である。It is the figure which showed the air battery and the tank typically, FIG. 3 (A) is the figure which raised the tank, FIG.3 (B) is the figure which lowered | hung the tank. 反応生成物の空気電池からタンクへの移動を遮断するフィルタの説明に供する図である。It is a figure where it uses for description of the filter which interrupts | blocks the movement of the reaction product from the air battery to a tank. 第2実施形態の空気電池を模式的に示した図である。It is the figure which showed typically the air battery of 2nd Embodiment.

以下、図面を参照して本発明の一実施の形態について説明する。
(第1実施形態)
図1は本発明の第1実施形態に係る空気電池システム1を示した図である。
この空気電池システム1は、複数(本構成では2個)の空気電池10と、空気電池10の電解液を貯留するタンク3と、各空気電池10とタンク3とを接続する複数の配管5とを備え、タンク3は不図示の昇降機構により上下動可能に支持されている。図1では、タンク3を上方に移動させることによってタンク3内の電解液(以下、符号Wを付して示す)を各空気電池10に移動し、各空気電池10が放電を開始した状態を示している。
なお、図1は電解液Wが空気電池10に注液されている最中を示したものであり、空気電池10に所定量の電解液が注液されると、Xの位置で空気電池10内の電解液の高さと、配管5内に残存する電解液の高さが、平衡状態となる。
また、前記昇降機構としては足踏みペダル、ハンドルレバー、滑車、自動昇降機などを種々選択しタンク3を昇降させることが可能であり、また、タンク3を固定し前記昇降機構を用いて空気電池10を昇降させても良い。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a view showing an air battery system 1 according to the first embodiment of the present invention.
The air battery system 1 includes a plurality (two in this configuration) of air batteries 10, a tank 3 that stores the electrolyte of the air battery 10, and a plurality of pipes 5 that connect the air batteries 10 and the tank 3. The tank 3 is supported by an elevating mechanism (not shown) so as to be movable up and down. In FIG. 1, by moving the tank 3 upward, the electrolyte solution in the tank 3 (hereinafter denoted by reference sign W) is moved to each air battery 10, and each air battery 10 starts discharging. Show.
FIG. 1 shows the state in which the electrolytic solution W is being injected into the air battery 10. When a predetermined amount of the electrolytic solution is injected into the air battery 10, the air battery 10 is positioned at the position X. The height of the electrolyte solution inside and the height of the electrolyte solution remaining in the pipe 5 are in an equilibrium state.
Further, as the elevating mechanism, a foot pedal, a handle lever, a pulley, an automatic elevator and the like can be variously selected to elevate the tank 3, and the tank 3 is fixed and the air battery 10 is installed using the elevating mechanism. It may be raised and lowered.

図2は空気電池10の構造を模式的に示した図である。
各空気電池10は、同じ構造であり、所定の台7に支持されることによって同じ高さに支持される。これら空気電池10は、中空箱形状の外装体11(電槽、電池ケースとも称する)と、外装体11外に露出する空気極13と、外装体11内に収容される金属極15とを備えている。この空気電池10は、外装体11内に水系の電解液Wが注液されることによって、空気極13が正極として作用し、金属極15が負極として作用する一次電池に構成されている。
FIG. 2 is a diagram schematically showing the structure of the air battery 10.
Each air battery 10 has the same structure and is supported at the same height by being supported by a predetermined table 7. These air batteries 10 include a hollow box-shaped exterior body 11 (also referred to as a battery case or a battery case), an air electrode 13 exposed outside the exterior body 11, and a metal electrode 15 accommodated in the exterior body 11. ing. The air battery 10 is configured as a primary battery in which the air electrode 13 acts as a positive electrode and the metal electrode 15 acts as a negative electrode by injecting an aqueous electrolyte W into the exterior body 11.

外装体11は、合成樹脂等の剛性を有する材料で形成され、外装体11の底面を構成する底板部21と、前面を構成する前壁部22と、後面を構成する後壁部23と、左右側面を構成する左右の側壁部(左壁部、右壁部)24と、上面を構成する上板部25とを備えている。前壁部22、及び後壁部23は、上下方向よりも左右方向に長い同一形状の面(横長面)であって、互いに平行に形成されている。   The exterior body 11 is formed of a material having rigidity such as a synthetic resin, and includes a bottom plate portion 21 that constitutes a bottom surface of the exterior body 11, a front wall portion 22 that constitutes a front surface, a rear wall portion 23 that constitutes a rear surface, Left and right side wall portions (left wall portion and right wall portion) 24 that constitute the left and right side surfaces, and an upper plate portion 25 that constitutes the upper surface are provided. The front wall portion 22 and the rear wall portion 23 are surfaces having the same shape (laterally long surfaces) that are longer in the left-right direction than in the up-down direction, and are formed in parallel to each other.

前壁部22には、空気極13で覆われる矩形状の開口部22Kが設けられる。金属極15は、空気極13と対向するように前壁部22と後壁部23との間に支持される。この金属極15は、上板部25及び左右の側壁部24の少なくともいずれかに支持されることによって、底板部21よりも上方に配置される。
すなわち、金属極15は外装体11に宙吊りで支持され、金属極15と底板部21との間にスペース10Sを確保している。
なお、金属極15の支持は、金属極15の下方にスペース10Sを確保できれば宙吊りに限定されるものではなく、例えば金属極15を支持するためのT型部材やH型部材を金属極15の下端部の両端に当接する様に設けても良い。
The front wall portion 22 is provided with a rectangular opening 22K covered with the air electrode 13. The metal electrode 15 is supported between the front wall portion 22 and the rear wall portion 23 so as to face the air electrode 13. The metal electrode 15 is disposed above the bottom plate portion 21 by being supported by at least one of the upper plate portion 25 and the left and right side wall portions 24.
In other words, the metal electrode 15 is suspended from the exterior body 11 so as to secure a space 10 </ b> S between the metal electrode 15 and the bottom plate part 21.
The support of the metal electrode 15 is not limited to the suspension as long as the space 10S can be secured below the metal electrode 15. For example, a T-shaped member or an H-shaped member for supporting the metal electrode 15 is attached to the metal electrode 15. You may provide so that it may contact | abut both ends of a lower end part.

このスペース10Sは、空気電池10の放電反応によって生成される反応生成物が溜まる底空間部(以下、「底空間部10S」と言う)として機能する。この底空間部10Sを設けたことにより、反応生成物が溜まるスペースを確保でき、反応生成物が金属極15の一部を覆って電池反応を阻害してしまう事態などを回避したり、放電反応によって生じたガス(例えば水素ガス)発生時の電解液の撹拌作用による電解液濃度のばらつきを低減することができる。   This space 10 </ b> S functions as a bottom space (hereinafter referred to as “bottom space 10 </ b> S”) where reaction products generated by the discharge reaction of the air battery 10 accumulate. By providing the bottom space portion 10S, a space for storing the reaction product can be secured, and a situation in which the reaction product covers a part of the metal electrode 15 to inhibit the battery reaction or the like can be avoided. The variation in the electrolyte concentration due to the stirring action of the electrolyte when gas (for example, hydrogen gas) generated by the above can be reduced.

空気電池10とタンク3とを接続する配管5(図1)は、空気電池10の底空間部10Sに接続される。より具体的には、図2に示すように、側壁部24における底空間部10Sに対応する領域であって、金属極15及び空気極13の下端よりも所定の距離L1(以下、「離間距離L1」と言う)だけ下方に離間した位置に、開口部を有する配管接続部5Aが設けられ、この配管接続部5Aを介して配管5が接続されている。
この離間距離L1を設けたことにより、タンク3を下方に移動させた際に、空気電池10内の電解液Wを、金属極15及び空気極13より下の位置まで容易に排出させることができる。
A pipe 5 (FIG. 1) that connects the air battery 10 and the tank 3 is connected to the bottom space 10 </ b> S of the air battery 10. More specifically, as shown in FIG. 2, a region corresponding to the bottom space 10 </ b> S in the side wall 24, and a predetermined distance L <b> 1 (hereinafter, “separation distance” from the lower ends of the metal electrode 15 and the air electrode 13. A pipe connection portion 5A having an opening is provided at a position spaced apart downward by a distance L1), and the pipe 5 is connected via the pipe connection portion 5A.
By providing the separation distance L1, when the tank 3 is moved downward, the electrolytic solution W in the air battery 10 can be easily discharged to a position below the metal electrode 15 and the air electrode 13. .

空気電池10内の電解液Wを排出する場合、空気電池10内の電解液Wは、少なくとも図2に符号LLで示す液面(電解液排出時の液面に相当)まで排出することができる。これにより、金属極15と空気極13との間に電解液Wが介在しない状態となり、空気電池10の放電を確実に停止させることができる。また、空気電池10内の電解液Wを排出することで、放電反応を停止することが可能であり、自己放電も回避することができる。
同図2に示すように、配管接続部5Aは、空気電池10の底板部21よりも所定の距離L2(以下、「離間距離L2」と言う)だけ上方に離間した位置に設けられている。この離間距離L2を設けたことにより、底空間部10Sの底に堆積する反応生成物を配管5に入り難くすることができる。なお、上記離間距離L1、L2は上記目的を達する範囲で適宜に調整すれば良い。
When the electrolytic solution W in the air battery 10 is discharged, the electrolytic solution W in the air battery 10 can be discharged to at least the liquid level indicated by the symbol LL in FIG. 2 (corresponding to the liquid level at the time of discharging the electrolytic solution). . Thereby, it will be in the state where the electrolyte solution W does not intervene between the metal electrode 15 and the air electrode 13, and discharge of the air battery 10 can be stopped reliably. Further, by discharging the electrolyte W in the air battery 10, the discharge reaction can be stopped and self-discharge can be avoided.
As shown in FIG. 2, the pipe connection portion 5 </ b> A is provided at a position spaced above the bottom plate portion 21 of the air battery 10 by a predetermined distance L <b> 2 (hereinafter referred to as “separation distance L <b> 2”). By providing this separation distance L2, reaction products deposited on the bottom of the bottom space 10S can be made difficult to enter the pipe 5. Note that the separation distances L1 and L2 may be appropriately adjusted within a range that achieves the above purpose.

図2中、符号ULは、タンク3を上方に移動して電解液Wを空気電池10に入れたときの電解液Wの液面を示しており、つまり、電解液流入時の液面を示している。この液面ULは、空気極13よりも上方にすることが好ましい。液面ULを空気極13よりも上方にすれば、空気極13の全体を有効利用して放電反応を行うことができる。   In FIG. 2, reference symbol UL indicates the liquid level of the electrolytic solution W when the tank 3 is moved upward and the electrolytic solution W is put into the air battery 10, that is, indicates the liquid level when the electrolytic solution flows in. ing. The liquid level UL is preferably higher than the air electrode 13. If the liquid level UL is set higher than the air electrode 13, the entire air electrode 13 can be used effectively to perform a discharge reaction.

図3は空気電池10とタンク3とを模式的に示した図であり、図3(A)はタンク3を上昇させた図、図3(B)はタンク3を下降させた図である。
タンク3は、このタンク3につながる複数の空気電池10の電解液Wを貯留可能な容積に形成される。このタンク3には、タンク3内を空気電池10の数と同数の室R0、R1に分ける仕切り部となる仕切り壁3Sが形成されている。
本構成では、空気電池10が2個であるため、タンク3を左右に等分割する一つの仕切り壁3Sが形成され、これにより、空気電池10と同数の室R0、R1が横並びに形成されるとともに、各室R0、R1が、空気電池10ごとの電解液Wを貯留する室に形成される。
3 is a diagram schematically showing the air battery 10 and the tank 3. FIG. 3A is a diagram in which the tank 3 is raised, and FIG. 3B is a diagram in which the tank 3 is lowered.
The tank 3 is formed in a volume capable of storing the electrolyte solutions W of the plurality of air cells 10 connected to the tank 3. In the tank 3, a partition wall 3 </ b> S is formed as a partition part that divides the tank 3 into the same number of chambers R <b> 0 and R <b> 1 as the number of air batteries 10.
In this configuration, since there are two air cells 10, one partition wall 3 </ b> S that equally divides the tank 3 into the left and right is formed, and thereby, the same number of chambers R <b> 0 and R <b> 1 as the air cells 10 are formed side by side. At the same time, the chambers R0 and R1 are formed in a chamber for storing the electrolyte W for each air battery 10.

配管5は、電解液Wに対する耐性を有する素材で形成され、本構成では耐アルカリ性のホースが用いられる。また、配管5は、タンク3の上下動に合わせて屈曲可能な柔軟性を有している。
なお、図1に示すように、各配管5の一端は、配管接続部5Aを介して空気電池10に接続され、各配管5の他端は、配管接続部5Bを介してタンク3の底部に接続される。これら配管5、配管接続部5A、及び配管接続部5Bには公知の部品を広く適用可能である。
The pipe 5 is formed of a material having resistance to the electrolytic solution W, and an alkali-resistant hose is used in this configuration. Further, the pipe 5 has a flexibility that can be bent in accordance with the vertical movement of the tank 3.
As shown in FIG. 1, one end of each pipe 5 is connected to the air battery 10 via a pipe connecting part 5A, and the other end of each pipe 5 is connected to the bottom of the tank 3 via a pipe connecting part 5B. Connected. Known parts can be widely applied to the pipe 5, the pipe connection part 5A, and the pipe connection part 5B.

本構成では、図3(A)に示すように、タンク3を空気電池10の底空間部10Sよりも上に移動することにより、タンク3から空気電池10に電解液Wを流入させ、空気極13よりも上方の液面ULまで電解液Wを満たすことができる。このとき、電解液Wは底空間部10Sから流入するので、電解液Wの流れが金属極15で妨げられることなく、スムーズに電解液Wを空気電池10に流入させることができる。そして、同図3(A)に示すように、空気極13と金属極15とが電解液Wに浸かることにより、放電反応を開始させることができる。
なお、空気電池10の外装体11の上板部25には、外装体11の内外を連通する不図示の通気孔が設けられる。これによって、放電反応によって生じたガスを外部に排出することができ、且つ、電解液Wの流入/排出に伴って外装体11内の空気を適宜に排出/流入させることができ、電解液Wの移動をスムーズに行うことができる。
In this configuration, as shown in FIG. 3 (A), the tank 3 is moved above the bottom space 10S of the air battery 10 to cause the electrolyte W to flow into the air battery 10 from the tank 3 so that the air electrode The electrolyte solution W can be filled up to the liquid level UL above 13. At this time, since the electrolytic solution W flows from the bottom space portion 10S, the electrolytic solution W can smoothly flow into the air battery 10 without being blocked by the metal electrode 15. Then, as shown in FIG. 3A, the discharge reaction can be started by immersing the air electrode 13 and the metal electrode 15 in the electrolytic solution W.
The upper plate portion 25 of the exterior body 11 of the air battery 10 is provided with a vent hole (not shown) that communicates the inside and outside of the exterior body 11. As a result, the gas generated by the discharge reaction can be discharged to the outside, and the air in the outer package 11 can be appropriately discharged / inflowed with the inflow / discharge of the electrolyte W. Can be moved smoothly.

また、図3(B)に示すように、タンク3を空気電池10の底空間部10Sよりも下に移動することにより、空気電池10から電解液Wを排出させ、電解液Wをタンク3に移動させることができる。このとき、空気電池10からの電解液Wが液面LLになるまでタンク3の位置を下に移動して保持しておくことにより、液面LLまで電解液Wを排出させることができる。これにより、空気極13と金属極15との間から電解液Wが待避し、空気電池10の放電反応を確実に停止させることができる。
この場合、電解液Wが空気電池10内の底空間部10Sに残留するので、この底空間部10S内の反応生成物を空気電池10内に残留させることができ、反応生成物によって配管5が詰まってしまう事態を抑制することができる。
Further, as shown in FIG. 3B, the tank 3 is moved below the bottom space 10S of the air battery 10 to discharge the electrolyte W from the air battery 10, and the electrolyte W is stored in the tank 3. Can be moved. At this time, the electrolytic solution W can be discharged to the liquid level LL by moving the position of the tank 3 downward until the electrolytic solution W from the air battery 10 reaches the liquid level LL. As a result, the electrolytic solution W is retracted from between the air electrode 13 and the metal electrode 15, and the discharge reaction of the air battery 10 can be reliably stopped.
In this case, since the electrolytic solution W remains in the bottom space portion 10S in the air battery 10, the reaction product in the bottom space portion 10S can remain in the air battery 10, and the pipe 5 is formed by the reaction product. It is possible to suppress clogging.

このようにしてタンク3を上下に移動させるだけで、空気電池10の放電と放電停止とを容易に切り替えることができる。
また、図3(A)及び図3(B)に示すように、各空気電池10において、隣接する空気電池10同士の電解液Wは物理的に離間するので、液絡を防止することができる。また、タンク3は、空気電池10ごとの電解液Wを各室R0、R1に独立して貯留するので、各空気電池10内の電解液Wの量を均等化し易くなるとともに、タンク3内でも、各空気電池10ごとの電解液Wは接しない状態に保たれ、仮に配管5が極端に短い場合でも液絡を防止することができる。
In this way, simply by moving the tank 3 up and down, the discharge of the air battery 10 and the discharge stop can be easily switched.
Further, as shown in FIGS. 3A and 3B, in each air battery 10, the electrolyte solution W between the adjacent air batteries 10 is physically separated, so that a liquid junction can be prevented. . In addition, since the tank 3 stores the electrolyte solution W for each air battery 10 independently in each of the chambers R0 and R1, the amount of the electrolyte solution W in each air battery 10 can be easily equalized, and also in the tank 3 The electrolyte solution W for each air battery 10 is kept in a non-contact state, and a liquid junction can be prevented even if the pipe 5 is extremely short.

次に、空気電池10の金属極15、電解液W、及び空気極13について追加説明する。
金属極15には、ASTM規格で規定されるAMX材が用いられ、電解液Wには、塩化ナトリウム水溶液が使用される。AMX材は、マグネシウム合金の一つであり、AMX材を用いることにより、反応生成物の抑制を期待でき、且つ、反応を抑制する保護被膜(不動態被膜とも称する)の抑制も期待することができる。反応生成物や保護被膜を抑制できれば、電解液Wの出し入れが阻害されず、且つ、放電開始も阻害され難くなり、空気電池10の放電/放電停止の切り替えに有利である。
Next, the metal electrode 15, the electrolyte W, and the air electrode 13 of the air battery 10 will be additionally described.
An AMX material defined by the ASTM standard is used for the metal electrode 15, and a sodium chloride aqueous solution is used for the electrolyte W. The AMX material is one of magnesium alloys, and by using the AMX material, suppression of reaction products can be expected, and suppression of a protective film (also referred to as a passive film) that suppresses the reaction can be expected. it can. If the reaction product and the protective film can be suppressed, taking in and out of the electrolytic solution W is not hindered and the start of discharge is hardly hindered, which is advantageous for switching between discharge / discharge stop of the air battery 10.

なお、反応生成物の量や保護被膜が問題にならない場合には、金属極15にAMX材以外のマグネシウム合金を用いたり、マグネシウム合金以外の素材を用いたりしても良い。マグネシウム合金以外の素材としては、例えば、亜鉛、鉄、アルミニウムなどの金属、又はその合金が挙げられる。
金属極15に亜鉛を用いた場合は、電解液Wに水酸化カリウム水溶液を用いるようにすれば良く、金属極15に鉄を用いた場合は、電解液Wにアルカリ系水溶液を用いるようにすれば良い。また、金属極15にアルミニウムを用いた場合は、水酸化ナトリウム又は水酸化カリウムを含む電解液Wを用いるようにすれば良い。
In addition, when the amount of the reaction product and the protective film do not matter, a magnesium alloy other than the AMX material or a material other than the magnesium alloy may be used for the metal electrode 15. Examples of materials other than the magnesium alloy include metals such as zinc, iron, and aluminum, or alloys thereof.
When zinc is used for the metal electrode 15, an aqueous potassium hydroxide solution may be used for the electrolytic solution W. When iron is used for the metal electrode 15, an alkaline aqueous solution is used for the electrolytic solution W. It ’s fine. Further, when aluminum is used for the metal electrode 15, an electrolytic solution W containing sodium hydroxide or potassium hydroxide may be used.

空気極13は、集電体を構成する矩形状の銅メッシュの両面に、触媒層を構成する触媒シートを圧迫(プレス)等により一体化して形成される。空気極13は、外部の空気を外装体11内に通気可能にする通気性、及び、電解液Wを漏らさない非透水性を有している。なお、非透水性については、空気極13に、非透水性を有するシートを別途設けて確保するようにしても良い。なお、空気極13は上記の構成に限らず、公知の構成を広く適用可能である。   The air electrode 13 is formed by integrating a catalyst sheet constituting a catalyst layer on both sides of a rectangular copper mesh constituting a current collector by pressing (pressing) or the like. The air electrode 13 has air permeability that allows external air to pass through the exterior body 11 and non-water permeability that does not leak the electrolytic solution W. In addition, about a water-impermeable, you may make it ensure by providing the sheet | seat which has a water-impermeable property separately in the air electrode 13. FIG. Note that the air electrode 13 is not limited to the above-described configuration, and a known configuration can be widely applied.

以上説明したように、本実施の形態によれば、空気極13と金属極15と金属極15よりも下方に設けられた底空間部10Sとを備える空気電池10と、空気電池10の電解液Wを貯留するタンク3と、空気電池10の底空間部10Sとタンク3とをつなぐ配管5とを備え、タンク3が底空間部10Sよりも上方にある場合に空気電池10が放電開始し、タンク3が底空間部10Sよりも下方にある場合に空気電池10が放電停止するようにタンク3と空気電池10との少なくともいずれかを上下動可能に構成したので、空気電池10の放電/放電停止を容易に切り替え可能で、且つ、液絡の防止に有利な空気電池システム1を提供することができる。   As described above, according to the present embodiment, the air battery 10 including the air electrode 13, the metal electrode 15, and the bottom space portion 10 </ b> S provided below the metal electrode 15, and the electrolytic solution of the air battery 10. A tank 3 for storing W, and a pipe 5 connecting the bottom space 10S of the air battery 10 and the tank 3, and when the tank 3 is above the bottom space 10S, the air battery 10 starts to discharge, Since at least one of the tank 3 and the air battery 10 can be moved up and down so that the discharge of the air battery 10 stops when the tank 3 is below the bottom space 10S, the discharge / discharge of the air battery 10 is possible. It is possible to provide an air battery system 1 that can be easily switched to stop and that is advantageous for preventing liquid junctions.

また、反応生成物を底空間部10Sに貯めておくことができるので、反応生成物による放電反応などへの影響を回避し、且つ、配管5の詰まりを抑えることができる。
しかも、タンク3は、タンク3内を空気電池10ごとの電解液Wを貯留する複数の室R0、R1に仕切る仕切り部となる仕切り壁3Sを備え、複数の室R0、R1が、独立した配管5を介して各空気電池10にそれぞれ接続されるので、各空気電池10の電解液Wの量を均等化し易くなるとともに、液絡の防止にも有利となる。
In addition, since the reaction product can be stored in the bottom space 10S, the influence of the reaction product on the discharge reaction and the like can be avoided, and clogging of the pipe 5 can be suppressed.
In addition, the tank 3 includes a partition wall 3S serving as a partition portion that partitions the tank 3 into a plurality of chambers R0 and R1 that store the electrolyte W for each air battery 10, and the plurality of chambers R0 and R1 are independent pipes. Therefore, it is easy to equalize the amount of the electrolytic solution W of each air battery 10 and it is advantageous for preventing a liquid junction.

また、金属極15をAMX材で形成するので、電解液Wの流れに影響を及ぼす可能性のある反応生成物や、放電の再開を阻害するおそれのある保護被膜の抑制を期待できる。このため、空気電池10の放電/放電停止の切り替えに有利となる。   Moreover, since the metal electrode 15 is formed of an AMX material, it can be expected to suppress a reaction product that may affect the flow of the electrolytic solution W and a protective film that may hinder the resumption of discharge. This is advantageous for switching between discharge / stop of discharge of the air battery 10.

なお、反応生成物による配管5などの詰まりをより確実に防止しようとする場合、図4に示すように、タンク3と空気電池10との間の配管5に反応生成物の行き来を遮断するフィルタ5Fを設けることが好ましい。このフィルタ5Fは、空気電池10と配管5との接続部を構成する配管接続部5Aに設けられることによって、空気電池10からタンク3へ電解液Wが移動する際の上流側にて反応生成物の空気電池10からタンク3への移動を遮断することができ、効果的に配管5等の詰まりを防止することができる。なお、このフィルタ5Fは、空気電池10から配管5を経由してタンク3に至る経路に設けるようにすれば良く、上記配管接続部5A以外の位置に設けるようにしても良い。   In order to more reliably prevent clogging of the piping 5 and the like by the reaction product, as shown in FIG. 4, a filter that blocks the passage of the reaction product to the piping 5 between the tank 3 and the air battery 10. It is preferable to provide 5F. The filter 5F is provided in a pipe connection portion 5A that constitutes a connection portion between the air battery 10 and the pipe 5, so that a reaction product is generated upstream of the electrolyte W moving from the air battery 10 to the tank 3. The movement from the air battery 10 to the tank 3 can be blocked, and the clogging of the pipe 5 and the like can be effectively prevented. The filter 5F may be provided in a path from the air battery 10 via the pipe 5 to the tank 3, or may be provided at a position other than the pipe connecting portion 5A.

上記の実施形態では、タンク3内を左右に分割する仕切り壁3Sを設けることによって、各空気電池10内の電解液Wを均等化する場合を説明したが、仕切り壁3Sに限らない。要は、タンク3内を、空気電池10ごとの電解液Wを貯留する複数の室に仕切る仕切り部を設けるようにすれば良い。
また、タンク3内に仕切り壁3S等の仕切り部を設ける構成に限らず、空気電池10側に、各空気電池10内の電解液Wを均等化する構成を設けるようにしても良い。この場合の実施例を第2実施形態に説明する。
In the above embodiment, the case has been described in which the electrolyte solution W in each air battery 10 is equalized by providing the partition wall 3S that divides the inside of the tank 3 into right and left, but is not limited to the partition wall 3S. In short, a partition portion that partitions the inside of the tank 3 into a plurality of chambers that store the electrolyte W for each air battery 10 may be provided.
Further, the configuration is not limited to the configuration in which the partition portion such as the partition wall 3 </ b> S is provided in the tank 3, but a configuration for equalizing the electrolyte W in each air battery 10 may be provided on the air battery 10 side. An example of this case will be described in the second embodiment.

(第2実施形態)
図5は第2実施形態の空気電池10を模式的に示した図である。
第2実施形態の空気電池システム1は、不図示のタンク3に仕切り壁3Sを備えておらず、その代わりに、複数(本構成では4個)の空気電池10内の電解液Wの液面を揃えるように空気電池10同士をつなぐ連通管31を備えている。なお、第1実施形態と同様の構成は同一の符号を付して示し、重複説明は省略する。また、タンク3は空気電池10の上端部より上方に設けられている。
図5に示すように、各空気電池10の外装体11の側壁部24には、上下に間隔を空けて一対の開口部24H、24Lが設けられている。
(Second Embodiment)
FIG. 5 is a diagram schematically showing the air battery 10 of the second embodiment.
The air battery system 1 of the second embodiment does not include the partition wall 3S in the tank 3 (not shown), and instead, the liquid level of the electrolyte solution W in the plurality (four in this configuration) of the air batteries 10 is used. A communication pipe 31 that connects the air batteries 10 is provided. In addition, the same structure as 1st Embodiment is attached | subjected and shown, and duplication description is abbreviate | omitted. The tank 3 is provided above the upper end of the air battery 10.
As shown in FIG. 5, a pair of openings 24 </ b> H and 24 </ b> L are provided on the side wall 24 of the exterior body 11 of each air battery 10 with a space in the vertical direction.

以下、説明を判りやすくするため、上記一対の開口部24H、24Lを特に区別して説明する場合は、上側の開口部24Hを「上側開口部24H」と表記し、下側の開口部24Lを「下側開口部24L」と表記する。また、これら空気電池10は、側壁部24が等間隔で並ぶように横並びに配置され、最も端(図5中、左端)から順に、第1空気電池10A、第2空気電池10B、第3空気電池10C、第4空気電池10Dと表記する。   Hereinafter, in order to make the explanation easy to understand, when the pair of openings 24H and 24L are specifically distinguished and described, the upper opening 24H is referred to as an “upper opening 24H”, and the lower opening 24L is referred to as “ This is expressed as “lower opening 24L”. The air cells 10 are arranged side by side so that the side wall portions 24 are arranged at equal intervals, and the first air cell 10A, the second air cell 10B, and the third air are sequentially arranged from the end (left end in FIG. 5). They are referred to as a battery 10C and a fourth air battery 10D.

連通管31は、第1空気電池10Aの上側開口部24Hと第2空気電池10Bの下側開口部24Lとをつなぐ第1連通管31Aと、第2空気電池10Bの上側開口部24Hと第3空気電池10Cの下側開口部24Lとをつなぐ第2連通管31Bと、第3空気電池10Cの上側開口部24Hと第4空気電池10Dの下側開口部24Lとをつなぐ第3連通管31Cと、第4空気電池10Dの上側開口部24Hと第1空気電池10Aの下側開口部24Lとをつなぐ第4連通管31Dとを備えている。
このように第1〜第4連通管31A〜31Dは、異なる空気電池10の上側開口部24Hと下側開口部24Lとをつなぐため、異なる空気電池10間で、上側開口部24Hから下側開口部24Lへと電解液Wを流す配管としてそれぞれ機能する。
The communication pipe 31 includes a first communication pipe 31A that connects the upper opening 24H of the first air battery 10A and the lower opening 24L of the second air battery 10B, and an upper opening 24H and a third of the second air battery 10B. A second communication pipe 31B that connects the lower opening 24L of the air battery 10C, and a third communication pipe 31C that connects the upper opening 24H of the third air battery 10C and the lower opening 24L of the fourth air battery 10D. And a fourth communication pipe 31D that connects the upper opening 24H of the fourth air battery 10D and the lower opening 24L of the first air battery 10A.
As described above, the first to fourth communication pipes 31A to 31D connect the upper opening 24H and the lower opening 24L of the different air batteries 10 to each other, and therefore between the different air batteries 10 from the upper opening 24H to the lower opening. Each functions as a pipe for flowing the electrolyte W to the portion 24L.

例えば、第1空気電池10A内の電解液Wが第2空気電池10B内の電解液Wよりも多くなれば、第1空気電池10A内の電解液Wが、第1連通管31Aを通って第2空気電池10B内に流れる。つまり、第1連通管31Aは、第1空気電池10Aの上側開口部24Hに連通する連通部が第1空気電池10Aの電解液が流出する流出部として機能し、第2空気電池10Bの下側開口部24Lに連通する連通部が第2空気電池10Bに電解液を流入させる流入部として機能する。これによって、第1空気電池10Aと第2空気電池10Bとで電解液Wの液面を揃えることができる。図5中、矢印は、第1〜第4連通管31A〜31Dの電解液Wの流れを示している。   For example, if the electrolyte solution W in the first air battery 10A is larger than the electrolyte solution W in the second air battery 10B, the electrolyte solution W in the first air battery 10A passes through the first communication pipe 31A and becomes first. It flows in the 2-air battery 10B. That is, in the first communication pipe 31A, the communication part communicating with the upper opening 24H of the first air battery 10A functions as an outflow part from which the electrolyte of the first air battery 10A flows out, and the lower side of the second air battery 10B. The communicating portion that communicates with the opening 24L functions as an inflow portion that causes the electrolytic solution to flow into the second air battery 10B. Thereby, the liquid level of the electrolyte solution W can be made uniform in the first air battery 10A and the second air battery 10B. In FIG. 5, the arrow has shown the flow of the electrolyte solution W of the 1st-4th communication pipe 31A-31D.

同図5に示すように、第2連通管31Bは、第2空気電池10Bの上側開口部24Hに連通する連通部が第2空気電池10Bの電解液が流出する流出部として機能し、第3空気電池10Cの下側開口部24Lに連通する連通部が第3空気電池10Cに電解液を流入させる流入部として機能する。
同様に、第3連通管31Cは、第3空気電池10Cの上側開口部24Hに連通する連通部が電解液が流出する流出部として機能し、第4空気電池10Dの下側開口部24Lに連通する連通部が電解液を流入させる流入部として機能し、第4連通管31Cは、第4空気電池10Dの上側開口部24Hに連通する連通部が電解液が流出する流出部として機能し、第1空気電池10Aの下側開口部24Lに連通する連通部が電解液を流入させる流入部として機能する。
As shown in FIG. 5, in the second communication pipe 31B, the communication part communicating with the upper opening 24H of the second air battery 10B functions as an outflow part from which the electrolyte of the second air battery 10B flows out. The communicating portion that communicates with the lower opening 24L of the air battery 10C functions as an inflow portion that causes the electrolytic solution to flow into the third air battery 10C.
Similarly, in the third communication pipe 31C, the communication part communicating with the upper opening 24H of the third air battery 10C functions as an outflow part from which the electrolyte flows out, and communicates with the lower opening 24L of the fourth air battery 10D. The fourth communication pipe 31C functions as an outflow part from which the electrolyte solution flows out, and the fourth communication pipe 31C functions as an outflow part from which the electrolyte solution flows out. The communicating portion that communicates with the lower opening 24L of the 1-air battery 10A functions as an inflow portion through which the electrolyte flows.

図示のように、各第1〜第4連通管31A〜31Dは、異なる高さに電解液の流出部と流入部とを備えているので、第1連通管31Aは、第1空気電池10Aと第2空気電池10Bの電解液Wの液面を揃える配管となり、第2連通管31Bは、第2空気電池10Bと第3空気電池10Cの電解液Wの液面を揃える配管となり、第3連通管31Cは、第3空気電池10Cと第4空気電池10Dの電解液Wの液面を揃える配管となり、第4連通管31Dは、第4空気電池10Dと第1空気電池10Aの電解液Wの液面を揃える配管となる。これによって、全ての空気電池10内の電解液Wの液面を揃えることができる。   As shown in the drawing, each of the first to fourth communication pipes 31A to 31D includes an electrolyte outflow part and an inflow part at different heights, and therefore the first communication pipe 31A is connected to the first air battery 10A. The second air pipe 10B is a pipe that aligns the liquid level of the electrolyte W of the second air battery 10B, and the second communication pipe 31B is a pipe that aligns the liquid level of the electrolyte W of the second air battery 10B and the third air battery 10C. The pipe 31C is a pipe that aligns the liquid level of the electrolyte solution W of the third air battery 10C and the fourth air battery 10D, and the fourth communication pipe 31D is the electrolyte solution W of the fourth air battery 10D and the first air battery 10A. It becomes the piping which arranges the liquid level. Thereby, the liquid level of the electrolyte solution W in all the air batteries 10 can be made uniform.

さらに、本構成では、図5に示すように、これら第1〜第4連通管31A〜31Dは、いずれも逆V字形状の管に形成されている。逆V字形状に形成されることによって、上方凸に屈曲する屈曲部31Kが少なくとも一つずつ形成されている。また、これら屈曲部31Kは、それぞれの第1〜第4連通管31A〜31Dにおいて上側開口部24L側にオフセットしている。
上記の屈曲部31Kを設けたことにより、電解液Wが第1〜第4連通管31A〜31Dを流れていない状態、つまり、空気電池10間で電解液Wの液面が揃っている状態では、重力の作用により、屈曲部31Kを境にして、空気電池10同士の電解液Wが離間した状態になることを期待できる。これにより、液絡の防止効果を期待できる。
Furthermore, in this structure, as shown in FIG. 5, these 1st-4th communication pipes 31A-31D are all formed in the reverse V-shaped pipe | tube. By forming an inverted V shape, at least one bent portion 31K that is bent upward is formed. The bent portions 31K are offset to the upper opening 24L side in the first to fourth communication pipes 31A to 31D.
By providing the bent portion 31K, the electrolyte solution W is not flowing through the first to fourth communication pipes 31A to 31D, that is, in a state where the liquid level of the electrolyte solution W is uniform between the air cells 10. By the action of gravity, it can be expected that the electrolyte solution W between the air cells 10 is separated from the bent portion 31K. Thereby, the prevention effect of a liquid junction can be expected.

さらに、各屈曲部31Kは、上側開口部24L側にオフセットしているので、それぞれの第1〜第4連通管31A〜31Dの左右中央で上方に屈曲させた場合と比べて、各屈曲部31Kの角度を急角度にすることができる。急角度にするほど、屈曲部31Kを境にして空気電池10同士の電解液Wが離間した状態になることをより期待でき、液絡の防止に有利となる。
本構成では、第1〜第3連通管31A〜31Cが同一部品で形成され、屈曲部31Kの角度θ1が鋭角とされるので、部品の共用を図るとともに短絡防止に有利な形状となっている。また、第4連通管31Dは相対的に離れた空気電池10間をつなぐため、屈曲部31Kの角度θ2は上記角度θ1より大きくなるものの、第4連通管31Dの中央で上方に屈曲させた場合と比べれば効率良く急角度にした形状に形成されている。
Further, since each bent portion 31K is offset to the upper opening 24L side, each bent portion 31K is compared with a case where each bent portion 31K is bent upward at the left and right centers of the first to fourth communication pipes 31A to 31D. The angle can be made steep. The steeper angle allows more expectation that the electrolyte solution W between the air cells 10 is separated from the bent portion 31K, which is advantageous in preventing liquid junction.
In this configuration, the first to third communication pipes 31A to 31C are formed of the same component, and the angle θ1 of the bent portion 31K is an acute angle, so that the components are shared and the shape is advantageous for preventing a short circuit. . Further, since the fourth communication pipe 31D connects the air cells 10 that are relatively distant from each other, the angle θ2 of the bent portion 31K is larger than the angle θ1, but when bent upward in the center of the fourth communication pipe 31D. Compared to, it is formed into a shape that is more efficiently steeper.

以上説明したように、本実施形態によれば、複数の空気電池10内の電解液Wを揃えるように空気電池10同士をつなぐ連通管31(31A〜31D)を備え、連通管31は、隣り合う空気電池10の異なる高さに電解液の流出部と流入部を備えると共に、上方凸に屈曲する屈曲部31Kを備え、上記流出部が空気極13の上端部よりも上方に形成されているので、タンク3に仕切り壁3Sを設けなくても、各空気電池10の電解液Wの液面を揃え、水位を揃えることができるとともに、液絡防止にも有利である。
また、本実施形態でも、タンク3の上下動により空気電池10の放電/放電停止を容易に切り替えることができる、といった第1実施形態と同様の効果を備える。
しかも、連通管31は、2つの空気電池10の異なる高さの箇所(上側開口部24H、下側開口部24L)をつなぎ、屈曲部31Kは、連通管31がつながる箇所が高い空気電池10寄りに設けられているので、屈曲部31Kの屈曲角度を急角度にし易くなり、液絡防止により有利となる。
なお、上側開口部24H、下側開口部24Lの高低差は50mm以下とすることが好ましい。高低差が大きいと電解液Wの水位を所定範囲に揃えることが困難となる。
As described above, according to the present embodiment, the communication pipes 31 (31A to 31D) that connect the air cells 10 to each other so as to align the electrolyte solution W in the plurality of air batteries 10 are provided. The air battery 10 is provided with an electrolyte outflow portion and an inflow portion at different heights, and is provided with a bent portion 31K that is bent upwardly, and the outflow portion is formed above the upper end portion of the air electrode 13. Therefore, even if the partition wall 3S is not provided in the tank 3, the liquid level of the electrolyte solution W of each air battery 10 can be made uniform, the water level can be made uniform, and it is advantageous for preventing liquid junction.
In addition, the present embodiment also has the same effect as the first embodiment that the discharge / discharge stop of the air battery 10 can be easily switched by the vertical movement of the tank 3.
In addition, the communication pipe 31 connects the two air cells 10 at different heights (the upper opening 24H and the lower opening 24L), and the bent portion 31K is closer to the air battery 10 where the connection pipe 31 is connected. Therefore, it is easy to make the bending angle of the bending portion 31K a steep angle, which is advantageous for preventing liquid junction.
The height difference between the upper opening 24H and the lower opening 24L is preferably 50 mm or less. If the height difference is large, it is difficult to align the water level of the electrolyte W within a predetermined range.

以上、本発明を実施するための形態について述べたが、本発明は上述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形、及び変更が可能である。例えば、上述の各実施形態では、空気電池10を2個、或いは4個備える空気電池システム1に本発明を適用する場合を説明したが、これに限らず、空気電池10がより多数であっても良いし、空気電池10が一個でも良い。
また、上述の各実施形態では、タンク3を上下動可能にする場合を説明したが、タンク3と空気電池10の少なくともいずれかを上下動可能にすれば、空気電池10の放電/放電停止の切替が可能である。
また、上述の第2実施形態では、逆V字形状の連通管31を設ける場合を説明したが、上方凸の屈曲部31Kを有する範囲で形状を適宜に変更しても良くまた、屈曲部31Kを複数有するようにしても良い。
As mentioned above, although the form for implementing this invention was described, this invention is not limited to the above-mentioned embodiment, A various deformation | transformation and change are possible based on the technical idea of this invention. For example, in each of the above-described embodiments, the case where the present invention is applied to the air battery system 1 including two or four air batteries 10 has been described. However, the present invention is not limited thereto, and there are more air batteries 10. Alternatively, only one air battery 10 may be used.
In each of the above-described embodiments, the case where the tank 3 can be moved up and down has been described. However, if at least one of the tank 3 and the air battery 10 can be moved up and down, the discharge / discharge stop of the air battery 10 can be performed. Switching is possible.
In the above-described second embodiment, the case where the inverted V-shaped communication pipe 31 is provided has been described. However, the shape may be changed as appropriate within the range having the upward convex bent portion 31K, and the bent portion 31K. You may make it have multiple.

1 空気電池システム
3 タンク
3S 仕切り壁(仕切り部)
5 配管
10 空気電池
10S 底空間部
11 外装体
13 空気極
15 金属極
31 31A〜31D 連通管
31K 屈曲部
W 電解液
1 Air battery system 3 Tank 3S Partition wall (partition)
DESCRIPTION OF SYMBOLS 5 Piping 10 Air battery 10S Bottom space part 11 Exterior body 13 Air electrode 15 Metal electrode 31 31A-31D Communication pipe 31K Bending part W Electrolyte

Claims (4)

空気極と金属極と前記金属極よりも下方に設けられた底空間部とを備える空気電池と、
前記空気電池の電解液を貯留するタンクと、
前記空気電池の前記底空間部と前記タンクとをつなぐ配管とを備え、
前記タンクが前記底空間部よりも上方にある場合に前記タンクから前記空気電池に電解液を流入させ空気極と金属極とが電解液に浸かることにより前記空気電池が放電開始し、前記タンクが前記底空間部よりも下方にある場合に前記空気電池から電解液を排出させ前記タンクに移動させることにより前記空気電池が放電停止するように前記タンクと前記空気電池との少なくともいずれかを上下動可能に構成し
前記タンクは、複数の前記空気電池の電解液を貯留するタンクであり、
前記タンク内を、前記空気電池ごとの電解液を貯留する複数の室に仕切る仕切り部を備え、前記複数の室が、独立した前記配管を介して前記空気電池にそれぞれ接続されていることを特徴とする空気電池システム。
An air battery comprising an air electrode, a metal electrode, and a bottom space provided below the metal electrode;
A tank for storing the electrolyte of the air battery;
A pipe connecting the bottom space of the air battery and the tank;
When the tank is above the bottom space , the electrolyte is caused to flow from the tank into the air battery, and the air electrode and the metal electrode are immersed in the electrolyte, so that the air battery starts discharging, and the tank When the electrolyte is discharged from the air battery and moved to the tank when it is below the bottom space, at least one of the tank and the air battery is moved up and down so that the air battery stops discharging. to be able to configure,
The tank is a tank for storing a plurality of electrolytes of the air battery,
A partition portion for partitioning the inside of the tank into a plurality of chambers for storing an electrolytic solution for each of the air cells is provided, and the plurality of chambers are respectively connected to the air cells via the independent pipes. And air battery system.
空気極と金属極と前記金属極よりも下方に設けられた底空間部とを備える空気電池と、An air battery comprising an air electrode, a metal electrode, and a bottom space provided below the metal electrode;
前記空気電池の電解液を貯留するタンクと、  A tank for storing the electrolyte of the air battery;
前記空気電池の前記底空間部と前記タンクとをつなぐ配管とを備え、  A pipe connecting the bottom space of the air battery and the tank;
前記タンクが前記底空間部よりも上方にある場合に前記タンクから前記空気電池に電解液を流入させ空気極と金属極とが電解液に浸かることにより前記空気電池が放電開始し、前記タンクが前記底空間部よりも下方にある場合に前記空気電池から電解液を排出させ前記タンクに移動させることにより前記空気電池が放電停止するように前記タンクと前記空気電池との少なくともいずれかを上下動可能に構成し、  When the tank is above the bottom space, the electrolyte is caused to flow from the tank into the air battery, and the air electrode and the metal electrode are immersed in the electrolyte, so that the air battery starts discharging, and the tank When the electrolyte is discharged from the air battery and moved to the tank when it is below the bottom space, at least one of the tank and the air battery is moved up and down so that the air battery stops discharging. Configure as possible
前記タンクは、複数の前記空気電池の電解液を貯留するタンクであり、  The tank is a tank for storing a plurality of electrolytes of the air battery,
前記複数の空気電池内の電解液の水位を揃えるように前記空気電池同士をつなぐ連通管を備え、  A communication pipe that connects the air cells so as to align the water level of the electrolyte in the plurality of air cells;
前記連通管は、隣り合う前記空気電池の異なる高さに電解液の流出部と流入部を備えると共に、上方凸に屈曲する屈曲部を備え、前記連通管の流出部が前記空気極の上端部より上方に形成されていることを特徴とする空気電池システム。  The communication pipe includes an electrolyte outflow portion and an inflow portion at different heights of the adjacent air cells, and also includes a bent portion bent upwardly, and the outflow portion of the communication pipe is an upper end portion of the air electrode. An air battery system characterized by being formed at a higher position.
前記金属極は、ASTM規格で規定されるAMX材で形成されていることを特徴とする請求項1又は2に記載の空気電池システム。3. The air battery system according to claim 1, wherein the metal electrode is formed of an AMX material defined by the ASTM standard. 前記空気電池から前記配管を経由して前記タンクに至る経路に、前記空気電池の放電反応により生成される反応生成物の前記空気電池から前記タンクへの移動を遮断するフィルタを設けていることを特徴とする請求項1乃至3のいずれかに記載の空気電池システム。A filter is provided in a path from the air battery to the tank via the pipe to block the movement of the reaction product generated by the discharge reaction of the air battery from the air battery to the tank. The air battery system according to any one of claims 1 to 3, wherein
JP2015049702A 2015-03-12 2015-03-12 Air battery system Active JP6463999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049702A JP6463999B2 (en) 2015-03-12 2015-03-12 Air battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049702A JP6463999B2 (en) 2015-03-12 2015-03-12 Air battery system

Publications (2)

Publication Number Publication Date
JP2016170965A JP2016170965A (en) 2016-09-23
JP6463999B2 true JP6463999B2 (en) 2019-02-06

Family

ID=56983968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049702A Active JP6463999B2 (en) 2015-03-12 2015-03-12 Air battery system

Country Status (1)

Country Link
JP (1) JP6463999B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6636391B2 (en) * 2016-05-31 2020-01-29 古河電池株式会社 Injection type battery system
CN107799852A (en) * 2017-10-20 2018-03-13 许文江 A kind of mine emergency power supply
US11043710B2 (en) * 2017-12-28 2021-06-22 Beijing Yiyuan New Energy Technology Co., Ltd Metal air fuel cell and its system
WO2020240948A1 (en) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 Air battery and method for using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941925Y1 (en) * 1968-04-17 1974-11-16
JPS5351448A (en) * 1976-10-21 1978-05-10 Kogyo Gijutsuin Method of operating metal air battery
JPS6271175A (en) * 1985-05-24 1987-04-01 Furukawa Electric Co Ltd:The Zinc-halogen battery
JPH09161765A (en) * 1995-12-05 1997-06-20 Yuasa Corp Sealed lead-acid battery and its electrolyte filling method

Also Published As

Publication number Publication date
JP2016170965A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6463999B2 (en) Air battery system
US8586220B2 (en) Accumulator
JP2012164530A (en) Electrolyte circulation type battery
CN109183360B (en) Detergent box and washing machine with same
JP2013025964A (en) Electrolyte circulation cell
JP2013037814A (en) Electrolyte circulation battery
US9786900B2 (en) Method for producing a battery filled with a liquid electrolyte, filling vessel therefor, machine and battery
JP2015526850A (en) Industrial battery distilled water filling system
CN102899855A (en) Overflow-proof detergent storage device and washing machine
JP2011149397A (en) Fuel supply device
JP2017216153A (en) Liquid-pouring type battery system
CN110100342A (en) Redox flow batteries
JP3225123U (en) Battery case for lead storage battery
WO2021007996A1 (en) Water tank and water purifier with same
US20150194706A1 (en) Sodium-sulfur battery
JP5365080B2 (en) Lead acid battery
CN202849805U (en) Anti-overflow washing agent storage apparatus and washing machine
CN110073533A (en) Redox flow batteries
EP2770577A1 (en) Air cell system
JP2002358950A (en) Water refilling device for battery
JP2008177042A (en) Double-lid exhaust structure for storage battery
JP2005166320A (en) Lead-acid battery
JP2015022997A (en) Lead acid power storage battery
KR102673209B1 (en) Battery system and working machine having the same
JP2016225024A (en) Air battery system and component for liquid injection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R150 Certificate of patent or registration of utility model

Ref document number: 6463999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250