JP6463908B2 - Transformer cooling system and transformer cooling method for underground substation - Google Patents

Transformer cooling system and transformer cooling method for underground substation Download PDF

Info

Publication number
JP6463908B2
JP6463908B2 JP2014119365A JP2014119365A JP6463908B2 JP 6463908 B2 JP6463908 B2 JP 6463908B2 JP 2014119365 A JP2014119365 A JP 2014119365A JP 2014119365 A JP2014119365 A JP 2014119365A JP 6463908 B2 JP6463908 B2 JP 6463908B2
Authority
JP
Japan
Prior art keywords
cooling means
cooling
dry
wet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014119365A
Other languages
Japanese (ja)
Other versions
JP2015233076A (en
Inventor
偉生 橋本
偉生 橋本
晋吾 今井
晋吾 今井
嘉雄 榮田
嘉雄 榮田
修 西嶋
修 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2014119365A priority Critical patent/JP6463908B2/en
Publication of JP2015233076A publication Critical patent/JP2015233076A/en
Application granted granted Critical
Publication of JP6463908B2 publication Critical patent/JP6463908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変電設備の冷却設備に係り、特に、地下変電所の変圧器冷却システムおよび変圧器冷却方法に関する。   The present invention relates to a cooling facility for a substation facility, and more particularly to a transformer cooling system and a transformer cooling method for an underground substation.

都市部の市街地に設置される変電所は、一般に、建物の地下部分に設置されることが多く、地下変電所と呼ばれている。この地下変電所は、都市部の送配電において重要な設備であって、最大のものでは500kV級の設備もある。このような地下変電所は、都市部の主要機関に電力を供給している関係から、設備停止は都市部の混乱を招く等の社会問題としてクローズアップされる傾向がある。従って、地下変電所の信頼性向上は大きな命題である。   In general, substations installed in urban areas are often installed in the underground part of buildings and are called underground substations. This underground substation is an important facility for power transmission and distribution in urban areas, and the largest is a 500 kV class facility. Such underground substations tend to close up as a social problem such as causing disruption of the urban area due to the supply of electric power to the major institutions in the urban area. Therefore, improving the reliability of underground substations is a major proposition.

上述した事情から、地下変電所を構成する機器(例えば、変圧器)について、高い信頼性が求められるのはもちろんのこと、その補機(例えば、変圧器の冷却システム)についても同様に高い信頼性が求められる。例えば、地下変電所を構成する変圧器の冷却システムは、冷却システムの停止が、変圧器の停止(熱による自損)に直結するため、やはり、高い信頼性が求められる。   Because of the circumstances described above, not only high reliability is required for equipment (for example, transformers) that make up substations, but also high reliability is required for auxiliary equipment (for example, transformer cooling systems). Sex is required. For example, a transformer cooling system that forms an underground substation is required to have high reliability because the stop of the cooling system is directly connected to the stop of the transformer (self-damage due to heat).

また、地下変電所は、電力需要の大きな都市部に設置されるのに加えて、建物の地下階に設置されていることから、変圧器等で大量に発生した熱が放散しにくく、発生した熱を地下階から屋外(地上)へ強制的に放出することが必要であり、地下変電所の冷却設備は屋外に設置される変電所に比べて、大型化・複雑化する傾向がある。   In addition to being installed in urban areas where electricity demand is high, underground substations are installed on the basement floor of buildings, so heat generated in large quantities by transformers is difficult to dissipate. It is necessary to forcibly release heat from the underground floor to the outside (above ground), and the cooling facilities of underground substations tend to be larger and more complex than substations installed outdoors.

一般的な地下変電所の冷却設備システムは、変圧器で発生した熱を、変圧器に設置される一次冷却器において冷水が温水となる過程で熱交換し、一次冷却器からの温水(一次冷却器で熱交換された後の冷却水)を循環水ポンプによって二次冷却器へ送り、二次冷却器で温水が冷水となる過程で熱交換することによって放熱する仕組である。上記仕組を採用した変電設備の冷却設備の一例としては、例えば、特開2001−91189号公報に記載されるような冷却システムが知られている(例えば、特許文献1参照)。   A general underground substation cooling facility system exchanges heat generated in a transformer in the process of chilled water becoming hot water in a primary cooler installed in the transformer, and then heat from the primary cooler (primary cooling). The cooling water after the heat exchange in the cooler is sent to the secondary cooler by the circulating water pump, and the heat is exchanged in the process where the hot water becomes cold water by the secondary cooler. As an example of cooling equipment for substation equipment that employs the above-described structure, for example, a cooling system described in Japanese Patent Application Laid-Open No. 2001-91189 is known (for example, see Patent Document 1).

上述した引用文献1に記載される地下変電所の変圧器冷却システムでは、二次冷却器として、冷却塔等の湿式冷却器や乾式冷却器が使用される。また、乾式冷却器としても使用可能な冷却塔、すなわち、乾式冷却器としても湿式冷却器としても使用可能な冷却器が二次冷却器として使用されることもある。   In the transformer cooling system for an underground substation described in the cited reference 1, a wet cooler such as a cooling tower or a dry cooler is used as a secondary cooler. A cooling tower that can also be used as a dry cooler, that is, a cooler that can be used as both a dry cooler and a wet cooler, may be used as a secondary cooler.

湿式冷却器として冷却塔が使用される場合、被冷却体である変圧器の熱を吸熱した後の循環水は、冷却塔内部に導入され、冷却塔内部で冷却塔内部の冷却ファン(冷却空気)と散水ポンプ(散布水)により冷却(熱交換)される。冷却塔には汎用性の高い開放型冷却塔や循環水の汚れを抑えられる密閉型冷却塔等がある。   When a cooling tower is used as a wet cooler, the circulating water after absorbing the heat of the transformer, which is the object to be cooled, is introduced into the cooling tower, and the cooling fan (cooling air) inside the cooling tower is inside the cooling tower. ) And watering pump (spray water). Examples of the cooling tower include an open-type cooling tower having high versatility and a closed-type cooling tower that can suppress the contamination of circulating water.

特開2001−91189号公報JP 2001-91189 A

上述した引用文献1に記載される地下変電所の変圧器冷却システムでは、変圧器の冷却設備として冷却塔を使用しているが、開放型冷却塔、および密閉型冷却塔の何れの方式を採用しても大量の水が必要となる。より具体的に説明すれば、開放型冷却塔は、循環水を直接大気に開放して蒸発させた時の蒸発潜熱を用いて冷却するため、冷却塔内部で水が大量に使用される。また、密閉型冷却塔は、密閉された循環水が通水する熱交換部に散布水を直接散布し、この蒸発潜熱を用いて冷却しているため、開放型冷却塔同様に、水が大量に使用される。   In the transformer cooling system for an underground substation described in the above cited reference 1, a cooling tower is used as a cooling facility for the transformer, and any of an open cooling tower and a closed cooling tower is adopted. Even a large amount of water is required. More specifically, since the open type cooling tower is cooled by using latent heat of evaporation when the circulating water is directly opened to the atmosphere and evaporated, a large amount of water is used inside the cooling tower. In addition, the closed cooling tower sprays sprayed water directly on the heat exchange section through which the circulating water is passed and cools it using this latent heat of vaporization. Used for.

変圧器の冷却設備として冷却塔を使用する地下変電所の場合、施設の規模によっても異なるが、冷却設備を稼動させるために必要となる水道料金は、大規模な施設で年間数千万〜数億円にも達するため、当該水道料金の削減、すなわち、節水が求められている。   In the case of underground substations that use cooling towers as the cooling equipment for transformers, although depending on the scale of the facility, the water charge required to operate the cooling equipment is tens of millions to several years per year for large facilities. In order to reach 100 million yen, there is a need to reduce the water charge, that is, to save water.

また、昨今、注意喚起されている首都圏直下型地震等の大規模災害の発生を考慮した場合、首都圏直下型地震等の災害時には、水道の断水が発生する可能性が高く、かつ断水の復旧まで相当の日数がかかることが予想されている。従って、大量の水を必要とする地下変電所の変圧器冷却システムでは、冷却設備停止、ひいては地下変電所停止のリスクがあり、当該冷却設備停止のリスクを可能な限り低減することが求められている。このような背景から地下変電所の変圧器冷却システムは、極力水を使わずに持続的に変圧器を冷却可能な変圧器冷却システムであることが望ましい。   In addition, considering the occurrence of large-scale disasters such as earthquakes directly below the Tokyo metropolitan area, which have been warned recently, there is a high possibility that water supply will be cut off at the time of disasters such as earthquakes directly below the Tokyo metropolitan area. It is expected that it will take a considerable number of days to recover. Therefore, transformer cooling systems for underground substations that require a large amount of water have the risk of stopping cooling facilities and eventually stopping underground substations, and it is necessary to reduce the risk of stopping such cooling facilities as much as possible. Yes. From such a background, it is desirable that the transformer cooling system of the underground substation is a transformer cooling system capable of continuously cooling the transformer without using water as much as possible.

一方で、変圧器の冷却設備として冷却塔を使用しない乾式冷却器を用いれば、前記課題は解決されるように見える。しかしながら、乾式冷却器は、湿式冷却器と比較して、水を使用しないため、水が持っている大きな潜熱の利用が出来ない。また、湿式冷却器の冷却能力は冷却水温度と湿球温度の温度差に比例する一方、乾式冷却器の冷却能力は冷却水温度と乾球温度の温度差に比例し、これは前記湿式冷却器の場合より小さくなってしまう。これらの理由で、乾式冷却器は熱交換の効率が悪く、同じ熱量を熱交換するためには湿式冷却器よりも大きな伝熱面積が必要であり装置が大型化するという課題がある。従って、一般に変圧器容量が大きいことから冷却設備の冷却容量が大きい上に設置面積に余裕が少ない都市部では、単純に冷却器を乾式冷却器に交換すれば済む話ではなく、限られた面積内に設置可能な冷却設備であることが必要である。   On the other hand, if a dry-type cooler that does not use a cooling tower is used as a cooling facility for the transformer, the above problem seems to be solved. However, since the dry cooler does not use water as compared with the wet cooler, the large latent heat possessed by water cannot be used. The cooling capacity of the wet cooler is proportional to the temperature difference between the cooling water temperature and the wet bulb temperature, while the cooling capacity of the dry cooler is proportional to the temperature difference between the cooling water temperature and the dry bulb temperature, which is It becomes smaller than the case of the vessel. For these reasons, the dry cooler is inefficient in heat exchange, and in order to exchange heat with the same amount of heat, a larger heat transfer area is required than in the wet cooler, and there is a problem that the apparatus is enlarged. Therefore, in general, the capacity of the transformer is large and the cooling capacity of the cooling facility is large, and in an urban area where the installation area is small, it is not a simple matter to replace the cooler with a dry-type cooler. It is necessary that the cooling equipment can be installed inside.

本発明は、上述した事情を考慮してなされたもので、極力水を使わず省スペース化した冷却設備を具備する地下変電所の変圧器冷却システムおよび変圧器冷却方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object thereof is to provide a transformer cooling system and a transformer cooling method for an underground substation having a cooling facility that uses water as much as possible and saves space. To do.

本発明の実施形態に係る地下変電所の変圧器冷却システムは、上述した課題を解決するため、循環水が循環する経路上に設けられ、前記循環水と熱交換することで地下変電所に設置される変圧器の発生熱を前記変圧器から除去する一次冷却手段と、前記一次冷却手段とは離れた位置であって前記循環水が循環する経路上に設置され、前記一次冷却手段を通過した後の循環水である温水を冷却する二次冷却手段とを具備し、前記二次冷却手段は、高温度高負荷時に冷却のための水を使用しないで送風により乾式運転可能な少なくとも1個の乾式冷却手段と、前記乾式冷却手段と前記一次冷却手段との間を通水する前記循環水と前記乾式冷却手段以降かつ前記一次冷却手段前で熱交換可能な高温度高負荷時に冷却のための水を使用するとともに前記乾式冷却手段の送風機とは別個の送風機による送風により湿式運転可能な少なくとも1個の湿式冷却手段と、を備え、前記乾式冷却手段と前記湿式冷却手段とはそれぞれ独立して形成され、前記乾式冷却手段は常用的に冷却運転され、前記湿式冷却手段は冷却能力をさらに高めるときのみに、前記乾式冷却手段に加えて予備的に冷却運転されるように構成されることを特徴とする。
In order to solve the above-described problems, a transformer cooling system for an underground substation according to an embodiment of the present invention is provided on a path through which circulating water circulates, and is installed in the underground substation by exchanging heat with the circulating water. The primary cooling means for removing heat generated from the transformer to be removed from the transformer and the primary cooling means are installed on a path where the circulating water circulates at a position away from the primary cooling means and passes through the primary cooling means. Secondary cooling means for cooling the hot water as the later circulating water, and the secondary cooling means is capable of performing a dry operation by blowing air without using water for cooling at a high temperature and high load. Dry cooling means, the circulating water passing between the dry cooling means and the primary cooling means, and cooling for high temperature and high load that can exchange heat after the dry cooling means and before the primary cooling means before with the use of water And a least one wet cooling means wet operable by supplying air by a separate blower and the blower dry cooling means, wherein the dry cooling means and the wet cooling means is formed independently, the dry cooling The means is normally cooled, and the wet cooling means is configured to be preliminarily cooled in addition to the dry cooling means only when the cooling capacity is further increased .

本発明の実施形態に係る地下変電所の変圧器冷却方法は、上述した課題を解決するため、循環水が循環する経路上に設けられ、前記循環水と熱交換することで地下変電所に設置される変圧器の発生熱を前記変圧器から除去する一次冷却手段と、前記一次冷却手段とは離れた位置であって前記循環水が循環する経路上に設置され、前記一次冷却手段を通過した後の循環水である温水を冷却する二次冷却手段とを具備し、前記二次冷却手段は、高温度高負荷時に冷却のための水を使用しないで送風により乾式運転可能な少なくとも1個の乾式冷却手段と、前記乾式冷却手段と前記一次冷却手段との間を通水する前記循環水と前記乾式冷却手段以降かつ前記一次冷却手段以前で熱交換可能な高温度高負荷時に冷却のための水を使用するとともに前記乾式冷却手段の送風機とは別個の送風機による送風により湿式運転可能な少なくとも1個の湿式冷却手段とを備え、前記乾式冷却手段と前記湿式冷却手段とはそれぞれ独立して形成され、前記乾式冷却手段は常用的に冷却運転され、前記湿式冷却手段は冷却能力をさらに高めるときのみに、前記乾式冷却手段に加えて予備的に冷却運転されるように構成されることを特徴とする地下変電所の変圧器冷却システムを用いた地下変電所の変圧器冷却方法であり、計測される前記循環水の温度に基づいて、前記高温度高負荷時であるか前記高温度高負荷時ではない通常運用時であるかが判定され、判定結果が前記通常運用時である場合には、前記乾式冷却手段を運転状態とし、前記湿式冷却手段を停止状態とするステップと、前記判定結果が前記高温度高負荷時である場合には、前記乾式冷却手段を運転状態とし、前記湿式冷却手段を運転状態とするステップと、を具備することを特徴とする。
In order to solve the above-described problem, a transformer cooling method for an underground substation according to an embodiment of the present invention is provided on a path through which circulating water circulates, and is installed in the underground substation by exchanging heat with the circulating water. The primary cooling means for removing heat generated from the transformer to be removed from the transformer and the primary cooling means are installed on a path where the circulating water circulates at a position away from the primary cooling means and passes through the primary cooling means. Secondary cooling means for cooling the hot water as the later circulating water, and the secondary cooling means is capable of performing a dry operation by blowing air without using water for cooling at a high temperature and high load. Dry cooling means, the circulating water passing between the dry cooling means and the primary cooling means, and cooling for high temperature and high load after the dry cooling means and heat exchange before and after the primary cooling means wherein with the use of water The blower of Formula cooling means and at least one wet cooling means wet operable by supplying air by a separate blower, wherein the dry cooling means and the wet cooling means is formed independently, the dry cooling means Of the underground substation , wherein the wet cooling means is configured to be preliminarily cooled in addition to the dry cooling means only when the cooling capacity is further increased . A transformer cooling method for an underground substation using a transformer cooling system, based on the temperature of the circulating water measured, during normal operation that is at the high temperature and high load or not at the high temperature and high load If the determination result is during the normal operation, the step of setting the dry cooling means to the operating state and the wet cooling means to the stop state, and the determination result is the high level Every time when a high load, the the dry cooling means and the operating state, characterized by comprising the steps of the wet cooling means and the operating state.

本発明によれば、被冷却体を冷却する冷却設備において使用される水使用量を大幅に節減することができる。   According to the present invention, it is possible to greatly reduce the amount of water used in the cooling facility for cooling the object to be cooled.

本発明の第1の実施形態に係る地下変電所の変圧器冷却システムおよびその冷却系統を概略的に示したシステム構成図。The system block diagram which showed roughly the transformer cooling system of the underground substation which concerns on the 1st Embodiment of this invention, and its cooling system. 本発明の実施形態に係る地下変電所の変圧器冷却システムにおける運転制御手順を示す処理フロー図。The processing flowchart which shows the operation control procedure in the transformer cooling system of the underground substation which concerns on embodiment of this invention. 本発明の実施形態に係る地下変電所の変圧器冷却システムにおける運転制御手順における冷却器推奨運転状態判定ステップ(ステップS5)のより詳細な処理フロー図(運転段階が4段階の場合)。The more detailed process flow figure of the cooler recommendation operation state judging step (Step S5) in the operation control procedure in the transformer cooling system of the underground substation concerning the embodiment of the present invention (when the operation stage is four stages). 冷却空気温度と湿球温度27℃超における負荷率および熱性能との関係を示す説明図(グラフ)。Explanatory drawing (graph) which shows the relationship between a cooling air temperature and the load factor in the wet bulb temperature over 27 degreeC, and thermal performance. 本発明の実施形態に係る地下変電所の変圧器冷却システムにおける運転制御手順における冷却器推奨運転状態判定ステップ(ステップS5)のより詳細な処理フロー図(運転段階が3段階の場合)。The more detailed process flow figure of the cooler recommendation operation state judging step (Step S5) in the operation control procedure in the transformer cooling system of the underground substation concerning the embodiment of the present invention (when the operation stage is three stages). 本発明の第2の実施形態に係る地下変電所の変圧器冷却システムおよびその冷却系統を概略的に示したシステム構成図(第1実施例)。The system block diagram (1st Example) which showed schematically the transformer cooling system of the underground substation which concerns on the 2nd Embodiment of this invention, and its cooling system. 本発明の第2の実施形態に係る地下変電所の変圧器冷却システムおよびその冷却系統を概略的に示したシステム構成図(第2実施例)。The system block diagram (2nd Example) which showed schematically the transformer cooling system of the underground substation which concerns on the 2nd Embodiment of this invention, and its cooling system. 本発明の第3の実施形態に係る地下変電所の変圧器冷却システムおよびその冷却系統を概略的に示したシステム構成図。The system block diagram which showed roughly the transformer cooling system of the underground substation which concerns on the 3rd Embodiment of this invention, and its cooling system. 本発明の第4の実施形態に係る地下変電所の変圧器冷却システムおよびその冷却系統を概略的に示したシステム構成図(第1実施例)。The system block diagram (1st Example) which showed schematically the transformer cooling system of the underground substation which concerns on the 4th Embodiment of this invention, and its cooling system. 本発明の第4の実施形態に係る地下変電所の変圧器冷却システムおよびその冷却系統を概略的に示したシステム構成図(第2実施例)。The system block diagram (2nd Example) which showed schematically the transformer cooling system of the underground substation which concerns on the 4th Embodiment of this invention, and its cooling system.

以下、本発明の実施形態に係る地下変電所の変圧器冷却システム(以下、「地下変電所変圧器冷却システム」と称する。)および変圧器冷却方法について、図面を参照して説明する。   Hereinafter, an underground substation transformer cooling system (hereinafter referred to as an “underground substation transformer cooling system”) and a transformer cooling method according to an embodiment of the present invention will be described with reference to the drawings.

本発明の実施形態に係る地下変電所変圧器冷却システムは、従来の地下変電所変電設備冷却システムに対して、冷却設備が異なっている。まず、本発明の実施形態に係る地下変電所変圧器冷却システムの冷却設備について概説する。   The underground substation transformer cooling system according to the embodiment of the present invention is different in cooling equipment from the conventional underground substation transformer cooling system. First, the cooling equipment of the underground substation transformer cooling system according to the embodiment of the present invention will be outlined.

地下変電所変電設備冷却システムは、1バンクごとにかかえている変圧器等の全主器(被冷却体)の発熱量100%を夏期においても冷却できるように冷却設備の冷却容量が設計されるのが一般的である。但し、地下変電所における変圧器等の負荷率は、通常は60%以下であり、最大でも80%程度であることが一般的である。また、設計上は夏期の外気温度が最高温度時(一例として、乾球温度40℃、湿球温度27℃)を基に設計されているため、年間の全運転時間(365日×24時間=8760時間)に対して外気温度が上記最高温度時に至るのはごく短時間(約30時間であり、約0.3%)である。   Underground substation substation cooling system cooling capacity of the cooling facility is designed so that 100% of the calorific value of all main units (cooled bodies) such as transformers in each bank can be cooled even in summer. It is common. However, the load factor of a transformer or the like in an underground substation is usually 60% or less, and generally about 80% at the maximum. In addition, since the design is based on the highest outdoor temperature in summer (for example, dry bulb temperature 40 ° C., wet bulb temperature 27 ° C. as an example), the total annual operation time (365 days × 24 hours = 8760 hours), the outside air temperature reaches the maximum temperature for a very short time (about 30 hours, about 0.3%).

従って、地下変電所では負荷が設計値の100%で運用されることはほぼ皆無であること、および外気温度が設計値を超える時間はごく僅か(約0.3%)であることを考慮すれば、実質的な運用としては、地下変電所変圧器冷却システムの冷却設備の冷却容量が設計値の60%程度であっても、ほぼ地下変電所の運用を賄うことができる。   Therefore, it is considered that the load at the underground substation is almost never operated at 100% of the design value, and that the time when the outside air temperature exceeds the design value is negligible (about 0.3%). For example, as a substantial operation, even if the cooling capacity of the cooling equipment of the substation transformer cooling system is about 60% of the design value, the operation of the underground substation can be substantially covered.

本発明の実施形態に係る地下変電所変圧器冷却システムの冷却設備は、上記事情に鑑み、外気温度が低く地下変電所の負荷が低い(負荷率が概ね60%以下)状況における運用(以下、「通常運用」と称する。)と、夏期の外気温度が高く地下変電所の負荷が高い(負荷率が概ね60%超)状況における運用(以下、「高負荷運用」と称する。)とを切替自在な冷却設備として構成される。また、年間の大半を占める通常運用時には水を使用しない(水の使用を高負荷運用時に限定する)構成とすることによって大幅な節水を可能とする。   In view of the above circumstances, the cooling facility for the substation transformer cooling system according to the embodiment of the present invention is operated in a situation where the outside air temperature is low and the load on the underground substation is low (the load factor is approximately 60% or less) (hereinafter, Switching between “normal operation” and operation in the summer when the outside air temperature is high and the load on the underground substation is high (load factor is generally over 60%) (hereinafter referred to as “high load operation”). It is configured as a free cooling facility. In addition, water can be saved significantly by adopting a configuration that does not use water during normal operation, which occupies most of the year (limits the use of water during high-load operation).

一方、冷却設備以外の構成では、本発明の実施形態に係る地下変電所変圧器冷却システムと従来の地下変電所変電設備冷却システムとは実質的な差異はなく、また、冷却方式についても、循環水を循環させるという点では共通しているので、冷却設備以外の作用について実質的な差異はない。そこで、後述する各実施形態では、地下変電所変圧器冷却システムの冷却設備を中心に説明する。なお、都市部の地下変電所は3バンク構成が一般的であるが、説明を簡略化する観点から1バンク分の冷却設備および冷却系統について説明する。   On the other hand, in the configuration other than the cooling facility, there is no substantial difference between the underground substation transformer cooling system and the conventional underground substation transformer cooling system according to the embodiment of the present invention, and the cooling system is also circulated. Since there is a common point in circulating water, there is no substantial difference in the operation other than cooling equipment. Therefore, in each embodiment to be described later, the cooling facility of the underground substation transformer cooling system will be mainly described. In general, underground substations in urban areas have a three-bank configuration. From the viewpoint of simplifying the description, a cooling system and a cooling system for one bank will be described.

[第1の実施形態]
図1は、本発明の第1の実施形態に係る地下変電所変圧器冷却システムの一実施例である地下変電所変圧器冷却システム(以下、「第1の地下変電所変圧器冷却システム」と称する。)10Aの冷却設備(図1において図示されるのは1バンク分)を中心とする冷却系統30を概略的に示したシステム概略図である。
[First Embodiment]
FIG. 1 shows an underground substation transformer cooling system (hereinafter referred to as “first underground substation transformer cooling system”) which is an example of an underground substation transformer cooling system according to the first embodiment of the present invention. This is a system schematic diagram schematically showing a cooling system 30 centering on a cooling facility of 10A (one bank is shown in FIG. 1).

なお、図1において、図を簡略化する観点から、循環水ポンプ31、および二次冷却手段22Aの各装置の動作を制御する制御装置については(実際には存在するものの)、図示を省略している。また、制御装置の図示については、後述する図6〜図10においても図1と同様に省略している。   In FIG. 1, from the viewpoint of simplifying the drawing, the illustration of the control device that controls the operation of each device of the circulating water pump 31 and the secondary cooling means 22A (although it actually exists) is omitted. ing. Further, the illustration of the control device is also omitted in FIGS.

第1の地下変電所変圧器冷却システム10Aにおける冷却系統30は、冷却設備によって冷却される循環水(冷却水)を循環水ポンプ31で循環させる系統である。すなわち、第1の地下変電所変圧器冷却システム10Aでは、一次冷却手段21と、循環水ポンプ31と、二次冷却手段22Aとを接続して構成される流路に循環水が循環的に流れている。   The cooling system 30 in the first underground substation transformer cooling system 10 </ b> A is a system in which circulating water (cooling water) cooled by the cooling facility is circulated by the circulating water pump 31. That is, in the first underground substation transformer cooling system 10A, the circulating water flows cyclically through a flow path configured by connecting the primary cooling means 21, the circulating water pump 31, and the secondary cooling means 22A. ing.

一次冷却手段21(熱交換器)は、変圧器(被冷却体)1の発生熱を循環水へ放熱する機能を有する。一次冷却手段21(熱交換器)は、変圧器1よりも低温の循環水と熱交換することによって、変圧器1の発生熱を変圧器1から除去する。   The primary cooling means 21 (heat exchanger) has a function of radiating heat generated by the transformer (cooled body) 1 to the circulating water. The primary cooling means 21 (heat exchanger) removes heat generated by the transformer 1 from the transformer 1 by exchanging heat with circulating water having a temperature lower than that of the transformer 1.

二次冷却手段22Aは、一次冷却手段21とは離れた位置に設けられており、一次冷却手段21を通過した後の循環水(温水)を冷却する機能を有する。二次冷却手段22Aは、循環水の熱を放熱(熱交換)することによって、変圧器1の発生熱で温水となった循環水を冷却する。冷水となった循環水は二次冷却手段22Aから変圧器1側の一次冷却手段21(熱交換器)へ再び導入される循環する。   The secondary cooling means 22A is provided at a position away from the primary cooling means 21, and has a function of cooling the circulating water (hot water) after passing through the primary cooling means 21. The secondary cooling means 22A cools the circulating water that has become hot water by the heat generated by the transformer 1 by radiating the heat of the circulating water (heat exchange). The circulating water that has become cold water is circulated again from the secondary cooling means 22A to the primary cooling means 21 (heat exchanger) on the transformer 1 side.

また、冷却系統30には、補給水を貯えた補給水槽32と、循環水の温度を測定する温度計35とが設置される。   The cooling system 30 is provided with a makeup water tank 32 that stores makeup water and a thermometer 35 that measures the temperature of the circulating water.

補給水槽32は、適宜、貯えている補給水を冷却系統30および湿式冷却器43に供給する。   The makeup water tank 32 appropriately supplies the stored makeup water to the cooling system 30 and the wet cooler 43.

温度計35は、例えば、一次冷却手段21へ循環水が流入する側(入口側)に設置され、一次冷却手段21へ流入する循環水の温度を測定する。温度計35が取得する温度の情報(循環水温度TE)は、二次冷却手段22Aの動作制御に使用される。   The thermometer 35 is installed, for example, on the side (inlet side) where the circulating water flows into the primary cooling means 21, and measures the temperature of the circulating water flowing into the primary cooling means 21. The temperature information (circulated water temperature TE) acquired by the thermometer 35 is used for operation control of the secondary cooling means 22A.

続いて、第1の地下変電所変圧器冷却システム10Aにおける二次冷却手段22Aについて説明する。   Subsequently, the secondary cooling means 22A in the first underground substation transformer cooling system 10A will be described.

二次冷却手段22Aは、乾式冷却手段として少なくとも1台の乾式冷却器41と、湿式冷却手段として少なくとも1台の冷却塔等の湿式冷却器43とを備え、循環水を冷却可能に構成される。二次冷却手段22Aでは、一次冷却手段21を通水する循環水と熱交換する手段として乾式冷却器41が常用的に(主に)使用され、夏場の高負荷時等の冷却能力をさらに高める必要がある場合(高温度高負荷時)のみに冷却のための水を使用して乾式冷却器41と一次冷却手段21との間を通水する循環水と熱交換する手段として湿式冷却器43が予備的に使用される。   The secondary cooling means 22A includes at least one dry cooler 41 as a dry cooling means and at least one wet cooler 43 such as a cooling tower as a wet cooling means, and is configured to cool the circulating water. . In the secondary cooling means 22A, the dry-type cooler 41 is regularly (mainly) used as a means for heat exchange with the circulating water passing through the primary cooling means 21 to further increase the cooling capacity during high loads in summer. Wet cooler 43 as means for exchanging heat with circulating water passing between dry cooler 41 and primary cooling means 21 using water for cooling only when necessary (during high temperature and high load) Is used preliminarily.

乾式冷却器41は、内部に循環水(温水)が通水する伝熱部411を備える。乾式冷却器41の内部では、外部から導入される空気3は、伝熱部411を通気することによって空冷される。従って、乾式冷却器41では、伝熱部411を介して循環水と空気3とで熱交換が行われ、循環水は空気3によって放熱されて冷却される一方、空気3は循環水から熱を吸収(吸熱)して温められる。伝熱部411を通気して温められた空気3は、乾式冷却器41の外部へ排気される。   The dry cooler 41 includes a heat transfer section 411 through which circulating water (hot water) flows. Inside the dry cooler 41, the air 3 introduced from the outside is air-cooled by ventilating the heat transfer section 411. Therefore, in the dry cooler 41, heat exchange is performed between the circulating water and the air 3 through the heat transfer section 411, and the circulating water is radiated and cooled by the air 3, while the air 3 receives heat from the circulating water. Absorb (heat absorption) and warm. The air 3 warmed by ventilating the heat transfer section 411 is exhausted to the outside of the dry cooler 41.

湿式冷却器43は、例えば、内部に循環水が通水する伝熱部431と、散水ポンプ432で汲み上げた内部貯留水を散布水として伝熱部431に散布する散水部433とを備える密閉型冷却塔で構成される。なお、以下の説明は、湿式冷却器43が、乾式運転(送風機がオン(起動)であり、散水ポンプがオフ(停止)となる運転状態)可能なタイプである場合の例であるが、湿式冷却器43は乾式運転不可能なタイプであってもよい。   The wet cooler 43 includes, for example, a sealed type including a heat transfer unit 431 through which circulating water flows and a water spray unit 433 that sprays the internal stored water pumped up by the water spray pump 432 to the heat transfer unit 431 as spray water. Consists of cooling towers. In addition, although the following description is an example in case the wet cooler 43 is a type in which dry operation (operation state in which the blower is on (start) and the watering pump is off (stop)) is possible, the wet cooler 43 is wet. The cooler 43 may be a type incapable of dry operation.

二次冷却手段22Aでは、乾式冷却器41の後段に湿式冷却器43が直列的に接続されており、
(1)乾式冷却器41の送風機がオフ(停止)通水のみで、
湿式冷却器43の送風機がオフ(停止)通水のみ、散水ポンプがオフ(停止)、
(2)乾式冷却器41の送風機がオン(起動)で、
湿式冷却器43の送風機がオフ(停止)通水のみ、散水ポンプがオフ(停止)、
(3)乾式冷却器41の送風機がオン(起動)で、
湿式冷却器43の送風機がオン(起動)、散水ポンプがオフ(停止)、および
(4)乾式冷却器41の送風機がオン(起動)で、
湿式冷却器43の送風機がオン(起動)、散水ポンプがオン(起動)、
の4段階に冷却段階(運転状態)が切り替えられる。
In the secondary cooling means 22A, a wet cooler 43 is connected in series after the dry cooler 41,
(1) The blower of the dry cooler 41 is only off (stopped) water flow,
The fan of the wet cooler 43 is turned off (stopped) only, the watering pump is turned off (stopped),
(2) The blower of the dry cooler 41 is on (started),
The fan of the wet cooler 43 is turned off (stopped) only, the watering pump is turned off (stopped),
(3) The blower of the dry cooler 41 is on (started up),
The fan of the wet cooler 43 is on (start), the watering pump is off (stop), and (4) the fan of the dry cooler 41 is on (start),
The fan of the wet cooler 43 is on (start), the watering pump is on (start),
The cooling stage (operating state) is switched to the four stages.

二次冷却手段22Aでの冷却段階の切り替えは、一次冷却手段21を通水する循環水の温度、すなわち、温度計35により取得される循環水温度TEに応じて行われ、循環水温度TEが高くなるに従い、(1)→(2)→(3)→(4)とカッコ内の数字が小から大の冷却段階へ切り替えられる。逆に、循環水温度TEが低くなる場合には、(4)→(3)→(2)→(1)とカッコ内の数字が大から小の冷却段階へ切り替えられる。   The switching of the cooling stage in the secondary cooling means 22A is performed according to the temperature of the circulating water flowing through the primary cooling means 21, that is, the circulating water temperature TE acquired by the thermometer 35. As it becomes higher, the numbers in parentheses (1) → (2) → (3) → (4) are switched from the small to the large cooling stage. On the other hand, when the circulating water temperature TE becomes low, the numbers in parentheses (4) → (3) → (2) → (1) are switched from the large to the small cooling stage.

このように、二次冷却手段22Aは、乾式冷却器41および湿式冷却器43の動作状態を循環水の温度(循環水温度TE)に応じて適宜切り替えることで、適切な冷却段階が選択されて一次冷却手段21を通水する循環水が継続的に冷却される。   As described above, the secondary cooling unit 22A appropriately switches the operation state of the dry cooler 41 and the wet cooler 43 according to the temperature of the circulating water (circulating water temperature TE), so that an appropriate cooling stage is selected. Circulating water flowing through the primary cooling means 21 is continuously cooled.

図2は、本発明の実施形態に係る地下変電所の変圧器冷却システムにおける運転制御手順の一例として第1の地下変電所変圧器冷却システム10Aの運転制御手順(冷却段階切替手順)を示す運転フロー図である。また、図3は、運転制御手順(冷却段階切替手順:図2)における冷却器推奨運転状態判定ステップ(ステップS5)のより詳細な処理フロー図である。   FIG. 2 shows an operation showing an operation control procedure (cooling stage switching procedure) of the first underground substation transformer cooling system 10A as an example of an operation control procedure in the transformer cooling system of the underground substation according to the embodiment of the present invention. FIG. FIG. 3 is a more detailed process flow diagram of the cooler recommended operation state determination step (step S5) in the operation control procedure (cooling stage switching procedure: FIG. 2).

なお、図3に示されるT1,T2およびT3は冷却器の動作状態を停止状態(オフ)から運転状態(オン)に移行させるオン判定用の閾値(設定温度)であり、それぞれ、乾式冷却器41(図1)の送風機起動判定用閾値、湿式冷却器43(図1)の送風機起動判定用閾値、および湿式冷却器43の散水ポンプ起動判定用閾値である。また、各閾値T1,T2およびT3の関係は、T1<T2<T3である。さらに、図3に示されるα,β,γは冷却器の動作状態を運転状態から停止状態に移行させるオフ判定用に設定されるオフ判定用設定値(0以上となる任意の実数)である。   Note that T1, T2, and T3 shown in FIG. 3 are threshold values (set temperatures) for determining whether to move the operating state of the cooler from the stopped state (off) to the operating state (on), and each of them is a dry cooler. 41 (FIG. 1) blower start determination threshold value, wet cooler 43 (FIG. 1) blower start determination threshold value, and wet cooler 43 water spray pump start determination threshold value. The relationship between the threshold values T1, T2, and T3 is T1 <T2 <T3. Further, α, β, and γ shown in FIG. 3 are OFF determination setting values (arbitrary real numbers that are equal to or greater than 0) that are set for OFF determination that shifts the operating state of the cooler from the operating state to the stopped state. .

図2に例示される運転制御手順(ステップS1〜ステップS8)は、制御装置により実行され、循環水ポンプ運転移行工程(ステップS1,S2)と、冷却水温制御工程(ステップS3〜ステップS8)とを具備する。   The operation control procedure (steps S1 to S8) illustrated in FIG. 2 is executed by the control device, and the circulating water pump operation transition process (steps S1 and S2), the cooling water temperature control process (steps S3 to S8), and It comprises.

運転制御手順の処理ステップは、被冷却体としての変圧器の冷却がスタートすると開始される。循環水ポンプ運転移行工程(ステップS1,S2)では、循環水ポンプを運転状態に移行させる。   The processing step of the operation control procedure is started when the cooling of the transformer as the object to be cooled starts. In the circulating water pump operation transition step (steps S1 and S2), the circulating water pump is shifted to the operating state.

すなわち、循環水ポンプが運転されているか否かが判断され(ステップS1)、まだ循環水ポンプが運転を開始していない場合(ステップS1でNOの場合)には、循環水ポンプ31が起動し運転を開始して(ステップS2)、循環水ポンプ運転移行工程(ステップS1,S2)を完了する。   That is, it is determined whether or not the circulating water pump is operated (step S1), and when the circulating water pump has not yet started operation (NO in step S1), the circulating water pump 31 is activated. The operation is started (step S2), and the circulating water pump operation transition process (steps S1 and S2) is completed.

一方、循環水ポンプ31が既に運転中の場合(ステップS1でYESの場合)には循環水ポンプ運転移行工程(ステップS1,S2)を完了する。循環水ポンプ運転移行工程が完了すると、運転制御手順の処理フローは、次の処理ステップ(ステップS3)に進む。   On the other hand, when the circulating water pump 31 is already in operation (YES in step S1), the circulating water pump operation transition process (steps S1 and S2) is completed. When the circulating water pump operation transition process is completed, the processing flow of the operation control procedure proceeds to the next processing step (step S3).

冷却水温制御工程(ステップS3〜ステップS8)では、温度計35(図1)が循環水温度TEを取得し(ステップS3)、取得した循環水温度TEに応じて、二次冷却手段22A(図1)、すなわち、乾式冷却器41(図1)および湿式冷却器43(図1)の運転状態が切り替えられる(ステップS4〜ステップS7)。   In the cooling water temperature control process (step S3 to step S8), the thermometer 35 (FIG. 1) acquires the circulating water temperature TE (step S3), and the secondary cooling means 22A (FIG. 1) is obtained according to the acquired circulating water temperature TE. 1), that is, the operating states of the dry cooler 41 (FIG. 1) and the wet cooler 43 (FIG. 1) are switched (steps S4 to S7).

循環水温度TEが取得された(ステップS3)後、まず、現在の乾式冷却器41および湿式冷却器43の運転状態が確認される(ステップS4)。現在の乾式冷却器41および湿式冷却器43の運転状態は、制御装置により監視され、把握されている。現在の乾式冷却器41および湿式冷却器43の運転状態の確認が完了すると、続いて、冷却器推奨運転状態判定ステップが行われる(ステップS5)。   After the circulating water temperature TE is acquired (step S3), first, the current operation state of the dry cooler 41 and the wet cooler 43 is confirmed (step S4). The current operation state of the dry cooler 41 and the wet cooler 43 is monitored and grasped by the control device. When the confirmation of the current operation state of the dry cooler 41 and the wet cooler 43 is completed, a cooler recommended operation state determination step is subsequently performed (step S5).

冷却器推奨運転状態判定ステップでは、取得した循環水温度TEから乾式冷却器41および湿式冷却器43をどの冷却段階(運転段階)にすべきか(推奨される運転状態)を判定する(詳細な判定フローについては後述する)。より具体的には、上述した(1)〜(4)の4段階の何れの冷却段階(運転段階)を推奨すべきかが判定される。ここで、説明の便宜上、上述した(1)〜(4)の4つの冷却段階(運転段階)を、以下、それぞれ、「第1の運転段階」、「第2の運転段階」、「第3の運転段階」、および「第4の運転段階」とする。   In the cooler recommended operation state determination step, it is determined which cooling stage (operation stage) the dry cooler 41 and the wet cooler 43 should be performed (recommended operation state) from the obtained circulating water temperature TE (detailed determination). The flow will be described later). More specifically, it is determined which of the four cooling stages (operational stages) (1) to (4) should be recommended. Here, for convenience of explanation, the four cooling stages (operation stages) (1) to (4) described above are hereinafter referred to as “first operation stage”, “second operation stage”, and “third stage”, respectively. And “fourth operation stage”.

冷却器推奨運転状態判定ステップ(ステップS5)において、乾式冷却器41および湿式冷却器43をどの運転段階にすべきかが判定されると、続いて、ステップS4の確認結果、すなわち、現在の乾式冷却器41および湿式冷却器43の運転状態と、ステップS5の判定結果、すなわち、推奨される乾式冷却器41および湿式冷却器43の運転状態(第1〜4の運転段階の何れか)とが比較される(ステップS6)。   In the cooler recommended operation state determination step (step S5), when it is determined which operation stage the dry-type cooler 41 and the wet-type cooler 43 should be in, the confirmation result of step S4, that is, the current dry-type cooling is performed. The operation state of the cooler 41 and the wet cooler 43 is compared with the determination result of step S5, that is, the recommended operation state of the dry cooler 41 and the wet cooler 43 (any one of the first to fourth operation stages). (Step S6).

ここで、運転状態が一致する場合(ステップS6でYESの場合)、変圧器1が停止しているか否かが確認され(ステップS8)、停止している場合(ステップS8でYESの場合)には、運転制御手順を終了する一方(END)、稼動中の場合(ステップS8でNOの場合)には、冷却水温制御工程の処理フローは、ステップS3へ戻り、ステップS3以降の処理ステップが実行される。   Here, when the operation state matches (in the case of YES in step S6), it is confirmed whether or not the transformer 1 is stopped (step S8), and when it is stopped (in the case of YES in step S8). On the other hand, when the operation control procedure is finished (END), while being in operation (NO in step S8), the processing flow of the cooling water temperature control process returns to step S3, and the processing steps after step S3 are executed. Is done.

一方、運転状態が一致しない場合(ステップS6でNOの場合)、制御装置がステップS5で判定した運転段階に乾式冷却器41および湿式冷却器43の運転段階を切り替える。すなわち、乾式冷却器41および湿式冷却器43の運転状態を切り替える(ステップS7)。運転状態の切り替えが完了すると、冷却水温制御工程の処理フローは、ステップS8に進み、ステップS8以降の処理ステップが実行される。   On the other hand, when the operation state does not match (NO in step S6), the operation stage of the dry cooler 41 and the wet cooler 43 is switched to the operation stage determined in step S5 by the control device. That is, the operation state of the dry cooler 41 and the wet cooler 43 is switched (step S7). When the switching of the operation state is completed, the processing flow of the cooling water temperature control process proceeds to step S8, and the processing steps after step S8 are executed.

続いて、図3を参照して、冷却器推奨運転状態判定ステップ(ステップS5:図2)のより詳細な処理内容(ステップS501〜ステップS514:図3)について説明する。   Then, with reference to FIG. 3, the more detailed process content (step S501-step S514: FIG. 3) of a cooler recommended operation state determination step (step S5: FIG. 2) is demonstrated.

冷却器推奨運転状態判定ステップ(ステップS501〜ステップS514)は、概説すれば、推奨すべき運転段階を判定する処理ステップであり、冷却水温制御工程(図2)において、現在の運転段階を維持するべきか否(切り替えるべき)かの判定をするための情報を提供するステップである。   The cooler recommended operation state determination step (steps S501 to S514) is a processing step for determining an operation stage to be recommended, in general terms, and maintains the current operation stage in the cooling water temperature control step (FIG. 2). This is a step of providing information for determining whether or not (should be switched).

冷却器推奨運転状態判定ステップでは(ENTER)、まず、現在の乾式冷却器41(図1)および湿式冷却器43(図1)の運転段階が、第1の運転段階である場合(ステップS501でYESの場合)、循環水温度TEと乾式冷却器41の送風機をオンする温度として設定される温度(閾値)T1とが比べられる(ステップS502)。   In the cooler recommended operation state determination step (ENTER), first, when the current operation stage of the dry cooler 41 (FIG. 1) and the wet cooler 43 (FIG. 1) is the first operation stage (in step S501). In the case of YES), the circulating water temperature TE is compared with a temperature (threshold value) T1 set as a temperature for turning on the blower of the dry cooler 41 (step S502).

ここで、循環水温度TEがT1未満、すなわち、TE≧T1を満たさない場合(ステップS502でNOの場合)、乾式冷却器41および湿式冷却器43の運転段階を第1の運転段階にすべきと判定(第1の運転段階を推奨)する(ステップS503)。一方、循環水温度TEがT1以上、すなわち、TE≧T1を満たす場合(ステップS502でYESの場合)、乾式冷却器41および湿式冷却器43の運転段階を第2の運転段階にすべきと判定(第2の運転段階を推奨)する(ステップS504)。推奨する運転段階が判定されると(ステップS503,S504)、冷却器推奨運転状態判定ステップを完了する(RETURN)。なお、冷却器推奨運転状態判定ステップ完了後は、図2に示されるステップS6が実行される。   Here, when the circulating water temperature TE is less than T1, that is, when TE ≧ T1 is not satisfied (NO in step S502), the operation stage of the dry cooler 41 and the wet cooler 43 should be the first operation stage. Is determined (first operation stage is recommended) (step S503). On the other hand, when the circulating water temperature TE is equal to or higher than T1, that is, when TE ≧ T1 is satisfied (YES in step S502), it is determined that the operation stage of the dry cooler 41 and the wet cooler 43 should be the second operation stage. (Recommended second operation stage) (step S504). When the recommended operation stage is determined (steps S503 and S504), the cooler recommended operation state determination step is completed (RETURN). In addition, after completion of the cooler recommended operation state determination step, step S6 shown in FIG. 2 is executed.

続いて、現在の乾式冷却器41(図1)および湿式冷却器43(図1)の運転段階が、第2の運転段階である場合(ステップS501がNO→ステップS505がYESの場合)、循環水温度TEと乾式冷却器の送風機をオフする温度として設定される温度(閾値)T1−αとが比べられる(ステップS506)。   Subsequently, if the current operation stage of the dry cooler 41 (FIG. 1) and the wet cooler 43 (FIG. 1) is the second operation stage (NO in step S501 → YES in step S505), circulation The water temperature TE is compared with the temperature (threshold value) T1-α set as the temperature at which the blower of the dry cooler is turned off (step S506).

ここで、循環水温度TEがT1−α以下、すなわち、TE≦T1−αを満たす場合(ステップS506でYESの場合)、乾式冷却器41および湿式冷却器43の運転段階を第1の運転段階にすべきと判定(第1の運転段階を推奨)し(ステップS503)、冷却器推奨運転状態判定ステップを完了する(RETURN)。   Here, when the circulating water temperature TE is equal to or lower than T1-α, that is, when TE ≦ T1-α is satisfied (YES in step S506), the operation stages of the dry cooler 41 and the wet cooler 43 are the first operation stages. The first operation stage is recommended (step S503), and the cooler recommended operation state determination step is completed (RETURN).

一方、循環水温度TEがT1−α超であって、湿式冷却器43の送風機をオンする温度として設定される温度(閾値)T2未満、すなわち、TE≦T1−αを満たさず、かつ、TE≧T2を満たさない場合(ステップS506でNO→ステップS507でNOの場合)、乾式冷却器41および湿式冷却器43の運転段階を第2の運転段階にすべきと判定(第2の運転段階を推奨)し(ステップS504)、冷却器推奨運転状態判定ステップを完了する(RETURN)。   On the other hand, the circulating water temperature TE is higher than T1-α and is lower than a temperature (threshold value) T2 set as a temperature at which the blower of the wet cooler 43 is turned on, that is, TE ≦ T1-α is not satisfied, and TE If ≧ T2 is not satisfied (NO in step S506 → NO in step S507), it is determined that the operation stage of the dry cooler 41 and the wet cooler 43 should be the second operation stage (the second operation stage is (Recommended) (step S504), and the cooler recommended operation state determination step is completed (RETURN).

また、循環水温度TEがT1−α超のT2以上、すなわち、TE≦T1−αを満たさず、かつ、TE≧T2を満たす場合(ステップS506でNO→ステップS507でYESの場合)、乾式冷却器41および湿式冷却器43の運転段階を第3の運転段階にすべきと判定(第3の運転段階を推奨)する(ステップS508)。推奨する運転段階が判定されると(ステップS508)、冷却器推奨運転状態判定ステップを完了する(RETURN)。   Further, when the circulating water temperature TE is equal to or higher than T2 exceeding T1-α, that is, TE ≦ T1-α is not satisfied and TE ≧ T2 is satisfied (NO in step S506 → YES in step S507), dry cooling is performed. It is determined that the operation stage of the vessel 41 and the wet cooler 43 should be the third operation stage (the third operation stage is recommended) (step S508). When the recommended operation stage is determined (step S508), the cooler recommended operation state determination step is completed (RETURN).

続いて、現在の乾式冷却器41(図1)および湿式冷却器43(図1)の運転段階が、第3の運転段階である場合(ステップS501がNO→ステップS505がNO→ステップS509がYESの場合)、循環水温度TEと湿式冷却器43の散水ポンプをオンする温度として設定される温度(閾値)T3とが比べられる(ステップS510)。ここで、循環水温度TEがT3未満、すなわち、TE≧T3を満たさない場合(ステップS510でNOの場合)には、さらに続いて、循環水温度TEが湿式冷却器の送風機をオフする温度として設定される温度(閾値)T2−βと比べられる(ステップS511)。   Subsequently, when the current operation stage of the dry cooler 41 (FIG. 1) and the wet cooler 43 (FIG. 1) is the third operation stage (NO in step S501 → NO in step S505 → YES in step S509). ), The circulating water temperature TE is compared with a temperature (threshold value) T3 set as a temperature at which the watering pump of the wet cooler 43 is turned on (step S510). Here, when the circulating water temperature TE is less than T3, that is, when TE ≧ T3 is not satisfied (NO in step S510), the circulating water temperature TE is further set as a temperature at which the fan of the wet cooler is turned off. It is compared with the set temperature (threshold value) T2-β (step S511).

比べた結果、循環水温度TEがT2−β以下の場合、すなわち、TE≦T2−βを満たす場合(ステップS510でNO→ステップS511でYESの場合)には、乾式冷却器41および湿式冷却器43の運転段階を第2の運転段階にすべきと判定(第2の運転段階を推奨)し(ステップS504)、冷却器推奨運転状態判定ステップを完了する(RETURN)。一方、循環水温度TEがT2−β超の場合、すなわち、TE≦T2−βを満たさない場合(ステップS510でNO→ステップS511でNOの場合)には、乾式冷却器41および湿式冷却器43の運転段階を第3の運転段階にすべきと判定(第3の運転段階を推奨)し(ステップS508)、冷却器推奨運転状態判定ステップを完了する(RETURN)。   As a result of the comparison, when the circulating water temperature TE is equal to or lower than T2-β, that is, when TE ≦ T2-β is satisfied (NO in step S510 → YES in step S511), the dry cooler 41 and the wet cooler It is determined that the operation stage 43 should be the second operation stage (the second operation stage is recommended) (step S504), and the cooler recommended operation state determination step is completed (RETURN). On the other hand, when circulating water temperature TE exceeds T2-β, that is, when TE ≦ T2-β is not satisfied (NO in step S510 → NO in step S511), dry cooler 41 and wet cooler 43 Is determined to be the third operation stage (the third operation stage is recommended) (step S508), and the cooler recommended operation state determination step is completed (RETURN).

また、循環水温度TEとT3とを比べた結果、循環水温度TEがT3以上である場合(ステップS510でYESの場合)には、乾式冷却器41および湿式冷却器43の運転段階を第4の運転段階にすべきと判定(第4の運転段階を推奨)し(ステップS512)、冷却器推奨運転状態判定ステップを完了する(RETURN)。   As a result of comparing the circulating water temperature TE with T3, if the circulating water temperature TE is equal to or higher than T3 (YES in step S510), the operation stages of the dry cooler 41 and the wet cooler 43 are set to the fourth. (4th operation stage is recommended) (step S512), and the cooler recommended operation state determination step is completed (RETURN).

続いて、現在の乾式冷却器41(図1)および湿式冷却器43(図1)の運転段階が、第4の運転段階である場合(ステップS501がNO→ステップS505がNO→ステップS509がNOの場合)、循環水温度TEと湿式冷却器43の散水ポンプをオフする温度として設定される温度(閾値)T3−γとが比べられる(ステップS513)。ここで、循環水温度TEがT3−γ以下、すなわち、TE≦T3−γを満たす場合(ステップS513でYESの場合)、乾式冷却器41および湿式冷却器43の運転段階を第3の運転段階にすべきと判定(第3の運転段階を推奨)し(ステップS508)、冷却器推奨運転状態判定ステップを完了する(RETURN)。   Subsequently, when the current operation stage of the dry cooler 41 (FIG. 1) and the wet cooler 43 (FIG. 1) is the fourth operation stage (NO in step S501 → NO in step S505 → NO in step S509) ), The circulating water temperature TE is compared with a temperature (threshold value) T3-γ set as a temperature at which the watering pump of the wet cooler 43 is turned off (step S513). Here, when the circulating water temperature TE is equal to or lower than T3-γ, that is, when TE ≦ T3-γ is satisfied (YES in step S513), the operation stages of the dry cooler 41 and the wet cooler 43 are the third operation stages. The third operation stage is recommended (step S508), and the cooler recommended operation state determination step is completed (RETURN).

一方、循環水温度TEがT3−γ超である場合、すなわち、TE≦T3−γを満たさない場合(ステップS513でNOの場合)、乾式冷却器41および湿式冷却器43の運転段階を第4の運転段階にすべきと判定(第4の運転段階を推奨)し(ステップS512)、冷却器推奨運転状態判定ステップを完了する(RETURN)。   On the other hand, when the circulating water temperature TE is higher than T3-γ, that is, when TE ≦ T3-γ is not satisfied (NO in step S513), the operation stages of the dry cooler 41 and the wet cooler 43 are set to the fourth. (4th operation stage is recommended) (step S512), and the cooler recommended operation state determination step is completed (RETURN).

次に、本発明の実施形態に係る地下変電所変圧器冷却システムにおける冷却設備(主に二次冷却手段)の乾式冷却手段および湿式冷却手段の冷却能力、並びに本発明の実施形態に係る地下変電所変圧器冷却システムの有用性について説明する。   Next, the cooling capacity of the cooling equipment (mainly secondary cooling means) and the cooling capacity of the wet cooling means in the underground substation transformer cooling system according to the embodiment of the present invention, and the underground substation according to the embodiment of the present invention The usefulness of the transformer cooling system will be explained.

本発明の実施形態に係る地下変電所変圧器冷却システムでは、二次冷却手段の運転状態を、通常負荷時には乾式運転(乾式冷却手段をオン、湿式冷却手段をオフ)とし、高負荷時には湿式運転(乾式冷却手段をオン、湿式冷却手段をオン)とする。例えば、第1の地下変電所変圧器冷却システム10A(図1)では、通常負荷時には、乾式冷却器41をオンし、湿式冷却器43をオフとする。一方、高負荷時には、乾式冷却器41に加えて湿式冷却器43もオンする。   In the substation transformer cooling system according to the embodiment of the present invention, the operation state of the secondary cooling means is dry operation at normal load (dry cooling means on, wet cooling means off), and wet operation at high loads. (The dry cooling means is on and the wet cooling means is on). For example, in the first underground substation transformer cooling system 10A (FIG. 1), during normal load, the dry cooler 41 is turned on and the wet cooler 43 is turned off. On the other hand, when the load is high, the wet cooler 43 is turned on in addition to the dry cooler 41.

また、本発明の実施形態に係る地下変電所変圧器冷却システムでは、最も暑い真夏の時期の外気温度を設計温度として、二次冷却手段としての乾式冷却手段および湿式冷却手段の冷却容量(冷却能力)が決定される。乾式冷却手段の冷却容量と湿式冷却手段の冷却容量とは、その合計冷却容量が変圧器1(図1)の100%負荷運転時の発熱量以上となるように決定される。   Further, in the substation transformer cooling system according to the embodiment of the present invention, the outside air temperature in the hottest summer season is set as the design temperature, and the cooling capacity (cooling capacity) of the dry cooling means as the secondary cooling means and the wet cooling means. ) Is determined. The cooling capacity of the dry cooling means and the cooling capacity of the wet cooling means are determined so that the total cooling capacity is equal to or greater than the amount of heat generated during 100% load operation of the transformer 1 (FIG. 1).

乾式冷却器41の設計温度は、地下変電所が設置される場所の最も暑い真夏の時期の乾球温度を基準とする。例えば東京などでは乾球温度40℃を設計温度とする。   The design temperature of the dry cooler 41 is based on the dry bulb temperature in the hottest midsummer of the place where the underground substation is installed. For example, in Tokyo and the like, the design temperature is a dry bulb temperature of 40 ° C.

湿式冷却器43の設計温度は、地下変電所が設置される場所の最も暑い真夏の時期の湿球温度を基準とし、例えば、過去30年等の所定期間で最高湿球温度を採用したりなどして決定することができる。例えば東京などでは湿球温度27℃を設計温度とする。   The design temperature of the wet cooler 43 is based on the wet bulb temperature at the hottest midsummer time of the place where the underground substation is installed. For example, the highest wet bulb temperature is adopted in a predetermined period such as the past 30 years. Can be determined. For example, in Tokyo and the like, a wet bulb temperature of 27 ° C. is set as the design temperature.

また、二次冷却手段22Aの冷却容量、すなわち、乾式冷却器41の冷却容量および湿式冷却器43の冷却容量の合計冷却容量は、変圧器1の100%負荷運転時の発熱量以上となるように決定される。また、乾式冷却器41の冷却容量は設計温度より低い、例えば乾球温度26℃の条件で、乾式冷却器41のみの運転で変圧器1の100%負荷運転が可能な冷却容量に設定する。   Further, the cooling capacity of the secondary cooling means 22A, that is, the total cooling capacity of the cooling capacity of the dry-type cooler 41 and the cooling capacity of the wet-type cooler 43 is equal to or greater than the amount of heat generated during 100% load operation of the transformer 1. To be determined. In addition, the cooling capacity of the dry cooler 41 is set to a cooling capacity that allows 100% load operation of the transformer 1 only by operating the dry cooler 41 under the condition of a dry bulb temperature of 26 ° C., which is lower than the design temperature.

続いて、本発明の実施形態に係る地下変電所変圧器冷却システムの一例である第1の地下変電所変圧器冷却システム10A(図1)が冷却空気温度(入口空気温度)を超える場合に、どの程度の負荷率まで乾式運転のみで対応可能かを説明し、本発明の実施形態に係る地下変電所変圧器冷却システムの有用性を説明する。
なお、説明にあたり、乾式冷却器41および変圧器(被冷却体)に一つのモデルを設定する。つまり、地下変電所の場所を東京とし、乾式冷却器41の熱交換器定格対数平均温度差、および変圧器(被冷却体)1の鉄損割合を下記のように設定する。
Subsequently, when the first underground substation transformer cooling system 10A (FIG. 1) that is an example of the underground substation transformer cooling system according to the embodiment of the present invention exceeds the cooling air temperature (inlet air temperature), To what extent the load factor can be handled only by dry operation, the utility of the underground substation transformer cooling system according to the embodiment of the present invention will be described.
In the description, one model is set for the dry cooler 41 and the transformer (cooled body). In other words, the location of the underground substation is Tokyo, and the heat exchanger rated logarithm average temperature difference of the dry cooler 41 and the iron loss ratio of the transformer (cooled body) 1 are set as follows.

<乾式冷却器41>
冷却空気温度(入口空気温度)Tai:26℃(東京の最高湿球温度)
出口空気温度Tao:Tao=Tai+13=26+13=39℃
循環水(冷却水)入口温度Twi:48℃
循環水(冷却水)出口温度Two:58℃
熱交換器定格対数平均温度差
={(58−39)−(48−26)}/ln{(58−39)/(48−26)}
=20.46℃
<Dry cooler 41>
Cooling air temperature (inlet air temperature) Tai: 26 ° C (Tokyo's highest wet bulb temperature)
Outlet air temperature Tao: Tao = Tai + 13 = 26 + 13 = 39 ° C.
Circulating water (cooling water) inlet temperature Twi: 48 ° C
Circulating water (cooling water) outlet temperature Two: 58 ° C
Heat exchanger rated logarithm average temperature difference = {(58-39)-(48-26)} / ln {(58-39) / (48-26)}
= 20.46 ° C

<変圧器1>
容量:300MVA(ガス絶縁変圧器)
定格鉄損(無負荷損):120kW
定格銅損(負荷損):1710kW
定格損失:1830kW
鉄損割合:120/1830=0.0656
<Transformer 1>
Capacity: 300MVA (gas insulated transformer)
Rated iron loss (no load loss): 120kW
Rated copper loss (load loss): 1710 kW
Rated loss: 1830kW
Iron loss ratio: 120/1830 = 0.0656

乾式冷却器41の伝熱性能が対数平均温度差に比例することを使用して、冷却空気温度(湿球温度26℃)を超える場合に、前記設定条件の変圧器1の負荷率がどの程度になるまで前記設定条件の乾式冷却器41のみ(乾式運転)で対応可能かを説明する。   Using the fact that the heat transfer performance of the dry cooler 41 is proportional to the logarithm average temperature difference, when the cooling air temperature (wet bulb temperature 26 ° C.) is exceeded, what is the load factor of the transformer 1 under the above setting conditions It will be described whether it is possible to cope with only the dry cooler 41 (dry operation) of the set conditions until

Figure 0006463908
Figure 0006463908

Figure 0006463908
Figure 0006463908

Figure 0006463908
Figure 0006463908

図4は、前記式(1)〜(6)から導出される、冷却空気温度(入口空気温度)と乾球温度26℃超における負荷率および伝熱性能との関係を示す説明図(グラフ)である。なお、符号L1は負荷率を示すグラフ、符号L2は伝熱性能を示すグラフであり、L1,L2何れのグラフも26℃の数値を1としている。   FIG. 4 is an explanatory diagram (graph) showing the relationship between the cooling air temperature (inlet air temperature) and the load factor and heat transfer performance when the dry bulb temperature exceeds 26 ° C., derived from the equations (1) to (6). It is. In addition, the code | symbol L1 is a graph which shows a load factor, the code | symbol L2 is a graph which shows heat-transfer performance, and the numerical value of 26 degreeC is set to 1 in any graph of L1 and L2.

伝熱性能は26℃を超えて温度が上昇するほど低下していくが、図4に示されるグラフL1では、地下変電所が設置されている東京における米国暖房冷凍空調学会(ASHRAE:American Society of Heating, Refrigerating and Air-Conditioning Engineers)の冷房用設計基準である年基準超過危険率0.4%平均合致乾球温度(0.4%MCDB)33.2℃においても負荷率は約80%である。負荷率は、各地下変電所でも多少異なるが、いずれも一般的に60〜80%といわれているため、乾球温度33.2℃においても乾式運転(乾式冷却器41のみの運転)で負荷率80%時に発生する熱量に対応可能なので、年間を通じてほとんどの時間を湿式冷却器43の運転(湿式運転)無しに変圧器1の冷却を継続できることになる。   The heat transfer performance decreases as the temperature rises above 26 ° C., but in the graph L1 shown in FIG. 4, the American Society of Heating, Refrigerating and Air Conditioning (ASHRAE) in Tokyo where the underground substation is installed. Heating, Refrigerating and Air-Conditioning Engineers), which is the design standard for cooling, has a yearly excess risk factor of 0.4%, average matched dry bulb temperature (0.4% MCDB) of 33.2 ° C, and the load factor is about 80%. is there. Although the load factor differs somewhat at each substation, it is generally said that the load is 60-80%. Therefore, even in dry bulb temperature of 33.2 ° C, it is loaded by dry operation (operation only by dry cooler 41). Since it is possible to deal with the amount of heat generated at a rate of 80%, the cooling of the transformer 1 can be continued most of the time without operating the wet cooler 43 (wet operation) throughout the year.

湿式運転が実質殆ど0(ゼロ)であれば、湿式冷却器43で使用している補給水分を殆ど0(ゼロ)にすること、すなわち、100%節減できることになる。なお、湿式冷却器43は、例えば、負荷率80%を超えるなど、高負荷(100%)かつ、極めて高温(40℃)の気温条件になった場合にも、湿式冷却器43を起動する事により、変圧器の設計温度内への冷却が可能である。つまり、湿式冷却器43は極めて稀な高温度高負荷時の場合に備えての予備用(非常用)冷却手段の位置づけで設置しておくことができる。仮に、湿式冷却器43の運転が必要になったとしても、その使用は非常時の極めて短い時間に限られることから、ブローダウン水を生じさせることはなく下水処理も不要となる。従って、補給水用の上水道代のみならず下水道代についても大幅に節減できる。   If the wet operation is substantially 0 (zero), the replenishment moisture used in the wet cooler 43 can be reduced to almost 0 (zero), that is, 100% can be saved. It should be noted that the wet cooler 43 starts the wet cooler 43 even when the air temperature condition is high (100%) and extremely high (40 ° C.), for example, when the load factor exceeds 80%. Thus, the transformer can be cooled within the design temperature. That is, the wet cooler 43 can be installed in the position of a preliminary (emergency) cooling means in preparation for an extremely rare case of high temperature and high load. Even if it is necessary to operate the wet cooler 43, its use is limited to an extremely short time in an emergency, so that blow-down water is not generated and sewage treatment is not required. Therefore, not only the water supply fee for makeup water but also the sewerage fee can be greatly reduced.

また、図4に示されるグラフL2では、例えば、東京におけるASHRAEの冷房設計基準温度である0.4%MCDB(=乾球温度33.2℃)条件で設計した場合の伝熱性能は、乾球温度26℃時の伝熱性能1に対して0.65と約2/3に低下してしまう。従って、ASHRAEの冷房設計基準温度である0.4%MCDB条件で設計した場合、乾球温度26℃条件で設計した場合と比較して同じ熱量を放散するために必要となる伝熱面積は約1.5倍になる。故に、乾球温度26℃条件で設計した場合、ASHRAEの冷房0.4%MCDB(乾球温度33.2℃)条件で設計した場合の約2/3の設備面積で同じ熱量を放散することができる。   Further, in the graph L2 shown in FIG. 4, for example, the heat transfer performance when designed under the condition of 0.4% MCDB (= dry bulb temperature 33.2 ° C.) that is the cooling design reference temperature of ASHRAE in Tokyo is dry. With respect to the heat transfer performance 1 at a sphere temperature of 26 ° C., it is 0.65, which is about 2/3. Therefore, when designed under the 0.4% MCDB condition, which is the cooling design reference temperature of ASHRAE, the heat transfer area required to dissipate the same amount of heat as compared with the design under the dry bulb temperature of 26 ° C. is about 1.5 times. Therefore, when designed under the condition of a dry bulb temperature of 26 ° C, the same amount of heat should be dissipated in about 2/3 of the equipment area when designed under the condition of ASHRAE cooling 0.4% MCDB (dry bulb temperature 33.2 ° C). Can do.

さらに、図4から明らかなように、40℃条件で設計した場合、40℃の熱量は26℃の場合の約1/3になる。つまり、26℃条件で設計した乾式冷却器41の設備面積は、40℃条件で設計した場合の設備面積に対して約1/3で済む事になる。これは極めて大きな設置面積低減効果といえる。   Further, as is apparent from FIG. 4, when designed under the condition of 40 ° C., the heat quantity at 40 ° C. is about 1/3 of that at 26 ° C. That is, the installation area of the dry cooler 41 designed under the 26 ° C. condition is about 1/3 of the installation area when designed under the 40 ° C. condition. This is an extremely large installation area reduction effect.

このように、ASHRAEの冷房設計基準温度である0.4%MCDB条件において負荷率80%時に発生する熱量に湿式運転を実施することなく乾式運転で対応可能な本発明の実施形態に係る地下変電所変圧器冷却システムは、実質的に使用する水をゼロとすることができるので、年間の水道代(上水道代および下水道代)について大幅に節減できるだけでなく、大規模災害発生に伴って断水が生じたとしても、変圧器1の冷却を継続できる点で極めて有用であるといえる。   Thus, the underground substation according to the embodiment of the present invention that can cope with the dry operation without performing the wet operation on the heat generated at the load factor of 80% under the 0.4% MCDB condition that is the cooling design reference temperature of ASHRAE. Because the substation transformer cooling system can substantially reduce the amount of water used, not only can the yearly water bills (water and sewage bills) be significantly reduced, but also water breaks off when a large-scale disaster occurs. Even if it occurs, it can be said that it is extremely useful in that the cooling of the transformer 1 can be continued.

第1の地下変電所変圧器冷却システム10A、および第1の地下変電所変圧器冷却方法によれば、湿式冷却器43の運転をごく僅かな時間に限定することができる(外気温度と変圧器負荷によっては稼働時間をゼロにすることも可能になる)ため、従来と比較して大幅に(最大100%)節水することが可能となる。従って、第1の地下変電所変圧器冷却システム10Aを運用する際に必要となる水道代(上水道代および下水道代)を大幅に(最大100%)削減することができる。   According to the first underground substation transformer cooling system 10A and the first underground substation transformer cooling method, the operation of the wet cooler 43 can be limited to a very short time (the outside air temperature and the transformer). Depending on the load, it is possible to reduce the operating time to zero), so that it is possible to save water significantly (up to 100%) compared to the conventional case. Therefore, it is possible to significantly reduce (up to 100%) the cost of water (water supply and sewerage) required when operating the first underground substation transformer cooling system 10A.

なお、本説明では湿式冷却器43の運転時間で論じたが、湿式冷却器43が乾式運転(送風機がオン、散水ポンプがオフ)可能であって、乾式冷却器41の冷却熱量を超過する熱量が小さい場合、湿式冷却器43は乾式運転による冷却が可能であり、この乾式運転による冷却によって水の使用量の更なる低減が可能となる。   In this description, the operation time of the wet cooler 43 has been discussed. However, the wet cooler 43 can be operated dry (the blower is on and the watering pump is off), and the amount of heat that exceeds the cooling heat amount of the dry cooler 41. Is small, the wet cooler 43 can be cooled by a dry operation, and the amount of water used can be further reduced by the cooling by the dry operation.

第1の地下変電所変圧器冷却システム10Aでは、二次冷却手段22Aを運転するために必要となる水はほぼゼロであるため、大規模災害発生などに伴って断水が生じたとしても、変圧器1の冷却を継続できる。なお、第1の地下変電所変圧器冷却システム10Aでは、負荷率60%を超えるような万が一の場合に生じ得る高負荷時においては湿式冷却器43の運転が必要となるが、大規模災害発生に伴って断水が生じるような状況下では負荷率は通常時以下となることが想定されるので、湿式冷却器43を運転しなくても、乾式冷却器41を運転しておきさえすれば、変圧器1の冷却を継続可能な十分な冷却能力を確保することができる。   In the first underground substation transformer cooling system 10A, since the water required for operating the secondary cooling means 22A is almost zero, even if a water outage occurs due to the occurrence of a large-scale disaster, Cooling of the vessel 1 can be continued. In the first underground substation transformer cooling system 10A, it is necessary to operate the wet cooler 43 at a high load that may occur in the unlikely event that the load factor exceeds 60%, but a large-scale disaster occurs. In such a situation that water breakage occurs, the load factor is assumed to be lower than normal. Therefore, as long as the dry cooler 41 is operated without operating the wet cooler 43, Sufficient cooling capacity capable of continuing cooling of the transformer 1 can be ensured.

また、第1の地下変電所変圧器冷却システム10Aでは、湿式冷却器43の運転必要時間を、年間を通じて限られた時間に限定できることから、湿式冷却器43でのスケール(水垢)付着はほとんど生じることなく、清掃等のメンテナンス性が簡便になる。さらに、長期間に亘って(常用的に)湿式冷却器43が運転することがなくなるため、レジオネラ症予防対策を講じる必要がなく、レジオネラ症予防対策に要する手間および費用を削減できる。   Further, in the first underground substation transformer cooling system 10A, since the operation required time of the wet cooler 43 can be limited to a limited time throughout the year, the scale (water scale) adhesion on the wet cooler 43 almost occurs. Therefore, maintainability such as cleaning becomes simple. Furthermore, since the wet cooler 43 is not operated for a long period of time (regularly), it is not necessary to take preventive measures for legionellosis, and the labor and cost required for the preventive measures for legionellosis can be reduced.

さらに、第1の地下変電所変圧器冷却システム10Aでは、二次冷却手段22Aの設備面積を乾式冷却器41のみの場合と比較して大幅に低減できる(一例として、約2/3に低減可能)。従って、一般に大きな設置スペースの確保が困難な都市部の地下変電所においても、現状と同程度の設置スペースが確保できれば、新設時のみならず改修時においても、第1の地下変電所変圧器冷却システム10Aを適用することもできる。   Furthermore, in the first underground substation transformer cooling system 10A, the facility area of the secondary cooling means 22A can be significantly reduced as compared with the case of only the dry cooler 41 (as an example, it can be reduced to about 2/3). ). Therefore, even in underground substations in urban areas where it is generally difficult to secure a large installation space, if the same installation space as the current situation can be secured, the cooling of the first underground substation transformer can be performed not only at the time of new installation but also at the time of renovation. The system 10A can also be applied.

なお、第1の地下変電所変圧器冷却システム10Aにおいて、湿式冷却器43は、常に湿式での運転を行うタイプの機種に限定されるものではなく、湿式での運転が可能であればよい。例えば、乾式での運転も可能な冷却塔(湿式運転を基本とする一方で乾式運転も可能な湿式冷却器)や乾式運転を基本とする一方で湿式運転も可能な乾式冷却器(例えば、後述する図8,9に例示される散水型乾式冷却器51,53等)を二次冷却手段22Aの湿式冷却器43として導入することもできる。   In the first underground substation transformer cooling system 10A, the wet cooler 43 is not limited to the type of type that always performs wet operation, and may be any type that allows wet operation. For example, a cooling tower that can be operated in a dry mode (wet chiller that can be operated in a dry manner while being based on a wet operation) or a dry chiller that can be operated in a dry mode while being based on a dry operation (for example, described later) 8 and 9 can be introduced as the wet cooler 43 of the secondary cooling means 22A.

また、本発明の第1の実施形態では、湿式冷却器43として密閉型の場合を図1に例示して説明しているが、密閉型の湿式冷却器43に代えて開放型の湿式冷却器47(図8)を適用しても、第1の地下変電所変圧器冷却システム10Aをほぼ同様に運用できる。開放型の湿式冷却器47を適用する場合、送風機と散水ポンプの両方が起動(オン)または停止(オフ)することを想定すると、運転段階が3段階となる場合が想定されるが、運転段階が3段階となる場合についても判定の基本的なロジックは同様である。   Further, in the first embodiment of the present invention, the case where the wet type cooler 43 is a closed type is illustrated and described in FIG. 1, but an open type wet type cooler is used instead of the closed type wet type cooler 43. Even if 47 (FIG. 8) is applied, the first underground substation transformer cooling system 10A can be operated in substantially the same manner. In the case of applying the open type wet cooler 47, assuming that both the blower and the watering pump are started (on) or stopped (off), it is assumed that there are three operation stages. The basic logic of the determination is the same for the case where is in three stages.

運転段階が3段階となる場合については、図3に示される冷却器推奨運転状態判定ステップ(ステップS501〜ステップS514)の処理フローにおいて、閾値(設定温度)T2を送風機と散水ポンプの両方を起動させる温度として取り扱い、閾値T3に関連するステップ(ステップS509,S510,S512,S513)を省略し、ステップS505でNOの場合に続く処理ステップを省略するステップS509に代えてステップS511とすればよい。より具体的には、図5に示される通りである。   In the case where the operation stage is three stages, in the processing flow of the cooler recommended operation state determination step (step S501 to step S514) shown in FIG. Steps related to the threshold T3 (steps S509, S510, S512, and S513) may be omitted, and the processing step subsequent to NO in step S505 may be replaced with step S509 instead of step S509. More specifically, it is as shown in FIG.

[第2の実施形態]
図6は、本発明の第2の実施形態に係る地下変電所の変圧器冷却システムの一実施例である地下変電所変圧器冷却システム(以下、「第2の地下変電所変圧器冷却システム」と称する。)10Bの冷却設備(図6において図示されるのは1バンク分)を中心とする冷却系統30を概略的に示したシステム概略図(第1実施例)である。
[Second Embodiment]
FIG. 6 is an example of an underground substation transformer cooling system (hereinafter, “second underground substation transformer cooling system”) that is an example of an underground substation transformer cooling system according to the second embodiment of the present invention. FIG. 6 is a system schematic diagram (first embodiment) schematically showing a cooling system 30 centering on a cooling facility of 10B (one bank is shown in FIG. 6).

第2の地下変電所変圧器冷却システム10Bは、第1の地下変電所変圧器冷却システム10Aに対して、二次冷却手段22Aの代わりに二次冷却手段22Bを具備する点で相違するものの、その他の点は実質的に相違しない。そこで、本実施形態では、第1の地下変電所変圧器冷却システム10Aに対する相違点を中心に説明し、第1の地下変電所変圧器冷却システム10Aの構成要素と実質的に相違しない構成要素については同じ符号を付して説明を省略する。   Although the second underground substation transformer cooling system 10B is different from the first underground substation transformer cooling system 10A in that the secondary cooling means 22B is provided instead of the secondary cooling means 22A, Other points are not substantially different. Therefore, in the present embodiment, differences from the first underground substation transformer cooling system 10A will be mainly described, and components that are not substantially different from the components of the first underground substation transformer cooling system 10A. Are denoted by the same reference numerals and description thereof is omitted.

第2の地下変電所変圧器冷却システム10Bにおける冷却系統30は、冷却設備によって冷却される循環水(冷却水)を循環水ポンプ31で循環させる系統である。すなわち、一次冷却手段21と、循環水ポンプ31と、二次冷却手段22Bとを接続して構成される流路に循環水が循環的に流れている。   The cooling system 30 in the second underground substation transformer cooling system 10 </ b> B is a system in which circulating water (cooling water) cooled by the cooling facility is circulated by the circulating water pump 31. That is, the circulating water flows cyclically through a flow path configured by connecting the primary cooling means 21, the circulating water pump 31, and the secondary cooling means 22B.

二次冷却手段22Bは、二次冷却手段22Aと同様に、一次冷却手段21を通過した後の循環水(温水)を冷却する機能を有し、少なくとも1台の乾式冷却器41と、乾式冷却器41の後段に直列的に接続される少なくとも1台の冷却塔等の湿式冷却器43と、湿式冷却器43の前段に設けられる少なくとも1台の熱交換器45とを備える。   Similar to the secondary cooling means 22A, the secondary cooling means 22B has a function of cooling circulating water (hot water) after passing through the primary cooling means 21, and includes at least one dry cooler 41 and dry cooling. A wet cooler 43 such as at least one cooling tower connected in series to the subsequent stage of the cooler 41, and at least one heat exchanger 45 provided in the previous stage of the wet cooler 43.

図6に例示される二次冷却手段22Bでは、乾式冷却器41と熱交換器45とが並列に設けられる二次冷却手段22Bでは、運用時に弁46a〜46dの開閉状態が切り替えられて、乾式冷却器41または熱交換器45に循環水が導入される。乾式冷却器41または熱交換器45を通水した後の循環水は、後段に設置される湿式冷却器43へ導入される。
In the secondary cooling means 22B illustrated in FIG. 6, in the secondary cooling means 22B in which the dry cooler 41 and the heat exchanger 45 are provided in parallel, the open / close states of the valves 46a to 46d are switched during operation, and the dry Circulating water is introduced into the cooler 41 or the heat exchanger 45. The circulating water after passing through the dry cooler 41 or the heat exchanger 45 is introduced into the wet cooler 43 installed in the subsequent stage.

熱交換器45は、例えば、プレート式熱交換器で構成され、一次側には冷却系統30の循環流路を流れる循環水(温水)が、二次側には冷媒としての水(冷水)が通水されている。熱交換器45は、一次側を流れる循環水(温水)と二次側を流れる冷水との間で熱交換する。熱交換器45での熱交換によって、一次側を流れる循環水は熱が奪われて温度が低下する一方、二次側を流れる冷水は熱を吸収して温度が上昇する。熱交換器45で温められた二次側の水は、温水供給等に利用することができる。   The heat exchanger 45 is constituted by, for example, a plate heat exchanger, and circulating water (hot water) flowing through the circulation passage of the cooling system 30 is on the primary side, and water (cold water) as a refrigerant is on the secondary side. There is water. The heat exchanger 45 exchanges heat between circulating water (hot water) flowing on the primary side and cold water flowing on the secondary side. By heat exchange in the heat exchanger 45, the circulating water flowing on the primary side is deprived of heat and the temperature decreases, while the cold water flowing on the secondary side absorbs heat and the temperature rises. The water on the secondary side warmed by the heat exchanger 45 can be used for hot water supply or the like.

続いて、第2の地下変電所変圧器冷却システム10Bを用いた地下変電所変圧器冷却方法(以下、「第2の地下変電所変圧器冷却方法」と称する。)について説明する。   Subsequently, an underground substation transformer cooling method using the second underground substation transformer cooling system 10B (hereinafter, referred to as “second underground substation transformer cooling method”) will be described.

第2の地下変電所変圧器冷却方法は、第1の地下変電所変圧器冷却方法に対して、用いるシステムが異なるものの、行われるステップとしては実質的に同様であるため、第1の地下変電所変圧器冷却方法の説明をもって、第2の地下変電所変圧器冷却方法の説明を省略する。   Although the second underground substation transformer cooling method is substantially the same as the steps to be performed although the system used differs from the first underground substation transformer cooling method, the first underground substation transformer cooling method is the same. With the description of the substation transformer cooling method, the description of the second underground substation transformer cooling method is omitted.

第2の地下変電所変圧器冷却システム10B、および第2の地下変電所変圧器冷却方法によれば、第1の地下変電所変圧器冷却システム10A、および第1の地下変電所変圧器冷却方法と同様の効果を奏することに加え、変圧器1を冷却する際に放熱される熱を無駄にすることなく、有効利用することができる。   According to the second underground substation transformer cooling system 10B and the second underground substation transformer cooling method, the first underground substation transformer cooling system 10A and the first underground substation transformer cooling method In addition to producing the same effect as above, the heat dissipated when the transformer 1 is cooled can be effectively used without wasting it.

なお、第2の地下変電所変圧器冷却システム10Bにおいて、二次冷却手段22Bは、必ずしも図6に示される構成に限定されるものではない。二次冷却手段22Bは、循環水の熱を放熱させる熱交換器45が、少なくとも湿式冷却器43の前段に設置されていればよい。   In the second underground substation transformer cooling system 10B, the secondary cooling means 22B is not necessarily limited to the configuration shown in FIG. In the secondary cooling means 22 </ b> B, it is only necessary that the heat exchanger 45 that dissipates the heat of the circulating water is installed at least before the wet cooler 43.

図7は、第2の地下変電所変圧器冷却システム10Bの冷却設備(図7において図示されるのは1バンク分)を中心とする冷却系統30を概略的に示したシステム概略図(第2実施例)である。   FIG. 7 is a system schematic diagram (second diagram) schematically showing a cooling system 30 centering on a cooling facility (second bank is shown in FIG. 7) of the second underground substation transformer cooling system 10B. Example).

第2の地下変電所変圧器冷却システム10Bにおける二次冷却手段22Bは、例えば、図7に示されるように、湿式冷却器43の前段に設置される乾式冷却器41よりもさらに前段に熱交換器45が直列的に設置されてもよい。また、図7に示される例に限らず、乾式冷却器41の後段かつ湿式冷却器43の前段に、熱交換器45が直列的に設置されていてもよい。   The secondary cooling means 22B in the second underground substation transformer cooling system 10B performs heat exchange further upstream than the dry cooler 41 installed in the preceding stage of the wet cooler 43, for example, as shown in FIG. The vessel 45 may be installed in series. In addition to the example shown in FIG. 7, the heat exchanger 45 may be installed in series downstream of the dry cooler 41 and upstream of the wet cooler 43.

乾式冷却器41と熱交換器45とを直列的に接続して設置した場合、並列に設置する場合のように弁46a〜46dを追設する必要がなく構成をより簡潔にすることができる利点がある。   When the dry cooler 41 and the heat exchanger 45 are installed in series, there is no need to additionally install the valves 46a to 46d as in the case of installing in parallel, and the advantage that the configuration can be simplified. There is.

[第3の実施形態]
図8は、本発明の第3の実施形態に係る地下変電所変圧器冷却システムの一実施例である地下変電所変圧器冷却システム(以下、「第3の地下変電所変圧器冷却システム」と称する。)10Cの冷却設備(図8において図示されるのは1バンク分)を中心とする冷却系統30を概略的に示したシステム概略図である。
[Third embodiment]
FIG. 8 shows an underground substation transformer cooling system (hereinafter referred to as “third underground substation transformer cooling system”) which is an example of an underground substation transformer cooling system according to the third embodiment of the present invention. This is a system schematic diagram schematically showing a cooling system 30 centering on a 10C cooling facility (in FIG. 8, one bank is shown).

第3の地下変電所変圧器冷却システム10Cは、第1の地下変電所変圧器冷却システム10Aに対して、二次冷却手段22Aの代わりに二次冷却手段22Cを具備する点で相違するものの、その他の点は実質的に相違しない。そこで、本実施形態では、第1の地下変電所変圧器冷却システム10Aに対する相違点を中心に説明し、第1の地下変電所変圧器冷却システム10Aの構成要素と実質的に相違しない構成要素については同じ符号を付して説明を省略する。   Although the third underground substation transformer cooling system 10C is different from the first underground substation transformer cooling system 10A in that the secondary cooling means 22C is provided instead of the secondary cooling means 22A, Other points are not substantially different. Therefore, in the present embodiment, differences from the first underground substation transformer cooling system 10A will be mainly described, and components that are not substantially different from the components of the first underground substation transformer cooling system 10A. Are denoted by the same reference numerals and description thereof is omitted.

第3の地下変電所変圧器冷却システム10Cにおける冷却系統30は、一次冷却手段21と、循環水ポンプ31と、二次冷却手段22Cとを接続して構成される流路に循環水(冷却水)が循環的に流れている点で、第1の地下変電所変圧器冷却システム10A等の他の地下変電所変圧器冷却システムの冷却系統30と同様に構成される。   The cooling system 30 in the third underground substation transformer cooling system 10C includes circulating water (cooling water) in a flow path formed by connecting the primary cooling means 21, the circulating water pump 31, and the secondary cooling means 22C. ) In a circulating manner, it is configured similarly to the cooling system 30 of other underground substation transformer cooling systems such as the first underground substation transformer cooling system 10A.

一方で、第3の地下変電所変圧器冷却システム10Cにおける冷却系統30は、循環水が一次冷却手段21を循環的に通水する循環流路(主系統)に加え、主系統を流れる循環水の熱を熱交換によって放熱する(冷却する)主系統とは別の循環流路(副系統)をさらに備える。すなわち、第3の地下変電所変圧器冷却システム10Cの冷却系統30は、二つの独立した循環流路(主系統および副系統)で構成される。   On the other hand, the cooling system 30 in the third underground substation transformer cooling system 10C has circulating water flowing through the main system in addition to the circulation channel (main system) through which the circulating water circulates through the primary cooling means 21. Is further provided with a circulation channel (sub system) different from the main system that dissipates (cools) this heat by heat exchange. That is, the cooling system 30 of the third underground substation transformer cooling system 10C includes two independent circulation channels (main system and sub system).

二次冷却手段22Cは、二次冷却手段22Aと同様に、一次冷却手段21を通過した後の循環水(温水)を冷却する機能を有し、少なくとも1台の乾式冷却器41と、少なくとも1台の湿式冷却器47と、熱交換器48とを備える。湿式冷却器47は、例えば、散水ポンプ472で内部の水を汲み上げて熱交換器48へ送り、熱交換器48を通水した後に内部の散水部473で散水し直接大気に開放して蒸発させた時の蒸発潜熱を用いて冷却する開放型冷却塔で構成される。また、熱交換器48は、例えば、プレート式熱交換器で構成される。   Similar to the secondary cooling means 22A, the secondary cooling means 22C has a function of cooling the circulating water (hot water) after passing through the primary cooling means 21, and includes at least one dry-type cooler 41 and at least one A wet-type cooler 47 and a heat exchanger 48 are provided. The wet cooler 47, for example, pumps up the internal water with a watering pump 472 and sends it to the heat exchanger 48. After passing through the heat exchanger 48, the water is sprayed with the internal watering part 473 and directly opened to the atmosphere to evaporate. It consists of an open type cooling tower that cools using the latent heat of vaporization. Moreover, the heat exchanger 48 is comprised with a plate-type heat exchanger, for example.

二次冷却手段22Cは、冷却系統30の主系統において、一次冷却手段21を通過した後の循環水(温水)を乾式冷却器41と熱交換器48の一次側とで放熱することによって冷却する。また、二次冷却手段22Cは、冷却系統30の副系統において、熱交換器48の二次側で主系統の循環水から吸熱して温度上昇した副系統の循環水を湿式冷却器47で放熱し、熱交換器48へ戻す。   In the main system of the cooling system 30, the secondary cooling means 22C cools the circulating water (warm water) after passing through the primary cooling means 21 by dissipating heat between the dry cooler 41 and the primary side of the heat exchanger 48. . In addition, the secondary cooling means 22 </ b> C dissipates the circulating water of the secondary system that has absorbed heat from the circulating water of the main system on the secondary side of the heat exchanger 48 in the secondary system of the cooling system 48 with the wet cooler 47. And return to the heat exchanger 48.

このように、第3の地下変電所変圧器冷却システム10Cは、第1の地下変電所変圧器冷却システム10Aに対して、二次冷却手段22Aの代わりに二次冷却手段22C、より詳しくは、密閉型の湿式冷却器43の代わりに開放型の湿式冷却器47および熱交換器48を備えるため、冷却設備である湿式冷却器をさらに小型化でき、メンテナンスの容易性およびコスト面で有利である。   As described above, the third underground substation transformer cooling system 10C is different from the first underground substation transformer cooling system 10A in that the secondary cooling means 22C instead of the secondary cooling means 22A, more specifically, Since the open-type wet cooler 47 and the heat exchanger 48 are provided instead of the sealed wet cooler 43, the wet cooler as a cooling facility can be further reduced in size, which is advantageous in terms of ease of maintenance and cost. .

また、第3の地下変電所変圧器冷却システム10Cでは、冷却系統30が一次冷却手段21を通水する主系統と湿式冷却器47を通水する副系統とに分離されているため、第1の地下変電所変圧器冷却システム10Aの場合と同様に主系統を通水する循環水の水質が悪化することを防止することができる。   Further, in the third underground substation transformer cooling system 10C, the cooling system 30 is separated into the main system through which the primary cooling means 21 passes and the sub system through which the wet cooler 47 passes, so that the first As in the case of the underground substation transformer cooling system 10A, it is possible to prevent the quality of the circulating water flowing through the main system from deteriorating.

第3の地下変電所変圧器冷却システム10Cを用いた地下変電所変圧器冷却方法(以下、「第3の地下変電所変圧器冷却方法」と称する。)については、用いるシステムが異なるものの行われるステップとしては実質的に同様であるため、第1の地下変電所変圧器冷却方法の説明をもって、第3の地下変電所変圧器冷却方法の説明を省略する。なお、第3の地下変電所変圧器冷却方法では、開放型の湿式冷却器47を用いるため、冷却器推奨運転状態判定ステップの処理内容は、例えば、上述した図5に示される内容と同様になる。   An underground substation transformer cooling method using the third underground substation transformer cooling system 10C (hereinafter referred to as "third underground substation transformer cooling method") is performed with different systems. Since the steps are substantially the same, the description of the third underground substation transformer cooling method is omitted with the description of the first underground substation transformer cooling method. In the third underground substation transformer cooling method, since the open type wet cooler 47 is used, the processing content of the cooler recommended operation state determination step is, for example, the same as the content shown in FIG. 5 described above. Become.

このように構成される第3の地下変電所変圧器冷却システム10Cは、および第3の地下変電所変圧器冷却方法によれば、第1の地下変電所変圧器冷却システム10A、および第1の地下変電所変圧器冷却方法と同様の効果を奏することに加え、メンテナンスがより容易で、コストもより下げることができる。   According to the third underground substation transformer cooling system 10C configured as described above, and according to the third underground substation transformer cooling method, the first underground substation transformer cooling system 10A, and the first In addition to the same effects as the underground substation transformer cooling method, the maintenance is easier and the cost can be further reduced.

なお、上述した第3の地下変電所変圧器冷却システム10Cは、第1の地下変電所変圧器冷却システム10Aに対して、密閉型の湿式冷却器43の代わりに開放型の湿式冷却器47および熱交換器48を備える例であるが、例えば第2の地下変電所変圧器冷却システム10B等の第1の地下変電所変圧器冷却システム10A以外の地下変電所変圧器冷却システムにも適用することができる。   Note that the above-described third underground substation transformer cooling system 10C is different from the first underground substation transformer cooling system 10A in that an open-type wet cooler 47 and a sealed wet-type cooler 43 are used. Although it is an example provided with the heat exchanger 48, Applying also to underground substation transformer cooling systems other than 10A of 1st underground substation transformer cooling systems, such as 2nd underground substation transformer cooling system 10B, for example. Can do.

[第4の実施形態]
図9は、本発明の第4の実施形態に係る地下変電所変圧器冷却システムの一実施例である地下変電所変圧器冷却システム(以下、「第4の地下変電所変圧器冷却システム」と称する。)10Dの冷却設備(図9において図示されるのは1バンク分)を中心とする冷却系統30を概略的に示したシステム概略図(第1実施例)である。
[Fourth Embodiment]
FIG. 9 shows an example of an underground substation transformer cooling system (hereinafter referred to as “fourth underground substation transformer cooling system”) as an example of an underground substation transformer cooling system according to the fourth embodiment of the present invention. This is a system schematic diagram (first embodiment) schematically showing a cooling system 30 centering on a 10D cooling facility (one bank is shown in FIG. 9).

第4の地下変電所変圧器冷却システム10Dは、第1の地下変電所変圧器冷却システム10Aに対して、二次冷却手段22Aの代わりに二次冷却手段22Dを具備する点で相違するものの、その他の点は実質的に相違しない。そこで、本実施形態では、第1の地下変電所変圧器冷却システム10Aに対する相違点を中心に説明し、第1の地下変電所変圧器冷却システム10Aの構成要素と実質的に相違しない構成要素については同じ符号を付して説明を省略する。   Although the fourth underground substation transformer cooling system 10D is different from the first underground substation transformer cooling system 10A in that the secondary cooling means 22D is provided instead of the secondary cooling means 22A, Other points are not substantially different. Therefore, in the present embodiment, differences from the first underground substation transformer cooling system 10A will be mainly described, and components that are not substantially different from the components of the first underground substation transformer cooling system 10A. Are denoted by the same reference numerals and description thereof is omitted.

第4の地下変電所変圧器冷却システム10Dにおける冷却系統30は、冷却設備によって冷却される循環水(冷却水)を循環水ポンプ31で循環させる系統である。すなわち、一次冷却手段21と、循環水ポンプ31と、二次冷却手段22Dとを接続して構成される流路に循環水が循環的に流れている。   The cooling system 30 in the fourth underground substation transformer cooling system 10 </ b> D is a system in which circulating water (cooling water) cooled by the cooling facility is circulated by the circulating water pump 31. That is, the circulating water flows cyclically through a flow path configured by connecting the primary cooling means 21, the circulating water pump 31, and the secondary cooling means 22D.

二次冷却手段22Dは、一次冷却手段21を通過した後の循環水(温水)を冷却する機能を有する点で二次冷却手段22Aと同様であるが、その構成は相違する。例えば、図9に示される第4の地下変電所変圧器冷却システム10Dでは、二次冷却手段22Dが少なくとも1台の湿式としても運用可能(湿式運転可能)な乾式冷却器(以下、「散水型乾式冷却器」と称する。)51を備える。すなわち、散水型乾式冷却器51は、二次冷却手段22Dにおいて、乾式冷却手段および湿式冷却手段の両方の役割を果たす。   The secondary cooling means 22D is similar to the secondary cooling means 22A in that it has a function of cooling the circulating water (hot water) after passing through the primary cooling means 21, but the configuration is different. For example, in the fourth underground substation transformer cooling system 10D shown in FIG. 9, the secondary cooling means 22D can be operated even if it is at least one wet type (wet operation is possible) (hereinafter referred to as “watering type”). This is referred to as a “dry cooler”.) 51. That is, the water spray type dry cooler 51 serves as both a dry cooling unit and a wet cooling unit in the secondary cooling unit 22D.

散水型乾式冷却器51は、例えば、内部に一次冷却手段21を通過した後の循環水(温水)が通水する伝熱部511と、外部から導入される空気3が伝熱部511に接する手前の所定範囲で補給水タンク32からスプレー水ポンプ37および弁38を介して供給される補給水(冷水)を噴霧する(より細かな水滴にして散水する)噴霧部(散水部)513とを備える。   For example, the water spray type dry cooler 51 is in contact with the heat transfer section 511 through which the circulating water (hot water) after passing through the primary cooling means 21 passes, and the air 3 introduced from the outside contacts the heat transfer section 511. A spray section (sprinkling section) 513 for spraying makeup water (cold water) supplied from the makeup water tank 32 through the spray water pump 37 and the valve 38 within a predetermined range in front (spraying into finer water droplets); Prepare.

散水型乾式冷却器51は、噴霧部513での噴霧を停止している場合には二次冷却手段22Dの乾式冷却手段として作用し、噴霧部513での噴霧を実施している場合には二次冷却手段22Dの湿式冷却手段として作用する。なお、噴霧部513は、必ずしもより細かな水滴にして散水する(噴霧する)場合に限られず、水を霧状にすることなく散水してもよい。この点は後述する噴霧部533についても同様である。   The water spray type dry cooler 51 acts as a dry cooling means of the secondary cooling means 22D when the spraying at the spraying section 513 is stopped, and is performed when the spraying at the spraying section 513 is performed. It acts as a wet cooling means for the next cooling means 22D. The spray unit 513 is not necessarily limited to the case of spraying fine water droplets (spraying), and may spray water without making it mist. This also applies to the spray unit 533 described later.

従って、乾式冷却手段としての散水型乾式冷却器51は、実質的に湿式冷却器43(図1等)と同様になる。また、湿式冷却手段としての散水型乾式冷却器51は、伝熱部511の手前の所定範囲で噴霧される水の蒸発潜熱を用いて空気3を冷却することにより、伝熱部511の空冷効果、すなわち、循環水の冷却効果を、乾式運用時よりも高めている。   Accordingly, the water spray type dry cooler 51 as the dry cooling means is substantially the same as the wet cooler 43 (FIG. 1 and the like). Further, the water spray type dry cooler 51 as a wet cooling means cools the air 3 using the latent heat of evaporation of water sprayed in a predetermined range before the heat transfer unit 511, so that the air cooling effect of the heat transfer unit 511 is achieved. In other words, the cooling effect of the circulating water is higher than that during dry operation.

二次冷却手段22Dとしての散水型乾式冷却器51は、
(1)乾式冷却手段としての送風機がオフ(停止)通水のみで、
湿式冷却手段としての噴霧部(散水部)513がオフ(停止:噴霧なし)、
(2)乾式冷却手段としての送風機がオン(起動)で、
湿式冷却手段としての噴霧部(散水部)513がオフ(停止:噴霧なし)、
(3)乾式冷却手段としての送風機がオン(起動)で、
湿式冷却手段としての噴霧部(散水部)513がオン(起動:噴霧あり)、
の3段階に冷却段階(運転状態)が切り替えられる。
The water spray type dry cooler 51 as the secondary cooling means 22D is:
(1) The blower as a dry cooling means is only off (stopped) water flow,
Spraying part (watering part) 513 as a wet cooling means is off (stop: no spraying),
(2) The blower as a dry cooling means is on (started),
Spraying part (watering part) 513 as a wet cooling means is off (stop: no spraying),
(3) The blower as a dry cooling means is on (start),
Spraying part (watering part) 513 as a wet cooling means is on (activation: spraying),
The cooling stage (operating state) is switched to these three stages.

図10は、第4の地下変電所変圧器冷却システム10Dの冷却設備(図10において図示されるのは1バンク分)を中心とする冷却系統30を概略的に示したシステム概略図(第2実施例)である。 FIG. 10 is a system schematic diagram (second diagram) schematically showing a cooling system 30 centering on a cooling facility of the fourth underground substation transformer cooling system 10D (in FIG. 10 , one bank is shown). Example).

第4の地下変電所変圧器冷却システム10Dでは、例えば、図10に示されるように、図9に示される二次冷却手段22Dの散水型乾式冷却器51の代わりに、二次冷却手段22Dとして散水型乾式冷却器53を具備することもできる。   In the fourth underground substation transformer cooling system 10D, for example, as shown in FIG. 10, instead of the water spray type dry cooler 51 of the secondary cooling means 22D shown in FIG. A water spray type dry cooler 53 can also be provided.

散水型乾式冷却器53は、伝熱部531と噴霧部533とを備え、伝熱部511と噴霧部513とを備える散水型乾式冷却器51と類似する構成であるが、水の噴霧先(散布先)が散水型乾式冷却器51と異なる。散水型乾式冷却器53では、噴霧部533から伝熱部531に噴霧されるため、伝熱面からの蒸発効果によって、散水型乾式冷却器51よりもさらに高い熱伝達性能を得ることできる。従って、伝熱面積を小さく、ひいては、装置をより小型化できる。なお、散水型乾式冷却器53の運転段階は、散水型乾式冷却器51の運転段階と同様に3段階である。   The water spray type dry cooler 53 includes a heat transfer unit 531 and a spray unit 533, and has a configuration similar to the water spray type dry cooler 51 including a heat transfer unit 511 and a spray unit 513. The spray destination is different from the watering type dry cooler 51. In the water spray type dry cooler 53, since it sprays from the spray part 533 to the heat transfer part 531, higher heat transfer performance than the water spray type dry cooler 51 can be obtained by the evaporation effect from the heat transfer surface. Therefore, the heat transfer area can be reduced, and the apparatus can be further downsized. In addition, the operation stage of the water spray type dry cooler 53 is a three-stage operation like the operation stage of the water spray type dry cooler 51.

続いて、第4の地下変電所変圧器冷却システム10Dを用いた地下変電所変圧器冷却方法(以下、「第4の地下変電所変圧器冷却方法」と称する。)について説明する。   Subsequently, an underground substation transformer cooling method (hereinafter referred to as “fourth underground substation transformer cooling method”) using the fourth underground substation transformer cooling system 10D will be described.

第4の地下変電所変圧器冷却システム10Dは、乾式冷却手段(乾式冷却器41)と湿式冷却手段(湿式冷却器43)とが分離して構成される第1の地下変電所変圧器冷却システム10Aとは異なり、乾式冷却手段と湿式冷却手段とが一体化されて構成される、すなわち、乾式としても湿式としても動作可能な散水型乾式冷却器51,53を具備する点で相違する。   The fourth underground substation transformer cooling system 10D is a first underground substation transformer cooling system configured by separating dry cooling means (dry cooler 41) and wet cooling means (wet cooler 43). Unlike 10A, it is different in that the dry cooling means and the wet cooling means are configured to be integrated, that is, provided with watering type dry coolers 51 and 53 that can operate as a dry type or a wet type.

しかしながら、変圧器冷却のコンセプトは、第1の地下変電所変圧器冷却システム10Aでも第4の地下変電所変圧器冷却システム10Dでも同様であるため、運転制御手順の処理ステップの大半は、第4の地下変電所変圧器冷却システム10Dでも第1の地下変電所変圧器冷却システム10Aと同様に実行される。   However, since the concept of transformer cooling is the same in both the first underground substation transformer cooling system 10A and the fourth underground substation transformer cooling system 10D, most of the processing steps of the operation control procedure are the fourth. The underground substation transformer cooling system 10D is also executed in the same manner as the first underground substation transformer cooling system 10A.

但し、散水型乾式冷却器51,53で切替可能な運転段階は3段階のため、第4の地下変電所変圧器冷却方法における冷却器推奨運転状態判定ステップの処理内容は、例えば、上述した図5に示される内容と同様になる。本実施形態では、閾値(設定温度)T2は、散水型乾式冷却器51,53の噴霧部513,533をオン(噴霧あり:湿式運転)にする温度として取り扱う。   However, since the operation stage that can be switched by the water spray type dry coolers 51 and 53 is three stages, the processing content of the cooler recommended operation state determination step in the fourth underground substation transformer cooling method is, for example, the above-described figure. The contents are the same as those shown in FIG. In the present embodiment, the threshold value (set temperature) T2 is handled as a temperature at which the spray units 513 and 533 of the water spray type dry coolers 51 and 53 are turned on (with spraying: wet operation).

第4の地下変電所変圧器冷却システム10D、および第4の地下変電所変圧器冷却方法によれば、第1の地下変電所変圧器冷却システム10A、および第1の地下変電所変圧器冷却システム10Aを用いた地下変電所変圧器冷却方法と同様の効果を奏することに加え、二次冷却手段22Dの構成をより簡素化できる。また、二次冷却手段22Dにおける散水型乾式冷却器51,53は、下水処理が必要となる水を発生させないため、より大きな水道代削減効果を得ることができる。   According to the fourth underground substation transformer cooling system 10D and the fourth underground substation transformer cooling method, the first underground substation transformer cooling system 10A and the first underground substation transformer cooling system In addition to having the same effect as the underground substation transformer cooling method using 10A, the configuration of the secondary cooling means 22D can be further simplified. Moreover, since the water spray type dry coolers 51 and 53 in the secondary cooling means 22D do not generate water that requires sewage treatment, it is possible to obtain a greater effect of reducing water bills.

なお、上述した第4の地下変電所変圧器冷却システム10Dは、第1の地下変電所変圧器冷却システム10Aに対して、乾式冷却器41および湿式冷却器43の代わりに、散水型乾式冷却器51または散水型乾式冷却器53を備える例であるが、第2の地下変電所変圧器冷却システム10Bに対しても適用することができる。すなわち、第2の地下変電所変圧器冷却システム10Bにおける乾式冷却器41および湿式冷却器43の代わりに、散水型乾式冷却器51または散水型乾式冷却器53を備えることができる。   Note that the above-described fourth underground substation transformer cooling system 10D is different from the first underground substation transformer cooling system 10A in place of the dry cooler 41 and the wet cooler 43 in the form of a water spray type dry cooler. 51 or a water spray type dry cooler 53, it can also be applied to the second underground substation transformer cooling system 10B. That is, instead of the dry cooler 41 and the wet cooler 43 in the second underground substation transformer cooling system 10B, a water spray type dry cooler 51 or a water spray type dry cooler 53 can be provided.

以上、第1〜4の地下変電所変圧器冷却システム10A〜10Dおよび第1〜4の地下変電所変圧器冷却方法によれば、湿式で運転する時間を、年間を通じて限られた時間に限定できる(外気温度と変圧器負荷によっては稼働時間をゼロにすることも可能になる)ため、従来と比較して大幅に(最大100%)節水することができる。従って、第1〜4の地下変電所変圧器冷却システム10A〜10Dを運用する際に必要となる水道代(上水道代および下水道代)を大幅に削減することができる。   As described above, according to the first to fourth underground substation transformer cooling systems 10A to 10D and the first to fourth underground substation transformer cooling methods, the wet operation time can be limited to a limited time throughout the year. (Depending on the outside air temperature and the transformer load, the operation time can be reduced to zero), so water can be saved significantly (up to 100%) compared to the conventional case. Therefore, it is possible to greatly reduce water bills (water supply bills and sewer bills) required when operating the first to fourth underground substation transformer cooling systems 10A to 10D.

また、第1〜4の地下変電所変圧器冷却システム10A〜10Dでは、大規模災害発生などに起因して断水が生じたとしても、二次冷却手段22A〜22Dを運転するために必要となる水はほぼゼロであるため、変圧器1の冷却を継続できる。すなわち、災害に強い地下変電所の変圧器冷却システムおよび変圧器冷却方法を提供することができる。   In addition, in the first to fourth underground substation transformer cooling systems 10A to 10D, even if a water outage occurs due to the occurrence of a large-scale disaster or the like, it is necessary to operate the secondary cooling means 22A to 22D. Since the water is almost zero, the cooling of the transformer 1 can be continued. That is, it is possible to provide a transformer cooling system and a transformer cooling method for an underground substation that is resistant to disaster.

さらに、第1〜4の地下変電所変圧器冷却システム10A〜10Dでは、湿式で運転が必要となる時間が年間を通じてごく僅か(年によってはゼロ)になるため、湿式冷却器43,47、および散水型乾式冷却器51,53でのスケール(水垢)付着はほとんど生じない。また、長期間に亘って(常用的に)湿式で運転することがなくなるため、レジオネラ症予防対策を講じる必要がなく、レジオネラ症予防対策に必要な手間および費用を削減することができる。   Furthermore, in the first to fourth underground substation transformer cooling systems 10A to 10D, the time required for wet operation is negligible throughout the year (zero depending on the year). Scale (scale) adhesion hardly occurs in the watering type dry coolers 51 and 53. In addition, since it is not necessary to operate in a wet manner over a long period of time (regularly), it is not necessary to take preventive measures for legionellosis, and it is possible to reduce the effort and cost required for the preventive measures for legionellosis.

さらにまた、第1〜4の地下変電所変圧器冷却システム10A〜10Dでは、二次冷却手段22A〜22Dの設備面積を従来の場合と比較して約2/3以下にすることができ、省スペース化することができる。従って、一般に冷却設備が大規模化する傾向にある上、大きな設置スペースの確保が困難な都市部の地下変電所においても、現状と同程度の設置スペースが確保できれば、新設時のみならず改修時においても、第1〜4の地下変電所変圧器冷却システム10A〜10Dを適用することもできる。   Furthermore, in the first to fourth underground substation transformer cooling systems 10A to 10D, the installation area of the secondary cooling means 22A to 22D can be reduced to about 2/3 or less compared to the conventional case. It can be made into a space. Therefore, in general, in the underground substations in urban areas where it is difficult to secure a large installation space as the cooling facilities tend to become large-scale, if the same installation space as the current situation can be secured, not only at the time of new installation but also at the time of renovation The first to fourth underground substation transformer cooling systems 10A to 10D can also be applied.

なお、本発明は上述した実施形態そのままに限定されるものではなく、実施段階では、上述した実施例以外にも様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Note that the present invention is not limited to the above-described embodiments as they are, and can be implemented in various forms other than the above-described examples in the implementation stage, and within the scope not departing from the gist of the invention. Various omissions, additions, replacements, and changes can be made. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 変圧器(被冷却体)
3 空気
10A〜10D 地下変電所変圧器冷却システム
21 一次冷却手段
22A〜22D 二次冷却手段
30 冷却系統
31 循環水ポンプ
32 補給水タンク
35 温度計
37 スプレー水ポンプ
38 弁
41 乾式冷却器
411 伝熱部
43,47 湿式冷却器
431 伝熱部
432,472 散水ポンプ
433,473 散水部
45 熱交換器
46a〜46d 弁
48 熱交換器
51,53 散水型乾式冷却器
511,531 伝熱部
513,533 噴霧部
1 Transformer (object to be cooled)
3 Air 10A to 10D Substation transformer cooling system 21 Primary cooling means 22A to 22D Secondary cooling means 30 Cooling system 31 Circulating water pump 32 Supply water tank 35 Thermometer 37 Spray water pump 38 Valve 41 Dry type cooler 411 Heat transfer Units 43 and 47 Wet cooler 431 Heat transfer unit 432 and 472 Water spray pump 433 and 473 Water spray unit 45 Heat exchanger 46a to 46d Valve 48 Heat exchanger 51 and 53 Water spray type dry cooler 511 and 531 Heat transfer unit 513 and 533 Spray section

Claims (11)

循環水が循環する経路上に設けられ、前記循環水と熱交換することで地下変電所に設置される変圧器の発生熱を前記変圧器から除去する一次冷却手段と、
前記一次冷却手段とは離れた位置であって前記循環水が循環する経路上に設置され、前記一次冷却手段を通過した後の循環水である温水を冷却する二次冷却手段とを具備し、
前記二次冷却手段は、高温度高負荷時に冷却のための水を使用しないで送風により乾式運転可能な少なくとも1個の乾式冷却手段と、前記乾式冷却手段と前記一次冷却手段との間を通水する前記循環水と前記乾式冷却手段以降かつ前記一次冷却手段前で熱交換可能な高温度高負荷時に冷却のための水を使用するとともに前記乾式冷却手段の送風機とは別個の送風機による送風により湿式運転可能な少なくとも1個の湿式冷却手段と、を備え、前記乾式冷却手段と前記湿式冷却手段とはそれぞれ独立して形成され、前記乾式冷却手段は常用的に冷却運転され、前記湿式冷却手段は冷却能力をさらに高めるときのみに、前記乾式冷却手段に加えて予備的に冷却運転されるように構成されることを特徴とする地下変電所の変圧器冷却システム。
Primary cooling means provided on a path through which the circulating water circulates, and removing heat generated from the transformer installed in the underground substation by exchanging heat with the circulating water;
A secondary cooling unit that is installed on a path where the circulating water circulates at a position away from the primary cooling unit, and cools the hot water that is the circulating water after passing through the primary cooling unit;
The secondary cooling means passes between the dry cooling means and the primary cooling means, at least one dry cooling means that can be dry-operated by blowing air without using water for cooling at high temperature and high load. By using the water for cooling at the time of high temperature and high load that can exchange heat after the dry cooling means and before the primary cooling means, and using the air blown by a blower separate from the blower of the dry cooling means At least one wet cooling means capable of being wet-operated , wherein the dry cooling means and the wet cooling means are independently formed, and the dry cooling means is regularly cooled and operated, and the wet cooling means The substation transformer cooling system is configured to be preliminarily cooled in addition to the dry cooling means only when the cooling capacity is further increased .
前記乾式冷却手段は、少なくとも1台の、送風機を有する乾式冷却器で構成され、
前記湿式冷却手段は、少なくとも1台の、散水ポンプおよび前記乾式冷却器の送風機とは別個の送風機を有する湿式冷却器で構成されることを特徴とする請求項1に記載の地下変電所の変圧器冷却システム。
The dry cooling means is composed of at least one dry cooler having a blower ,
The substation transformer according to claim 1, wherein the wet cooling means includes at least one wet cooler having a blower separate from the watering pump and the blower of the dry cooler. Cooling system.
前記乾式冷却手段と前記湿式冷却手段との間に、前記循環水と熱交換する第1の熱交換器をさらに設置し、
前記第1の熱交換器の一次側に前記乾式冷却手段を通水した後の前記循環水を通水させ、通水後の前記循環水を前記一次冷却手段へ流入させ、
前記第1の熱交換器の二次側に前記湿式冷却手段によって冷却される水を循環的に通水させるように構成されることを特徴とする請求項1または2に記載の地下変電所の変圧器冷却システム。
A first heat exchanger for exchanging heat with the circulating water is further installed between the dry cooling means and the wet cooling means,
Passing the circulating water after passing the dry cooling means to the primary side of the first heat exchanger, allowing the circulating water after passing water to flow into the primary cooling means,
The underground substation according to claim 1 or 2, wherein water cooled by the wet cooling means is circulated through the secondary side of the first heat exchanger in a circulating manner. Transformer cooling system.
前記湿式冷却手段は、開放型冷却塔で構成されることを特徴とする請求項3に記載の地下変電所の変圧器冷却システム。 The transformer cooling system for an underground substation according to claim 3, wherein the wet cooling means comprises an open type cooling tower. 前記二次冷却手段は、前記循環水の温度に応じて、前記乾式冷却手段による乾式運転のオンとオフ、および前記湿式冷却手段による湿式運転のオンとオフが切替可能に構成されており、
前記循環水の温度が、予め設定される第1の温度に上昇した場合に、前記乾式運転はオフからオンに切り替えられ、
前記循環水の温度が、予め設定される、前記第1の温度よりも高い第2の温度に上昇した場合に、前記湿式運転はオフからオンに切り替えられることを特徴とする請求項1から4の何れか1項に記載の地下変電所の変圧器冷却システム。
The secondary cooling means is configured to be able to switch on and off the dry operation by the dry cooling means and on and off the wet operation by the wet cooling means according to the temperature of the circulating water,
When the temperature of the circulating water rises to a first preset temperature, the dry operation is switched from off to on,
The wet operation is switched from off to on when the temperature of the circulating water rises to a preset second temperature that is higher than the first temperature. The transformer cooling system for an underground substation according to any one of the above.
前記二次冷却手段は、前記循環水の温度に応じて、前記乾式冷却手段による乾式運転のオンとオフ、および前記湿式冷却手段による湿式運転のオンとオフが切替可能に構成されており、
前記循環水の温度が、予め設定される第3の温度に下降した場合に、前記湿式運転はオンからオフに切り替えられ、
前記循環水の温度が、予め設定される、前記第3の温度よりも低い第4の温度に下降した場合に、前記乾式運転はオンからオフに切り替えられることを特徴とする請求項1から5の何れか1項に記載の地下変電所の変圧器冷却システム。
The secondary cooling means is configured to be able to switch on and off the dry operation by the dry cooling means and on and off the wet operation by the wet cooling means according to the temperature of the circulating water,
When the temperature of the circulating water drops to a preset third temperature, the wet operation is switched from on to off,
The dry operation is switched from on to off when the temperature of the circulating water drops to a preset fourth temperature lower than the third temperature. The transformer cooling system for an underground substation according to any one of the above.
前記二次冷却手段は、前記循環水の温度に応じて、前記乾式冷却手段による乾式運転のオンとオフ、および前記湿式冷却手段による湿式運転のオンとオフが切替可能に構成されており、
前記循環水の温度が、予め設定される第1の温度に上昇した場合に、前記乾式運転はオフからオンに切り替えられ、
前記循環水の温度が、予め設定される、前記第1の温度よりも高い第2の温度に上昇した場合に、前記湿式運転はオフからオンに切り替えられ、
前記循環水の温度が、予め設定される、前記第2の温度よりも低い温度である第3の温度に下降した場合に、前記湿式運転はオンからオフに切り替えられ、
前記循環水の温度が、予め設定される、前記第3の温度よりも低く、かつ、前記第1の温度よりも低い第4の温度に下降した場合に、前記乾式運転はオンからオフに切り替えられることを特徴とする請求項1から6の何れか1項に記載の地下変電所の変圧器冷却システム。
The secondary cooling means is configured to be able to switch on and off the dry operation by the dry cooling means and on and off the wet operation by the wet cooling means according to the temperature of the circulating water,
When the temperature of the circulating water rises to a first preset temperature, the dry operation is switched from off to on,
When the temperature of the circulating water rises to a preset second temperature that is higher than the first temperature, the wet operation is switched from off to on,
The wet operation is switched from on to off when the temperature of the circulating water drops to a preset third temperature that is lower than the second temperature;
The dry operation is switched from on to off when the temperature of the circulating water falls to a fourth temperature that is lower than the third temperature that is set in advance and lower than the first temperature. The transformer cooling system for an underground substation according to any one of claims 1 to 6, wherein
前記乾式冷却手段の前段に、前記循環水との間で熱交換する第2の熱交換器をさらに設置したことを特徴とする請求項1からの何れか1項に記載の地下変電所の変圧器冷却システム。 The underground substation according to any one of claims 1 to 7 , further comprising a second heat exchanger for exchanging heat with the circulating water before the dry cooling means. Transformer cooling system. 前記少なくとも1個の乾式冷却手段と並列に、前記循環水との間で熱交換する第2の熱交換器をさらに設置したことを特徴とする請求項1からの何れか1項に記載の地下変電所の変圧器冷却システム。 Wherein in parallel with at least one dry cooling means, according to any one of claims 1 to 7, characterized in that the second further established a heat exchanger for exchanging heat between the circulating water Transformer cooling system for underground substation. 前記乾式冷却手段および前記湿式冷却手段の設計温度は、前記地下変電所が設置される都市の年間を通じて最も暑い真夏の時期の外気温度を基準として設定され、
前記乾式冷却手段の冷却容量は、設定される設計温度よりも低い温度の場合に、前記乾式冷却手段がオン、かつ前記湿式冷却手段がオフの状態で、前記変圧器の100%負荷運転が可能な値に設定され、
前記湿式冷却手段の冷却容量は、前記設定される設計温度の場合に、前記乾式冷却手段がオン、かつ前記湿式冷却手段がオンの状態で、前記変圧器の100%負荷運転が可能な値に設定されることを特徴とする請求項1からの何れか1項に記載の地下変電所の変圧器冷却システム。
The design temperature of the dry cooling means and the wet cooling means is set on the basis of the outdoor temperature in the hottest midsummer year of the city where the underground substation is installed,
When the cooling capacity of the dry cooling means is lower than a set design temperature, the transformer can be operated at 100% load with the dry cooling means on and the wet cooling means off. Value is set to
The cooling capacity of the wet cooling means is set to a value that allows 100% load operation of the transformer when the dry cooling means is on and the wet cooling means is on at the set design temperature. The transformer cooling system for an underground substation according to any one of claims 1 to 9 , wherein the transformer cooling system is set.
循環水が循環する経路上に設けられ、前記循環水と熱交換することで地下変電所に設置される変圧器の発生熱を前記変圧器から除去する一次冷却手段と、前記一次冷却手段とは離れた位置であって前記循環水が循環する経路上に設置され、前記一次冷却手段を通過した後の循環水である温水を冷却する二次冷却手段とを具備し、前記二次冷却手段は、高温度高負荷時に冷却のための水を使用しないで送風により乾式運転可能な少なくとも1個の乾式冷却手段と、前記乾式冷却手段と前記一次冷却手段との間を通水する前記循環水と前記乾式冷却手段以降かつ前記一次冷却手段以前で熱交換可能な高温度高負荷時に冷却のための水を使用するとともに前記乾式冷却手段の送風機とは別個の送風機による送風により湿式運転可能な少なくとも1個の湿式冷却手段とを備え、前記乾式冷却手段と前記湿式冷却手段とはそれぞれ独立して形成され、前記乾式冷却手段は常用的に冷却運転され、前記湿式冷却手段は冷却能力をさらに高めるときのみに、前記乾式冷却手段に加えて予備的に冷却運転されるように構成されることを特徴とする地下変電所の変圧器冷却システムを用いた地下変電所の変圧器冷却方法であり、
計測される前記循環水の温度に基づいて、前記高温度高負荷時であるか前記高温度高負荷時ではない通常運用時であるかが判定され、判定結果が前記通常運用時である場合には、前記乾式冷却手段をオンとし、前記湿式冷却手段をオフとするステップと、
前記判定結果が前記高温度高負荷時である場合には、前記乾式冷却手段をオンとし、前記湿式冷却手段をオンとするステップと、を具備することを特徴とする地下変電所の変圧器冷却方法。
Primary cooling means provided on a path through which the circulating water circulates and removing heat generated from the transformer installed in the substation by exchanging heat with the circulating water, and the primary cooling means A secondary cooling unit that is installed on a path where the circulating water circulates at a distant position and cools the hot water that is the circulating water after passing through the primary cooling unit, and the secondary cooling unit includes: At least one dry cooling means that can be dry operated by blowing without using water for cooling at high temperature and high load, and the circulating water that passes between the dry cooling means and the primary cooling means, At least one capable of performing wet operation by blowing air from a blower separate from the blower of the dry cooling means and using water for cooling at a high temperature and high load after the dry cooling means and before the primary cooling means and capable of heat exchange Pieces And a wet cooling means, said formed by each independently of the dry cooling means and the wet cooling means, the dry cooling means are cooling operation customary manner, the wet cooling means only when further increasing the cooling capacity In addition to the dry cooling means, it is configured to be preliminarily cooled and operated, and is a transformer cooling method for an underground substation using a transformer cooling system for an underground substation,
Based on the measured temperature of the circulating water, it is determined whether the high temperature / high load or the normal operation is not the high temperature / high load, and the determination result is the normal operation Turning on the dry cooling means and turning off the wet cooling means;
When the determination result is at the time of the high temperature and high load, the step of turning on the dry cooling means and turning on the wet cooling means comprises: Transformer cooling of an underground substation Method.
JP2014119365A 2014-06-10 2014-06-10 Transformer cooling system and transformer cooling method for underground substation Active JP6463908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119365A JP6463908B2 (en) 2014-06-10 2014-06-10 Transformer cooling system and transformer cooling method for underground substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119365A JP6463908B2 (en) 2014-06-10 2014-06-10 Transformer cooling system and transformer cooling method for underground substation

Publications (2)

Publication Number Publication Date
JP2015233076A JP2015233076A (en) 2015-12-24
JP6463908B2 true JP6463908B2 (en) 2019-02-06

Family

ID=54934377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119365A Active JP6463908B2 (en) 2014-06-10 2014-06-10 Transformer cooling system and transformer cooling method for underground substation

Country Status (1)

Country Link
JP (1) JP6463908B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980969B2 (en) * 2016-04-13 2021-12-15 富士通株式会社 Data center and data center control method
CN111968826B (en) * 2020-08-14 2021-08-31 合肥创丰机械有限责任公司 Complete set of water cooling and heat dissipation system of underground transformer and installation and use method
CN115762978B (en) * 2023-02-10 2023-04-18 深圳市固特电源技术有限公司 Dry-type transformer with multiple circulating cooling

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919893Y2 (en) * 1979-12-14 1984-06-08 高砂熱学工業株式会社 Wet and dry mixed cooling tower
JPS56106424U (en) * 1980-01-16 1981-08-19
JPS59186670U (en) * 1983-05-24 1984-12-11 北芝電機株式会社 Spread type evaporative cooling device
JPH0275898A (en) * 1988-09-12 1990-03-15 Toshiba Corp Waste heat recovering apparatus
JPH0275898U (en) * 1988-11-28 1990-06-11
JPH06323761A (en) * 1993-05-17 1994-11-25 Tada Denki Kk Closed cooling tower
JPH10223442A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Transforming apparatus cooling system and operation method thereof
JP2001091167A (en) * 1999-09-21 2001-04-06 Hitachi Air Conditioning System Co Ltd Sealed crossflow cooling tower
JP2001091189A (en) * 1999-09-27 2001-04-06 Toshiba Corp Cooling facility system
JP5320147B2 (en) * 2009-04-24 2013-10-23 東芝プラントシステム株式会社 Emergency transformer cooling system for underground substation and cooling method therefor
JP5622452B2 (en) * 2010-06-21 2014-11-12 東芝プラントシステム株式会社 Substation substation cooling system replacement method
US9658662B2 (en) * 2010-10-12 2017-05-23 Hewlett Packard Enterprise Development Lp Resource management for data centers

Also Published As

Publication number Publication date
JP2015233076A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6401587B2 (en) Transformer cooling device, transformer cooling system, and transformer cooling method for underground substation
JP6983770B2 (en) Regional thermal energy distribution system
CN110325804B (en) System and method for controlling a refrigeration system
JP6953455B2 (en) Methods for controlling heat transfer between local cooling and local heating systems
JP5294768B2 (en) Air conditioning heat source system using cooling tower
US10132507B2 (en) Combined hot water and air heating and conditioning system including heat pump
CN108366516B (en) Passive heat pipe natural cooling machine room air conditioning system and control method thereof
JP6463908B2 (en) Transformer cooling system and transformer cooling method for underground substation
KR20160006046A (en) Chiller
KR20170003839A (en) Cooling tower basin cooling system and cooling method
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JP5320147B2 (en) Emergency transformer cooling system for underground substation and cooling method therefor
JP6612228B2 (en) Air conditioning system, surrounding air conditioning unit and water pipeline refurbishment method for heating purposes
JP4854399B2 (en) Cold water production system
JP6118065B2 (en) Water-cooled air conditioning system and operation control method thereof
KR102228547B1 (en) Heating system
JP2008309347A (en) Air conditioning system
JP6737774B2 (en) Phase change cooling device and control method thereof
JP2009168256A (en) Combination type air conditioning system
CN107105602A (en) Cooling water system for data center
JP4631857B2 (en) Heat source system for high temperature cold water application
JP2004156791A (en) Facility system and its construction method
JP2012078075A (en) Air-conditioning hot water supply system
KR20120034837A (en) A cleaning equipment of heat exchanger with heat accumulator
JP2007147133A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R150 Certificate of patent or registration of utility model

Ref document number: 6463908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250