JP6462467B2 - Power supply vehicle and vehicle power supply system - Google Patents

Power supply vehicle and vehicle power supply system Download PDF

Info

Publication number
JP6462467B2
JP6462467B2 JP2015079839A JP2015079839A JP6462467B2 JP 6462467 B2 JP6462467 B2 JP 6462467B2 JP 2015079839 A JP2015079839 A JP 2015079839A JP 2015079839 A JP2015079839 A JP 2015079839A JP 6462467 B2 JP6462467 B2 JP 6462467B2
Authority
JP
Japan
Prior art keywords
vehicle
power
power receiving
power supply
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015079839A
Other languages
Japanese (ja)
Other versions
JP2016201884A (en
Inventor
小林 茂
茂 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Japan Radio Co Ltd
Original Assignee
Nagano Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Japan Radio Co Ltd filed Critical Nagano Japan Radio Co Ltd
Priority to JP2015079839A priority Critical patent/JP6462467B2/en
Publication of JP2016201884A publication Critical patent/JP2016201884A/en
Application granted granted Critical
Publication of JP6462467B2 publication Critical patent/JP6462467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、走行中の受電車両に対して走行状態のまま非接触で給電する給電車両、およびこの給電車両を備えた車両給電システムに関するものである。   The present invention relates to a power supply vehicle that supplies power to a power receiving vehicle that is traveling in a non-contact manner while traveling and a vehicle power supply system including the power supply vehicle.

この種の給電車両として、例えば、下記の特許文献1に開示された非接触給電装置を搭載した送電車両(給電車両)が知られている。この送電車両は、受電車両に電力を送電(給電)する車両であり、送電コイル、高周波電源および送電車両用駆動力変換装置を備えて、受電車両が走行する路面の下に配設されたレールの上を走行する。この送電車両用駆動力変換装置は、送電車両用モータドライバ、送電車両用モータ、送電車両用駆動装置、送電車両用車輪から構成され、送電側電気エネルギーを駆動力に変換して送電車両を走行させる。   As this type of power supply vehicle, for example, a power transmission vehicle (power supply vehicle) equipped with a non-contact power supply device disclosed in Patent Document 1 below is known. This power transmission vehicle is a vehicle that transmits (feeds) power to a power receiving vehicle, and includes a power transmission coil, a high-frequency power source, and a power transmission vehicle driving force converter, and a rail disposed below a road surface on which the power receiving vehicle travels. Drive on the top. This power transmission vehicle driving force conversion device is composed of a power transmission vehicle motor driver, a power transmission vehicle motor, a power transmission vehicle drive device, and a power transmission vehicle wheel. The power transmission side electric energy is converted into a driving force to travel the power transmission vehicle. Let

一方、受電車両は、人物や積荷を運搬する車両であり、受電コイル、受電車両用駆動力変換装置および操舵装置を備え、路面の上を走行する。この受電車両用駆動力変換装置は、充電器、蓄電装置、受電車両用モータドライバ、受電車両用モータ、受電車両用駆動装置、受電車両用車輪から構成されて、受電コイルから得た受電側電気エネルギーを駆動力に変換して受電車両を走行させる。   On the other hand, the power receiving vehicle is a vehicle that carries a person or a load, and includes a power receiving coil, a power receiving vehicle driving force conversion device, and a steering device, and travels on a road surface. The power receiving vehicle driving force conversion device includes a charger, a power storage device, a power receiving vehicle motor driver, a power receiving vehicle motor, a power receiving vehicle driving device, and a power receiving vehicle wheel, and is configured to receive power from a power receiving coil. The energy receiving vehicle is driven by converting energy into driving force.

この送電車両と受電車両とを備えたシステムでは、走行中の受電車両に送電車両から電力を送電する場合、受電車両は、送電車両の進行方向の速度と合うように並走し、受電コイルと送電コイル間の給電効率が最大となる位置関係となるように、操舵装置にて受電車両の左右の位置が制御され、かつ受電車両用モータドライバにて受電車両の進行方向の速度が制御される。   In the system including the power transmission vehicle and the power receiving vehicle, when power is transmitted from the power transmission vehicle to the power receiving vehicle that is running, the power receiving vehicle runs in parallel so as to match the speed in the traveling direction of the power transmission vehicle, The left and right positions of the power receiving vehicle are controlled by the steering device and the speed of the power receiving vehicle in the traveling direction is controlled by the power receiving vehicle motor driver so that the power supply efficiency between the power transmission coils is maximized. .

この送電車両によれば、走行中の受電車両に対して、並走する送電車両から非接触で給電することができるため、非接触給電において生じる漏れ磁束の抑制が可能となる。しかしながら、この送電車両を備えたシステムでは、走行中の受電車両に対して送電車両を並走させるためのレールを、受電車両が走行する路面の下に設ける必要があるため、多額の建設費が必要になるという課題が存在している。   According to this power transmission vehicle, since it is possible to supply power to the power-receiving vehicle that is running in a non-contact manner from a power transmission vehicle that is running in parallel, it is possible to suppress leakage magnetic flux that occurs in the non-contact power feeding. However, in this system equipped with a power transmission vehicle, it is necessary to provide a rail for running the power transmission vehicle in parallel with the power receiving vehicle that is running under the road surface on which the power reception vehicle travels. There is a problem that is necessary.

このような建設費に関する課題が生じない他の給電車両として、下記の特許文献2に開示された給電装置搭載車両(給電車両)が知られている。この給電装置搭載車両は、車両本体に給電装置および受電装置としての受給電装置を搭載し、同じ路面の上を走行する他の給電装置搭載車両に対して非接触で給電可能に構成されている。   As another power supply vehicle that does not cause such a problem relating to construction costs, a vehicle equipped with a power supply device (power supply vehicle) disclosed in Patent Document 2 below is known. This vehicle equipped with a power supply device is configured such that a power supply device and a power supply / reception device serving as a power reception device are mounted on the vehicle body, and power can be supplied in a non-contact manner with respect to other power supply device-equipped vehicles traveling on the same road surface. .

受給電装置は、外部の電力供給先である受電装置(例えば、他車搭載の受電装置)に対して非接触給電を行ったり、外部の電力供給元である給電装置(例えば、他車搭載の給電装置)からの非接触給電を受けたりすることが可能である。また、受給電装置は、車両本体の前部および後部に設置されている。また、受給電装置は、車両本体に対して水平方向および上下方向に回動する非接触ユニットと、車両本体に対する非接触ユニットの姿勢を変更可能とする非接触ユニット可動機構と、非接触ユニット可動機構を駆動させるユニット駆動部と、非接触ユニットを進退させる非接触ユニット進退機構とを備えている。   The power supply / reception device performs non-contact power supply to a power reception device (for example, a power reception device mounted on another vehicle) that is an external power supply destination, or a power supply device (for example, mounted on another vehicle) that is an external power supply source. It is possible to receive non-contact power feeding from a power feeding device. Moreover, the power supply / reception device is installed in the front part and the rear part of the vehicle main body. The power supply / reception device includes a non-contact unit that rotates in a horizontal direction and a vertical direction with respect to the vehicle main body, a non-contact unit movable mechanism that can change a posture of the non-contact unit with respect to the vehicle main body, and a non-contact unit movable A unit driving unit that drives the mechanism and a non-contact unit advance / retreat mechanism that advances and retracts the non-contact unit are provided.

この特許文献2に開示された給電車両が、例えば、同じ路面上において前方を走行する前方車両に給電するときには、前方車両と縦列で走行する状態に移行し、この状態において給電する。この場合、給電車両および前方車両に搭載されている各受給電装置は、非接触ユニットを回動させて走行方向(進行方向)に向く姿勢に移動させ、この姿勢を非接触ユニットの基本姿勢として、給電車両および前方車両の双方の非接触ユニット同士が対向するように、水平方向および上下方向の回動の組み合わせによってそれぞれの非接触ユニットの姿勢をリアルタイムで微調整する。また、各受給電装置は、非接触ユニット同士の距離がほぼ一定となるように、非接触ユニットをリアルタイムで進退させる。   For example, when the power supply vehicle disclosed in Patent Document 2 supplies power to a front vehicle that travels forward on the same road surface, the state shifts to a state of traveling in parallel with the front vehicle, and power is supplied in this state. In this case, each power supply / reception device mounted on the power feeding vehicle and the preceding vehicle rotates the non-contact unit to move to a posture facing the traveling direction (traveling direction), and uses this posture as a basic posture of the non-contact unit. The attitude of each non-contact unit is finely adjusted in real time by a combination of horizontal and vertical rotations so that the non-contact units of both the power supply vehicle and the preceding vehicle face each other. Each power supply / reception device advances and retracts the non-contact units in real time so that the distance between the non-contact units is substantially constant.

このように、この給電車両では、非接触ユニットの水平方向および上下方向の姿勢や、受電車両の非接触ユニットとの間の距離がリアルタイムで制御されるため、給電車両および前方車両の双方の非接触ユニット同士が常に対向する状態で、受電車両に電力を非接触で供給することが可能になっている。また、この給電車両では、このようにして同じ路面上において他の車両に非接触で給電することができるため、路面の下にレールを建設する必要がないことから、多額の建設費は不要となる。   Thus, in this power supply vehicle, the horizontal and vertical postures of the non-contact unit and the distance between the power reception vehicle and the non-contact unit are controlled in real time. In a state where the contact units always face each other, it is possible to supply electric power to the power receiving vehicle in a non-contact manner. In addition, in this power supply vehicle, since it is possible to supply power to other vehicles in a non-contact manner on the same road surface, it is not necessary to construct a rail under the road surface. Become.

特開2014−14217号公報(第4−7頁、第1,3図)Japanese Unexamined Patent Publication No. 2014-14217 (page 4-7, FIGS. 1 and 3) 特開2012−222975号公報(第5−9頁、第1−4図)JP 2012-222975 (page 5-9, Fig. 1-4)

ところが、上記の特許文献2に開示の給電装置搭載車両(給電車両)には、以下のような解決すべき課題が存在している。すなわち、この給電車両では、非接触ユニットを走行方向(進行方向)に向けた状態(つまり、非接触ユニットを上下方向に沿って起立させた状態)で給電や受電を行う構成のため、給電車両には、受電車両と同じ路面(平面状の路面)の上を走行する場合であっても、給電車両の非接触ユニットと受電車両の非接触ユニットとの間には、両車両間の距離のずれに起因する走行方向に沿った位置ずれ(距離の位置ずれ)と、両車両のうちの一方の車両の走行方向に対して他の車両の走行方向が水平方向に平行にずれることに起因する水平方向に沿った位置ずれ(水平方向の位置ずれ)と、両車両の走行方向同士が非平行になることに起因する各非接触ユニット同士が非平行になる位置ずれ(向きの位置ずれ)とが生じる。したがって、この給電車両では、これらのずれに対応するために、上記のような非接触ユニットの姿勢をリアルタイムで変更可能とする非接触ユニット可動機構と、非接触ユニットをリアルタイムで進退させる非接触ユニット進退機構とが必要になっている。   However, the power supply device-equipped vehicle (power supply vehicle) disclosed in Patent Document 2 has the following problems to be solved. That is, in this power supply vehicle, the power supply vehicle is configured to perform power supply and power reception in a state where the non-contact unit is directed in the traveling direction (traveling direction) (that is, a state where the non-contact unit is erected along the vertical direction). Even if the vehicle is traveling on the same road surface (planar road surface) as the power receiving vehicle, the distance between the non-contact unit of the power supply vehicle and the non-contact unit of the power receiving vehicle is Due to the positional deviation (distance positional deviation) along the traveling direction due to the deviation and the traveling direction of the other vehicle deviating parallel to the horizontal direction with respect to the traveling direction of one of the two vehicles. Misalignment along the horizontal direction (horizontal misalignment) and misalignment (non-parallel position misalignment) between the non-contact units due to non-parallel travel directions of both vehicles. Occurs. Therefore, in this power supply vehicle, in order to cope with these deviations, the non-contact unit movable mechanism that can change the attitude of the non-contact unit as described above in real time and the non-contact unit that moves the non-contact unit back and forth in real time An advance and retreat mechanism is required.

しかしながら、非接触ユニットの姿勢をリアルタイムで変更する非接触ユニット可動機構、および非接触ユニットをリアルタイムで進退させる非接触ユニット進退機構は、一般的に高価なため、これに伴い、この特許文献2に開示の給電車両には、車両コストが上昇する(車両コストが高価になる)という新たな課題が生じる。   However, the non-contact unit moving mechanism that changes the attitude of the non-contact unit in real time and the non-contact unit advance / retreat mechanism that moves the non-contact unit in real time are generally expensive. The disclosed power supply vehicle has a new problem that the vehicle cost increases (the vehicle cost becomes high).

本発明は、かかる課題を解決すべくなされたものであり、建設費および車両コストの上昇を抑制しつつ、走行状態で他の車両に非接触で給電し得る給電車両、およびこの給電車両を備えた車両給電システムを提供することを主目的とする。   The present invention has been made to solve such a problem, and includes a power supply vehicle capable of supplying power to another vehicle in a contactless manner while suppressing an increase in construction cost and vehicle cost, and the power supply vehicle. The main object is to provide a vehicle power supply system.

上記目的を達成すべく請求項1記載の給電車両は、予め規定された走行面上を走行する車両本体、および当該車両本体に配設されて前記走行面上を走行する受電車両に対して非接触で給電する給電コイルを備えている給電車両であって、前記給電コイルは、前記走行面と平行な状態で前記車両本体に配設されると共に、前記受電車両との縦列走行状態において、前記走行面と平行な状態で当該受電車両に配設された受電コイルと対向して当該受電コイルに給電可能に構成されている。   In order to achieve the above object, the power supply vehicle according to claim 1 is non-reactive with respect to a vehicle main body that travels on a predetermined travel surface and a powered vehicle that is disposed on the vehicle main body and travels on the travel surface. A power supply vehicle including a power supply coil that supplies power by contact, wherein the power supply coil is disposed in the vehicle main body in a state parallel to the travel surface, and in a tandem travel state with the power receiving vehicle, The power receiving coil is configured to be able to supply power to the power receiving coil facing the power receiving coil disposed in the power receiving vehicle in a state parallel to the traveling surface.

また、請求項2記載の給電車両は、請求項1記載の給電車両において、前記車両本体の前部および後部の少なくとも一方の部位に、当該車両本体から前後方向に沿って延出する支持部が配設され、前記給電コイルは、前記支持部に配設されることにより、前記車両本体を平面視した状態において当該車両本体から突出した状態に支持されている。   The power supply vehicle according to claim 2 is the power supply vehicle according to claim 1, wherein at least one of the front portion and the rear portion of the vehicle main body has a support portion extending along the front-rear direction from the vehicle main body. The power supply coil is disposed on the support portion, and is supported in a state of projecting from the vehicle body in a state where the vehicle body is viewed in plan.

また、請求項3記載の給電車両は、請求項2記載の給電車両において、前記車両本体には、当該車両本体を平面視した状態において、前記支持部を当該車両本体の領域内に位置する収納位置と当該車両本体の領域外に位置する延出位置との間で移動させる移動機構が配設されている。   The power supply vehicle according to claim 3 is the power supply vehicle according to claim 2, wherein the vehicle main body is stored in the vehicle main body in a state in which the vehicle main body is viewed in a plan view. A moving mechanism for moving between the position and the extended position located outside the region of the vehicle body is provided.

また、請求項4記載の車両給電システムは、予め規定された周回経路を走行する請求項1から3のいずれかに記載の給電車両と、受電コイルを有すると共に前記周回経路の一部を含む予め規定された受電エリア内での走行中に当該受電コイルを介して前記給電車両から非接触で受電する受電車両と、前記給電車両の前記周回経路での走行状態を制御する制御装置とを備え、前記制御装置は、前記受電車両の前記受電エリア内への進入タイミングを取得し、当該取得した進入タイミングに基づいて前記給電車両の前記走行状態を制御することで、当該受電エリア内において前記受電車両と前記給電車両とを前記縦列走行状態に移行させる。   According to a fourth aspect of the present invention, there is provided a vehicle power supply system that includes a power supply vehicle according to any one of the first to third aspects, a power receiving coil, and a part of the circuit route. A power receiving vehicle that receives power from the power feeding vehicle in a non-contact manner through the power receiving coil during traveling in a specified power receiving area, and a control device that controls a traveling state of the power feeding vehicle on the circuit route, The control device acquires an entry timing of the power receiving vehicle into the power receiving area, and controls the traveling state of the power feeding vehicle based on the acquired entry timing, whereby the power receiving vehicle in the power receiving area. And the power supply vehicle are shifted to the tandem running state.

請求項1記載の給電車両および請求項4記載の車両給電システムでは、給電車両の給電コイルは、車両本体に走行面と平行な状態で配設されると共に、受電車両との縦列走行状態において、受電車両に上記の走行面と平行な状態で配設された受電コイルと対向して受電コイルに給電可能に構成されている。   In the power supply vehicle according to claim 1 and the vehicle power supply system according to claim 4, the power supply coil of the power supply vehicle is arranged in a state parallel to the travel surface on the vehicle body, and in a tandem travel state with the power receiving vehicle, The power receiving vehicle is configured to be able to supply power to the power receiving coil opposite to the power receiving coil disposed in a state parallel to the traveling surface.

したがって、この給電車両および車両給電システムによれば、従来の構成とは異なり、路面の下にレールを建設したり、また車両に非接触ユニット可動機構および非接触ユニット進退機構を配設して非接触ユニットの姿勢をリアルタイムで変更する制御を実行したりする必要が無いため、建設費および車両コストの上昇を抑制しつつ、受電車両に非接触で給電することができる。   Therefore, according to the power supply vehicle and the vehicle power supply system, unlike the conventional configuration, a rail is constructed under the road surface, or a non-contact unit movable mechanism and a non-contact unit advance / retreat mechanism are provided in the vehicle. Since it is not necessary to execute control for changing the attitude of the contact unit in real time, it is possible to supply power to the power receiving vehicle in a non-contact manner while suppressing an increase in construction cost and vehicle cost.

請求項2記載の給電車両および請求項4記載の車両給電システムでは、給電車両の車両本体における前部および後部の少なくとも一方の部位に、この車両本体から前後方向に沿って延出する支持部が配設され、給電コイルは、この支持部に配設されることにより、車両本体を平面視した状態において車両本体から突出した状態に支持されている。   In the power feeding vehicle according to claim 2 and the vehicle power feeding system according to claim 4, at least one of a front portion and a rear portion of the vehicle main body of the power feeding vehicle has a support portion extending from the vehicle main body along the front-rear direction. The power feeding coil is disposed on the support portion, and is supported in a state of protruding from the vehicle main body when the vehicle main body is viewed in plan.

したがって、この給電車両および車両給電システムによれば、一例として、受電車両の車両本体にもこの車両本体から延出する支持部を配設すると共にこの支持部に受電コイルを走行面と平行な状態で配設することで、給電車両の車両本体と受電車両の車両本体との間に間隔を空けつつ(つまり、両車両本体の直接的な接触を回避しつつ)、給電車両を受電車両と縦列状態にさせ、かつ給電コイルと受電コイルとを一定の距離だけ上下方向に離間した状態で対向させることができる。   Therefore, according to the power supply vehicle and the vehicle power supply system, as an example, the vehicle main body of the power receiving vehicle is provided with a support portion extending from the vehicle main body, and the power receiving coil is parallel to the running surface on the support portion. By disposing the power supply vehicle in parallel with the power receiving vehicle, the space between the vehicle main body of the power feeding vehicle and the vehicle main body of the power receiving vehicle (that is, avoiding direct contact between the two vehicle main bodies). The power feeding coil and the power receiving coil can be opposed to each other in a state where they are separated in the vertical direction by a certain distance.

請求項3記載の給電車両および請求項4記載の車両給電システムによれば、車両本体を平面視した状態において、支持部を車両本体の領域内に位置する収納位置と車両本体の領域外に位置する延出位置との間で移動させる移動機構を車両本体に配設したことにより、受電エリア外での給電車両についての平面視状態での全長を短くすることができると共に、非給電時における給電車両の外観の見栄えをよくすることができる。   According to the power supply vehicle according to claim 3 and the vehicle power supply system according to claim 4, in a state where the vehicle main body is seen in a plan view, the support portion is positioned outside the region of the vehicle main body and the storage position positioned within the region of the vehicle main body. By providing the vehicle body with a moving mechanism that moves between the extended position and the extended position, it is possible to shorten the overall length of the powered vehicle outside the power receiving area in a plan view, and to supply power when no power is supplied. The appearance of the vehicle can be improved.

車両給電システム1の構成を説明するための平面図である。1 is a plan view for explaining a configuration of a vehicle power feeding system 1. FIG. 図1において破線で示す受電エリア(給電エリアでもある)B内のエリアC1のような直線状の走行経路6,7での給電動作および受電動作を説明するための平面図である。It is a top view for demonstrating the electric power feeding operation | movement and electric power receiving operation | movement in the linear travel path | routes 6 and 7 like the area C1 in the electric power receiving area (it is also an electric power feeding area) B shown with a broken line in FIG. 図2に示す給電車両2および受電車両4の側面図である。FIG. 3 is a side view of the power feeding vehicle 2 and the power receiving vehicle 4 shown in FIG. 2. 図1において破線で示す受電エリア(給電エリアでもある)B内のエリアC2のような曲線状(弧状)の走行経路6,7での給電動作および受電動作を説明するための平面図である。It is a top view for demonstrating the electric power feeding operation | movement and electric power receiving operation | movement in the curvilinear (arc-shaped) traveling paths 6 and 7 like the area C2 in the electric power receiving area (it is also an electric power feeding area) B shown with a broken line in FIG. 他の車両給電システム1Aでの給電車両2Aおよび他の受電車両4Aの構成を説明するための側面図である。It is a side view for demonstrating the structure of the electric power feeding vehicle 2A and other electric power receiving vehicle 4A in the other vehicle electric power feeding system 1A. 他の車両給電システム1Bでの給電車両2Bおよび他の受電車両4Bの構成を説明するための側面図である。It is a side view for demonstrating the structure of the electric power feeding vehicle 2B and other electric power receiving vehicle 4B in the other vehicle electric power feeding system 1B.

以下、添付図面を参照して、給電車両、およびこの給電車両を備えた車両給電システムの各実施の形態について説明する。   Hereinafter, with reference to an accompanying drawing, each embodiment of an electric supply vehicle and a vehicle electric supply system provided with this electric supply vehicle is described.

最初に、給電車両を備えた車両給電システムの一例としての図1に示す車両給電システム1の構成について説明する。   Initially, the structure of the vehicle electric power feeding system 1 shown in FIG. 1 as an example of the vehicle electric power feeding system provided with the electric power feeding vehicle is demonstrated.

車両給電システム1は、一例として、給電車両2、給電装置3、受電車両4および制御装置5を備え、予め規定された走行面A(路面)上に規定された走行経路(周回経路)6を走行する給電車両2から、同じ走行面A上に規定された他の走行経路7を走行する受電車両4に対して、走行状態のままで電力を非接触で送電(給電)する。   As an example, the vehicle power supply system 1 includes a power supply vehicle 2, a power supply device 3, a power receiving vehicle 4, and a control device 5. The vehicle power supply system 1 has a travel route (circulation route) 6 defined on a predefined travel surface A (road surface). Electric power is transmitted (powered) in a non-contact manner from the traveling power supply vehicle 2 to the power receiving vehicle 4 traveling on another traveling route 7 defined on the same traveling surface A while remaining in the traveling state.

給電車両2は、図3に示すように、車両としての機械的な基本要素(車両本体(ボディ)11および車輪12など)と、車輪12を駆動するために車両本体11に内蔵された不図示の駆動機構(車輪の回転駆動機構および車輪の操舵機構などのモータを含む駆動機構)と、モータを作動させるための電力を蓄電するために車両本体11に内蔵された二次電池やキャパシタなどの不図示の蓄電部と、蓄電部を充電するために車両本体11に内蔵された充電装置と、車両本体11に内蔵された不図示の位置検出回路(例えば、給電車両2自体の走行経路(周回経路)6上での位置および縦列状態で走行する他の車両(本例では受電車両4)についての給電車両2に対する位置(給電車両2との間の距離)を検出する回路)と、給電車両2の現在の速度を検出する速度検出回路と、車両本体11に内蔵された不図示の制御回路とを備えている。この給電車両2は、一例として、制御回路が走行経路6上に設けられた不図示の白線(案内線の一例)を画像認識などの認識手法で認識しつつ、制御装置5から指示される速度となるように駆動機構を制御することで、この白線に沿って指示された速度で自律走行可能に構成されている。   As shown in FIG. 3, the power supply vehicle 2 includes mechanical basic elements (a vehicle main body (body) 11, wheels 12, etc.) as a vehicle, and an unillustrated built in the vehicle main body 11 for driving the wheels 12. Drive mechanisms (drive mechanisms including motors such as a wheel rotation drive mechanism and a wheel steering mechanism) and a secondary battery or a capacitor built in the vehicle body 11 for storing electric power for operating the motor. A power storage unit (not shown), a charging device built in the vehicle main body 11 for charging the power storage unit, and a position detection circuit (not shown) built in the vehicle main body 11 (for example, a travel route (circulation of the power supply vehicle 2 itself) Route) a circuit for detecting a position on the power supply vehicle 2 (a distance from the power supply vehicle 2) with respect to the position on the route 6 and another vehicle (in this example, the power receiving vehicle 4) traveling in a column state), and the power supply vehicle 2 current A speed detecting circuit for detecting a degree, and a control circuit (not shown) incorporated in the vehicle body 11. In the power supply vehicle 2, as an example, a speed indicated by the control device 5 while a control circuit recognizes a white line (not shown) provided on the travel route 6 (an example of a guide line) by a recognition method such as image recognition. By controlling the drive mechanism so as to become, it is configured to be able to autonomously travel at a speed instructed along this white line.

また、給電車両2は、一例として、給電側電源ユニット(図示せず)および給電コイル(送電コイル)13を備え、受電車両4に対して非接触で電力を送電(給電)する。給電側電源ユニットは、一例として、インバータなどで構成されて高い周波数の交流信号を出力する不図示の高周波駆動回路と、給電コイル13と共に共振回路を構成して交流信号の周波数で給電コイル13をLC共振させる不図示の共振コンデンサとを備えている。なお、この共振回路の共振周波数は、受電車両4側の後述する受電コイル23と、不図示の受電側電源ユニット内の図示しない共振コンデンサとで構成される共振回路の共振周波数と一致するように設定されている。この構成により、車両給電システム1では、給電車両2から受電車両4に対して、一例として磁界共鳴方式による非接触電力送電(非接触給電)が行われる。なお、給電車両2から受電車両4への非接触での給電の他の方式として、電磁誘導方式や電波方式などを採用することもできる。   In addition, as an example, the power supply vehicle 2 includes a power supply side power supply unit (not shown) and a power supply coil (power transmission coil) 13, and transmits (powers) power to the power receiving vehicle 4 in a contactless manner. For example, the power supply side power supply unit includes an inverter (not shown) that outputs a high-frequency AC signal and a power supply coil 13 that forms a resonance circuit together with the power supply coil 13 so that the power supply coil 13 is connected at the frequency of the AC signal. And a resonance capacitor (not shown) that causes LC resonance. The resonance frequency of this resonance circuit matches the resonance frequency of a resonance circuit constituted by a later-described receiving coil 23 on the receiving vehicle 4 side and a not-shown resonance capacitor in the not-shown receiving-side power supply unit. Is set. With this configuration, in the vehicle power feeding system 1, as an example, non-contact power transmission (non-contact power feeding) by the magnetic field resonance method is performed from the power feeding vehicle 2 to the power receiving vehicle 4. It should be noted that an electromagnetic induction method, a radio wave method, or the like may be employed as another method of non-contact power supply from the power supply vehicle 2 to the power receiving vehicle 4.

また、給電車両2は、車両本体11における走行方向(進行方向)に沿った両端部(前部および後部)の少なくとも一方の部位に、車両本体11から前後方向(走行方向)に沿って延出する支持部14が配設されている。本例の給電車両2では、一例として、図2,3に示すように、受電車両4との縦列状態のときに受電車両4の前部と対向する車両本体11の後部に支持部14が配設されている。なお、図示はしないが、受電車両4との縦列状態のときに受電車両4の後部と給電車両2の前部とが対向するときには、給電車両2の前部に支持部14を配設する。また、受電車両4と縦列状態に移行するタイミングによっては、給電車両2の前部が受電車両4と対向したり、給電車両2の後部が受電車両4と対向したりする場合には、給電車両2の前部および後部の双方に支持部14を配設する構成を採用することもできる。   In addition, the power supply vehicle 2 extends from the vehicle body 11 along the front-rear direction (travel direction) to at least one portion of both end portions (front and rear portions) along the travel direction (travel direction) of the vehicle body 11. A supporting portion 14 is disposed. In the power supply vehicle 2 of this example, as shown in FIGS. 2 and 3, as an example, the support portion 14 is arranged at the rear portion of the vehicle body 11 that faces the front portion of the power receiving vehicle 4 when in a column state with the power receiving vehicle 4. It is installed. Although not shown, when the rear part of the power receiving vehicle 4 and the front part of the power feeding vehicle 2 are opposed to each other in the longitudinal state with the power receiving vehicle 4, the support part 14 is disposed on the front part of the power feeding vehicle 2. Further, depending on the timing of shifting to the power receiving vehicle 4 in a tandem state, when the front part of the power feeding vehicle 2 faces the power receiving vehicle 4 or the rear part of the power feeding vehicle 2 faces the power receiving vehicle 4, the power feeding vehicle It is also possible to employ a configuration in which the support portions 14 are disposed on both the front portion and the rear portion.

また、給電車両2および受電車両4が走行する走行面Aのうちの、少なくとも双方が縦列状態で走行して受電車両4が給電車両2から受電する受電エリアB(図1において破線で示すエリア。給電車両2が受電車両4に給電する給電エリアでもある)での走行面は、凹凸のない平面(フラットな面)に形成されている。給電車両2の支持部14は、図3に示すように、この受電エリアB内での走行面Aと平行な状態で延出する平板体(例えば、合成樹脂などの非磁性材料で形成された板体)に形成されて、その上面、その下面およびその内部のうちのいずれかの部位(本例では一例として下面)に給電コイル13が支持部14と平行な状態(給電コイル13の軸線が支持部14に対して直交する状態)で配設されている。このようにして、車両本体11から延出する支持部14に給電コイル13が配設される構成のため、給電コイル13は、図2に示すように、車両本体11を平面視した状態において車両本体11から突出した状態で支持部14に支持されている。   Also, a power receiving area B (an area indicated by a broken line in FIG. 1) in which at least both of the traveling surfaces A on which the power feeding vehicle 2 and the power receiving vehicle 4 travel travel in a tandem state and the power receiving vehicle 4 receives power from the power feeding vehicle 2. The traveling surface in the power supply vehicle 2 (which is also a power supply area where the power receiving vehicle 2 supplies power to the power receiving vehicle 4) is formed on a flat surface (a flat surface) without unevenness. As shown in FIG. 3, the support portion 14 of the power supply vehicle 2 is formed of a flat plate body (for example, a nonmagnetic material such as a synthetic resin) that extends in a state parallel to the traveling surface A in the power receiving area B. The feed coil 13 is parallel to the support portion 14 at any part of the upper surface, the lower surface, and the interior thereof (in this example, the lower surface in this example) (the axis of the feed coil 13 is In a state orthogonal to the support portion 14). In this way, since the power feeding coil 13 is disposed on the support portion 14 extending from the vehicle main body 11, the power feeding coil 13 is configured so that the vehicle main body 11 is viewed in plan view as shown in FIG. It is supported by the support part 14 in a state of protruding from the main body 11.

この受電エリアBは、図1に示すように、走行経路6の一部を含むと共に、後述する受電車両4についての走行経路7の一部についても含むように予め規定されている。また、受電車両4は、後述するように、この受電エリアB内での給電車両2との縦列走行状態において、給電車両2から受電する。したがって、給電車両2および受電車両4が受電エリアB内において縦列状態となり得るように、受電エリアB内での走行経路6および走行経路7は、同図に示すように、一定の距離を空けて互いに近接した状態に規定されている。   As shown in FIG. 1, the power reception area B is defined in advance so as to include a part of the travel route 6 and also a part of the travel route 7 for the power receiving vehicle 4 described later. In addition, the power receiving vehicle 4 receives power from the power feeding vehicle 2 in a tandem running state with the power feeding vehicle 2 in the power receiving area B, as will be described later. Therefore, the traveling route 6 and the traveling route 7 in the power receiving area B are separated by a certain distance as shown in the figure so that the power feeding vehicle 2 and the power receiving vehicle 4 can be in a tandem state in the power receiving area B. It is defined in a state of being close to each other.

給電装置3は、図1に示すように、給電車両2の走行経路6の近傍に配設されて、給電装置3に近接する位置(図1に示す位置。待機位置)に停止している給電車両2の充電装置に対して給電(接触または非接触で給電)することで、給電車両2の蓄電部を充電する。なお、図示はしないが、給電車両2の走行経路6に沿って給電用電路(架線)を配設して、給電装置3から給電用電路を介して給電車両2に常時給電し得る構成を採用することもできる。   As shown in FIG. 1, the power supply device 3 is disposed in the vicinity of the travel route 6 of the power supply vehicle 2 and is stopped at a position close to the power supply device 3 (position shown in FIG. 1, standby position). The power storage unit of the power supply vehicle 2 is charged by supplying power (contact or non-contact power supply) to the charging device of the vehicle 2. Although not shown, a power supply circuit (overhead line) is provided along the traveling path 6 of the power supply vehicle 2 so that the power supply vehicle 2 can always supply power to the power supply vehicle 2 via the power supply circuit. You can also

受電車両4は、図3に示すように、給電車両2と同様にして、車両としての機械的な基本要素(車両本体(ボディ)21および車輪22など)と、車輪22を駆動するために車両本体21に内蔵された不図示の駆動機構(車輪の回転駆動機構および車輪の操舵機構などのモータを含む駆動機構)と、モータを作動させるための電力を蓄電するために車両本体21に内蔵された二次電池やキャパシタなどの不図示の蓄電部と、蓄電部を充電するために車両本体21に内蔵された充電装置と、車両本体21に内蔵された不図示の位置検出回路(例えば、受電車両4自体の走行経路7上での位置を検出する回路)と、受電車両4の現在の速度を検出する速度検出回路と、車両本体21に内蔵された不図示の制御回路とを備えている。この受電車両4は、一例として、制御回路が走行経路7上に設けられた不図示の白線を画像認識などの認識手法で認識しつつ、駆動機構を制御することで、この白線に沿って予め規定された速度で自律走行可能に構成されている。   As shown in FIG. 3, the power receiving vehicle 4 is a vehicle for driving the mechanical basic elements (the vehicle main body (body) 21 and the wheels 22) and the wheels 22 in the same manner as the power feeding vehicle 2. A drive mechanism (not shown) built in the main body 21 (a drive mechanism including a motor such as a wheel rotation drive mechanism and a wheel steering mechanism) and a power for operating the motor are stored in the vehicle main body 21. A power storage unit (not shown) such as a secondary battery or a capacitor, a charging device built in the vehicle body 21 for charging the power storage unit, and a position detection circuit (for example, a power receiving unit) built in the vehicle body 21 A circuit for detecting the position of the vehicle 4 on the travel route 7), a speed detection circuit for detecting the current speed of the power receiving vehicle 4, and a control circuit (not shown) built in the vehicle body 21. . In this power receiving vehicle 4, as an example, the control circuit recognizes a white line (not shown) provided on the travel route 7 by a recognition method such as image recognition, and controls the drive mechanism in advance along the white line. It is configured to be able to run autonomously at a specified speed.

また、受電車両4は、一例として、受電側電源ユニット(図示せず)および受電コイル23を備え、給電車両2から非接触で受電する。受電側電源ユニットは、一例として、共振コンデンサ、整流回路および充電回路(いずれも図示せず)を備えて構成されて、受電コイル23を介して給電車両2から受電している状態において、受電コイル23から出力される交流電圧に基づいて直流電圧を生成して蓄電部を充電する。   The power receiving vehicle 4 includes, as an example, a power receiving side power supply unit (not shown) and a power receiving coil 23, and receives power from the power feeding vehicle 2 in a non-contact manner. As an example, the power-receiving-side power supply unit includes a resonance capacitor, a rectifier circuit, and a charging circuit (all not shown), and in a state where power is received from the power supply vehicle 2 via the power receiving coil 23, the power receiving coil A DC voltage is generated based on the AC voltage output from 23 to charge the power storage unit.

また、受電車両4は、車両本体21における走行方向(進行方向)に沿った両端部(前部および後部)の少なくとも一方の部位に、車両本体21から前後方向(走行方向)に沿って延出する支持部24が配設されている。本例の受電車両4では、一例として、図2,3に示すように、給電車両2との縦列状態のときに給電車両2の後部と対向する車両本体21の前部に支持部24が配設されている。また、支持部24は、一例として図3に示すように、走行面A(受電エリアBでの走行面A)と平行な状態で延出する平板体(例えば、合成樹脂などの非磁性材料で形成された板体)に形成されて、その上面、その下面およびその内部のうちのいずれかの部位(本例では一例として上面)に受電コイル23が支持部24と平行な状態(受電コイル23の軸線が支持部24に対して直交する状態)で配設されている。このようにして、車両本体21から延出する支持部24に受電コイル23が配設される構成のため、受電コイル23は、図2に示すように、車両本体21を平面視した状態において車両本体21から突出した状態で支持部24に支持されている。   The power receiving vehicle 4 extends along the front-rear direction (traveling direction) from the vehicle main body 21 to at least one portion of both end portions (front and rear portions) along the traveling direction (traveling direction) in the vehicle main body 21. A supporting portion 24 is disposed. In the power receiving vehicle 4 of this example, as shown in FIGS. 2 and 3, as an example, the support portion 24 is arranged at the front portion of the vehicle main body 21 that faces the rear portion of the power supply vehicle 2 when in a column state with the power supply vehicle 2. It is installed. Further, as shown in FIG. 3 as an example, the support portion 24 is a flat body (for example, a nonmagnetic material such as a synthetic resin) that extends in a state parallel to the traveling surface A (the traveling surface A in the power receiving area B). The power receiving coil 23 is in parallel with the support portion 24 (the power receiving coil 23 at one of the upper surface, the lower surface, and the inside thereof (upper surface as an example in this example). Are arranged in a state in which the axis thereof is orthogonal to the support portion 24). In this way, the power receiving coil 23 is disposed on the support portion 24 extending from the vehicle main body 21, so that the power receiving coil 23 is a vehicle in a state in which the vehicle main body 21 is seen in plan view as shown in FIG. It is supported by the support portion 24 in a state of protruding from the main body 21.

また、支持部24は、走行面Aからの取付高さが支持部14の走行面Aからの高さと異なるように設定されている。本例では一例として、支持部14よりも支持部24が、支持部14に対して、給電コイル13および受電コイル23の各厚みの合計長よりも低くなるように設定されている。   Further, the support portion 24 is set so that the mounting height from the running surface A is different from the height of the support portion 14 from the running surface A. In this example, as an example, the support portion 24 is set to be lower than the total length of the thicknesses of the power feeding coil 13 and the power receiving coil 23 relative to the support portion 14 relative to the support portion 14.

この構成(つまり、車両本体11から延出する支持部14に給電コイル13を配置し、車両本体21から延出する支持部24に受電コイル23を配置する構成)により、給電コイル13および受電コイル23が互いに干渉することなく、また給電車両2の車両本体11と受電車両4の車両本体21との間に間隔を空けつつ(つまり、車両本体11,21同士の直接的な接触を回避しつつ)、支持部14における給電コイル13の配設部位の下側に、支持部24における受電コイル23の配設部位が入り込んだ状態で、給電車両2と受電車両4とが縦列可能となっている。また、この給電車両2と受電車両4とが縦列している状態において、給電車両2の速度が制御装置5によって制御されて、給電車両2と受電車両4との間隔が図2,3に示すような所定の距離に維持されることで、支持部14に配設された給電コイル13と支持部24に配設された受電コイル23とが、一定の距離だけ上下方向に離間した状態で対向(正対)する。なお、図示はしないが、各支持部14,24の上下関係(つまり、給電コイル13と受電コイル23の上下関係)が図3に示す上下関係とは逆の関係となる構成を採用することもできる。   With this configuration (that is, a configuration in which the power feeding coil 13 is disposed on the support portion 14 extending from the vehicle main body 11 and the power receiving coil 23 is disposed on the support portion 24 extending from the vehicle main body 21), the power feeding coil 13 and the power receiving coil are arranged. 23 without interfering with each other and with a space between the vehicle main body 11 of the power supply vehicle 2 and the vehicle main body 21 of the power receiving vehicle 4 (that is, avoiding direct contact between the vehicle main bodies 11 and 21). ), The feeding vehicle 2 and the receiving vehicle 4 can be cascaded in a state where the receiving coil 23 is disposed in the support 24 under the feeding coil 13 in the support 14. . Further, in a state where the power feeding vehicle 2 and the power receiving vehicle 4 are arranged in tandem, the speed of the power feeding vehicle 2 is controlled by the control device 5, and the interval between the power feeding vehicle 2 and the power receiving vehicle 4 is shown in FIGS. By maintaining such a predetermined distance, the feeding coil 13 disposed on the support portion 14 and the power receiving coil 23 disposed on the support portion 24 face each other in a state of being spaced apart by a certain distance in the vertical direction. (Facing) Although not shown, a configuration in which the vertical relationship between the support portions 14 and 24 (that is, the vertical relationship between the feeding coil 13 and the receiving coil 23) is opposite to the vertical relationship shown in FIG. it can.

制御装置5は、走行経路6での給電車両2の走行状態を制御する。具体的には、この走行状態の制御として、制御装置5は、受電車両4側から取得した受電車両4の走行経路7上での位置を示す位置情報Dp2および受電車両4の速度情報Dsp2と、給電車両2側から取得した走行経路6上での給電車両2の位置を示す位置情報Dp1、給電車両2の速度情報Dsp1および給電車両2と受電車両4との間の距離を示す距離情報Ddとに基づいて、給電車両2に対する駆動制御を実行することにより、受電エリアB内において、給電車両2が受電車両4と縦列走行状態となる(縦列状態で走行する)ように制御する。また、制御装置5は、給電車両2に対する駆動制御を実行することにより、受電エリアBから脱した給電車両2を図1に示すように待機位置に停止させるという制御と共に、受電車両4が検出ポイントに達した時点で給電車両2の待機位置からの走行を開始させるという制御を実行する。   The control device 5 controls the traveling state of the power supply vehicle 2 on the traveling route 6. Specifically, as control of the traveling state, the control device 5 includes position information Dp2 indicating the position of the power receiving vehicle 4 on the traveling route 7 acquired from the power receiving vehicle 4 side and speed information Dsp2 of the power receiving vehicle 4; Position information Dp1 indicating the position of the power supply vehicle 2 on the travel route 6 acquired from the power supply vehicle 2 side, speed information Dsp1 of the power supply vehicle 2 and distance information Dd indicating the distance between the power supply vehicle 2 and the power receiving vehicle 4 Based on the above, by performing drive control on the power supply vehicle 2, the power supply vehicle 2 is controlled so as to be in a column running state with the power receiving vehicle 4 (runs in a column state) in the power receiving area B. Further, the control device 5 executes drive control on the power supply vehicle 2 to stop the power supply vehicle 2 that has been removed from the power reception area B at the standby position as shown in FIG. The control of starting the running from the standby position of the power supply vehicle 2 is executed at the time when the value is reached.

また、制御装置5は、上記した給電車両2の走行状態についての制御と共に、給電車両2に対する受電車両4への給電動作についての制御、受電車両4に対する受電動作についての制御、および給電装置3に対する給電車両2への充電動作についても実行する。   Further, the control device 5 controls the power supply vehicle 2 to the power receiving vehicle 4, the power supply operation to the power receiving vehicle 4, the power reception operation to the power receiving vehicle 4, and the power supply device 3. The charging operation for the powered vehicle 2 is also executed.

次に、給電車両2および車両給電システム1の動作について説明する。なお、受電車両4は、走行経路7上を矢印の向きで継続して自律走行しているものとする。また、この自律走行では、受電車両4は、走行経路7における少なくとも検出ポイントから受電エリアBの出口までの間の区間については、一定の速度で走行するものとする。   Next, operations of the power supply vehicle 2 and the vehicle power supply system 1 will be described. It is assumed that the power receiving vehicle 4 continuously travels on the travel route 7 in the direction of the arrow. In this autonomous traveling, the power receiving vehicle 4 travels at a constant speed in at least a section of the traveling route 7 between the detection point and the exit of the power receiving area B.

車両給電システム1では、制御装置5は、まず、受電エリアB内での受電車両4に対する給電が完了して受電エリアBを脱した直後の給電車両2に対して、位置情報Dp1および速度情報Dsp1に基づいて、減速させて待機位置(待機位置は、一般的に、図1に示すように、受電エリアBの出口の近傍に設定されている)に停止させる駆動制御を実行する。また、制御装置5は、給電車両2を待機位置に停止させている状態において、給電装置3に対して、給電車両2への充電動作を実行させる。これにより、給電車両2では、車両本体11に内蔵された充電装置により、同じく車両本体11に内蔵された蓄電部が充電される。   In the vehicle power feeding system 1, the control device 5 first detects the position information Dp1 and the speed information Dsp1 for the power feeding vehicle 2 immediately after the power feeding to the power receiving vehicle 4 in the power receiving area B is completed and the power receiving area B is removed. Based on the control, the drive control is executed to decelerate and stop at the standby position (the standby position is generally set near the exit of the power receiving area B as shown in FIG. 1). In addition, the control device 5 causes the power supply device 3 to perform a charging operation on the power supply vehicle 2 while the power supply vehicle 2 is stopped at the standby position. Thereby, in the power supply vehicle 2, the power storage unit built in the vehicle main body 11 is charged by the charging device built in the vehicle main body 11.

次いで、制御装置5は、給電装置3から給電車両2への給電を継続しつつ、受電車両4の位置情報Dp2に基づいて、受電車両4が予め規定された検出ポイント(例えば、図1に示すように、走行経路7の全長に対して受電エリアBの入口に近い位置に規定された検出ポイント)を通過したか否かを検出する。   Next, the control device 5 continues to supply power from the power supply device 3 to the power supply vehicle 2, while the power receiving vehicle 4 is defined in advance based on the position information Dp2 of the power receiving vehicle 4 (for example, as shown in FIG. 1). In this way, it is detected whether or not a detection point defined at a position near the entrance of the power receiving area B with respect to the entire length of the travel route 7 is passed.

続いて、制御装置5は、受電車両4が検出ポイントを通過したことを検出したときには、給電装置3から給電車両2への給電を停止させると共に、検出ポイントから受電エリアBの入口までの距離(既知)と、受電車両4の速度情報Dsp2(つまり、受電車両4の速度)とに基づいて、受電車両4が検出ポイントから受電エリアBの入口に到達するまでに要する時間t1(つまり、受電エリアBに進入するまでの時間(進入タイミングの一例))を予測計算(取得)する。   Subsequently, when the control device 5 detects that the power receiving vehicle 4 has passed the detection point, the control device 5 stops the power supply from the power supply device 3 to the power supply vehicle 2 and also the distance from the detection point to the entrance of the power receiving area B ( Based on the speed information Dsp2 of the power receiving vehicle 4 (that is, the speed of the power receiving vehicle 4) and the time t1 required for the power receiving vehicle 4 to reach the entrance of the power receiving area B from the detection point (that is, the power receiving area). Time to enter B (an example of entry timing)) is calculated (acquired).

また、受電エリアB内において、図2,3に示すように、給電車両2を先頭にして給電車両2と受電車両4とを縦列状態で走行させるためには、制御装置5は、受電車両4の受電エリアBへの進入よりも若干早いタイミングで給電車両2を受電エリアBに進入させる必要がある。このため、制御装置5は、受電エリアBに進入する際の受電車両4の速度(受電エリアBへの進入速度であって、速度情報Dsp1に基づいて算出される速度)と、予測計算した時間t1(具体的には、時間t1よりも若干短い時間t2(受電車両4の受電エリアBへの進入速度に対応させて予め実験やシミュレーションで求めた時間))とに基づいて、給電車両2の速度が、初期速度(ゼロ)から、この時間t2の経過後に、受電エリアBへの受電車両4の進入速度と同じ速度まで上昇するのに必要な加速度を算出する。また、制御装置5は、算出した加速度となるように給電車両2の走行状態を制御する動作を開始する(算出した加速度での給電車両2の移動を開始させる)。制御装置5は、これらの計算を極めて短時間に実行して、受電車両4が検出ポイントを通過したことを検出した時点からのタイムラグが殆どない状態で、つまり給電装置3から給電車両2への給電の停止とほぼ同時に、給電車両2の移動を開始させる。   Further, in the power receiving area B, as shown in FIGS. 2 and 3, in order to run the power feeding vehicle 2 and the power receiving vehicle 4 in a tandem state with the power feeding vehicle 2 at the head, the control device 5 is configured to receive the power receiving vehicle 4. Therefore, it is necessary to cause the power supply vehicle 2 to enter the power receiving area B at a timing slightly earlier than the approach to the power receiving area B. For this reason, the control device 5 determines the speed of the power receiving vehicle 4 when entering the power receiving area B (the speed of entering the power receiving area B and calculated based on the speed information Dsp1) and the predicted calculation time. Based on t1 (specifically, a time t2 slightly shorter than the time t1 (a time obtained by an experiment or a simulation in advance corresponding to the speed of entry of the power receiving vehicle 4 into the power receiving area B)). From the initial speed (zero), the acceleration required to increase to the same speed as the speed at which the power receiving vehicle 4 enters the power receiving area B is calculated after the elapse of time t2. Moreover, the control apparatus 5 starts the operation | movement which controls the driving | running | working state of the electric power feeding vehicle 2 so that it may become the calculated acceleration (it starts the movement of the electric power feeding vehicle 2 with the calculated acceleration). The control device 5 executes these calculations in a very short time, and there is almost no time lag from the time when the power receiving vehicle 4 has detected that it has passed the detection point, that is, from the power feeding device 3 to the power feeding vehicle 2. Almost simultaneously with the stop of the power supply, the movement of the power supply vehicle 2 is started.

したがって、給電車両2が、受電車両4の検出ポイントの通過のときから時間t2の経過後に受電エリアBに進入し、続いて、受電車両4が、検出ポイントの通過のときから時間t1の経過後に(つまり、給電車両2よりも若干遅れて)、受電エリアBに進入する。また、制御装置5は、給電車両2が受電エリアBに進入したとき(受電車両4の検出ポイントの通過のときから時間t2が経過したとき)には、給電車両2に対して、受電エリアBへの進入速度で定速度走行させる制御を実行する。これにより、給電車両2および受電車両4は、受電エリアBへの進入の直後から、給電車両2を先頭にした縦列状態で走行する。この縦列状態では、給電車両2の支持部14における給電コイル13の配設部位の下側に、受電車両4の支持部24における受電コイル23の配設部位が入り込んだ状態となる。   Therefore, the power supply vehicle 2 enters the power receiving area B after the elapse of time t2 from the time when the detection point of the power receiving vehicle 4 passes, and then the time when the power receiving vehicle 4 elapses after the time t1 from the time of passage of the detection point. (That is, a little later than the power supply vehicle 2), the vehicle enters the power receiving area B. In addition, when the power supply vehicle 2 enters the power receiving area B (when the time t2 has elapsed since the passage of the detection point of the power receiving vehicle 4), the control device 5 Execute the control to run at a constant speed at the approach speed. Thereby, the power feeding vehicle 2 and the power receiving vehicle 4 travel in a column state with the power feeding vehicle 2 as the head immediately after entering the power receiving area B. In this vertical state, the portion where the power receiving coil 23 is disposed in the support portion 24 of the power receiving vehicle 4 is inserted below the portion where the power feeding coil 13 is disposed in the support portion 14 of the power feeding vehicle 2.

次いで、制御装置5は、給電車両2側からの位置情報Dp1または受電車両4側からの位置情報Dp2に基づいて、給電車両2および受電車両4が受電エリアB内に位置しているか否か(具体的には、受電エリアBから脱したか否か)を検出しつつ、受電エリアB内に位置しているときには、給電車両2側からの距離情報Ddに基づいて、給電車両2に対する駆動制御(走行速度の制御)を実行することにより、受電車両4との間隔が上記の所定の距離に維持されるように給電車両2を走行させる。これにより、支持部14に配設された給電コイル13と支持部24に配設された受電コイル23とが受電エリアB内において一定の距離だけ上下方向に離間した状態で対向(正対)する、という状態が維持される。   Next, the control device 5 determines whether or not the power feeding vehicle 2 and the power receiving vehicle 4 are located in the power receiving area B based on the position information Dp1 from the power feeding vehicle 2 side or the position information Dp2 from the power receiving vehicle 4 side ( Specifically, when the vehicle is located in the power receiving area B while detecting whether or not the power receiving area B is removed), the drive control for the power feeding vehicle 2 is performed based on the distance information Dd from the power feeding vehicle 2 side. By executing (control of traveling speed), the power feeding vehicle 2 is caused to travel such that the distance from the power receiving vehicle 4 is maintained at the predetermined distance. As a result, the power feeding coil 13 disposed on the support portion 14 and the power receiving coil 23 disposed on the support portion 24 face each other (facing directly) in the power receiving area B while being spaced apart by a certain distance in the vertical direction. , Is maintained.

この車両給電システム1では、上記したように、走行面Aにおける受電エリアBでの走行面は凹凸のない平面に形成され、給電車両2の支持部14はこの受電エリアB内での走行面Aと平行な状態で延出する平板体に形成されると共に給電コイル13が支持部14と平行な状態で支持部14に配設され、かつ受電車両4の支持部24はこの受電エリアB内での走行面Aと平行な状態で延出する平板体に形成されると共に受電コイル23が支持部24と平行な状態で支持部24に配設されている。これにより、給電コイル13と受電コイル23とは、受電エリアB内において、給電車両2と受電車両4との間隔が変化したとしても、常に、互いに平行で、かつ一定の距離だけ上下方向に離間した状態に維持されている。   In the vehicle power feeding system 1, as described above, the traveling surface in the power receiving area B on the traveling surface A is formed in a flat surface without unevenness, and the support portion 14 of the power feeding vehicle 2 is the traveling surface A in the power receiving area B. The power supply coil 13 is disposed on the support portion 14 in a state parallel to the support portion 14, and the support portion 24 of the power receiving vehicle 4 is within the power receiving area B. The power receiving coil 23 is disposed on the support portion 24 in a state parallel to the support portion 24, and is formed in a flat plate extending in a state parallel to the travel surface A. Thereby, even if the space | interval of the power feeding vehicle 2 and the power receiving vehicle 4 changes within the power receiving area B, the power feeding coil 13 and the power receiving coil 23 are always parallel to each other and separated from each other in the vertical direction by a certain distance. Is maintained.

したがって、制御装置5は、受電車両4との間隔が所定の距離に維持されるように給電車両2を走行させるという制御を給電車両2に対して実行するだけで、給電コイル13と受電コイル23を受電エリアB内において、互いに平行で、互いに一定の距離だけ上下方向に離間し、かつ互いに対向(正対)するという状態に維持することが可能となる。なお、受電エリアB内のエリアC1(走行経路6および走行経路7が直線状となるエリア)では、給電車両2および受電車両4が図2,3に示すように直線的な縦列状態となって、給電コイル13と受電コイル23は互いに正対する状態に維持される。一方、受電エリアB内のエリアC2(走行経路6および走行経路7が曲線状(弧状)となるエリア)では、給電車両2および受電車両4が図4に示すように非直線的な縦列状態となることから、給電コイル13と受電コイル23は、直線的な縦列状態での正対状態から若干ずれるおそれがある。しかしながら、例えば、エリアC2での走行経路6および走行経路7の半径(走行経路6および走行経路7は近接しているため、ほぼ同じ半径)が既知のときには、制御装置5は、この半径に合わせて、エリアC2内での給電車両2および受電車両4の間隔を微調整することにより、直線的な縦列状態のときと同様にして、給電コイル13と受電コイル23を互いに正対する状態に維持することが可能である。   Therefore, the control device 5 simply performs control on the power supply vehicle 2 such that the power supply vehicle 2 travels so that the distance from the power reception vehicle 4 is maintained at a predetermined distance. Can be maintained in the power receiving area B in a state where they are parallel to each other, spaced apart from each other by a certain distance in the vertical direction, and facing (facing) each other. Note that, in the area C1 in the power receiving area B (the area where the travel route 6 and the travel route 7 are linear), the power supply vehicle 2 and the power reception vehicle 4 are in a straight column state as shown in FIGS. The feeding coil 13 and the receiving coil 23 are maintained in a state of facing each other. On the other hand, in the area C2 in the power receiving area B (the area where the travel route 6 and the travel route 7 are curved (arced)), the feeding vehicle 2 and the power receiving vehicle 4 are in a non-linear tandem state as shown in FIG. Therefore, the power feeding coil 13 and the power receiving coil 23 may be slightly deviated from the directly-facing state in the linear tandem state. However, for example, when the radius of the travel route 6 and the travel route 7 in the area C2 (the travel route 6 and the travel route 7 are close to each other and are almost the same radius) is known, the control device 5 matches the radius. Thus, by finely adjusting the distance between the power feeding vehicle 2 and the power receiving vehicle 4 in the area C2, the power feeding coil 13 and the power receiving coil 23 are kept facing each other in the same manner as in the straight column state. It is possible.

このため、この車両給電システム1では、従来の構成とは異なり、路面の下にレールを建設したり、また車両に非接触ユニット可動機構および非接触ユニット進退機構を配設して非接触ユニットの姿勢をリアルタイムで変更する制御を実行したりする必要が無いことから、建設費および車両コストの上昇を抑制することが可能になっている。   Therefore, in this vehicle power feeding system 1, unlike the conventional configuration, a rail is constructed under the road surface, or a non-contact unit movable mechanism and a non-contact unit advance / retreat mechanism are provided in the vehicle to Since it is not necessary to execute control for changing the posture in real time, it is possible to suppress an increase in construction costs and vehicle costs.

また、制御装置5は、給電車両2に対して給電動作を開始させる制御、および受電車両4に対して受電動作を開始させる制御を実行する。これにより、給電車両2および受電車両4が上記の縦列状態で受電エリアB内を走行しているときに、受電車両4は、給電車両2から非接触で受電して、自らの蓄電部を充電する。   Further, the control device 5 executes control for starting the power feeding operation for the power feeding vehicle 2 and control for starting the power receiving operation for the power receiving vehicle 4. Thereby, when the power feeding vehicle 2 and the power receiving vehicle 4 are traveling in the power receiving area B in the above-described tandem state, the power receiving vehicle 4 receives power from the power feeding vehicle 2 in a non-contact manner and charges its power storage unit. To do.

続いて、制御装置5は、給電車両2側からの位置情報Dp1または受電車両4側からの位置情報Dp2に基づいて、給電車両2および受電車両4が受電エリアBから脱したことを検出したときには、給電車両2に対して給電動作を停止させる制御、および受電車両4に対して受電動作を停止させる制御を実行する。また、制御装置5は、給電車両2に対して、減速させて待機位置に停止させる制御を実行する。また、制御装置5は、給電車両2を待機位置に停止させている状態において、給電装置3に対して、給電車両2への充電動作を開始させる。   Subsequently, when the control device 5 detects that the power feeding vehicle 2 and the power receiving vehicle 4 have left the power receiving area B based on the position information Dp1 from the power feeding vehicle 2 side or the position information Dp2 from the power receiving vehicle 4 side. Then, control for stopping the power feeding operation for the power feeding vehicle 2 and control for stopping the power receiving operation for the power receiving vehicle 4 are executed. Moreover, the control apparatus 5 performs control which makes the electric power feeding vehicle 2 decelerate and stop at a standby position. Further, the control device 5 causes the power supply device 3 to start a charging operation to the power supply vehicle 2 in a state where the power supply vehicle 2 is stopped at the standby position.

その後、制御装置5は、上記した各動作を繰り返し実行する。すなわち、制御装置5は、受電エリアBから脱した受電車両4が検出ポイントを通過する都度、まず、給電装置3によって自らの蓄電部が充電された給電車両2を待機位置から受電エリアBに向けて移動を開始させると共に、給電車両2の速度を受電車両4の速度(検出ポイントを通過した時点での速度)と同じ速度まで上昇させた状態で受電エリアBに進入させて受電車両4と縦列状態で走行させるという動作を実行し、次いで、受電エリアB内において縦列状態の給電車両2から受電車両4に非接触で給電させるという動作を実行し、続いて、受電エリアBから脱した給電車両2を待機位置に停止させると共に、給電装置3に対して給電車両2への充電動作を実行させるという動作を繰り返し実行する。これにより、受電車両4は、蓄電部に充電されている電力が定期的に給電車両2から補充されるため、蓄電部に充電されている電力に基づいて、走行経路7上を継続して自律走行することが可能となる。   Thereafter, the control device 5 repeatedly executes the above-described operations. That is, each time the power receiving vehicle 4 that has escaped from the power receiving area B passes the detection point, the control device 5 first directs the power feeding vehicle 2 whose power storage unit is charged by the power feeding device 3 from the standby position toward the power receiving area B. The power supply vehicle 2 enters the power receiving area B in a state where the speed of the power supply vehicle 2 is increased to the same speed as the speed of the power receiving vehicle 4 (the speed at the time of passing through the detection point). Next, an operation of running the vehicle in a state is performed, and then an operation of feeding the power receiving vehicle 4 in a non-contact manner from the power feeding vehicle 2 in the column state in the power receiving area B is performed, and then the power feeding vehicle removed from the power receiving area B 2 is stopped at the standby position, and the operation of causing the power supply device 3 to perform the charging operation to the power supply vehicle 2 is repeatedly executed. Thereby, since the electric power charged in the power storage unit is periodically replenished from the power supply vehicle 2, the power receiving vehicle 4 continues autonomously on the travel route 7 based on the electric power charged in the power storage unit. It becomes possible to travel.

このように、この給電車両2およびこの車両給電システム1では、給電車両2の給電コイル13は、車両本体11に走行面A(受電エリアB内での走行面A)と平行な状態で配設されると共に、受電車両4との縦列走行状態において、受電車両4に走行面A(受電エリアB内での走行面A)と平行な状態で配設された受電コイル23と対向して受電コイル23に給電可能に構成されている。   Thus, in the power supply vehicle 2 and the vehicle power supply system 1, the power supply coil 13 of the power supply vehicle 2 is disposed on the vehicle body 11 in a state parallel to the travel surface A (the travel surface A in the power receiving area B). At the same time, the power receiving coil 4 faces the power receiving coil 23 arranged in parallel with the traveling surface A (the traveling surface A in the power receiving area B). 23 can be supplied with power.

したがって、この給電車両2およびこの車両給電システム1によれば、従来の構成とは異なり、路面の下にレールを建設したり、また車両に非接触ユニット可動機構および非接触ユニット進退機構を配設して非接触ユニットの姿勢をリアルタイムで変更する制御を実行したりする必要が無いため、建設費および車両コストの上昇を抑制しつつ、受電車両4に非接触で給電することができる。   Therefore, according to the power supply vehicle 2 and the vehicle power supply system 1, unlike the conventional configuration, a rail is constructed under the road surface, and a non-contact unit movable mechanism and a non-contact unit advance / retreat mechanism are provided on the vehicle. Thus, since it is not necessary to execute control for changing the attitude of the non-contact unit in real time, it is possible to supply power to the power receiving vehicle 4 in a non-contact manner while suppressing an increase in construction cost and vehicle cost.

また、この給電車両2およびこの車両給電システム1では、給電車両2の車両本体11における前部および後部の少なくとも一方の部位に、車両本体11から前後方向に沿って延出する支持部14が配設され、給電コイル13は、支持部14に配設されることにより、車両本体11を平面視した状態においてこの車両本体11から突出した状態に支持されている。   Further, in the power supply vehicle 2 and the vehicle power supply system 1, a support portion 14 extending from the vehicle main body 11 along the front-rear direction is disposed at at least one of a front portion and a rear portion of the vehicle main body 11 of the power supply vehicle 2. The power supply coil 13 is disposed on the support portion 14 so that the power supply coil 13 is supported in a state of protruding from the vehicle main body 11 when the vehicle main body 11 is viewed in plan.

したがって、この給電車両2およびこの車両給電システム1によれば、一例として上記した受電車両4のように、受電車両4の車両本体21から延出する支持部24に受電コイル23を走行面A(受電エリアBでの走行面A)と平行な状態で配設することで、給電コイル13および受電コイル23が互いに干渉することなく、また給電車両2の車両本体11と受電車両4の車両本体21との間に間隔を空けつつ(つまり、車両本体11,21同士の直接的な接触を回避しつつ)、給電車両2を受電車両4と縦列状態にさせ、かつ給電コイル13と受電コイル23とを一定の距離だけ上下方向に離間した状態で対向(正対)させることができる。   Therefore, according to the power feeding vehicle 2 and the vehicle power feeding system 1, as in the power receiving vehicle 4 described above as an example, the power receiving coil 23 is placed on the support surface 24 extending from the vehicle body 21 of the power receiving vehicle 4. By arranging in parallel with the traveling surface A) in the power receiving area B, the power feeding coil 13 and the power receiving coil 23 do not interfere with each other, and the vehicle main body 11 of the power feeding vehicle 2 and the vehicle main body 21 of the power receiving vehicle 4. Between the vehicle bodies 11 and 21 (that is, avoiding direct contact between the vehicle main bodies 11 and 21), the power supply vehicle 2 is placed in tandem with the power reception vehicle 4, and the power supply coil 13 and the power reception coil 23 Can be made to face each other in a state of being spaced apart by a certain distance in the vertical direction.

なお、上記の給電車両2では、支持部14を車両本体11から常時延出する状態で配設し、また上記の受電車両4でも、支持部24を車両本体21から常時延出する状態で配設する構成を採用しているが、図示はしないが、背景技術で説明した非接触ユニット進退機構と同じような構成の支持部進退機構(移動機構)を車両本体11,21に配設して、受電エリアB内では、この支持部進退機構によって支持部14,24を車両本体11,21から延出させ(図2,3に示すような延出位置に移動させ)、受電エリアB外では、この支持部進退機構によって支持部14,24を、車両本体11,21を平面視した状態において車両本体11,21の領域内に位置する不図示の収納位置に移動させる構成を採用することもできる。   In the power supply vehicle 2 described above, the support portion 14 is arranged in a state that always extends from the vehicle main body 11, and also in the power receiving vehicle 4, the support portion 24 is arranged in a state that always extends from the vehicle main body 21. Although not shown in the figure, a support part advance / retreat mechanism (moving mechanism) having the same structure as the non-contact unit advance / retreat mechanism described in the background art is disposed in the vehicle main bodies 11, 21. In the power receiving area B, the support portions 14 and 24 are extended from the vehicle main bodies 11 and 21 (moved to the extended positions as shown in FIGS. 2 and 3) by the support portion advancing / retreating mechanism, and outside the power receiving area B. Further, it is also possible to adopt a configuration in which the support portions 14 and 24 are moved to a storage position (not shown) located in the area of the vehicle main bodies 11 and 21 in a state where the vehicle main bodies 11 and 21 are viewed in plan by the support portion advance / retreat mechanism. it can.

この構成によれば、受電エリアB外での給電車両2および受電車両4についての平面視状態での全長を短くすることができると共に、非給電時(非受電時)における給電車両2および受電車両4の外観の見栄えをよくすることができる。   According to this configuration, the overall length of the power feeding vehicle 2 and the power receiving vehicle 4 outside the power receiving area B in a plan view can be shortened, and the power feeding vehicle 2 and the power receiving vehicle at the time of non-power feeding (non-power receiving). The appearance of the appearance of 4 can be improved.

なお、給電車両2の支持部14の構成は、上記した構成に限定されない。例えば、図5に示す車両給電システム1Aのように、受電車両4の車両本体21における底部に、支持部24を設けることなく受電コイル23を直接配設する構成のときには、同図に示す給電車両2Aのように、その車両本体11の底部に支持部14を、車両本体11から延出する状態で配設して、この支持部14に給電コイル13を配設する構成を採用することもできる。この場合、支持部14における給電コイル13の配設部位の走行面Aからの高さは、同図に示すように、車両本体21における底部と走行面Aとの間の隙間に進入する高さに規定する。   In addition, the structure of the support part 14 of the electric power feeding vehicle 2 is not limited to an above-described structure. For example, when the power receiving coil 23 is arranged directly on the bottom of the vehicle main body 21 of the power receiving vehicle 4 without providing the support 24 as in the vehicle power feeding system 1A shown in FIG. As shown in FIG. 2A, it is possible to employ a configuration in which the support portion 14 is disposed on the bottom of the vehicle main body 11 so as to extend from the vehicle main body 11 and the power feeding coil 13 is disposed on the support portion 14. . In this case, the height from the running surface A of the portion where the feeding coil 13 is disposed in the support portion 14 is the height that enters the gap between the bottom of the vehicle main body 21 and the running surface A as shown in FIG. Stipulate.

この構成により、この給電車両2Aおよび車両給電システム1Aにおいても、図5に示すような縦列走行状態において(受電エリアB内において)、支持部14に配設された給電コイル13と車両本体21に配設された受電コイル23とが、一定の距離だけ上下方向に離間した状態で対向(正対)することができるため、路面の下にレールを建設したり、また車両に非接触ユニット可動機構および非接触ユニット進退機構を配設して非接触ユニットの姿勢をリアルタイムで変更する制御を実行したりすることなく、つまり、建設費および車両コストの上昇を抑制しつつ、給電車両2Aから受電車両4Aに非接触で給電することができる。なお、車両給電システム1と同一の構成については同一の符号を付して重複する説明を省略した。   With this configuration, also in the power feeding vehicle 2A and the vehicle power feeding system 1A, the power feeding coil 13 and the vehicle main body 21 provided in the support portion 14 are connected to each other in the tandem running state as shown in FIG. 5 (in the power receiving area B). Since the disposed power receiving coil 23 can be opposed (facing) in a state of being spaced apart by a certain distance in the vertical direction, a rail can be constructed under the road surface, or a non-contact unit moving mechanism can be mounted on the vehicle. And a non-contact unit advance / retreat mechanism to control the posture of the non-contact unit in real time, that is, while suppressing an increase in construction cost and vehicle cost, the power receiving vehicle 2A can receive power. 4A can be fed in a non-contact manner. In addition, about the structure same as the vehicle electric power feeding system 1, the same code | symbol was attached | subjected and the overlapping description was abbreviate | omitted.

また、図6に示す車両給電システム1Bのように、受電車両4Bの車両本体21における屋根部に、支持部24を設けることなく受電コイル23を直接配設する構成のときには、同図に示す給電車両2Bのように、その車両本体11の屋根部に支持部14を、車両本体11から延出する状態で配設して、この支持部14に給電コイル13を配設する構成を採用することもできる。この場合、支持部14における給電コイル13の配設部位の走行面Aからの高さは、同図に示すように、受電車両4Bの車両本体21および受電コイル23のうちの最も高い部材(同図では一例として受電コイル23)よりも若干高くなる高さに規定する。   Further, when the power receiving coil 23 is arranged directly on the roof portion of the vehicle main body 21 of the power receiving vehicle 4B without providing the support portion 24 as in the vehicle power feeding system 1B shown in FIG. 6, the power feeding shown in FIG. As in the vehicle 2 </ b> B, a configuration in which the support portion 14 is disposed on the roof portion of the vehicle main body 11 in a state of extending from the vehicle main body 11 and the feeding coil 13 is disposed on the support portion 14 is adopted. You can also. In this case, the height of the portion where the feeding coil 13 is disposed in the support portion 14 from the running surface A is the highest member (the same as the vehicle main body 21 and the power receiving coil 23 of the power receiving vehicle 4B), as shown in FIG. In the figure, as an example, the height is defined to be slightly higher than the receiving coil 23).

この構成により、この給電車両2Bおよび車両給電システム1Bにおいても、図6に示すような縦列走行状態において(受電エリアB内において)、支持部14に配設された給電コイル13と車両本体21に配設された受電コイル23とが、一定の距離だけ上下方向に離間した状態で対向(正対)することができるため、路面の下にレールを建設したり、また車両に非接触ユニット可動機構および非接触ユニット進退機構を配設して非接触ユニットの姿勢をリアルタイムで変更する制御を実行したりすることなく、つまり、建設費および車両コストの上昇を抑制しつつ、給電車両2Bから受電車両4Bに非接触で給電することができる。   With this configuration, also in the power feeding vehicle 2B and the vehicle power feeding system 1B, the power feeding coil 13 and the vehicle main body 21 disposed in the support portion 14 are connected to each other in the tandem running state as shown in FIG. 6 (in the power receiving area B). Since the disposed power receiving coil 23 can be opposed (facing) in a state of being spaced apart by a certain distance in the vertical direction, a rail can be constructed under the road surface, or a non-contact unit moving mechanism can be mounted on the vehicle. And a non-contact unit advance / retreat mechanism to perform control for changing the attitude of the non-contact unit in real time, that is, while suppressing an increase in construction cost and vehicle cost, the power receiving vehicle 2B can receive power. 4B can be fed in a non-contact manner.

また、上記の例では、制御装置5が受電車両4(4A,4B)に対する受電動作についての制御(受電動作の開始および停止の制御)を実行する構成を採用しているが、受電車両4(4A,4B)4が、自ら給電車両2(2A,2B)からの給電の開始を検出して受電動作を開始すると共に、給電の停止を検出して受電動作を停止する構成を採用することもでき、この構成を採用したときには、受電車両4(4A,4B)に対する受電動作についての制御装置5の制御を不要にすることができる。   In the above example, the control device 5 employs a configuration for executing control (control of start and stop of power reception operation) on the power reception operation for the power reception vehicle 4 (4A, 4B). 4A, 4B) 4 may adopt a configuration in which the power reception operation is started by detecting the start of power supply from the power supply vehicle 2 (2A, 2B) and the power reception operation is stopped by detecting the stop of the power supply. In addition, when this configuration is adopted, the control of the control device 5 regarding the power receiving operation for the power receiving vehicle 4 (4A, 4B) can be made unnecessary.

1,1A,1B 車両給電システム
2,2A,2B 給電車両
4,4A,4B 受電車両
5 制御装置
11,21 車両本体
13 給電コイル
14,24 支持部
23 受電コイル
A 走行面
B 受電エリア
1,1A, 1B Vehicle power supply system
2,2A, 2B Power supply vehicle
4,4A, 4B Receiving vehicle
DESCRIPTION OF SYMBOLS 5 Control apparatus 11,21 Vehicle main body 13 Feeding coil 14,24 Support part 23 Power receiving coil
A Running surface
B Power receiving area

Claims (4)

予め規定された走行面上を走行する車両本体、および当該車両本体に配設されて前記走行面上を走行する受電車両に対して非接触で給電する給電コイルを備えている給電車両であって、
前記給電コイルは、前記走行面と平行な状態で前記車両本体に配設されると共に、前記受電車両との縦列走行状態において、前記走行面と平行な状態で当該受電車両に配設された受電コイルと対向して当該受電コイルに給電可能に構成されている給電車両。
A power supply vehicle including a vehicle main body that travels on a predetermined travel surface, and a power supply coil that is disposed on the vehicle main body and that supplies power to the power receiving vehicle that travels on the travel surface in a contactless manner. ,
The power feeding coil is disposed on the vehicle body in a state parallel to the traveling surface, and in a state of traveling in parallel with the power receiving vehicle, the power receiving coil is disposed on the power receiving vehicle in a state parallel to the traveling surface. A power supply vehicle configured to be able to supply power to the power receiving coil facing the coil.
前記車両本体の前部および後部の少なくとも一方の部位に、当該車両本体から前後方向に沿って延出する支持部が配設され、
前記給電コイルは、前記支持部に配設されることにより、前記車両本体を平面視した状態において当該車両本体から突出した状態に支持されている請求項1記載の給電車両。
At least one of the front and rear portions of the vehicle body is provided with a support portion extending from the vehicle body along the front-rear direction,
The power feeding vehicle according to claim 1, wherein the power feeding coil is disposed in the support portion and is supported in a state of projecting from the vehicle main body when the vehicle main body is viewed in plan.
前記車両本体には、当該車両本体を平面視した状態において、前記支持部を当該車両本体の領域内に位置する収納位置と当該車両本体の領域外に位置する延出位置との間で移動させる移動機構が配設されている請求項2記載の給電車両。   The vehicle main body moves the support portion between a storage position located within the area of the vehicle main body and an extended position located outside the area of the vehicle main body in a state where the vehicle main body is viewed in plan. The power supply vehicle according to claim 2, wherein a moving mechanism is provided. 予め規定された周回経路を走行する請求項1から3のいずれかに記載の給電車両と、
受電コイルを有すると共に前記周回経路の一部を含む予め規定された受電エリア内での走行中に当該受電コイルを介して前記給電車両から非接触で受電する受電車両と、
前記給電車両の前記周回経路での走行状態を制御する制御装置とを備え、
前記制御装置は、前記受電車両の前記受電エリア内への進入タイミングを取得し、当該取得した進入タイミングに基づいて前記給電車両の前記走行状態を制御することで、当該受電エリア内において前記受電車両と前記給電車両とを前記縦列走行状態に移行させる車両給電システム。
The power supply vehicle according to any one of claims 1 to 3, which travels on a predetermined circuit route,
A power receiving vehicle that has a power receiving coil and receives power from the power feeding vehicle in a non-contact manner through the power receiving coil during traveling in a predetermined power receiving area including a part of the circuit path;
A control device for controlling a traveling state of the power supply vehicle on the circuit route,
The control device acquires an entry timing of the power receiving vehicle into the power receiving area, and controls the traveling state of the power feeding vehicle based on the acquired entry timing, whereby the power receiving vehicle in the power receiving area. Vehicle power feeding system for shifting the power feeding vehicle to the tandem running state.
JP2015079839A 2015-04-09 2015-04-09 Power supply vehicle and vehicle power supply system Active JP6462467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079839A JP6462467B2 (en) 2015-04-09 2015-04-09 Power supply vehicle and vehicle power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079839A JP6462467B2 (en) 2015-04-09 2015-04-09 Power supply vehicle and vehicle power supply system

Publications (2)

Publication Number Publication Date
JP2016201884A JP2016201884A (en) 2016-12-01
JP6462467B2 true JP6462467B2 (en) 2019-01-30

Family

ID=57423109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079839A Active JP6462467B2 (en) 2015-04-09 2015-04-09 Power supply vehicle and vehicle power supply system

Country Status (1)

Country Link
JP (1) JP6462467B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070460A1 (en) 2016-10-13 2018-04-19 日立化成株式会社 Organic electronics material, ink composition, and organic electronics element
DE102017210566A1 (en) * 2017-06-22 2018-12-27 Robert Bosch Gmbh Method for operating a charging device
JP6992500B2 (en) 2017-12-26 2022-01-13 トヨタ自動車株式会社 Power management system
JP7141513B1 (en) * 2021-12-15 2022-09-22 Dmg森精機株式会社 unmanned carrier system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783771B2 (en) * 2001-11-16 2006-06-07 三菱自動車工業株式会社 Electric car
JP4738177B2 (en) * 2006-01-11 2011-08-03 三菱重工業株式会社 Transportation system charging method and charging system
JP2012222975A (en) * 2011-04-11 2012-11-12 Toyota Industries Corp Vehicle mounted with power feed device
JP5655700B2 (en) * 2011-05-12 2015-01-21 株式会社Ihi Transport system
JP2014014217A (en) * 2012-07-04 2014-01-23 Toyo Electric Mfg Co Ltd Non-contact power supply device
JP5991209B2 (en) * 2013-01-22 2016-09-14 株式会社豊田自動織機 Operation control system for automated guided vehicles

Also Published As

Publication number Publication date
JP2016201884A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6462467B2 (en) Power supply vehicle and vehicle power supply system
JP4442517B2 (en) Non-contact power supply device and power supply system for autonomous mobile device
US11715977B2 (en) Method and system for contactless power transfer in a linear drive system
KR101495470B1 (en) Torque control apparatus and contactless charging system
JP6024106B2 (en) Transfer device and mobile vehicle
KR101824578B1 (en) Power reception apparatus, power transmission apparatus, power transmission system, and parking assistance system
JP2008211939A (en) Traffic system with no overhead wire and its charge method
JP5211103B2 (en) Resonant contactless power supply system for vehicles
US9873346B2 (en) Device and method of adjusting relative position between power-supplying coil and power-receiving coil
US5542356A (en) Track-guided transport vehicle
JP5557618B2 (en) Vehicle charging system
JP6776889B2 (en) Transport trolley
WO2014038707A1 (en) Vehicle power feeding device
JP2007500494A (en) Contactless energy supply for moving loads
CN204650279U (en) Based on the AGV control system of PLC
JP5287810B2 (en) Traveling vehicle system
JP6076321B2 (en) Non-contact power supply system and electric vehicle
JP2015104161A (en) Non-contact power transmission device and non-contact power transmission system
JP2016211210A (en) Parking facility system
JP2011091882A (en) Induction type vehicle power feed device
JP2013169109A (en) Mobile vehicle and non contact power transmission apparatus
JP5974460B2 (en) Mobile vehicle and non-contact power transmission device
JP3930731B2 (en) Moving system with hybrid linear motor drive
JP2014014217A (en) Non-contact power supply device
JP4640035B2 (en) Contactless power supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181227

R150 Certificate of patent or registration of utility model

Ref document number: 6462467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250