JP2014014217A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2014014217A
JP2014014217A JP2012150129A JP2012150129A JP2014014217A JP 2014014217 A JP2014014217 A JP 2014014217A JP 2012150129 A JP2012150129 A JP 2012150129A JP 2012150129 A JP2012150129 A JP 2012150129A JP 2014014217 A JP2014014217 A JP 2014014217A
Authority
JP
Japan
Prior art keywords
power
vehicle
power transmission
coil
lane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012150129A
Other languages
Japanese (ja)
Inventor
Yoshihisa Hojo
善久 北条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2012150129A priority Critical patent/JP2014014217A/en
Publication of JP2014014217A publication Critical patent/JP2014014217A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply device, used for performing a non-contact power supply by means of magnetic energy to an electric vehicle equipped with a power incoming coil for transporting a person or a load, capable of improving power supply efficiency between a power transmission coil and the power incoming coil and suppressing leakage magnetic flux from the power transmission coil.SOLUTION: An electric vehicle having a power incoming coil for transporting a person or a load, and a vehicle having a power transmission coil and a high frequency power source, are allowed to run side by side in a position so that power supply efficiency of the power incoming coil and the power transmission coil becomes the highest.

Description

本発明は、走行する電動車両に対して非接触にて電力を供給する装置に関するものである。   The present invention relates to a device that supplies electric power to a traveling electric vehicle in a contactless manner.

走行する電動車両に非接触にて電力を供給する手法として特許文献1では、複数の送電コイルおよび電源を用いた手法が示されており、図2に基づいて従来の技術を説明する。   As a technique for supplying electric power to a traveling electric vehicle in a non-contact manner, Patent Document 1 discloses a technique using a plurality of power transmission coils and a power source, and the conventional technique will be described with reference to FIG.

図2は、路面3の上に複数の送電コイル211〜213が設置され、受電コイルを搭載した受電車両11〜12に非接触にて電力を供給するシステムを示している。   FIG. 2 shows a system in which a plurality of power transmission coils 211 to 213 are installed on the road surface 3 and power is supplied in a non-contact manner to the power receiving vehicles 11 to 12 on which the power receiving coils are mounted.

送電コイル211〜213には各々に高周波電源221〜223が接続されており、高周波電圧を印加することで各々の送電コイルを励磁し電気エネルギーを磁気エネルギーに変換する。   High frequency power supplies 221 to 223 are connected to the power transmission coils 211 to 213, respectively, and by applying a high frequency voltage, each power transmission coil is excited to convert electrical energy into magnetic energy.

受電コイル111〜112は送電コイル211〜213から発生する磁気エネルギーを電気エネルギーに変換する。   The power receiving coils 111 to 112 convert magnetic energy generated from the power transmitting coils 211 to 213 into electric energy.

受電車両は受電コイルで変換された電気エネルギーをモータなどにより機械エネルギーに変換し車輪を駆動して走行する電動車両である。   A power receiving vehicle is an electric vehicle that travels by driving wheels by converting electrical energy converted by a power receiving coil into mechanical energy by a motor or the like.

特許文献1では電力の利用率を高めるために、受電車両が送電コイル上を走行する時にのみ高周波電源が送電コイルに電力を供給する。   In Patent Document 1, in order to increase the power utilization rate, the high-frequency power source supplies power to the power transmission coil only when the power receiving vehicle travels on the power transmission coil.

図2の例では受電車両11は送電コイル211の上を走行しており、受電車両12は送電コイル213の上を走行しているため高周波電源221および223が送電コイル211および213に電力を供給する。高周波電源222は送電コイル212の上を受電車両が走行していないため送電コイル212への電力の供給を停止する。   In the example of FIG. 2, the power receiving vehicle 11 is traveling on the power transmission coil 211, and the power receiving vehicle 12 is traveling on the power transmission coil 213, so the high frequency power supplies 221 and 223 supply power to the power transmission coils 211 and 213. To do. The high-frequency power supply 222 stops supplying power to the power transmission coil 212 because the power receiving vehicle is not traveling on the power transmission coil 212.

このようにすることで電力の利用率を高めつつ、走行する電動車両に非接触にて電力を供給することができる。   In this way, it is possible to supply electric power in a non-contact manner to an electric vehicle that travels while increasing the power utilization rate.

しかしながら、走行する電動車両に非接触にて電力を供給するためには、送電コイルの走行方向の長さは受電コイルの走行方向の長さよりはるかに長くなければならず、送電コイルから漏れ磁束が生じる。   However, in order to supply electric power to a traveling electric vehicle in a contactless manner, the length of the power transmission coil in the traveling direction must be much longer than the length of the power receiving coil in the traveling direction, and leakage magnetic flux is generated from the power transmission coil. Arise.

送電コイルからの漏れ磁束に磁界により周辺の通信機器への障害や人体へ悪影響を及ぼす可能性がある。   There is a possibility that the leakage magnetic flux from the power transmission coil may adversely affect the surrounding communication equipment or the human body due to the magnetic field.

特開平7−67206号JP-A-7-67206

解決しようとする問題点は、非接触給電におけるエネルギー伝達の媒体となる磁界による周辺の通信機器への障害や人体への悪影響を抑制するために漏れ磁束を抑制しつつ走行中の電動車両に非接触にて電力を供給することである。   The problem to be solved is that non-contact power feeding is not applied to a running electric vehicle while suppressing leakage magnetic flux in order to suppress damage to surrounding communication devices and adverse effects on the human body due to a magnetic field as a medium for energy transmission. It is to supply electric power by contact.

請求項1の発明によれば、高周波電源により送電コイルに高周波電圧を印加することで送電側電気エネルギーを磁気エネルギーに変換する装置と、該磁気エネルギーを受電側電気エネルギーに変換する受電コイルと該受電側電気エネルギーを駆動力に変換して車両を走行させるための受電車両用駆動力変換装置を搭載した受電車両から構成される非接触にて電力を供給する装置において、
前記高周波電源と前記送電コイルを送電車両に搭載し、該送電車両は前記受電車両に並走して前記送電車両の送電コイルから発生する磁気エネルギーを前記受電車両の受電コイルに伝達することで非接触にて電力を供給することを特徴とする非接触給電装置。
According to the first aspect of the present invention, a device for converting electric energy on the power transmission side into magnetic energy by applying a high frequency voltage to the power transmission coil from a high frequency power source, a power receiving coil for converting the magnetic energy into electric energy on the power receiving side, and In an apparatus for supplying electric power in a non-contact manner composed of a power receiving vehicle equipped with a power receiving vehicle driving force conversion device for converting the power receiving side electric energy into driving force to drive the vehicle,
The high-frequency power source and the power transmission coil are mounted on a power transmission vehicle, and the power transmission vehicle runs parallel to the power reception vehicle and transmits magnetic energy generated from the power transmission coil of the power transmission vehicle to the power reception coil of the power reception vehicle. A non-contact power supply device that supplies power by contact.

請求項2の発明によれば、請求項1に記載のシステムにおいて、
前記送電車両は2本の導電性のレール上を走行し、該2本の導電性レールの一方を+電極とし他方を−電極とし、前記送電車両に導電性の車輪を搭載させて直流の電気エネルギーを送電側電気エネルギーとして前記送電車両に供給することを特徴とする非接触給電装置。
According to the invention of claim 2, in the system of claim 1,
The power transmission vehicle travels on two conductive rails, one of the two conductive rails is a positive electrode and the other is a negative electrode. A non-contact power feeding device that supplies energy as power transmission side electric energy to the power transmission vehicle.

請求項3の発明によれば、上り車線と下り車線を片側2車線以上有する道路において、
前記上り車線と前記下り車線のそれぞれに請求項1および請求項2の送電車両から受電車両へ給電が可能な給電レーンと給電が不可能な非給電レーンと中央分離帯に任意の間隔で前記送電車両が複数台待機でき、上り車線および下り車線から出入りできる待機所を設置し、前記受電車両が前記給電レーンに進入したら、近傍の前記待機所から前記送電車両も給電レーンに進入し、前記受電車両と前記送電車両が並走しながら前記送電車両から前記受電車両に電力を供給し、前記受電車両が非給電レーンに移ったら、前記送電車両は進行方向の近傍で待機スペースがある前記待機所に入り待機することを特徴とする電動車両への走行中非接触給電システム。
According to the invention of claim 3, in a road having two or more lanes on one side and an up lane,
The power transmission lane capable of feeding power from the power transmission vehicle to the power receiving vehicle of claim 1 and claim 2, the non-power feeding lane where power cannot be fed, and the central separation zone at each of the upstream lane and the downstream lane at arbitrary intervals. When a plurality of vehicles can stand by and a standby station is provided that can enter and exit from the ascending lane and descending lane, and the power receiving vehicle enters the power supply lane, the power transmitting vehicle also enters the power supply lane from the nearby standby station, and the power receiving When the vehicle and the power transmission vehicle are running side by side to supply power from the power transmission vehicle to the power receiving vehicle, and the power receiving vehicle moves to a non-powered lane, the power transmission vehicle has a standby space in the vicinity of the traveling direction. A non-contact power feeding system during traveling to an electric vehicle characterized by entering and waiting.

請求項4の発明によれば、前記受電コイルを光発電素子に、前記送電コイルを発光素子に前記高周波電源を発光素子用電源に置換え、光エネルギーを媒体として非接触にてエネルギーの伝達を行うことを特徴とする請求項1記載の非接触給電装置。   According to the invention of claim 4, the power receiving coil is replaced with a photovoltaic element, the power transmitting coil is replaced with a light emitting element, and the high frequency power source is replaced with a light emitting element power source, and energy is transmitted in a non-contact manner using light energy as a medium. The non-contact electric power feeder of Claim 1 characterized by the above-mentioned.

請求項5の発明によれば、前記受電コイルを回転体による発電機に、前記送電コイルを送風機またはポンプに、前記高周波電源を送風機またはポンプの電源に置換え、流体による機械エネルギーを媒体として非接触にてエネルギーの伝達を行うことを特徴とする請求項1記載の非接触給電装置。   According to the invention of claim 5, the power reception coil is replaced with a generator by a rotating body, the power transmission coil is replaced by a blower or a pump, the high frequency power supply is replaced by a power supply of a blower or a pump, and mechanical energy by fluid is used as a medium without contact. The non-contact power feeding apparatus according to claim 1, wherein energy is transmitted by the power.

請求項6の発明によれば、前記受電コイルを熱発電素子に、前記送電コイルを発熱体に、前記高周波電源を発熱体の電源に置換え、熱エネルギーを媒体として非接触にてエネルギーの伝達を行うことを特徴とする請求項1記載の非接触給電装置。   According to the invention of claim 6, the power receiving coil is replaced with a thermoelectric generator, the power transmission coil is replaced with a heating element, the high frequency power source is replaced with a power source of the heating element, and energy is transmitted in a non-contact manner using thermal energy as a medium. The contactless power feeding device according to claim 1, wherein the contactless power feeding device is performed.

受電車両と送電車両が並走し受電コイルと送電コイルの位置関係を適切に制御することにより、走行中の受電車両に送電車両からの電力を非接触にて給電しつつ、送電車両の送電コイルから発生する漏れ磁束を抑制することができる。   While the power receiving vehicle and the power transmitting vehicle run side by side and appropriately control the positional relationship between the power receiving coil and the power transmitting coil, the power receiving vehicle is being contacted with the power transmitted from the power transmitting vehicle in a non-contact manner. The leakage magnetic flux which generate | occur | produces from can be suppressed.

第1の実施例の構成を示した図である。It is the figure which showed the structure of the 1st Example. 背景技術の構成を示した図である。It is the figure which showed the structure of background art. 第2の実施例の構成および動作を示した図である。It is the figure which showed the structure and operation | movement of the 2nd Example. 第3の構成および動作を示した図である。It is the figure which showed the 3rd structure and operation | movement. 第4の構成および動作を示した図である。It is the figure which showed the 4th structure and operation | movement. 第5の構成および動作を示した図である。It is the figure which showed the 5th structure and operation | movement.

非接触給電におけるエネルギー伝達の媒体となる磁界による他の通信機器への障害や人体への影響を抑制するために漏れ磁束を抑制しつつ、走行中の電動車両に非接触にて電力を供給するという目的を実現した。
(第1の実施例)
Supplying electric power to a running electric vehicle in a non-contact manner while suppressing leakage magnetic flux in order to suppress damage to other communication devices and influence on the human body due to a magnetic field as a medium for energy transfer in non-contact power supply The purpose was realized.
(First embodiment)

図1に本発明の第1の実施例を示し、図1に基づいて本発明の詳細な説明をする。   FIG. 1 shows a first embodiment of the present invention, and the present invention will be described in detail based on FIG.

図1の受電車両1は人物109や積荷110を運搬する車両であり、受電コイル101、受電車両用駆動力変換装置100、操舵装置108を備え、路面3の上を走行する。   A power receiving vehicle 1 in FIG. 1 is a vehicle that carries a person 109 and a load 110, and includes a power receiving coil 101, a power receiving vehicle driving force conversion device 100, and a steering device 108, and travels on a road surface 3.

受電車両用駆動力変換装置100は充電器102、蓄電装置103、受電車両用モータドライバ104、受電車両用モータ105、受電車両用駆動装置106、受電車両用車輪107から構成され、受電コイルから得た受電側電気エネルギーを駆動力に変換して受電車両1を走行させる。   The power receiving vehicle driving force conversion device 100 includes a charger 102, a power storage device 103, a power receiving vehicle motor driver 104, a power receiving vehicle motor 105, a power receiving vehicle drive device 106, and a power receiving vehicle wheel 107, and is obtained from a power receiving coil. The power receiving vehicle 1 is caused to travel by converting the received power side electric energy into driving force.

送電車両2は受電車両1に電力を送電する車両であり、送電コイル201、高周波電源202、送電車両用駆動力変換装置200を備え、路面3の下のレール4の上を走行する。   The power transmission vehicle 2 is a vehicle that transmits power to the power receiving vehicle 1, and includes a power transmission coil 201, a high frequency power source 202, and a power transmission vehicle driving force converter 200, and travels on the rail 4 below the road surface 3.

送電車両用駆動力変換装置200は送電車両用モータドライバ203、送電車両用モータ204、送電車両用駆動装置205、送電車両用車輪206〜208から構成され、送電側電気エネルギーを駆動力に変換して送電車両2を走行させる。   The power transmission vehicle driving force converter 200 includes a power transmission vehicle motor driver 203, a power transmission vehicle motor 204, a power transmission vehicle drive device 205, and power transmission vehicle wheels 206 to 208, and converts power transmission side electric energy into driving force. The power transmission vehicle 2 is caused to travel.

受電車両1において、受電コイル101は送電コイル201から発せられる磁気エネルギーを受け、電気エネルギーに変換する。   In the power receiving vehicle 1, the power receiving coil 101 receives magnetic energy emitted from the power transmitting coil 201 and converts it into electric energy.

充電器102は受電コイル101が出力する交流電力を整流して直流電力に変換し、電圧を調整して蓄電装置103に充電する。   The charger 102 rectifies AC power output from the power receiving coil 101 and converts it into DC power, adjusts the voltage, and charges the power storage device 103.

受電車両用モータドライバ104は蓄電装置103に蓄えられた電気エネルギーを入力として受電車両用モータ105を所要のトルクとなるように制御し機械エネルギーを受電車両用駆動装置106に与える。   The power receiving vehicle motor driver 104 receives the electric energy stored in the power storage device 103 as input, controls the power receiving vehicle motor 105 to have a required torque, and gives mechanical energy to the power receiving vehicle driving device 106.

受電車両用駆動装置106は受電車両用モータ105から出力される機械エネルギーを受電車両用車輪107に伝達し、受電車両1に動力を与え路面3上を走行させる。   The power receiving vehicle driving device 106 transmits the mechanical energy output from the power receiving vehicle motor 105 to the power receiving vehicle wheel 107 to power the power receiving vehicle 1 and travel on the road surface 3.

操舵装置108は受電車両1の進行方向を制御する。   The steering device 108 controls the traveling direction of the power receiving vehicle 1.

送電車両2において送電コイル201は高周波電源202により高周波電圧が印加され、電気エネルギーを磁気エネルギーに変換し、受電コイル101を介して受電車両1に電力を供給する。   In the power transmission vehicle 2, a high frequency voltage is applied to the power transmission coil 201 from the high frequency power source 202, converts electric energy into magnetic energy, and supplies power to the power receiving vehicle 1 via the power reception coil 101.

送電車両用モータドライバ203は送電車両用モータ204を所要のトルクとなるように制御し機械エネルギーを送電車両用駆動装置205に与える。   The power transmission vehicle motor driver 203 controls the power transmission vehicle motor 204 to have a required torque, and gives mechanical energy to the power transmission vehicle drive device 205.

送電車両用駆動装置205は送電車両用モータ204から出力される機械エネルギーを送電車両用車輪208に伝達し、送電車両2に動力を与えレール4上を走行させる。   The power transmission vehicle drive device 205 transmits the mechanical energy output from the power transmission vehicle motor 204 to the power transmission vehicle wheels 208 to power the power transmission vehicle 2 and travel on the rail 4.

走行中の受電車両1に送電車両2から電力を給電する場合、受電車両1は送電車両2の進行方向の速度と合うように並走し、受電コイル101と送電コイル201間の給電効率が最大となる位置関係となるように操舵装置108にて受電車両1の左右の位置を、受電車両用モータドライバ104にて受電車両1の進行方向の速度を制御する。   When power is supplied from the power transmission vehicle 2 to the traveling power receiving vehicle 1, the power receiving vehicle 1 runs side by side so as to match the speed in the traveling direction of the power transmission vehicle 2, and the power feeding efficiency between the power receiving coil 101 and the power transmission coil 201 is maximized. The left and right positions of the power receiving vehicle 1 are controlled by the steering device 108 and the speed of the power receiving vehicle 1 in the traveling direction is controlled by the motor driver 104 for the power receiving vehicle.

また、受電車両1の進行方向の速度に合うように送電車両2を並走させ、受電コイル101と送電コイル201間の給電効率が最大となる位置関係となるように、送電車両用モータドライバ203にて送電車両2の進行方向の速度を制御してもよい。   Further, the power transmission vehicle 2 is moved in parallel so as to match the speed in the traveling direction of the power reception vehicle 1, and the power transmission vehicle motor driver 203 is set so that the power supply efficiency between the power reception coil 101 and the power transmission coil 201 is maximized. The speed in the traveling direction of the power transmission vehicle 2 may be controlled at.

給電効率が最大となる位置関係を制御するために受電車両1と送電車両2との間の速度情報、電力情報は無線通信にて伝達を行っても良い。
また、受電車両1には複数台の受電コイル101を搭載し、複数台の送電車両2にて電力を給電することで大型車両に大電力を給電することも可能である。
Speed information and power information between the power receiving vehicle 1 and the power transmitting vehicle 2 may be transmitted by wireless communication in order to control the positional relationship that maximizes the power feeding efficiency.
In addition, a plurality of power receiving coils 101 can be mounted on the power receiving vehicle 1, and large power can be supplied to a large vehicle by supplying power from the plurality of power transmitting vehicles 2.

また、送電車両2の車輪206〜207は鉄などの導電性の材料で構成されており、高周波電源202および送電車両用モータドライバ203への直流電力はレール41およびレール42から車輪206〜207を介して供給される。   Further, the wheels 206 to 20 7 of the power transmission vehicle 2 are made of a conductive material such as iron. Supplied through.

レール41とレール42は一方が+電極となり、もう一方が−電極となる。
(第2の実施例)
One of the rail 41 and the rail 42 is a positive electrode, and the other is a negative electrode.
(Second embodiment)

図3に本発明の第2の実施例を示し、図3に基づいて本発明の詳細な説明をする。   FIG. 3 shows a second embodiment of the present invention, and the present invention will be described in detail based on FIG.

道路5は上り車線51と下り車線52および中央分離帯53により構成され、中央分離帯には送電車両2が待機する待機所6が任意の間隔で複数設置される。   The road 5 is composed of an up lane 51, a down lane 52, and a central separation zone 53. In the central separation zone, a plurality of standby stations 6 on which power transmission vehicles 2 wait are installed at arbitrary intervals.

待機所6には複数台の送電車両2が待機できる。   A plurality of power transmission vehicles 2 can stand by in the waiting place 6.

上り車線51と下り車線52には中央分離帯53側に各々給電レーン31が設けられ、その逆側には複数の非給電レーン32が設けられる。   The up lane 51 and the down lane 52 are each provided with a power supply lane 31 on the central separation band 53 side, and a plurality of non-power supply lanes 32 are provided on the opposite side.

給電レーン31は送電車両2から受電車両1へ非接触で給電可能なレーンで路面3の下には送電車両2が走行するレール41とレール42が設けられている。   The power supply lane 31 is a lane in which power can be supplied from the power transmission vehicle 2 to the power reception vehicle 1 in a non-contact manner, and a rail 41 and a rail 42 on which the power transmission vehicle 2 travels are provided below the road surface 3.

非給電レーン32は受電車両1に搭載された蓄電装置103のエネルギーを用いて受電車両1が走行するレーンである。   The non-power feeding lane 32 is a lane in which the power receiving vehicle 1 travels using the energy of the power storage device 103 mounted on the power receiving vehicle 1.

以下に走行している受電車両1へ送電車両2から非接触にて給電するシーケンスを図3のA〜Hを用いて示す。   A sequence for supplying power from the power transmission vehicle 2 to the power receiving vehicle 1 traveling in a non-contact manner will be described below with reference to FIGS.

上り車線のAの地点において受電車両1は非給電レーン32を走行している。   The power receiving vehicle 1 is traveling on the non-power-feeding lane 32 at the point A on the up lane.

Bの地点において受電車両1が非給電レーン32から給電レーン31に入ると、その受電車両1の近傍の待機所6に待機している送電車両2が給電レーン31に進入し、受電車両1の下を走行する。   When the power receiving vehicle 1 enters the power feeding lane 31 from the non-power feeding lane 32 at the point B, the power transmitting vehicle 2 waiting in the waiting place 6 in the vicinity of the power receiving vehicle 1 enters the power feeding lane 31, and Drive down.

Cの地点において受電車両1は送電車両2の進行方向の速度と合うように並走し、受電コイル101と送電コイル201間の給電効率が最大となる位置関係となるように操舵装置108にて受電車両1の左右の位置を、受電車両用モータドライバ104にて受電車両1の進行方向の速度を制御する。   At the point C, the power receiving vehicle 1 runs in parallel so as to match the speed in the traveling direction of the power transmitting vehicle 2, and the steering device 108 makes a positional relationship that maximizes the power feeding efficiency between the power receiving coil 101 and the power transmitting coil 201. The left and right positions of the power receiving vehicle 1 are controlled by the power receiving vehicle motor driver 104 in the traveling direction of the power receiving vehicle 1.

また、受電車両1の進行方向の速度に合うように送電車両2を並走させ、受電コイル101と送電コイル201間の給電効率が最大となる位置関係となるように、送電車両用モータドライバ203にて送電車両2の進行方向の速度を制御してもよい。   Further, the power transmission vehicle 2 is moved in parallel so as to match the speed in the traveling direction of the power reception vehicle 1, and the power transmission vehicle motor driver 203 is set so that the power supply efficiency between the power reception coil 101 and the power transmission coil 201 is maximized. The speed in the traveling direction of the power transmission vehicle 2 may be controlled at.

Dの地点において受電車両1への給電が必要なくなった場合には受電車両1は給電レーン31から非給電レーン32へ入り、送電車両2は進行方向の近傍で待機スペースの余裕がある待機所6に進入し待機する。   When power supply to the power receiving vehicle 1 is no longer necessary at the point D, the power receiving vehicle 1 enters the non-power supply lane 32 from the power supply lane 31, and the power transmission vehicle 2 has a standby place 6 in the vicinity of the traveling direction with a margin of standby space. Enter and wait.

下り車線についても同様にEの地点で非給電レーン32を走行している受電車両1がFの地点で給電レーン31に入るとその受電車両1の近傍の待機所6に待機している送電車両2が給電レーン31に進入し、受電車両1の下を走行する。   Similarly, regarding the down lane, when the power receiving vehicle 1 traveling in the non-powered lane 32 at the point E enters the power feeding lane 31 at the point F, the power transmitting vehicle standing by at the standby station 6 near the power receiving vehicle 1. 2 enters the power supply lane 31 and travels under the power receiving vehicle 1.

Gの地点において受電車両1は送電車両2の進行方向の速度と合うように並走し、受電コイル101と送電コイル201間の給電効率が最大となる位置関係となるように操舵装置108にて受電車両1の左右の位置を、受電車両用モータドライバ104にて受電車両1の進行方向の速度を制御する。   At the point G, the power receiving vehicle 1 runs in parallel so as to match the speed in the traveling direction of the power transmitting vehicle 2, and the steering device 108 makes a positional relationship that maximizes the power supply efficiency between the power receiving coil 101 and the power transmitting coil 201. The left and right positions of the power receiving vehicle 1 are controlled by the power receiving vehicle motor driver 104 in the traveling direction of the power receiving vehicle 1.

Hの地点において受電車両1への給電が必要なくなった場合には受電車両1は給電レーン31から非給電レーン32へ入り、送電車両2は進行方向の近傍で待機スペースの余裕がある待機所6に進入し待機する。   When power supply to the power receiving vehicle 1 is no longer necessary at the point H, the power receiving vehicle 1 enters the non-power supply lane 32 from the power supply lane 31, and the power transmission vehicle 2 has a standby space 6 in the vicinity of the traveling direction with a margin of standby space. Enter and wait.

このように送電車両2を上り車線51と下り車線52で共有することにより、送電車両2の数量を抑えると共に、送電車両2が受電車両1に給電しないで走行する移動量を抑えることができる。   Thus, by sharing the power transmission vehicle 2 between the up lane 51 and the down lane 52, it is possible to reduce the number of the power transmission vehicles 2 and to suppress the amount of movement that the power transmission vehicle 2 travels without supplying power to the power receiving vehicle 1.

受電車両1が給電レーン31と非給電レーン32どちらを走行しているかは、受電車両1と近傍の待機所6との間で走行速度や走行位置の情報を無線通信で電送し判断する。   Whether the power receiving vehicle 1 is traveling in the power feeding lane 31 or the non-power feeding lane 32 is determined by transmitting information on traveling speed and traveling position by wireless communication between the power receiving vehicle 1 and the nearby standby station 6.

また、給電レーンに設置した車両認識センサの情報を待機所6に電送しても良い。
(第3の実施例)
Further, the information of the vehicle recognition sensor installed in the power supply lane may be transmitted to the waiting place 6.
(Third embodiment)

図4は本発明の第3の実施例を示しており、第1の実施例の受電コイル101をソーラーパネルなどの光発電素子141に置換え、送電コイル201をLEDなどの発光素子241、高周波電源202を発光素子用電源242に置き換えて、電気エネルギーを発光素子241にて光エネルギーに変換し、光発電素子141にて電気エネルギーに変換することで送電車両2から受電車両1に非接触にて給電を行う。   FIG. 4 shows a third embodiment of the present invention, in which the power receiving coil 101 of the first embodiment is replaced with a photovoltaic element 141 such as a solar panel, the power transmitting coil 201 is replaced with a light emitting element 241 such as an LED, and a high frequency power source. 202 is replaced with a power source 242 for the light emitting element, electric energy is converted into light energy by the light emitting element 241, and converted into electric energy by the photovoltaic element 141, so that the power transmission vehicle 2 and the power receiving vehicle 1 are contacted without contact. Supply power.

充電器102は光発電素子141から得られる電気エネルギーの電圧を調整して蓄電装置103に充電する。   The charger 102 adjusts the voltage of electric energy obtained from the photovoltaic element 141 to charge the power storage device 103.

発光素子241から発する光は可視光だけでなく紫外線や赤外線を用いても良い。
(第4の実施例)
Light emitted from the light emitting element 241 may be not only visible light but also ultraviolet light or infrared light.
(Fourth embodiment)

図5は本発明の第4の実施例を示しており、第1の実施例の受電コイル101をプロペラと同期発電機などの回転体による発電機151に置換え、送電コイル201を送風機・ポンプ251、高周波電源202を送風機・ポンプ用電源252に置き換えて、電気エネルギーを送風機・ポンプ251にて流体による機械エネルギーに変換し、プロペラおよび回転体による発電機151にて電気エネルギーに変換することで送電車両2から受電車両1に非接触にて給電を行う。   FIG. 5 shows a fourth embodiment of the present invention, in which the power receiving coil 101 of the first embodiment is replaced with a generator 151 using a rotating body such as a propeller and a synchronous generator, and the power transmitting coil 201 is replaced with a blower / pump 251. The high-frequency power source 202 is replaced with a blower / pump power supply 252 to convert electrical energy into fluid mechanical energy by the blower / pump 251 and then to electrical energy by a generator 151 using a propeller and a rotating body. Power is supplied from the vehicle 2 to the power receiving vehicle 1 in a non-contact manner.

充電器102はプロペラと同期発電機などの回転体による発電機151から得られる交流電力を整流して直流電力に変換し、電圧を調整して蓄電装置103に充電する。
(第5の実施例)
The charger 102 rectifies AC power obtained from the generator 151 using a rotating body such as a propeller and a synchronous generator, converts the AC power into DC power, adjusts the voltage, and charges the power storage device 103.
(Fifth embodiment)

図6は本発明の第5の実施例を示しており、第1の実施例の受電コイル101を熱発電素子161に置換え、送電コイル201を発熱体261、高周波電源202を発熱体用電源262に置き換えて、電気エネルギーを発熱体261にて熱エネルギーに変換し、熱発電素子161にて電気エネルギーに変換することで送電車両2から受電車両1に非接触にて給電を行う。   FIG. 6 shows a fifth embodiment of the present invention. The power receiving coil 101 of the first embodiment is replaced with a thermoelectric generator 161, the power transmitting coil 201 is replaced with a heating element 261, and the high frequency power source 202 is replaced with a heating element power supply 262. Instead of this, electric energy is converted into thermal energy by the heating element 261, and converted into electric energy by the thermoelectric generator 161, so that power is supplied from the power transmission vehicle 2 to the power receiving vehicle 1 in a non-contact manner.

充電器102は熱発電素子161から得られる電気エネルギーの電圧を調整して蓄電装置103に充電する。   The charger 102 adjusts the voltage of electrical energy obtained from the thermoelectric generator 161 to charge the power storage device 103.

本発明により走行中の電動車両に非接触にて給電が可能となり、蓄電装置を搭載した電動車両の航続走行距離の問題を解決できるので産業上の利用の可能性は大いにある。   According to the present invention, electric power can be supplied to a traveling electric vehicle in a non-contact manner, and the problem of the cruising distance of an electric vehicle equipped with a power storage device can be solved.

1,11,12 受電車両
100 受電車両用駆動力変換装置
101,111,112 受電コイル
102 充電器
103 蓄電装置
104 受電車両用モータドライバ
105 受電車両用モータ
106 受電車両用駆動装置
107,171〜172 受電車両用車輪
108 操舵装置
109 人物
110 積荷
2 送電車両
200 送電車両用駆動力変換装置
201,211〜213 送電コイル
202,221〜223 高周波電源
203 送電車両用モータドライバ
204 送電車両用モータ
205 送電車両用駆動装置
206〜208 送電車両用車輪
3 路面
31 給電レーン
32 非給電レーン
4,41〜42 レール
5 道路
51 上り車線
52 下り車線
53 中央分離帯
6 待機所
141 光発電素子
241 発光素子
242 発光素子用電源
151 回転体による発電機
251 送風機・ポンプ
252 送風機・ポンプ用電源
161 熱発電素子
261 発熱体
262 発熱体用電源
1, 11, 12 Power-receiving vehicle 100 Power-receiving vehicle driving force converter 101, 111, 112 Power-receiving coil 102 Charger 103 Power storage device 104 Power-receiving vehicle motor driver 105 Power-receiving vehicle motor 106 Power-receiving-vehicle driving device 107, 171-172 Wheel for power receiving vehicle 108 Steering device 109 Person 110 Load 2 Power transmission vehicle 200 Power transmission vehicle driving force conversion device 201, 211-213 Power transmission coil 202, 221-223 High frequency power supply 203 Power transmission vehicle motor driver 204 Power transmission vehicle motor 205 Power transmission vehicle Driving device 206-208 Wheel for power transmission vehicle 3 Road surface 31 Feeding lane 32 Non-feeding lane 4, 41-42 Rail 5 Road 51 Up lane 52 Down lane 53 Median strip 6 Waiting area 141 Photovoltaic element 241 Light emitting element 242 Light emitting element Power supply 1 1 rotating body by the generator 251 blower pump 252 blower pump power 161 heat generating elements 261 heat generator 262 heating element power supply

Claims (6)

高周波電源により送電コイルに高周波電圧を印加することで送電側電気エネルギーを磁気エネルギーに変換する装置と、該磁気エネルギーを受電側電気エネルギーに変換する受電コイルと該受電側電気エネルギーを駆動力に変換して車両を走行させるための受電車両用駆動力変換装置を搭載した受電車両から構成される非接触にて電力を供給する装置において、
前記高周波電源と前記送電コイルを送電車両に搭載し、該送電車両は前記受電車両に並走して前記送電車両の送電コイルから発生する磁気エネルギーを前記受電車両の受電コイルに伝達することで非接触にて電力を供給することを特徴とする非接触給電装置。
A device for converting electric energy on the power transmission side to magnetic energy by applying a high frequency voltage to the power transmission coil from a high frequency power source, a power receiving coil for converting the magnetic energy to electric energy on the power receiving side, and converting the electric energy on the power receiving side into driving force In a device for supplying electric power in a non-contact manner constituted by a power receiving vehicle equipped with a power receiving vehicle driving force conversion device for driving the vehicle,
The high-frequency power source and the power transmission coil are mounted on a power transmission vehicle, and the power transmission vehicle runs parallel to the power reception vehicle and transmits magnetic energy generated from the power transmission coil of the power transmission vehicle to the power reception coil of the power reception vehicle. A non-contact power supply device that supplies power by contact.
請求項1に記載のシステムにおいて、
前記送電車両は2本の導電性のレール上を走行し、該2本の導電性レールの一方を+電極とし他方を−電極とし、前記送電車両に導電性の車輪を搭載させて直流の電気エネルギーを送電側電気エネルギーとして前記送電車両に供給することを特徴とする非接触給電装置。
The system of claim 1, wherein
The power transmission vehicle travels on two conductive rails, one of the two conductive rails is a positive electrode and the other is a negative electrode. A non-contact power feeding device that supplies energy as power transmission side electric energy to the power transmission vehicle.
上り車線と下り車線を片側2車線以上有する道路において、
前記上り車線と前記下り車線のそれぞれに請求項1および請求項2の送電車両から受電車両へ給電が可能な給電レーンと給電が不可能な非給電レーンと中央分離帯に任意の間隔で前記送電車両が複数台待機でき、上り車線および下り車線から出入りできる待機所を設置し、前記受電車両が前記給電レーンに進入したら、近傍の前記待機所から前記送電車両も給電レーンに進入し、前記受電車両と前記送電車両が並走しながら前記送電車両から前記受電車両に電力を供給し、前記受電車両が非給電レーンに移ったら、前記送電車両は進行方向の近傍で待機スペースがある前記待機所に入り待機することを特徴とする電動車両への走行中非接触給電システム。
On roads with two or more lanes on one side and up lane,
The power transmission lane capable of feeding power from the power transmission vehicle to the power receiving vehicle of claim 1 and claim 2, the non-power feeding lane where power cannot be fed, and the central separation zone at each of the upstream lane and the downstream lane at arbitrary intervals. When a plurality of vehicles can stand by and a standby station is provided that can enter and exit from the ascending lane and descending lane, and the power receiving vehicle enters the power supply lane, the power transmitting vehicle also enters the power supply lane from the nearby standby station, and the power receiving When the vehicle and the power transmission vehicle are running side by side to supply power from the power transmission vehicle to the power receiving vehicle, and the power receiving vehicle moves to a non-powered lane, the power transmission vehicle has a standby space in the vicinity of the traveling direction. A non-contact power feeding system during traveling to an electric vehicle characterized by entering and waiting.
前記受電コイルを光発電素子に、前記送電コイルを発光素子に前記高周波電源を発光素子用電源に置換え、光エネルギーを媒体として非接触にてエネルギーの伝達を行うことを特徴とする請求項1記載の非接触給電装置。   The energy is transmitted in a non-contact manner using light energy as a medium by replacing the power receiving coil with a photovoltaic element, the power transmission coil with a light emitting element, and the high frequency power source with a light emitting element power source. Non-contact power feeding device. 前記受電コイルを回転体による発電機に、前記送電コイルを送風機またはポンプに、前記高周波電源を送風機またはポンプの電源に置換え、流体による機械エネルギーを媒体として非接触にてエネルギーの伝達を行うことを特徴とする請求項1記載の非接触給電装置。   The power receiving coil is replaced with a generator by a rotating body, the power transmission coil is replaced by a blower or a pump, the high frequency power supply is replaced by a power supply of a blower or a pump, and energy is transmitted in a non-contact manner using mechanical energy of fluid as a medium. The contactless power feeding device according to claim 1, wherein 前記受電コイルを熱発電素子に、前記送電コイルを発熱体に、前記高周波電源を発熱体の電源に置換え、熱エネルギーを媒体として非接触にてエネルギーの伝達を行うことを特徴とする請求項1記載の非接触給電装置。   2. The energy is transmitted in a non-contact manner using heat energy as a medium by replacing the power receiving coil with a thermoelectric generator, the power transmission coil with a heating element, and the high-frequency power source with a power source of the heating element. The non-contact electric power feeder of description.
JP2012150129A 2012-07-04 2012-07-04 Non-contact power supply device Pending JP2014014217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150129A JP2014014217A (en) 2012-07-04 2012-07-04 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150129A JP2014014217A (en) 2012-07-04 2012-07-04 Non-contact power supply device

Publications (1)

Publication Number Publication Date
JP2014014217A true JP2014014217A (en) 2014-01-23

Family

ID=50109551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150129A Pending JP2014014217A (en) 2012-07-04 2012-07-04 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JP2014014217A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201884A (en) * 2015-04-09 2016-12-01 長野日本無線株式会社 Power supply vehicle and vehicle power supply system
JPWO2015125276A1 (en) * 2014-02-21 2017-03-30 富士通株式会社 Power transmission equipment
JPWO2019186685A1 (en) * 2018-03-27 2020-12-03 株式会社Fuji Contactless power receiving device and contactless power supply system
JP2021122164A (en) * 2020-01-31 2021-08-26 矢崎総業株式会社 Power supply system
JP2022034812A (en) * 2020-08-19 2022-03-04 ソフトバンク株式会社 Charging system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015125276A1 (en) * 2014-02-21 2017-03-30 富士通株式会社 Power transmission equipment
JP2016201884A (en) * 2015-04-09 2016-12-01 長野日本無線株式会社 Power supply vehicle and vehicle power supply system
JPWO2019186685A1 (en) * 2018-03-27 2020-12-03 株式会社Fuji Contactless power receiving device and contactless power supply system
JP7162054B2 (en) 2018-03-27 2022-10-27 株式会社Fuji Contactless power supply system
JP2021122164A (en) * 2020-01-31 2021-08-26 矢崎総業株式会社 Power supply system
JP2022034812A (en) * 2020-08-19 2022-03-04 ソフトバンク株式会社 Charging system

Similar Documents

Publication Publication Date Title
EP3462573B1 (en) Apparatus for power transfer to an independent moving cart during travel along a track
US11318845B2 (en) System and method for powering on-road electric vehicles via wireless power transfer
JP2015511479A5 (en)
JP2014014217A (en) Non-contact power supply device
CN102257698B (en) Device for transmitting electrical energy
CN106828183B (en) Linear power generation device, vehicle-mounted power supply system and maglev train
Buja et al. Dynamic charging of electric vehicles by wireless power transfer
CN102947124A (en) Adaptive wireless energy transfer system
KR101569189B1 (en) Wireless Power Transmission System for Tram Vehicle
KR100566926B1 (en) The electric rolling stoke system using non contact supply electric power
WO2014038707A1 (en) Vehicle power feeding device
CN102520722B (en) Automated guided vehicle utilizing non-contact power supply
CN106477436B (en) Electromechanical propulsion system with Wireless power transmission system
CN204886435U (en) Device of electric automobile carriage way non -contact type power supply
CN103259346A (en) Electric toy car powered by rail-type wireless power supply system
CN106469944A (en) Electric automobile carriage way non-contact type method of supplying power to
CN202586703U (en) Magnetic power generating vehicle seat
KR101559806B1 (en) power supply and pickup for tracked vehicle with inwheel pick-up coil
CN105966259A (en) Wireless energy supply system based on wheels in traveling process of electric automobile
KR101926765B1 (en) MODULE-TYPE CURRENT COLLECTOR(Pick-up) STRUCTURE FOR WIRELESS POWER TRANSFER
CN203303646U (en) Electric toy car utilizing rail type wireless power supply system to supply power
CN207184120U (en) A kind of non-contact mobile type electric vehicle charge device and electrically-charging equipment
CN102611205B (en) Efficient dynamic-sensing power supply system for electric vehicle
KR20160013294A (en) System for Wireless Power Transmission System
CN108448733A (en) A kind of wireless power supply system and transportation system for the vehicles