JP3930731B2 - Moving system with hybrid linear motor drive - Google Patents

Moving system with hybrid linear motor drive Download PDF

Info

Publication number
JP3930731B2
JP3930731B2 JP2001383919A JP2001383919A JP3930731B2 JP 3930731 B2 JP3930731 B2 JP 3930731B2 JP 2001383919 A JP2001383919 A JP 2001383919A JP 2001383919 A JP2001383919 A JP 2001383919A JP 3930731 B2 JP3930731 B2 JP 3930731B2
Authority
JP
Japan
Prior art keywords
vehicle
linear
motor
track
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001383919A
Other languages
Japanese (ja)
Other versions
JP2003189417A (en
Inventor
欣二郎 吉田
健二 大島
学 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Otis Elevator Co
Original Assignee
Nippon Otis Elevator Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Otis Elevator Co filed Critical Nippon Otis Elevator Co
Priority to JP2001383919A priority Critical patent/JP3930731B2/en
Priority to PCT/US2002/040510 priority patent/WO2003052900A2/en
Publication of JP2003189417A publication Critical patent/JP2003189417A/en
Application granted granted Critical
Publication of JP3930731B2 publication Critical patent/JP3930731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • B60L15/005Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes for control of propulsion for vehicles propelled by linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/025Asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリッドリニアモータ駆動を用いる空気浮上式移動システムに関するものであって、高低差の大きい複雑な地形でも地域環境に与える影響を少なくできるフレシキブルな運転を可能とし、特に急勾配の上り軌道を走行できるように構成したリニアモータ駆動式移動システムに関するものである。
【0002】
また、車両側電源を電池から供給している場合は運転持続時間を長くできるように構成したリニアモータ駆動式移動システムに関するものである。
【0003】
【従来の技術】
従来、リニアモータ駆動による自走式車両としての移動システムは、リニア誘導モータを使用し、自走式車両の移動経路となる水平部と水平部から勾配部に到る縦断曲線部と勾配部と勾配部から水平部に到る緩和曲線部からなる軌道にはリニアモータの二次側になる導体板(リアクションプレート)が敷設されている。
【0004】
緩和曲線部とは水平部から勾配部に到る境界部分または勾配部から水平部に到る境界部分をいう。
【0005】
図1に従来の自走式リニアモータ駆動式移動システムを示す。自走式車両1にはリニアモータ一次側(コア、コイル)6とリニアモータの電力を制御するインバータ4とインバータ4へ電力を供給する電池3が設けられている。
【0006】
自走式車両1は、電池3からインバータ4を介してリニアモータ一次側6へ給電し、軌道に敷設された二次導体板8と自走式車両1のリニアモータの一次側でリニア誘導モータを構成し、回転形誘導モ−タの原理で推力を発生して走行する。
【0007】
自走式車両1は、この推力により軌道の水平部と勾配部で構成された一定経路上を安定して走行する。
【0008】
【発明が解決しようとする課題】
しかし、従来の電池3を電源とし、駆動力にリニア誘導モータを使用した自走式車両1は消費電力量が多いので走行持続時間が短く、従って、走行距離も十分に長くすることはできない。また従来の車両寸法から制限されたモータ寸法では十分な推力が発生させることができなく、特に高低差の大きい複雑な地形では急勾配の上り軌道を走行させることができない。
【0009】
電池3を電源とする自走式車両1では、この移動システムの運行を円滑に行うために電池3の充電回数を少なくしなければならないので走行持続時間を長くすることと、高低差の大きい複雑な地形に対応して軌道の線形設計の自由度を上げるには急勾配の上り軌道を走行できることが望ましい。従来の形式のリニア誘導モータでは構成上、大きな推力が要求される急勾配の上り軌道を走行する場合には車両側の一次側へ供給する電力を大きくする必要がある。
【0010】
そのため電池3の消費電力量が多くなり、また、リニアモータを使用した自走式車両1は構造上リニアモータ一次側6と二次導体8の空隙が大きくなり、空隙の小さい回転形モ−タに比べてモータの効率が低下する。よって回転形モータに比べて自走式車両1では同じ出力を発生するときの消費電力量が更に多くなる。これらの理由から急勾配の上り軌道では電池3の消費電力量が多いため急勾配部の箇所が多い軌道を走行するときには走行持続時間が長くできない。
【0011】
一方、自走式車両1ではリニア誘導モータの一次側の取り付けスペースにも制限があり、大きな推力を発生するリニア誘導モータを搭載できない。このようなリニア誘導モータでは自走式車両1が走行できる軌道の勾配は6%までである。
【0012】
6%を超え10%までの急勾配上り軌道を走行するためにはリニアモータ一
次側6を複数台車上に搭載しなければならないので車両寸法が大きくなる。
【0013】
しかし、前述のように取り付けスペースの制限からリニアモータ一次側6を複数台車両に搭載することは実施上、困難である。
【0014】
【課題を解決するための手段】
このような問題を解決するために、本発明による移動システムは、急勾配の上り軌道では車両搭載のリニアモータを誘導形から同期形に切り替えて軌道側の構成品に電力を供給して急勾配の上り軌道を走行できる十分な推力を発生させる。図2に誘導形リニアモータに、図3に同期形リニアモータに切り替えられたときのそれぞれの配置図を示す。この移動システムは、具体的には下記のように詳細な手段を示す。
【0015】
接地面から浮上して移動する車両において、駆動源のリニアモータをリニア誘導モータまたはリニア同期モータのどちらにも変換することにより使用できる機能を有するハイブリッドリニアモータを有し、平地または勾配の緩やかな軌道においてはリニア誘導モータにより走行し、急勾配の上り又は下り軌道においてはリニア同期モータにより走行することにより達成することができる。
【0017】
急勾配の上り又は下り軌道を走行する場合において、上り又は下り軌道の始点および終点を検出するセンサーを設け、車両が上り又は下り軌道の始点を感知したときはリニア誘導モータからリニア同期モータに、上り又は下り軌道の終点を感知したときはリニア同期モータからリニア誘導モータに自動で切り替える機能を備える。
【0019】
ハイブリッドリニアモ−タにおいて車両側の一次側を界磁の機能にさせ、軌道側に電機子を設け、車両側および軌道側双方から電力を供給できるようにした
リニア同期モータを構成する。
【0020】
また、車両側の一次側を電機子の機能にさせ、軌道側の電機子を界磁の機能にし、車両側および軌道側双方から電力を供給できるようにしたリニア同期モータを構成する。
【0021】
急勾配の上り軌道においては、軌道側から電力を供給し、車両側の電池消費電力量を少なくし、全体としてリニアモータの発生推力を大きくする。
【0022】
そのため移動システムが急勾配の上り軌道を走行するときは、リニアモータの構成を同一車上構成品でリニア誘導モータからリニア同期モータに切り替えられるようにした。
【0023】
【発明の実施の形態】
本発明の実施の形態について図面を参照して詳細に説明する。そこで、始めに本発明に係わるハイブリッドリニアモータについて図5、図6を参照して詳細に説明する。ハイブリッドリニアモータはリニア誘導モータとリニア同期モータの双方の機能を備え、必要に応じてこの両者の間で切り替えて用いることができるリニアモータである。
【0024】
よって、車両側リニアモータ一次側と軌道側電機子の構造は同一となる。リニア同期モータの構成は電機子と界磁から成り、リニアモータの発生推力はどちらかの作用力を大きくすると発生推力も大きくなる。また両者の作用力は供給する電力で制御でき、電機子と界磁のどちらでも車両側と軌道側に配置できる。車両側に配置された方は車両側から供給する電力を少なくし作用力を小さくして電池3の消費電力量を低減する。軌道側に配置された方は地上電源から大きな電力を供給し、その作用力を大きくして急勾配部で走行するのに必要な推力を発生する。
【0025】
次に、リニア誘導形モータについて説明する。これを説明するため、まず参考のため図5を参照して誘導形回転モータの原理図により三相交流と回転磁界について説明する。三相交流電流を一次側のコイルに流すと一次側は電磁石を構成しN,S,N,Sの磁極が形成される。三相交流は電気角で120゜づつずれている3つの交流からできているので、電磁石の磁極は時間とともに一次側に沿って移動していく。この磁界を回転磁界といい、この磁極の回転する速度は三相交流の周波数に比例し、かつ回転磁界の中にある導体で構成された回転子は回転磁界の速度より少し遅い速度で回転する。
【0026】
よって、誘導モ−タの回転速度は三相交流の周波数によって決定される。リニア誘導モータの原理も回転形の誘導モ−タと同様であり、その構造は回転モ−タを直線状にしたモータであるから回転磁界のことを移動磁界と呼ぶ。図6にリニア誘導モータの原理図を示す。一次側のコイルに供給された三相交流で移動磁界N,S,N,Sを形成し、また、二次側の導体板もこれに誘導された渦電流により推力を発生し、移動磁界の速度より少し遅い速度で移動する。
【0027】
二次側は軌道に固定されているので、移動可能な一次側が二次側との反力で移動磁界とは反対側の方向に進む。本発明では車上側を電磁石にし、軌道側を電機子にしてリニア同期モータを構成するとき車両側の同じ構造のコイルに直流電力を供給すると複数の磁極を構成する電磁石になり、本実施形態の場合は6極
(N、S、N、S、N、S)の電磁石になる。具体的なリニアモータの構造を図7,8に示す。
【0028】
次に、同じ構造のモータを使用してリニア誘導モータとリニア同期モータの機能を切り替えることについて図9,13を参照して説明する。
【0029】
図13から車両側をリニアモータ一次側6としてリニア誘導モータを構成するときはこの構造のコイルに車両側の交直電力変換装置25をインバ−タ動作に切り替え三相交流電力を供給するとN極とS極が時間とともに移動する電磁石になる。
【0030】
図9から車両側を界磁12としたリニア同期モ−タを構成するときは、リニア誘導モ−タで使用していたリニアモ−タ一次側6に直流電力を供給して多極の電磁石にし、界磁12を構成する。直流電力を供給する装置はインバータとして使用していた同じ交直電力変換装置25の動作モードをソフトで直流電源に切り替えて使用する。軌道側の電機子13も車上側の界磁12と同じ構造をしており、軌道側のコイルに三相交流電力を供給すると前項の動作のように移動磁界を発生する電磁石になる。この移動する軌道の磁極に車両側の界磁12が吸引され移動磁界と同期して車両1が進行する。
【0031】
本発明の第1の実施形態を図2、3、4、9、13を参照して説明する。図13の車両1は車台24とその上部に設けられた車体2から構成されている。
【0032】
車台24には空気浮上支持機構のエアパット9とリニアモータ一次側6が設けられている。また走行車両1の速度を検出する速度検出器10(ロータリエンコーダ)が取り付けられている。
【0033】
車体2には交直両用電力変換装置25と電池3と走行車両制御装置5が設けられている。交直両用電力変換装置25は電気信号入力によってインバータ動作と3出力直流電源動作に切り替えができる。車両制御装置5は車両動作制御部(走行車両機器の制御と車両速度指令値制御を行う)と車両運行制御部(走行車両の運行制御と運行管理を行う)と車両保安制御部(他の走行車両検知と衝突防止を行う)と車両動作状態送信制御部(走行車両の速度値、速度指令値、車両機器の動作状態を地上側の電機子コイル制御装置20への送信制御を行う)から成る。
【0034】
車両動作状態送信制御部の情報を送信する車両動作情報送信アンテナ15が取り付けられている。
【0035】
図2のように軌道はエアパット9が走行する走行面を有し、水平部と緩やかな勾配部と分岐部と水平部から急勾配部に到る緩和曲線部にはリニアモータの一次側6と対向して二次導体板8が配置されている。
急勾配部と水平部から急勾配部に到る縦断曲線部と急勾配部から水平部に到る緩和曲線部の軌道には図3のように自走車両に搭載されたリニアモ−タ一次側6を電磁石動作に切り替えた界磁12と対向して電機子13が配置されている。走行車両の位置を検出する非接触型の車両位置検出器14が配置されている。図4の地上側の設備は電源設備と電機子コイル制御装置20から成る。
【0036】
電機子コイル制御装置20はセクション切り替え開閉制御器17と走行車両動作情報受信制御装置18から成る。車両側を界磁に軌道側を電機子にしたリニア同期モータを構成する。この場合、リニア誘導モータで動作しているときに使用していた車両側の交直両用電力変換装置25を電気信号でインバ−タから直流電源に切り替えができるようにした。
【0037】
また、その直流電源を使用してリニア誘導モータで動作しているときに使用していた車両側の一次側を多極の電磁石に切り替えができるようにした。
【0038】
図13のように車両1は電池3と交直両用電力変換装置25とリニアモータ一次側6で構成されており、軌道の水平部および緩やかな勾配部では車両1に搭載した電池3からインバ−タ動作に切り替えられた交直両用電力変換装置25を介して給電されたリニアモータ一次側6と軌道に敷設された二次導体板8で構成されたリニア誘導モータの推力により走行する。
【0039】
上り又は下り軌道の急勾配部と水平部から急勾配部に到る縦断曲線部と急勾配部から水平部に到る縦断曲線部では図9のように自走車両に搭載した電池3から3出力直流電源動作に切り替えられた交直両用電力変換装置25を介して給電されたリニアモータ一次側6を多極の電磁石で構成した界磁12にする。
【0040】
走行軌道に敷設された電機子13に地上側電源から地上に設置されたインバータ19を介して電力を供給する。この電機子13と走行車両1側の界磁12で構成されたリニア同期モータの推力により走行する。
【0041】
図13のように車両1の車両制御装置5は走行開始前に軌動が水平部か緩やかな勾配部か分岐部かを判断し、車両1の交直両用電力変換装置25をインバータ動作に切り替える。
【0042】
車両制御装置5は外部指令により起動を確認すると交直両用電力変換装置25に起動指令を出力し、電池3からインバータ動作をしている交直両用電力変換装置25を介してリニアモータ一次側6に給電される。リニアモータ一次側6に対向する形で軌道に敷設された二次導体板8でリニア誘導モータを構成し、その推力で車両1は走行する。
【0043】
車両1の速度は車両制御装置5から出力される車両速度指令値と速度検出器10から出力された車両速度値とを比較しながら車両速度値が速度指令値になるようにインバータ動作に切り替えられた交直両用電力変換装置25から可変電圧可変周波数の三相交流をリニアモータ一次側6に給電し制御される。
【0044】
車両1が走行し軌道が水平部より水平部から急勾配部に到る緩和曲線部に移ると走行中の車両1の車両制御装置5は交直両用電力変換装置25を3出力直流電源動作に切り替え、その情報を図4の車両動作情報送信アンテナ15で地上側設備の電機子コイル制御装置20へ送る。
【0045】
図9のように車両1の電池3から3出力直流電源動作に切り替えられた交直両用電力変換装置25を介して3系統の直流電圧をリニアモータ一次側6に給電し、多極の電磁石にし、界磁12を構成する。
【0046】
図4の地上側設備の電機子コイル制御装置20が車両1の車両制御装置5により交直両用電力変換装置25を3出力直流電源動作に切り替えた情報を車両動作情報受信アンテナ16により受信すると電機子コイル制御装置20内の車両動作情報受信制御装置18からインバータ19に起動指令を出力する。軌道に取り付けられた車両1の位置検出器14から出力された信号を地上側設備の電機子コイル制御装置20内のセクション切り替え開閉制御器17に入力し車両1の界磁12と対向する軌道の電機子コイル13に通電できるセクション切り替え用電磁開閉器27を選択し動作させる。
【0047】
地上の三相交流電源21から電機子コイル制御装置20内のインバータ19を介しセクション切り替え開閉制御器17で選択されたセクション切り替え用電磁開閉器27を通じて軌道に敷設された電機子コイル13に給電される。図9のように給電された軌道側の電機子コイル13と対向する車両1の界磁12でリニア同期モータを構成し、その推力で車両1は軌道の急勾配部を走行する。車両1の車両制御装置5から出力される車両速度指令値と速度検出器から出力された車両速度値を車両動作情報送信アンテナ15から送信し、その情報を図4の地上設備の電機子コイル制御装置20内にある車両動作情報受信アンテナ16で受信し、その情報を車両動作情報受信制御装置18からインバ−タ19に送る。
【0048】
インバ−タ19は車両速度指令値と車両速度値とを比較しながら車両速度値が車両速度指令値になるように可変電圧可変周波数の三相交流を軌道に敷設した電機子コイル13に給電して制御する。
【0049】
軌道が急勾配部から水平部に到る緩和曲線部より水平部に移るとき水平部になる手前で走行中の車両1の車両制御装置5は交直両用電力変換装置25を3出力直流電源動作からインバータ動作に切り替え、その情報を車両動作情報送信アンテナ15で地上側設備の電機子コイル制御装置20へ送る。
【0050】
図4の地上側設備の電機子コイル制御装置20が車両1の車両制御装置5により交直両用電力変換装置25をインバータ動作に切り替えた情報を車両動作情報受信アンテナ16により受信すると電機子コイル制御装置20内の車両動作情報受信制御装置18からインバータ19に停止指令を出力する。そしてインバータ19から軌道に敷設された電機子コイル13への給電を停止する。図13のように車両1の電池3からインバータ動作に切替られた交直両用電力変換装置25を介して三相交流をリニアモータ一次側6に給電する。
車両1のリニアモータ一次側6と対向する軌道に敷設した二次導体板8とでリニア誘導モータを構成し、その推力で車両1を走行させる。
【0051】
車両制御装置5は外部指令により停止を確認すると交直両用電力変換装置25に停止指令を出力し、電池3からインバータ動作をしている交直両用電力変換装置25を介してリニアモータ一次側6への給電が停止され車両1は停止する。
【0052】
本発明の第2の実施形態を図2、10、11、12、14を参照して説明する。図14のように車両1は車台24とその上部に設けられた車体2から構成される。車台24には空気浮上支持機構のエアパット9とリニアモータの一次側6が設けられている。車両の速度を検出する速度検出器10(ロ−タリエンコ−ダ)も取り付けられている。車体2にはマルチモ−ドインバ−タ26と電池3と車両制御装置5が設けられている。マルチモ−ドインバ−タ26は電気信号入力によってリニア誘導モータ制御機能とリニア同期モータ制御機能に切り替えができる。
【0053】
車両制御装置5は車両動作制御部(走行車両機器の制御と車両速度指令値制御を行う)と車両運行制御部(走行車両の運行制御と運行管理を行う)と車両保安制御部(他の走行車両検知と衝突防止を行う)とから成る。
【0054】
図2のように軌道はエアパット9が走行する走行面を有し、水平部と緩やかな勾配部と分岐部と水平部から急勾配部に到る緩和曲線部にはリニアモ−タ一次側6と対向して二次導体板8が配置されている。
【0055】
急勾配部と水平部から急勾配部に到る緩和曲線部と急勾配部から水平部に到る緩和曲線部の軌道には図10のように車両1に搭載されたリニアモ−タ一次側6を電機子として使用する電機子13と対向して多極の電磁石で構成される界磁12が配置されている。車両1の位置を検出する非接触型の車両位置検出器14が配置されている。
【0056】
図11の地上側の設備は電源設備と界磁コイル制御装置23から成る。界磁コイル制御装置23はセクション切り替え開閉制御器17と界磁コイルへ給電する3出力直流電源22とセクション切り替え用電磁開閉器27から成る。車両側を電機子に軌道側を界磁にしてリニア同期モータを構成する。この場合、リニア誘導モータで動作しているときに使用していた車両側のマルチモ−ドインバ−タ26の制御機能をリニア誘導モータ制御からリニア同期モータ制御に電気信号で切り替えができるようにする。
【0057】
車両1は軌道の水平部および緩やかな勾配部では図14のように車両1に搭載した電池3からマルチモ−ドインバ−タ26を介して給電されたリニアモータ 一次側6と軌道に敷設された二次導体板8で構成されたリニア誘導モータの推力により走行する。
【0058】
上り又は下り軌道の急勾配部と水平部から急勾配部に到る緩和曲線部と急勾配部から水平部に到る縦断曲線部では図12のように車両1に搭載した電池3からマルチモ−ドインバ−タ26を介して給電されたリニアモータ一次側6を電機子13にする。マルチモ−ドインバ−タ26の制御機能をリニア誘導モータ制御からリニア同期モータ制御に切り替える。軌道に敷設された電磁石コイルに地上側電源から地上に設置された3出力直流電源装置22を介して電力を供給し多極の電磁石による界磁12を構成する。この界磁12と走行車両1側の電機子13で構成されたリニア同期モータの推力により走行する。
【0059】
車両1の移動経路は水平部と水平部から急勾配部に到る緩和曲線部と急勾配部から水平部に到る緩和曲線部と急勾配部と緩やかな急勾配部と分岐部からなる軌道で構成する。水平部と緩やかな勾配部と分岐部にはリニアモータの二次導体8を軌道に敷設する。図14のように車両1は電池3とマルチモ−ドインバ−タ26とリニアモータの一次側6で構成する。電池3からマルチモ−ドインバ−タ26を介してリニアモータ一次側6に給電し、軌道に敷設されている二次導体板8とでリニア誘導モ−タを構成する。軌道の急勾配部と水平部から急勾配部に到る緩和曲線部と急勾配部から水平部に到る緩和曲線部にはリニアモータの電磁石側(コア、コイル)を敷設する。地上側にこの電磁石へ電力を供給する3出力直流電源装置22を設置する。
【0060】
図12のように車両1は電池3とマルチモ−ドインバ−タ26とリニアモータ一次側6を搭載する。電池3からマルチモ−ドインバ−タ26を介してリニアモータ一次側6に給電し、このリニアモータ一次側6を電機子13として使用する。軌道に敷設されている電磁石で構成された界磁12と車両1の電機子13でリニア同期モータを構成する。
【0061】
図14のように車両1は軌道の水平部および緩やかな勾配部では車両1に搭載した電池3からマルチモ−ドインバ−タ26を介して給電されたリニアモータ 一次側6と軌道に敷設された二次導体板8で構成されたリニア誘導モ−タの推力により走行する。軌道の急勾配部と水平部から急勾配部に到る緩和曲線部と急勾配部から水平部に到る緩和曲線部では図12のように車両1に搭載した電池3からマルチモ−ドインバ−タ26を介して給電されたリニアモータ一次側6を電機子13として使用する。
【0062】
軌道に敷設された電磁石コイルに地上側電源から地上に設置された3出力直流電源装置22を介して電力を供給し多極の電磁石による界磁12を構成する。この界磁12と車両1側の電機子13で構成されたリニア同期モータの推力により走行する。
【0063】
図14のように車両1の車両制御装置5は走行開始前に軌動が水平部か緩やかな勾配部か分岐部かを判断し、車両1のマルチモ−ドインバ−タ26の機能を リニア誘導モータ制御機能に切り替える。
【0064】
車両制御装置5は外部指令により起動を確認するとマルチモ−ドインバ−タ26に起動指令を出力し、電池3からマルチモ−ドインバ−タ26を介してリニアモータの一次側6に給電される。リニアモータ一次側6に対向する形で軌道に敷設された二次導体板8でリニア誘導モータを構成し、その推力で車両1は走行する。車両1の速度は車両制御装置から出力される速度指令値と速度検出器から出力された車両速度値とを比較しながら車両速度値が速度指令値になるようにリニア誘導モータ制御機能に切り替えられたマルチモ−ドインバ−タ26から可変電圧可変周波数の三相交流をリニアモータ一次側6に給電し制御される。
【0065】
軌道が水平部より水平部から急勾配部に到る緩和曲線部に移ると走行中の車両1の車両制御装置5はマルチモ−ドインバ−タ26をリニア同期モータ制御機能に切り替える。図12のように車両1の電池3からリニア同期モータ制御機能に切り替えられたマルチモ−ドインバ−タ26を介してリニアモータ一次側6に給電し、電機子13として使用する。
【0066】
図11の地上側設備の界磁コイル制御装置23が軌道の急勾配開始位置に取り付けられた車両1の位置検出器情報を入力すると界磁コイル制御装置23内の3出力直流電源装置22に起動指令を入力する。軌道に取り付けられた車両1の位置検出器14から出力された信号を地上側設備の界磁コイル制御装置23内のセクション切り替え開閉制御器17に入力し走行車両の電機子13と対向する軌道の界磁12のコイルに通電できるセクション切り替え用電磁開閉器27を選択し動作させる。
【0067】
三相交流の地上電源21から界磁コイル制御装置23内の3出力直流電源22を介しセクション切り替え開閉制御器17で選択されたセクション切り替え用電磁開閉器27を通じて軌道に敷設された界磁12のコイルに給電される。給電された軌道側の界磁12と対向する車両1の電機子13でリニア同期モ−タを構成し、その推力で車両1は軌道の急勾配部を走行する。
【0068】
図12のように車両1の速度は車両制御装置5から出力される車両速度指令値と速度検出器10から出力された車両速度値とを比較しながら車両速度値が車両速度指令値になるようにリニア同期モータ制御機能に切り替えられたマルチモードインバータ26から可変電圧可変周波数の三相交流を電機子13に給電して制御される。
【0069】
軌道が急勾配部から水平部に到る緩和曲線部より水平部に移るとき水平部になる手前で走行中の車両1の車両制御装置5はマルチモードインバータ26の機能をリニア誘導モータ制御機能に切り替える。
【0070】
図11の地上側設備の界磁コイル制御装置23が軌道の急勾配終了位置に取り付けられた走行車両位置検出情報を入力すると界磁コイル制御装置23内の3出力直流電源装置22に停止指令を入力する。そして3出力直流電源22から軌道に敷設された界磁12のコイルへの給電を停止する。
【0071】
図14の車両1の電池3からリニア誘導モータ制御機能に切り替えられたマルチモ−ドインバ−タ26を介して三相交流をリニアモータ一次側6に給電する。
【0072】
車両1のリニアモータ一次側6と対向する軌道に敷設した二次導体板8とでリニア誘導モータを構成し、その推力で車両1を走行させる。
【0073】
車両制御装置5は外部指令により停止を確認するとマルチモードインバータ26に停止指令を出力し、電池3からリニア誘導モータ制御機能に切り替えられたマルチモードインバータ26を介してリニアモータ一次側6への給電が停止され車両1は停止する。
【0074】
【発明の効果】
車両のリニアモータ消費電力量の少ない水平部と緩やかな勾配部と分岐部では車両の電池3からリニアモータへ給電することにより車両を自走させ、リニアモータの消費電力量が多い急勾配部の上り軌道ではリニアモータを同期形に構成する。同期形リニアモータを使用すれば地上側の電源から軌道に敷設した構成品(電機子または界磁)に給電し、車両を走行させる推力を発生させるので、車両側の電池3の消費電力量が低減できる。よって、車両が移動経路全長を走行したときの電池消費電力量が低減でき、車両の走行持続時間が長くできる。
【0075】
また車両が急勾配部を走行するときリニアモ−タが車上に搭載するリニア誘導モータと同じ寸法でも10%の急勾配を走行できる。
リニアモータの推力発生源のほとんどが軌道側の構成品になるので軌道側に敷設でき、車上側構成品の外形寸法が小さくでき、車両を大型にしないでもリニア同期モータにより発生する推力は大きくできるため急勾配の上り軌道を走行でき、10%までの急勾配を走行できる。よって、大きな推力が必要な移動システムでも車両に搭載するリニアモータの台数を低減でき、車両寸法を大きくする必要がなくなった。
【図面の簡単な説明】
【 図1】従来のリニアモ−タ移動システムの概略を示す図。
【図2】リニアモ−タ移動システムに第1、第2の実施形態のリニア誘導モータの配置を示す図。
【 図3】リニアモ−タ移動システムに第1の実施形態のリニア同期モータを使用した場合の配置を示す図。
【図4】本発明によるリニアモ−タ移動システムの急勾配を走行させる第1の実施形態を示す図。
【図5】誘導形回転モータの原理を示す。
【図6】リニア誘導モータの原理を示す。
【図7】リニア誘導モータの構成を示す図。
【図8】リニア同期モータの構成を示す図。
【図9】本発明の第1の実施形態のリニア同期モータに変換した状態を示す図。
【 図10】リニアモ−タ移動システムに第2の実施形態のリニア同期モータを使用した場合の配置を示す図。
【図11】本発明によるリニアモ−タ移動システムの急勾配を走行させる第2の実施形態を示す図。
【図12】本発明の第2の実施形態のリニア同期モータに変換した状態を示す図。
【図13】本発明の第1の実施形態のリニア誘導モータに変換した状態を示す図。
【図14】本発明の第2の実施形態のリニア誘導モータに変換した状態を示す図。
【符号の説明】
1…車両
2…車体
3…電池
4…インバ−タ
5…車両制御装置
6…リニアモ−タ一次側
7…軌道水平部
8…二次導体板
9…エアパッド
10…速度検出器
11…軌道勾配部
12…界磁
13…電機子
14…車両位置検出器
15… 車両動作情報送信アンテナ
16…車両動作情報受信アンテナ
17…セクション切り替え開閉制御器
18…車両動作情報受信制御装置
19…インバ−タ (電機子制御用)
20…電機子コイル制御装置
21…三相交流電源
22…3出力直流電源 (軌道側界磁制御用)
23…界磁コイル制御装置
24…車台
25…交直両用電力変換装置
26…マルチモ−ドインバ−タ
27…セクション切り替え用電磁開閉器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air levitation type moving system using a hybrid linear motor drive, which enables flexible operation that can reduce the influence on the local environment even in complex terrain with a large difference in elevation, and particularly, a steep ascending trajectory. It is related with the linear motor drive type moving system comprised so that it can drive | work.
[0002]
Further, the present invention relates to a linear motor drive type moving system configured such that the driving duration can be increased when the vehicle-side power supply is supplied from a battery.
[0003]
[Prior art]
Conventionally, a movement system as a self-propelled vehicle driven by a linear motor uses a linear induction motor, and includes a horizontal portion serving as a movement path of the self-propelled vehicle, a vertical curved portion extending from the horizontal portion to a gradient portion, and a gradient portion. A conductor plate (reaction plate) serving as the secondary side of the linear motor is laid on the track composed of the relaxation curve portion extending from the gradient portion to the horizontal portion.
[0004]
The relaxation curve portion means a boundary portion from the horizontal portion to the gradient portion or a boundary portion from the gradient portion to the horizontal portion.
[0005]
FIG. 1 shows a conventional self-propelled linear motor-driven moving system. The self-propelled vehicle 1 is provided with a linear motor primary side (core, coil) 6, an inverter 4 that controls electric power of the linear motor, and a battery 3 that supplies electric power to the inverter 4.
[0006]
The self-propelled vehicle 1 feeds power from the battery 3 to the linear motor primary side 6 through the inverter 4, and the linear conductor motor 8 is laid on the track and the primary side of the linear motor of the self-propelled vehicle 1. The vehicle travels by generating a thrust according to the principle of the rotary induction motor.
[0007]
The self-propelled vehicle 1 travels stably on a fixed route composed of a horizontal portion and a gradient portion of the track by this thrust.
[0008]
[Problems to be solved by the invention]
However, the self-propelled vehicle 1 that uses the conventional battery 3 as a power source and uses a linear induction motor as a driving force has a large amount of power consumption, so the travel duration is short, and therefore the travel distance cannot be sufficiently long. In addition, the motor size limited from the conventional vehicle size cannot generate a sufficient thrust, and it is not possible to travel on a steep ascending trajectory, particularly in complex terrain with a large height difference.
[0009]
In the self-propelled vehicle 1 that uses the battery 3 as a power source, the number of times of charging the battery 3 has to be reduced in order to smoothly operate the moving system. It is desirable to be able to travel on a steep ascending orbit in order to increase the degree of freedom of the linear design of the orbit corresponding to a rough terrain. In the conventional type linear induction motor, it is necessary to increase the electric power supplied to the primary side of the vehicle when traveling on a steep up orbit requiring a large thrust.
[0010]
Therefore, the power consumption of the battery 3 is increased, and the self-propelled vehicle 1 using a linear motor has a large gap between the linear motor primary side 6 and the secondary conductor 8 due to its structure, and the rotary motor with a small gap. Compared with the motor efficiency is reduced. Therefore, the self-propelled vehicle 1 further increases the power consumption when generating the same output as compared with the rotary motor. For these reasons, since the power consumption of the battery 3 is large on a steep uphill track, the travel duration cannot be increased when traveling on a track with many steep portions.
[0011]
On the other hand, in the self-propelled vehicle 1, there is also a limitation on the primary installation space of the linear induction motor, and a linear induction motor that generates a large thrust cannot be mounted. With such a linear induction motor, the gradient of the track on which the self-propelled vehicle 1 can travel is up to 6%.
[0012]
In order to travel on a steep uphill trajectory of over 6% to 10%, a linear motor
Since the next side 6 must be mounted on a plurality of carts, the vehicle size increases.
[0013]
However, as described above, it is difficult in practice to mount the linear motor primary side 6 on a plurality of vehicles due to the limitation of the mounting space.
[0014]
[Means for Solving the Problems]
In order to solve such a problem, the moving system according to the present invention switches the linear motor mounted on the vehicle from the induction type to the synchronous type and supplies power to the components on the track side in a steep up track. Sufficient thrust is generated to travel on the up orbit. FIG. 2 shows the arrangement of the induction type linear motor, and FIG. 3 shows the arrangement of the type when switched to the synchronous type linear motor. Specifically, this mobile system shows detailed means as described below.
[0015]
A hybrid linear motor having a function that can be used by converting a linear motor of a drive source into either a linear induction motor or a linear synchronous motor in a vehicle that floats and moves from the ground surface It runs on a flat ground or on a gentle track with a linear induction motor, and on a steep up or down track, it runs on a linear synchronous motor. This can be achieved.
[0017]
When traveling on a steep up or down trajectory, a sensor is provided to detect the start and end points of an up or down trajectory, and when the vehicle senses the start point of an up or down trajectory, the linear induction motor changes to a linear synchronous motor. A function is provided for automatically switching from a linear synchronous motor to a linear induction motor when an end point of an up or down trajectory is detected.
[0019]
In the hybrid linear motor, the primary side of the vehicle side is made to function as a field, an armature is provided on the track side, and power can be supplied from both the vehicle side and the track side.
Configure a linear synchronous motor.
[0020]
In addition, the linear synchronous motor is configured such that the primary side of the vehicle side functions as an armature, the armature on the track side functions as a field, and power can be supplied from both the vehicle side and the track side.
[0021]
In a steep ascending track, electric power is supplied from the track side, the battery power consumption on the vehicle side is reduced, and the generated thrust of the linear motor is increased as a whole.
[0022]
Therefore, when the moving system travels on a steep up orbit, the configuration of the linear motor can be switched from a linear induction motor to a linear synchronous motor with the same on-vehicle component.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings. First, the hybrid linear motor according to the present invention will be described in detail with reference to FIGS. The hybrid linear motor has both functions of a linear induction motor and a linear synchronous motor, and can be switched between the two as required.
[0024]
Therefore, the structure of the vehicle side linear motor primary side and the track side armature is the same. The configuration of the linear synchronous motor is composed of an armature and a field, and the generated thrust of the linear motor increases as one of the applied forces increases. Moreover, the acting force of both can be controlled by the supplied electric power, and either the armature or the field can be arranged on the vehicle side and the track side. The person arranged on the vehicle side reduces the power consumption of the battery 3 by reducing the power supplied from the vehicle side and reducing the acting force. The one arranged on the track side supplies a large amount of electric power from the ground power source, and generates a thrust necessary to travel in a steep slope portion by increasing its acting force.
[0025]
Next, a linear induction motor will be described. In order to explain this, first, a three-phase alternating current and a rotating magnetic field will be described with reference to FIG. When a three-phase alternating current is passed through the primary coil, the primary side constitutes an electromagnet and N, S, N, and S magnetic poles are formed. Since the three-phase alternating current is made up of three alternating currents that are shifted by 120 ° in electrical angle, the magnetic poles of the electromagnet move along the primary side with time. This magnetic field is called a rotating magnetic field. The rotating speed of this magnetic pole is proportional to the frequency of the three-phase alternating current, and the rotor composed of a conductor in the rotating magnetic field rotates at a speed slightly slower than the rotating magnetic field. .
[0026]
Therefore, the rotational speed of the induction motor is determined by the frequency of the three-phase alternating current. The principle of the linear induction motor is the same as that of the rotary induction motor. Since the structure of the linear induction motor is a motor having a linear shape, the rotating magnetic field is called a moving magnetic field. FIG. 6 shows a principle diagram of the linear induction motor. The moving magnetic fields N, S, N, and S are formed by the three-phase alternating current supplied to the primary coil, and the secondary conductor plate also generates thrust by the induced eddy current, Move at a speed slightly slower than the speed.
[0027]
Since the secondary side is fixed to the track, the movable primary side advances in the direction opposite to the moving magnetic field by the reaction force with the secondary side. In the present invention, when a linear synchronous motor is configured with an electromagnet on the upper side of the vehicle and an armature on the track side, when DC power is supplied to a coil having the same structure on the vehicle side, an electromagnet constituting a plurality of magnetic poles is formed. 6 poles if
It becomes an electromagnet of (N, S, N, S, N, S). A specific linear motor structure is shown in FIGS.
[0028]
Next, switching between the functions of the linear induction motor and the linear synchronous motor using the motor having the same structure will be described with reference to FIGS.
[0029]
When the linear induction motor is configured with the vehicle side as the linear motor primary side 6 from FIG. 13, when the three-phase AC power is supplied to the coil having this structure by switching the AC / DC converter 25 on the vehicle side to the inverter operation, The S pole becomes an electromagnet that moves with time.
[0030]
When configuring a linear synchronous motor with the vehicle side as the field 12 from FIG. 9, DC power is supplied to the linear motor primary side 6 used in the linear induction motor to form a multipolar electromagnet. The field 12 is configured. The apparatus for supplying DC power uses the same AC / DC power converter 25 used as an inverter by switching the operation mode to a DC power supply with software. The armature 13 on the track side also has the same structure as the field 12 on the vehicle upper side, and when three-phase AC power is supplied to the coil on the track side, it becomes an electromagnet that generates a moving magnetic field as in the operation described above. The vehicle-side field 12 is attracted to the magnetic poles of the moving track, and the vehicle 1 advances in synchronization with the moving magnetic field.
[0031]
A first embodiment of the present invention will be described with reference to FIGS. The vehicle 1 of FIG. 13 is comprised from the chassis 24 and the vehicle body 2 provided in the upper part.
[0032]
The chassis 24 is provided with an air pad 9 of an air levitation support mechanism and a linear motor primary side 6. A speed detector 10 (rotary encoder) for detecting the speed of the traveling vehicle 1 is attached.
[0033]
The vehicle body 2 is provided with an AC / DC power converter 25, a battery 3, and a traveling vehicle controller 5. The AC / DC power converter 25 can be switched between an inverter operation and a three-output DC power supply operation by inputting an electric signal. The vehicle control device 5 includes a vehicle operation control unit (which controls traveling vehicle equipment and vehicle speed command value control), a vehicle operation control unit (which performs operation control and operation management of the traveling vehicle), and a vehicle security control unit (other travels). Vehicle detection and collision prevention) and vehicle operation state transmission control unit (performs transmission control of the traveling vehicle speed value, speed command value, and vehicle equipment operation state to the ground side armature coil control device 20). .
[0034]
A vehicle operation information transmission antenna 15 for transmitting information of the vehicle operation state transmission control unit is attached.
[0035]
As shown in FIG. 2, the track has a traveling surface on which the air pad 9 travels, and a horizontal portion, a gentle gradient portion, a bifurcation portion, a relaxation curve portion extending from the horizontal portion to the steep slope portion, and the primary side 6 of the linear motor. The secondary conductor plate 8 is disposed so as to oppose.
The linear motor primary side mounted on the self-propelled vehicle as shown in FIG. 3 is on the trajectory of the vertical curve section from the steep slope section to the steep slope section and the relaxation curve section from the steep slope section to the horizontal section. An armature 13 is arranged opposite to the field 12 in which 6 is switched to electromagnet operation. A non-contact type vehicle position detector 14 for detecting the position of the traveling vehicle is disposed. The equipment on the ground side in FIG. 4 includes a power supply equipment and an armature coil control device 20.
[0036]
The armature coil controller 20 includes a section switching opening / closing controller 17 and a traveling vehicle operation information reception controller 18. A linear synchronous motor is configured with the vehicle side as a field and the track side as an armature. In this case, the vehicle-side AC / DC power converter 25 used when operating with the linear induction motor can be switched from the inverter to the DC power supply by an electric signal.
[0037]
In addition, the primary side of the vehicle used when operating with a linear induction motor using the DC power source can be switched to a multipolar electromagnet.
[0038]
As shown in FIG. 13, the vehicle 1 is composed of a battery 3, an AC / DC power converter 25, and a linear motor primary side 6. The vehicle travels by the thrust of a linear induction motor composed of the primary side 6 of the linear motor fed through the AC / DC power converter 25 switched to the operation and the secondary conductor plate 8 laid on the track.
[0039]
As shown in FIG. 9, the batteries 3 to 3 mounted on the self-propelled vehicle are used in the steep slope portion and the vertical curve portion extending from the horizontal portion to the steep slope portion and the vertical curve portion extending from the steep slope portion to the horizontal portion. The linear motor primary side 6 fed through the AC / DC power converter 25 switched to the output DC power supply operation is changed to a field 12 composed of multipolar electromagnets.
[0040]
Electric power is supplied to the armature 13 laid on the traveling track from the ground-side power supply via the inverter 19 installed on the ground. The vehicle travels by the thrust of a linear synchronous motor composed of the armature 13 and the field 12 on the traveling vehicle 1 side.
[0041]
As shown in FIG. 13, the vehicle control device 5 of the vehicle 1 determines whether the trajectory is a horizontal portion, a gentle gradient portion, or a branch portion before the start of traveling, and switches the AC / DC power converter 25 of the vehicle 1 to an inverter operation.
[0042]
When the vehicle control device 5 confirms the start by an external command, it outputs a start command to the AC / DC power converter 25 and feeds power from the battery 3 to the linear motor primary side 6 via the AC / DC power converter 25 performing the inverter operation. Is done. The linear induction motor is constituted by the secondary conductor plate 8 laid on the track so as to face the linear motor primary side 6, and the vehicle 1 travels with the thrust.
[0043]
The speed of the vehicle 1 is switched to the inverter operation so that the vehicle speed value becomes the speed command value while comparing the vehicle speed command value output from the vehicle control device 5 and the vehicle speed value output from the speed detector 10. The AC / DC power converter 25 supplies the three-phase AC of variable voltage and variable frequency to the linear motor primary side 6 and is controlled.
[0044]
When the vehicle 1 travels and the track moves from the horizontal part to the relaxation curve part from the horizontal part to the steep slope part, the vehicle control device 5 of the traveling vehicle 1 switches the AC / DC power converter 25 to the 3-output DC power supply operation. The information is sent to the armature coil control device 20 of the ground side equipment by the vehicle operation information transmitting antenna 15 of FIG.
[0045]
As shown in FIG. 9, the DC power of the three systems is supplied to the linear motor primary side 6 through the AC / DC power converter 25 switched from the battery 3 of the vehicle 1 to the three-output DC power supply operation, to form a multipolar electromagnet, The field 12 is configured.
[0046]
When the armature coil control device 20 of the ground-side equipment in FIG. 4 receives information that the vehicle control device 5 of the vehicle 1 has switched the AC / DC power converter 25 to the three-output DC power supply operation by the vehicle operation information receiving antenna 16, the armature. A start command is output to the inverter 19 from the vehicle operation information reception control device 18 in the coil control device 20. The signal output from the position detector 14 of the vehicle 1 attached to the track is input to the section switching opening / closing controller 17 in the armature coil control device 20 of the ground side equipment, and the track of the track facing the field 12 of the vehicle 1 is input. A section switching electromagnetic switch 27 capable of energizing the armature coil 13 is selected and operated.
[0047]
Power is supplied from the ground three-phase AC power source 21 to the armature coil 13 laid on the track through the inverter 19 in the armature coil control device 20 and through the section switching electromagnetic switch 27 selected by the section switching switching controller 17. The As shown in FIG. 9, a linear synchronous motor is configured by the field 12 of the vehicle 1 facing the armature coil 13 on the track side that is fed, and the vehicle 1 travels on the steep slope portion of the track by the thrust. The vehicle speed command value output from the vehicle control device 5 of the vehicle 1 and the vehicle speed value output from the speed detector are transmitted from the vehicle operation information transmitting antenna 15, and the information is controlled by the armature coil control of the ground equipment in FIG. The information is received by the vehicle motion information receiving antenna 16 in the device 20, and the information is sent from the vehicle motion information reception control device 18 to the inverter 19.
[0048]
The inverter 19 supplies power to the armature coil 13 laid on the track with a three-phase alternating current of variable voltage and variable frequency so that the vehicle speed value becomes the vehicle speed command value while comparing the vehicle speed command value and the vehicle speed value. Control.
[0049]
The vehicle control device 5 of the vehicle 1 that is traveling just before it becomes a horizontal portion when the trajectory moves from the steep curve portion to the horizontal portion to the horizontal portion makes the AC / DC power converter 25 operate from the three-output DC power supply operation. The operation is switched to the inverter operation, and the information is sent to the armature coil control device 20 of the ground side equipment by the vehicle operation information transmitting antenna 15.
[0050]
When the armature coil control device 20 of the ground side equipment in FIG. 4 receives the information that the vehicle control device 5 of the vehicle 1 has switched the AC / DC power converter 25 to the inverter operation by the vehicle operation information receiving antenna 16, the armature coil control device. A stop command is output to the inverter 19 from the vehicle operation information reception control device 18 in 20. Then, power supply from the inverter 19 to the armature coil 13 laid on the track is stopped. As shown in FIG. 13, the three-phase alternating current is fed to the linear motor primary side 6 through the AC / DC power converter 25 switched from the battery 3 of the vehicle 1 to the inverter operation.
A linear induction motor is constituted by the secondary conductor plate 8 laid on the track facing the linear motor primary side 6 of the vehicle 1, and the vehicle 1 is driven by the thrust.
[0051]
When the vehicle control device 5 confirms the stop by an external command, the vehicle control device 5 outputs a stop command to the AC / DC power converter 25, and the battery 3 supplies the linear motor primary side 6 via the AC / DC power converter 25 performing the inverter operation. Power feeding is stopped and the vehicle 1 stops.
[0052]
A second embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 14, the vehicle 1 includes a chassis 24 and a vehicle body 2 provided on the top thereof. The chassis 24 is provided with an air pad 9 of an air levitation support mechanism and a primary side 6 of a linear motor. A speed detector 10 (rotary encoder) for detecting the speed of the vehicle is also attached. The vehicle body 2 is provided with a multimode inverter 26, a battery 3, and a vehicle control device 5. The multimode inverter 26 can be switched between a linear induction motor control function and a linear synchronous motor control function by an electric signal input.
[0053]
The vehicle control device 5 includes a vehicle operation control unit (which controls traveling vehicle equipment and vehicle speed command value control), a vehicle operation control unit (which performs operation control and operation management of the traveling vehicle), and a vehicle security control unit (other travels). Vehicle detection and collision prevention).
[0054]
As shown in FIG. 2, the track has a traveling surface on which the air pad 9 travels, and the linear motor primary side 6 and the horizontal part, the gentle slope part, the branch part, and the relaxation curve part from the horizontal part to the steep slope part The secondary conductor plate 8 is disposed so as to oppose.
[0055]
The linear motor primary side 6 mounted on the vehicle 1 as shown in FIG. 10 is arranged on the trajectory of the relaxation curve portion from the steep slope portion and the horizontal portion to the steep slope portion and the relaxation curve portion from the steep slope portion to the horizontal portion. A field 12 composed of a multi-pole electromagnet is disposed opposite to the armature 13 that uses the armature as an armature. A non-contact type vehicle position detector 14 that detects the position of the vehicle 1 is disposed.
[0056]
The equipment on the ground side in FIG. 11 includes a power supply equipment and a field coil control device 23. The field coil controller 23 includes a section switching controller 17, a three-output DC power supply 22 that supplies power to the field coil, and a section switching electromagnetic switch 27. A linear synchronous motor is configured with an armature on the vehicle side and a field on the track side. In this case, the control function of the multi-mode inverter 26 on the vehicle side used when operating with the linear induction motor can be switched from the linear induction motor control to the linear synchronous motor control by an electric signal.
[0057]
In the horizontal portion and the gentle slope portion of the track, the vehicle 1 is laid on the track with a linear motor primary side 6 fed from a battery 3 mounted on the vehicle 1 through a multimode inverter 26 as shown in FIG. It travels by the thrust of the linear induction motor constituted by the next conductor plate 8.
[0058]
As shown in FIG. 12, the multi-motor unit is mounted on the vehicle 3 mounted on the vehicle 1 at the steep slope part of the ascending or descending trajectory, the relaxation curve part extending from the horizontal part to the steep slope part, and the longitudinal curve part extending from the steep slope part to the horizontal part. The linear motor primary side 6 fed via the inverter 26 is used as the armature 13. The control function of the multimode inverter 26 is switched from linear induction motor control to linear synchronous motor control. Electric power is supplied to the electromagnet coil laid on the track from the ground-side power supply via the three-output DC power supply device 22 installed on the ground, and the field 12 is formed by a multipolar electromagnet. The vehicle travels by the thrust of a linear synchronous motor composed of the field 12 and the armature 13 on the traveling vehicle 1 side.
[0059]
The moving path of the vehicle 1 is a trajectory composed of a horizontal part, a relaxation curve part from the horizontal part to the steep slope part, a relaxation curve part from the steep slope part to the horizontal part, a steep slope part, a gentle steep slope part, and a branch part. Consists of. The secondary conductor 8 of the linear motor is laid on the track in the horizontal portion, the gentle gradient portion, and the branch portion. As shown in FIG. 14, the vehicle 1 includes a battery 3, a multimode inverter 26, and a primary side 6 of the linear motor. From the battery 3 through the multimode inverter 26 Linear motor primary side 6 and the secondary conductor plate 8 laid on the track constitutes a linear induction motor. The electromagnet side (core, coil) of the linear motor is laid on the steep slope part of the track, the relaxation curve part from the horizontal part to the steep slope part, and the relaxation curve part from the steep slope part to the horizontal part. A three-output DC power supply 22 for supplying power to the electromagnet is installed on the ground side.
[0060]
As shown in FIG. 12, the vehicle 1 is equipped with a battery 3, a multimode inverter 26, and a linear motor primary side 6. Electric power is supplied from the battery 3 to the linear motor primary side 6 through the multimode inverter 26, and the linear motor primary side 6 is used as the armature 13. A linear synchronous motor is constituted by the field 12 made of electromagnets laid on the track and the armature 13 of the vehicle 1.
[0061]
As shown in FIG. 14, the vehicle 1 has a linear motor fed from a battery 3 mounted on the vehicle 1 through a multimode inverter 26 and a primary side 6 and two laid on the track at a horizontal portion and a gentle gradient portion of the track. The vehicle travels by the thrust of a linear induction motor constituted by the next conductor plate 8. The multi-mode inverter from the battery 3 mounted on the vehicle 1 as shown in FIG. 12 is used for the steep slope part of the track, the relaxation curve part from the horizontal part to the steep slope part, and the relaxation curve part from the steep slope part to the horizontal part. The linear motor primary side 6 supplied with power through 26 is used as the armature 13.
[0062]
Electric power is supplied to the electromagnet coil laid on the track from the ground-side power supply via the three-output DC power supply device 22 installed on the ground, and the field 12 is formed by a multipolar electromagnet. The vehicle travels by the thrust of a linear synchronous motor composed of the field 12 and the armature 13 on the vehicle 1 side.
[0063]
As shown in FIG. 14, the vehicle control device 5 of the vehicle 1 determines whether the trajectory is a horizontal portion, a gentle gradient portion, or a branch portion before the start of traveling, and uses the function of the multimode inverter 26 of the vehicle 1 as a linear induction motor. Switch to the control function.
[0064]
When the vehicle control device 5 confirms the start-up by an external command, it outputs a start-up command to the multi-mode inverter 26, and power is supplied from the battery 3 to the primary side 6 of the linear motor via the multi-mode inverter 26. The linear induction motor is constituted by the secondary conductor plate 8 laid on the track so as to face the linear motor primary side 6, and the vehicle 1 travels with the thrust. The speed of the vehicle 1 is switched to the linear induction motor control function so that the vehicle speed value becomes the speed command value while comparing the speed command value output from the vehicle control device and the vehicle speed value output from the speed detector. The multi-mode inverter 26 supplies a three-phase alternating current of variable voltage and variable frequency to the linear motor primary side 6 and is controlled.
[0065]
The trajectory from the horizontal part to the steep part from the horizontal part Achieving relaxation curve The vehicle control device 5 of the traveling vehicle 1 switches the multimode inverter 26 to the linear synchronous motor control function. As shown in FIG. 12, power is supplied to the linear motor primary side 6 through the multimode inverter 26 switched from the battery 3 of the vehicle 1 to the linear synchronous motor control function, and used as the armature 13.
[0066]
When the field coil control device 23 of the ground side equipment in FIG. 11 inputs the position detector information of the vehicle 1 attached at the steep start position of the track, the three-output DC power supply device 22 in the field coil control device 23 is activated. Enter the command. The signal output from the position detector 14 of the vehicle 1 attached to the track is input to the section switching opening / closing controller 17 in the field coil control device 23 of the ground side equipment, and the signal of the track facing the armature 13 of the traveling vehicle is input. The section switching electromagnetic switch 27 that can energize the coil of the field 12 is selected and operated.
[0067]
The field 12 laid on the track through the section switching electromagnetic switch 27 selected by the section switching switching controller 17 from the three-phase AC ground power supply 21 via the three-output DC power supply 22 in the field coil controller 23. Power is supplied to the coil. A linear synchronous motor is constituted by the armature 13 of the vehicle 1 facing the field 12 on the track side supplied with power, and the vehicle 1 travels on the steep slope portion of the track by the thrust.
[0068]
As shown in FIG. 12, the speed of the vehicle 1 is set so that the vehicle speed command value becomes the vehicle speed command value while comparing the vehicle speed command value output from the vehicle control device 5 with the vehicle speed value output from the speed detector 10. The armature 13 is controlled by supplying a three-phase alternating current of variable voltage and variable frequency from the multi-mode inverter 26 switched to the linear synchronous motor control function.
[0069]
The vehicle control device 5 of the vehicle 1 that is traveling just before the trajectory moves to the horizontal portion from the relaxation curve portion that reaches the horizontal portion from the steep slope portion changes the function of the multi-mode inverter 26 to the linear induction motor control function. Switch.
[0070]
When the field coil control device 23 of the ground side equipment in FIG. 11 inputs the traveling vehicle position detection information attached at the steep end position of the track, a stop command is issued to the three-output DC power supply device 22 in the field coil control device 23. input. Then, the power supply from the three-output DC power source 22 to the coil of the field 12 laid on the track is stopped.
[0071]
The three-phase alternating current is fed to the linear motor primary side 6 through the multi-mode inverter 26 switched from the battery 3 of the vehicle 1 of FIG. 14 to the linear induction motor control function.
[0072]
A linear induction motor is constituted by the secondary conductor plate 8 laid on the track facing the linear motor primary side 6 of the vehicle 1, and the vehicle 1 is driven by the thrust.
[0073]
When the vehicle control device 5 confirms the stop by an external command, it outputs a stop command to the multi-mode inverter 26 and supplies power to the linear motor primary side 6 via the multi-mode inverter 26 switched from the battery 3 to the linear induction motor control function. Is stopped and the vehicle 1 stops.
[0074]
【The invention's effect】
In the horizontal part, the gentle slope part and the branch part where the linear motor power consumption of the vehicle is small, the vehicle is driven by supplying power to the linear motor from the battery 3 of the vehicle, and the steep slope part where the linear motor power consumption is large. In the ascending track, the linear motor is configured synchronously. If a synchronous linear motor is used, power is supplied from a power supply on the ground side to a component (armature or field) laid on the track to generate a thrust for running the vehicle. Can be reduced. Therefore, the battery power consumption when the vehicle travels the entire travel path can be reduced, and the travel duration of the vehicle can be increased.
[0075]
Further, when the vehicle travels on the steep slope portion, the linear motor can travel on a steep slope of 10% even with the same dimensions as the linear induction motor mounted on the vehicle.
Most of the linear motor's thrust generating source is the track side component, so it can be laid on the track side, the outside dimension of the vehicle upper side component can be reduced, and the thrust generated by the linear synchronous motor can be increased without making the vehicle large Therefore, it can travel on a steep up orbit and can travel on a steep slope of up to 10%. Therefore, even in a moving system that requires a large thrust, the number of linear motors mounted on the vehicle can be reduced, and there is no need to increase the vehicle dimensions.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a conventional linear motor moving system.
FIG. 2 is a diagram showing an arrangement of linear induction motors according to the first and second embodiments in a linear motor moving system.
FIG. 3 is a diagram showing an arrangement when the linear synchronous motor according to the first embodiment is used in a linear motor moving system.
FIG. 4 is a diagram showing a first embodiment for driving a steep slope of the linear motor moving system according to the present invention.
FIG. 5 shows the principle of an induction type rotary motor.
FIG. 6 shows the principle of a linear induction motor.
FIG. 7 is a diagram showing a configuration of a linear induction motor.
FIG. 8 is a diagram showing a configuration of a linear synchronous motor.
FIG. 9 is a diagram showing a state converted to a linear synchronous motor according to the first embodiment of the present invention.
FIG. 10 is a diagram showing an arrangement when the linear synchronous motor according to the second embodiment is used in a linear motor moving system.
FIG. 11 is a diagram showing a second embodiment in which the linear motor moving system according to the present invention travels on a steep slope.
FIG. 12 is a diagram showing a state converted to a linear synchronous motor according to a second embodiment of the present invention.
FIG. 13 is a diagram showing a state converted to the linear induction motor according to the first embodiment of the present invention.
FIG. 14 is a diagram showing a state converted to a linear induction motor according to a second embodiment of the present invention.
[Explanation of symbols]
1 ... Vehicle
2 ... Body
3 ... Battery
4 ... Inverter
5 ... Vehicle control device
6 ... Linear motor primary side
7 ... Orbital horizontal part
8 ... Secondary conductor plate
9 ... Airpad
10. Speed detector
11 ... orbital gradient part
12 ... Field
13 ... Armature
14 ... Vehicle position detector
15 ... Vehicle operation information transmitting antenna
16 ... Vehicle operation information receiving antenna
17 ... Section switching opening / closing controller
18 ... Vehicle operation information reception control device
19 ... Inverter (for armature control)
20 ... Armature coil control device
21 ... Three-phase AC power supply
22 ... 3 output DC power supply (for track side field control)
23. Field coil controller
24 ... chassis
25 ... AC / DC power converter
26 ... Multimode inverter
27 ... Electromagnetic switch for section switching

Claims (4)

接地面から浮上して移動する車両において、駆動源のリニアモータをリニア誘導モータまたはリニア同期モータのどちらにも変換することにより使用できる機能を有するハイブリッドリニアモータを有し、
平地または勾配の緩やかな軌道においてはリニア誘導モータにより走行し、急勾配の上り又は下り軌道においてはリニア同期モータにより走行する移動システム。
In a vehicle that floats and moves from the ground surface, it has a hybrid linear motor that has a function that can be used by converting the linear motor of the drive source into either a linear induction motor or a linear synchronous motor ,
A moving system that travels on a flat ground or on a gentle orbit with a linear induction motor, and on a steep ascending or descending orbit on a linear synchronous motor .
前記車両側および軌道側に各々電源を設け、
前記ハイブリッドリニアモータの一次側を、車両側に設けて界磁として構成し、前記ハイブリッドリニアモータの二次側を、軌道側に設けて電機子として構成したリニア同期モータを前記車両側に搭載し、
前記車両側の電源から前記ハイブリッドリニアモータの一次側に電力を供給し、前記軌道側の電源から前記ハイブリッドリニアモータの二次側に電力を供給するように構成したことを特徴とする請求項1に記載の移動システム。
A power source is provided on each of the vehicle side and the track side,
A primary synchronous side of the hybrid linear motor is provided on the vehicle side and configured as a field magnet, and a secondary synchronous motor provided on the track side and configured as an armature on the secondary side of the hybrid linear motor is mounted on the vehicle side. ,
The electric power is supplied to the primary side of the hybrid linear motor from the power source on the vehicle side, and the electric power is supplied to the secondary side of the hybrid linear motor from the power source on the track side. The moving system described in.
前記車両側および軌道側に各々電源を設け、
前記ハイブリッドリニアモータの一次側を、車両側に設けて電機子として構成し、前記ハイブリッドリニアモータの二次側を、軌道側に設けて界磁として構成したリニア同期モータを前記車両側に搭載し、
前記車両側の電源から前記ハイブリッドリニアモータの一次側に電力を供給し、前記軌道側の電源から前記ハイブリッドリニアモータの二次側に電力を供給するように構成したことを特徴とする請求項1に記載の移動システム。
A power source is provided on each of the vehicle side and the track side,
The primary side of the hybrid linear motor is provided on the vehicle side and configured as an armature, and the secondary side of the hybrid linear motor is provided on the track side and configured as a field magnet. ,
The electric power is supplied to the primary side of the hybrid linear motor from the power source on the vehicle side, and the electric power is supplied to the secondary side of the hybrid linear motor from the power source on the track side. mobile system as claimed in.
急勾配の上り又は下り軌道を走行する場合において、上り又は下り軌道の始点および終点に検出するセンサーを設け、車両が上り又は下り軌道の始点を感知したときはリニア誘導モータからリニア同期モータに、上り又は下り軌道の終点を感知したときはリニア同期モータからリニア誘導モータに自動で切り替える機能を備えたことを特徴とする請求項1又は2又は3に記載の移動システム。 When traveling on a steep up or down trajectory, a sensor is provided to detect the start and end points of an up or down trajectory, and when the vehicle senses the start point of an up or down trajectory, the linear induction motor changes to a linear synchronous motor. 4. The moving system according to claim 1 , further comprising a function of automatically switching from a linear synchronous motor to a linear induction motor when an end point of an up or down trajectory is detected .
JP2001383919A 2001-12-18 2001-12-18 Moving system with hybrid linear motor drive Expired - Lifetime JP3930731B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001383919A JP3930731B2 (en) 2001-12-18 2001-12-18 Moving system with hybrid linear motor drive
PCT/US2002/040510 WO2003052900A2 (en) 2001-12-18 2002-12-17 Hybrid linear motor driven transportation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383919A JP3930731B2 (en) 2001-12-18 2001-12-18 Moving system with hybrid linear motor drive

Publications (2)

Publication Number Publication Date
JP2003189417A JP2003189417A (en) 2003-07-04
JP3930731B2 true JP3930731B2 (en) 2007-06-13

Family

ID=19187677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383919A Expired - Lifetime JP3930731B2 (en) 2001-12-18 2001-12-18 Moving system with hybrid linear motor drive

Country Status (2)

Country Link
JP (1) JP3930731B2 (en)
WO (1) WO2003052900A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461578A (en) 2008-07-04 2010-01-06 Bombardier Transp Gmbh Transferring electric energy to a vehicle
GB2461577A (en) 2008-07-04 2010-01-06 Bombardier Transp Gmbh System and method for transferring electric energy to a vehicle
GB2463693A (en) 2008-09-19 2010-03-24 Bombardier Transp Gmbh A system for transferring electric energy to a vehicle
GB2463692A (en) 2008-09-19 2010-03-24 Bombardier Transp Gmbh An arrangement for providing a vehicle with electric energy
US9032880B2 (en) 2009-01-23 2015-05-19 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
US8616134B2 (en) 2009-01-23 2013-12-31 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
US8109353B2 (en) * 2009-04-02 2012-02-07 General Atomics Transport system incorporating linear motor charged electric vehicle
US9050896B2 (en) 2012-11-22 2015-06-09 Paramount Pictures Corporation Regenerative energy system for ground transportation vehicles
EP3046801A4 (en) 2013-09-21 2017-11-08 Magnemotion, Inc. Linear motor transport for packaging and other uses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828608B1 (en) * 1967-11-10 1973-09-03
US3721874A (en) * 1972-01-12 1973-03-20 Merlin Gerin Linear induction motor propulsion system
US3803466A (en) * 1972-02-28 1974-04-09 Rockwell International Corp Linear motor propulsion system
AU602059B2 (en) * 1987-03-13 1990-09-27 Utdc Inc. A transit system
US5127599A (en) * 1990-07-05 1992-07-07 Utdc, Inc. Deceleration zone in a linear motor in-track transit system

Also Published As

Publication number Publication date
WO2003052900A2 (en) 2003-06-26
WO2003052900A3 (en) 2003-09-12
JP2003189417A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
KR100583677B1 (en) Arrangement for operating a transportation system with a magnetic levitation vehicle
US5605100A (en) Propulsion system for a magnetically movable vehicle
KR940005452A (en) Maglev Transfer Device
JP2012517798A (en) Linear motor rechargeable electric vehicle
KR101635855B1 (en) Transport system incorporating linear motor charged electric vehicle
JP3930731B2 (en) Moving system with hybrid linear motor drive
US20090140583A1 (en) Synchronous Linear Motor
JP2007274838A (en) Magnetically levitated transporter
KR101999790B1 (en) Maglev train having energy havester and infrastructure-system
KR20090107157A (en) Hybrid linear propulsion system for train
CN101267183B (en) Linear induction motor drive system
JP3072297B2 (en) Propulsion method of tracked vehicle by synchronous linear motor
KR101132695B1 (en) Rail propulsion apparatus and system for tracked vehicle
JP3751380B2 (en) Electromechanical power mutual conversion device
KR20220135524A (en) Megnetic levitation mobile vehicle
JPS637112A (en) Linear motor type conveying apparatus
KR20140087675A (en) Magnetic levitation system having invertor for current angle
JP3092723B2 (en) Underwater linear transportation system
WO1991019621A1 (en) Underwater linear transport system
WO2001087663A2 (en) Transportation system with linear switched reluctance actuator for propulsion and levitation
JPH1014016A (en) Linear motor device
JPS62166706A (en) Conveyor using magnetic levitation type linear motor
US20020178965A1 (en) Helix windings for linear propulsion systems
WO2023128891A1 (en) Rotary power transfer system for linear motor elevators
JPH0680327A (en) Electric feeding of self-traveling linear elevator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3930731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term