JP6461914B2 - Synthetic intermediate for producing 3-haloalignment and method for synthesizing the same - Google Patents

Synthetic intermediate for producing 3-haloalignment and method for synthesizing the same Download PDF

Info

Publication number
JP6461914B2
JP6461914B2 JP2016507803A JP2016507803A JP6461914B2 JP 6461914 B2 JP6461914 B2 JP 6461914B2 JP 2016507803 A JP2016507803 A JP 2016507803A JP 2016507803 A JP2016507803 A JP 2016507803A JP 6461914 B2 JP6461914 B2 JP 6461914B2
Authority
JP
Japan
Prior art keywords
group
compound
carbon atom
synthesis
aromatic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016507803A
Other languages
Japanese (ja)
Other versions
JPWO2015137417A1 (en
Inventor
英斗 吉岡
英斗 吉岡
豪人 宮部
豪人 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo College of Medicine
Original Assignee
Hyogo College of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo College of Medicine filed Critical Hyogo College of Medicine
Publication of JPWO2015137417A1 publication Critical patent/JPWO2015137417A1/en
Application granted granted Critical
Publication of JP6461914B2 publication Critical patent/JP6461914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/361Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D243/00Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms
    • C07D243/06Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 4
    • C07D243/10Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D243/141,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines
    • C07D243/161,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines substituted in position 5 by aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/06Six-membered rings
    • C07D327/08[b,e]-condensed with two six-membered carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te

Description

本発明は、3−ハロアラインを生成するための合成中間体及びその合成方法に関する。   The present invention relates to a synthetic intermediate for producing 3-haloalignment and a synthesis method thereof.

アライン(1,2−ベンザインまたはo−ベンザイン、単にベンザインとも言う)は、芳香環上に三重結合を有する反応性の高い化学種の総称である。アラインは反応性に富むため、多環性複素環類等の生物活性物質や機能性分子の合成など多方面で利用されている(非特許文献1、特許文献1、2)。
アラインを生成する方法としては主に、高温や強塩基性などの過酷な反応条件を必要とするものが知られていた。1983年に温和な条件下でアラインを発生する方法として、芳香環上に隣接するトリメチルシリル基とトリフルオロメタンスルホン酸エステル基を用いる方法が報告された(非特許文献2)。また、3−ハロアラインを温和な条件下で生成する前駆体として、6−トリメチルシリル−2−ハロフェニルトリフルオロメタンスルホナート(非特許文献3)や6−ブロモ−4−トリメチルシリル−1H−インドール−5−イルトリフルオロメタンスルホナート(非特許文献4)が報告されたが、この前駆体は本発明とは異なる化合物であり、その合成法も異なる。
以下の文献は、それぞれが参照により本明細書に援用される。
P. M. Tadross and B. M. Stoltz, Chem. Rev., 2012, 112, 3550-3577. H. Kobayashi, et al., Chem. Lett., 1983, 12, 1211-1214. H. Yoshida, et al., Angew. Chem. Int. Ed., 2013, 52, 8629-8632. N. K. Garg, et al., J. Am. Chem. Soc., 2011, 133, 3832-3835. R. C. Larock, et al., Org. Biomol. Chem., 2013, 11, 191-218. S. M. Bronner and N. K. Garg, J. Org. Chem., 2009, 74, 8842-8843. A. E. Goetz and N. K. Garg, Nature Chem., 2013, 5, 54-60. M. F. Greanye, et al., Chem. Commun., 2013, 49, 7602-7604. 特開平10−245367号公報 国際公開第2014/024212号
Align (1,2-benzyne or o-benzyne, also simply referred to as benzyne) is a general term for highly reactive species having a triple bond on an aromatic ring. Since Align is rich in reactivity, it is used in many fields such as synthesis of biologically active substances such as polycyclic heterocycles and functional molecules (Non-patent Document 1, Patent Documents 1 and 2).
As a method for producing alignment, a method requiring severe reaction conditions such as high temperature and strong basicity has been known. In 1983, as a method for generating alignment under mild conditions, a method using an adjacent trimethylsilyl group and trifluoromethanesulfonic acid ester group on an aromatic ring was reported (Non-patent Document 2). Further, as precursors for producing 3-haloalignment under mild conditions, 6-trimethylsilyl-2-halophenyltrifluoromethanesulfonate (Non-patent Document 3) and 6-bromo-4-trimethylsilyl-1H-indole-5 Although iltrifluoromethanesulfonate (Non-Patent Document 4) has been reported, this precursor is a compound different from the present invention, and its synthesis method is also different.
The following documents are each incorporated herein by reference.
PM Tadross and BM Stoltz, Chem. Rev., 2012, 112, 3550-3577. H. Kobayashi, et al., Chem. Lett., 1983, 12, 1211-1214. H. Yoshida, et al., Angew. Chem. Int. Ed., 2013, 52, 8629-8632. NK Garg, et al., J. Am. Chem. Soc., 2011, 133, 3832-3835. RC Larock, et al., Org. Biomol. Chem., 2013, 11, 191-218. SM Bronner and NK Garg, J. Org. Chem., 2009, 74, 8842-8843. AE Goetz and NK Garg, Nature Chem., 2013, 5, 54-60. MF Greanye, et al., Chem. Commun., 2013, 49, 7602-7604. Japanese Patent Laid-Open No. 10-245367 International Publication No. 2014/024212

アライン生成の前駆体を合成するための従来の方法では、ハロゲン−リチウム交換反応を経由するため、目的の位置にハロゲンを選択的に導入し、あるいは除去するという多数の工程の実験操作が必要となっていた。また、ハロゲン置換された炭素六員環芳香族化合物は、ハロゲン原子隣接位へのアニオンの生成に伴い、ハロゲン原子が脱離してアラインを生成することが知られていた。ヘテロ環六員環芳香族化合物は、芳香環上のアニオンがより安定で生成しやすいため、ハロゲン−リチウム交換反応を経由することなく前駆体を合成することができ、この点でヘテロ環アライン前駆体化合物よりも、炭素六員環アライン前駆体を合成することの方がより困難を伴う。こうした背景から、ハロゲン置換された炭素六員環アライン前駆体化合物の系統的合成はほとんど行われていなかった。   In the conventional method for synthesizing the precursor for aligning, since a halogen-lithium exchange reaction is performed, it is necessary to perform an experimental operation in a number of steps of selectively introducing or removing halogen at a target position. It was. Further, it has been known that a halogen-substituted carbon 6-membered ring aromatic compound generates an alignment due to elimination of a halogen atom with the generation of an anion at a position adjacent to the halogen atom. In the heterocyclic 6-membered aromatic compound, the anion on the aromatic ring is more stable and easily generated, and therefore the precursor can be synthesized without going through the halogen-lithium exchange reaction. It is more difficult to synthesize a carbon six-membered ring alignment precursor than a body compound. From such a background, systematic synthesis of halogen-substituted carbon 6-membered ring-aligned precursor compounds has hardly been performed.

また、アラインを経由する各種芳香族化合物の合成においては、置換基を有する非対称なアラインを基質として用いた場合、2つの位置異性体が生成する可能性があるため、より反応位置選択性の高い方法が求められていた。
本発明では、より少ない工程数で、簡便に、様々なハロゲン置換されたアライン前駆体を合成することに成功した。また、ハロゲンを有することで、アラインの反応の位置選択性の向上も実現した。
In addition, in the synthesis of various aromatic compounds via alignment, when asymmetric alignment having a substituent is used as a substrate, two regioisomers may be generated, so that the reaction position selectivity is higher. A method was sought.
The present invention succeeded in synthesizing various halogen-substituted align precursors with a smaller number of steps. In addition, by having halogen, the regioselectivity of aligning reaction was improved.

すなわち、本発明によると、トリアルキルシリル基と、該トリアルキルシリル基に隣接する両隣の位置に、−OSO基と、−X基とを有する芳香族化合物が提供される。
特に、上記トリアルキルシリル基、−OSO基及び−X基が直接結合している環が炭素六員環である芳香族化合物が好的に提供される。
また、上記芳香族化合物を含むアラインの生成のための合成中間体又は合成前駆体あるいは合成中間体又は合成前駆体としての使用が提供される。
また、上記芳香族化合物にフッ化物イオンを反応させることを含む、アラインの生成方法が提供される。
また、本発明によれば、−H(水素)基と、該−H基に隣接する両隣の位置に、トリアルキルシリルオキシ基と、−X基とを有する芳香族化合物を、リチウムアミド、又はマグネシウムアミドもしくは亜鉛アミドとリチウム塩とのアート錯体型の複塩と反応させる工程を含む、芳香族化合物(アライン生成中間体)を合成するための方法(合成方法)が提供される。ここで、更なる発明では、上記芳香族化合物(アライン生成中間体)は、−OSO基及び−X基が直接結合している環が炭素六員環である上記芳香族化合物である。
That is, according to the present invention, a trialkylsilyl group, the position of both sides adjacent to the trialkylsilyl group, an aromatic compound having a -OSO 2 R 1 group, and -X group are provided.
In particular, an aromatic compound in which the ring to which the trialkylsilyl group, —OSO 2 R 1 group and —X group are directly bonded is a carbon 6-membered ring is preferably provided.
Also provided are uses as synthetic intermediates or synthetic precursors or synthetic intermediates or synthetic precursors for the production of aligns comprising the aromatic compounds.
There is also provided a method for producing alignment, which comprises reacting the aromatic compound with fluoride ions.
According to the present invention, an aromatic compound having a -H (hydrogen) group and a trialkylsilyloxy group and a -X group at adjacent positions adjacent to the -H group, lithium amide, or Provided is a method (synthetic method) for synthesizing an aromatic compound (alignment intermediate), which comprises a step of reacting with an art complex type double salt of magnesium amide or zinc amide and a lithium salt. Here, in a further invention, the aromatic compound (alignment generation intermediate) is the aromatic compound in which the ring to which the -OSO 2 R 1 group and the -X group are directly bonded is a carbon six-membered ring. .

ここで、上記発明において、RはC2m+1(mは整数)あるいはアルキルで置換されていてもよいアリール又はヘテロアリール基である。XはF、Cl又はBrである。Here, in the above invention, R 1 is C m F 2m + 1 (m is an integer) or an aryl or heteroaryl group which may be substituted with alkyl. X is F, Cl or Br.

また、本発明によれば、芳香族部分が、ベンゼン、ナフタレン、インドール、ベンズイミダゾール、キノリン、イソキノリン又はベンゾフランを含む上記発明がさらに提供される。また、本発明によれば、芳香族部分が、ベンゼン、ナフタレン、インドール、キノリン、イソキノリン又はベンゾフランを含む上記発明がさらに提供される。なお、これらの芳香族部分はさらに置換されていてもよい。   Further, according to the present invention, there is further provided the aforementioned invention wherein the aromatic moiety contains benzene, naphthalene, indole, benzimidazole, quinoline, isoquinoline or benzofuran. In addition, according to the present invention, there is further provided the aforementioned invention, wherein the aromatic moiety contains benzene, naphthalene, indole, quinoline, isoquinoline or benzofuran. These aromatic moieties may be further substituted.

本発明では、少ない工程数で、簡便に合成されるアライン生成中間化合物が提供される。この化合物により、より簡便にアラインを経由した合成反応を行うことができる。また、特定の位置にハロゲンが導入されていることで、この合成中間体化号物から生成されたアラインの反応も位置選択的となる。   The present invention provides an align-generating intermediate compound that is easily synthesized with a small number of steps. With this compound, the synthesis reaction via alignment can be performed more easily. In addition, the introduction of a halogen at a specific position makes the alignment reaction generated from this synthetic intermediate compound also regioselective.

〔用語の説明〕
本明細書中においては、次の用語は以下に示す意味を有する。
[Explanation of terms]
In this specification, the following terms have the following meanings.

「ハロゲン」もしくは「ハロ」という用語は、特記のない限り、フッ素、塩素、臭素またはヨウ素を意味する。
「シアノ」という用語は、-CN基を意味する。
「三級アミノ」という用語は、-NH基において、水素が、水素以外の置換基Rに置換した基を意味する。好ましくは、Rは置換されていてもよいアルキル基である。
「ニトロ」という用語は、-NO基を意味する。
「スルホニル」という用語は、二価の基である-S(=O)-基を意味する。
「カルボニル」という用語は、二価の基である-(C=O)-基を意味する。
The term “halogen” or “halo” means fluorine, chlorine, bromine or iodine, unless otherwise specified.
The term “cyano” means a —CN group.
The term “tertiary amino” means a group in which hydrogen is substituted with a substituent R other than hydrogen in the —NH 2 group. Preferably, R is an optionally substituted alkyl group.
The term “nitro” means a —NO 2 group.
The term “sulfonyl” refers to the divalent group —S (═O) 2 —.
The term “carbonyl” refers to a — (C═O) — group that is a divalent group.

「アルキル」、「アルケニル」、「アルキニル」または「シクロアルキル」という用語は、一価の基のみならず、場合によっては二価またはそれ以上の基を意味する。例えば、二価の基を意味する場合、それぞれ、「アルキレン」、「アルケニレン」、「アルキニレン」または「シクロアルキレン」と同じ意味で用いられる。
「Cx−yアルキル」、「Cx−yアルケニル」、「Cx−yアルキニル」または「Cx−yシクロアルキル」という用語の接頭辞は、xからy個の炭素原子を有するそれぞれの基を意味し、以下に示す特定の鎖長の基は、「Cx−yアルキル」、「Cx−yアルケニル」、「Cx−yアルキニル」または「Cx−yシクロアルキル」の代表例である。
また、任意の二価以上の基について、単環あるいは複環を形成可能な位置で置換する場合、特に限定されない限り、その二価以上の基は環構造を形成してもよい。
The terms “alkyl”, “alkenyl”, “alkynyl” or “cycloalkyl” mean not only monovalent groups, but in some cases divalent or higher groups. For example, when a divalent group is meant, it is used interchangeably with “alkylene”, “alkenylene”, “alkynylene” or “cycloalkylene”, respectively.
The prefix "C xy alkyl", "C xy alkenyl", "C xy alkynyl" or "C xy cycloalkyl" is prefixed with each having x to y carbon atoms. A group of the specific chain length shown below is representative of “C xy alkyl”, “C xy alkenyl”, “C xy alkynyl” or “C xy cycloalkyl” It is an example.
Moreover, about arbitrary bivalent or more groups, when substituting in the position which can form a monocycle or a multicycle, unless it specifically limits, the group more than bivalence may form ring structure.

「C1−6アルキル」または「C1−6アルキレン」という用語は、1から6の炭素原子を有する、分岐状または直鎖状の飽和炭化水素基を意味し、例えば、C1−3アルキル、C1−4アルキル、C1−6アルキル、C2−6アルキル、C3−6アルキルなどを含む。代表的なC1−6アルキルとしては、例えば、メチル、エチル、プロピル(例えば、プロパン-1-イル、プロパン-2-イル[もしくはiso-プロピル])、ブチル(例えば、2-メチルプロパン-2-イル[もしくはtert-ブチル]、ブタン-1-イル、ブタン-2-イル)、ペンチル(例えば、ペンタン-1-イル、ペンタン-2-イル、ペンタン-3-イル)、2-メチルブタン-1-イル、3-メチルブタン-1-イル、ヘキシル(例えば、ヘキサン-1-イル)などが挙げられる。The term “C 1-6 alkyl” or “C 1-6 alkylene” means a branched or straight-chain saturated hydrocarbon group having 1 to 6 carbon atoms, for example, C 1-3 alkyl , C 1-4 alkyl, C 1-6 alkyl, C 2-6 alkyl, C 3-6 alkyl, and the like. Representative C 1-6 alkyl includes, for example, methyl, ethyl, propyl (eg, propan-1-yl, propan-2-yl [or iso-propyl]), butyl (eg, 2-methylpropane-2) -Yl [or tert-butyl], butan-1-yl, butan-2-yl), pentyl (eg, pentan-1-yl, pentan-2-yl, pentane-3-yl), 2-methylbutane-1 -Yl, 3-methylbutan-1-yl, hexyl (eg, hexane-1-yl) and the like.

「C2−6アルケニル」または「C2−6アルケニレン」という用語は、2から6の炭素原子と、少なくとも1つの炭素-炭素二重結合とを有する直鎖状または分岐鎖状の非芳香族性の炭化水素基を意味し、例えば、C2−3アルケニル、C2−4アルケニル、C2−6アルケニル、C3−6アルケニル、C4−6アルケニルなどを含む。代表的なC2−6アルケニル基としては、例えば、ビニル、1-プロペニル、2-プロペニル、iso-プロペニル、1,3-ブタジエニル、1-ブテニル、2-ブテニル、3-ブテニル、2-メチル-1-プロペニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、3-メチル-2-ブテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、2,4-ヘキサジエニル、および5-ヘキセニルなどが挙げられる。The term “C 2-6 alkenyl” or “C 2-6 alkenylene” refers to a linear or branched non-aromatic having 2 to 6 carbon atoms and at least one carbon-carbon double bond. And includes, for example, C 2-3 alkenyl, C 2-4 alkenyl, C 2-6 alkenyl, C 3-6 alkenyl, C 4-6 alkenyl and the like. Representative C 2-6 alkenyl groups include, for example, vinyl, 1-propenyl, 2-propenyl, iso-propenyl, 1,3-butadienyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methyl- 1-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 3-methyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 2,4-hexadienyl, and 5-hexenyl Etc.

「C2−6アルキニル」または「C2−6アルキニレン」という用語は、2から6の炭素原子と、少なくとも1つの炭素-炭素三重結合とを有する直鎖状または分岐鎖状の非芳香族性の炭化水素基を意味し、例えば、C2−3アルキニル、C2−4アルキニル、C2−6アルキニル、C3−6アルキニル、C4−6アルキニルなどを含む。代表的なC2−6アルキニル基としては、例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、2-メチル-1-プロピニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、3-メチル-2-ブチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、および5-ヘキシニルなどが挙げられる。
「C3−6シクロアルキル」という用語は、3から6の炭素原子を有する飽和単環性炭素環を意味する。代表的なC3−6シクロアルキルとしては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどが挙げられる。
The term “C 2-6 alkynyl” or “C 2-6 alkynylene” refers to a linear or branched non-aromatic having 2 to 6 carbon atoms and at least one carbon-carbon triple bond. And includes, for example, C 2-3 alkynyl, C 2-4 alkynyl, C 2-6 alkynyl, C 3-6 alkynyl, C 4-6 alkynyl and the like. Representative C 2-6 alkynyl groups include, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 2-methyl-1-propynyl, 1-pentynyl, 2- Examples include pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl-2-butynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 5-hexynyl and the like.
The term “C 3-6 cycloalkyl” means a saturated monocyclic carbocycle having from 3 to 6 carbon atoms. Representative C 3-6 cycloalkyl includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.

「アルコキシ」または「アルキルオキシ」という用語は、Rが前述のアルキルである-O-R基を意味する。また、「Rオキシ」という用語を用いる場合、それは一価または二価の基である-O-R基を意味する。
例えば、「C1−6アルコキシ」という用語は、C1−6アルキル-O-基を意味し、例えば、C1−3アルコキシ、C1−4アルコキシ、C1−6アルコキシ、C2−6アルコキシ、C3−6アルコキシなどを含む。代表的なC1−6アルコキシとしては、例えば、メトキシ、エトキシ、プロパ-オキシ(例えば、1-プロパ-オキシ、2-プロパ-オキシ[もしくはiso-プロポキシ])、ブトキシ(例えば、1-ブトキシ、2-ブトキシ、2-メチル-2-プロパ-オキシ[もしくはtert-ブトキシ])、ペンタ-オキシ(1-ペンタ-オキシ、2-ペンタ-オキシ)、ヘキサ-オキシ(1-ヘキサ-オキシ、3-ヘキサ-オキシ)などが挙げられる。
The term “alkoxy” or “alkyloxy” means a —O—R group where R is alkyl as previously described. Also, when the term “Roxy” is used, it means a —O—R group that is a monovalent or divalent group.
For example, the term “C 1-6 alkoxy” means a C 1-6 alkyl-O— group, for example, C 1-3 alkoxy, C 1-4 alkoxy, C 1-6 alkoxy, C 2-6. Including alkoxy, C 3-6 alkoxy and the like. Representative C 1-6 alkoxy includes, for example, methoxy, ethoxy, propoxy (eg, 1-prop-oxy, 2-prop-oxy [or iso-propoxy]), butoxy (eg, 1-butoxy, 2-butoxy, 2-methyl-2-propoxy- [or tert-butoxy]), penta-oxy (1-penta-oxy, 2-penta-oxy), hexa-oxy (1-hexa-oxy, 3- Hexa-oxy) and the like.

「複素環基」という用語は、炭素以外の原子(ヘテロ原子)、例えば、窒素、酸素、硫黄、SOおよびS(=O)から選択される一または複数のヘテロ原子を環中に含む単環、二環もしくは多環の、飽和または不飽和の非芳香族性基あるいは芳香族性基(ヘテロアリール基)を意味する。複素環基には、例えば、非芳香族性環状アミノ基が含まれ、好ましくは非プロトン性の基である。本発明における複素環基は、好ましくは、五〜七員環、さらに好ましくは、五員環または六員環である。代表的な複素環基としては、例えば、モルホリノ、オキサジニル、ジヒドロオキサジニル、ピペラジニル、チオモルホリノ、ピペリジノ、ピロジニル、ホモモルホリノ、ピロリニル、ピロリル、イミダゾリル、ピラゾリル、トリアゾリル、トリアジニル、ピリジニル、ピリミジニル、ピリダジニル、ピラジニル、オキサゾリル、イソオキサゾリル、チエニルまたはフリルなどが挙げられる。The term “heterocyclic group” means a single atom containing one or more heteroatoms selected from atoms other than carbon (heteroatoms) such as nitrogen, oxygen, sulfur, SO and S (═O) 2 in the ring. It means a ring, bicyclic or polycyclic saturated or unsaturated non-aromatic group or aromatic group (heteroaryl group). The heterocyclic group includes, for example, a non-aromatic cyclic amino group, and is preferably an aprotic group. The heterocyclic group in the present invention is preferably a 5- to 7-membered ring, more preferably a 5-membered ring or a 6-membered ring. Representative heterocyclic groups include, for example, morpholino, oxazinyl, dihydrooxazinyl, piperazinyl, thiomorpholino, piperidino, pyrrolidinyl, homomorpholino, pyrrolinyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, triazinyl, pyridinyl, pyrimidinyl, pyridazinyl, Examples include pyrazinyl, oxazolyl, isoxazolyl, thienyl or furyl.

「アリール」という用語は、単環、二環もしくは多環性炭素環芳香族環を意味する。代表的なアリールとしては、フェニル、ナフタレニルなどが挙げられる。
「ヘテロアリール」という用語は、窒素、酸素、硫黄、SOおよびS(=O)から選択される一または複数のヘテロ原子を含む単環、二環もしくは多環性ヘテロ芳香族環を意味する。代表的なヘテロアリールとしては、ピリジル、ピリミジニル、インドリル、チアゾリル、ベンゾフラニル、ジヒドロベンゾフラニル、イミダゾリル、ピラゾリル、キノリル、イソキノリル、ベンゾチオフェニルなどが挙げられる。
The term “aryl” means a monocyclic, bicyclic or polycyclic carbocyclic aromatic ring. Representative aryl includes phenyl, naphthalenyl, and the like.
The term “heteroaryl” means a monocyclic, bicyclic or polycyclic heteroaromatic ring containing one or more heteroatoms selected from nitrogen, oxygen, sulfur, SO and S (═O) 2 . Representative heteroaryls include pyridyl, pyrimidinyl, indolyl, thiazolyl, benzofuranyl, dihydrobenzofuranyl, imidazolyl, pyrazolyl, quinolyl, isoquinolyl, benzothiophenyl, and the like.

「飽和又は不飽和の」という用語は、対象の基が、二重結合または三重結合を含まない飽和基であるか、あるいは、少なくとも一つの二重結合または三重結合を含む不飽和基であるかのどちらかであることを意味する。
「置換されていてもよい」という用語は、対象の基が、無置換であるか、あるいは、1または複数の特定の置換基により置換されているかのどちらかであることを意味する。例えば、置換数は、1、2、3、4、または5などであるが、好ましくは1、2または3、より好ましくは1または2、さらにより好ましくは1の置換数が用いられる。対象の基が複数の置換基により置換されている時、置換基は同じでもよく、異なっていてもよい。
The term “saturated or unsaturated” means whether the group in question is a saturated group that does not contain a double or triple bond, or is an unsaturated group that contains at least one double or triple bond. Means either.
The term “optionally substituted” means that the group in question is either unsubstituted or substituted by one or more specific substituents. For example, the number of substitutions is 1, 2, 3, 4, or 5, but preferably, 1, 2, or 3, more preferably 1 or 2, and even more preferably 1 is used. When a target group is substituted with a plurality of substituents, the substituents may be the same or different.

「中間体」、「合成中間体」又は「生成中間体」という用語は、製造工程又は化学反応(有機合成)において、出発原料又は前段階の反応物から反応によって生成し、またさらに反応して最終生成物を与えるもののことをいい、その用途により限定されたもののことをいう。すなわち、この場合、最終生成物は、中間体を経由して合成される。特に本願において、一工程もしくは一反応、又は実質的な一工程もしくは一反応(例えば、連続的な複数の反応を用いる場合)で最終生成物を与える中間体のことを、「前駆体」と称することもある(すなわち、中間体は前駆体を含む)。実質的に前駆体として用いられるものであっても、他の部分を修飾するために、複数の工程を経た後に最終生成物を与えることもある。   The terms “intermediate”, “synthetic intermediate” or “product intermediate” are produced by reaction from starting materials or previous reactants in the manufacturing process or chemical reaction (organic synthesis) and further reacted. It refers to what gives the final product and is limited by its use. That is, in this case, the final product is synthesized via an intermediate. In particular, in the present application, an intermediate that gives a final product in one step or one reaction, or substantially one step or one reaction (for example, when using a plurality of consecutive reactions) is called a “precursor”. Sometimes (ie, the intermediate includes a precursor). Even if used substantially as a precursor, the final product may be obtained after multiple steps to modify other moieties.

上記の用語の一部は、構造式中に複数回用いられてもよく、それぞれの用語は、互いに独立した範囲であってもよい。
上記の用語の一部は、組み合わせて用いられ得るが、その場合、最初に記された基が、後に記された基上の置換基となり、置換点(付加点)は、その基全体の最後に記された部分上にある。
Some of the above terms may be used multiple times in the structural formula, and each term may be in an independent range.
Some of the above terms may be used in combination, in which case the first listed group will be a substituent on the group described later and the point of substitution (addition point) will be at the end of the entire group. It is on the part marked.

〔発明の背景〕
アラインの生成方法としては、高温や強塩基性などの苛酷な条件を必要とするものがほとんどであり、工業的利用における経済性や、化合物中の他の構造に対する影響(置換基の保護が必要、等)などの点で、更なる改善が望まれていた。
加えて、従来、アラインの生成においては、芳香環上のハロゲン原子(F、Cl、Br及びI原子)は、強塩基を用いたアライン生成の脱離基として利用されてきた。

Figure 0006461914
BACKGROUND OF THE INVENTION
Most alignment methods require harsh conditions such as high temperature and strong basicity, and are economical for industrial use and effects on other structures in the compound (substituents must be protected). ) Etc.), further improvement was desired.
In addition, conventionally, in the generation of alignment, halogen atoms (F, Cl, Br, and I atoms) on the aromatic ring have been used as leaving groups for alignment generation using strong bases.
Figure 0006461914

また、ハロゲン原子は、Grignard反応やハロゲン−金属交換反応を経由するアライン生成法にも利用されてきた。これらのことから、ハロゲン原子を有するアラインを従来法で効率的に発生するのは容易ではなかった。

Figure 0006461914
Halogen atoms have also been used for aligning methods via Grignard reactions and halogen-metal exchange reactions. For these reasons, it has been difficult to efficiently generate alignments having halogen atoms by conventional methods.
Figure 0006461914

ハロゲン原子を含むアライン前駆体化合物については、ほとんど報告されておらず、これまでに報告されている化合物及びその合成方法は、本発明の化合物及びその合成方法とは異なるものである。
例えば、塩素原子(臭素原子も同様)を有するアライン前駆体の合成方法として、下図式(1)のように、ハロゲン−リチウム交換を経て合成する方法が報告されていた(非特許文献3)。
また、フェノール性水酸基の隣接位に、ハロゲン−リチウム交換反応を用いず直接置換基を導入する方法として、式(2)のように、フェノール性水酸基に保護基兼配向性置換基を導入した後に、芳香環上にアニオンを発生させてアライン前駆体を合成する方法も報告されている(非特許文献6)。また、非特許文献6の手法を用いた隣接位に臭素原子を有するアライン前駆体の合成方法(非特許文献4)、アニオンが発生し易いというヘテロ環の特性を利用したヘテロ環アライン前駆体の合成方法(非特許文献7)も報告されているが、これらの何れも本発明とは異なるものである。
The alignment precursor compound containing a halogen atom has hardly been reported, and the compounds reported so far and their synthesis methods are different from the compounds of the present invention and their synthesis methods.
For example, as a method for synthesizing an align precursor having a chlorine atom (the same applies to a bromine atom), a method for synthesizing via a halogen-lithium exchange has been reported as shown in the following formula (1) (Non-patent Document 3).
In addition, as a method of directly introducing a substituent into the adjacent position of the phenolic hydroxyl group without using a halogen-lithium exchange reaction, after introducing a protective group / orienting substituent into the phenolic hydroxyl group as in formula (2) A method for synthesizing an align precursor by generating an anion on an aromatic ring has also been reported (Non-patent Document 6). In addition, a method for synthesizing an align precursor having a bromine atom at the adjacent position using the method of Non-Patent Document 6 (Non-Patent Document 4), and a heterocycle align precursor using the heterocycle characteristic that anions are easily generated. Although a synthesis method (Non-patent Document 7) has also been reported, these are all different from the present invention.

Figure 0006461914
Figure 0006461914

なお、上記した既知のアライン前駆体の合成は、一般に高コストであり、発生効率も本発明の方が優れている。例えば、式(1)の方法では、原料中のハロゲン原子が反応中に除去されており、本発明と比較してハロゲン原子導入コストが高く、式(2)の方法では、保護基兼配向性基の導入と除去が必要であり、過剰量が用いられてもいるため、試薬のコストが高くなる。また、例えば、式(1)の方法や非特許文献4に記載された方法と比較して、本発明の方法はアラインの生成効率に優れている。   The synthesis of the above-mentioned known align precursor is generally expensive and the generation efficiency of the present invention is superior. For example, in the method of formula (1), the halogen atom in the raw material is removed during the reaction, and the introduction cost of the halogen atom is higher than in the present invention. The introduction and removal of the groups is necessary and the reagent costs are high because an excess amount is used. For example, compared with the method of Formula (1) and the method described in the nonpatent literature 4, the method of this invention is excellent in the production | generation efficiency of alignment.

〔実施形態〕
以下に本発明の実施の形態について説明する。
Embodiment
Embodiments of the present invention will be described below.

本発明のある態様は、トリアルキルシリル基と、該トリアルキルシリル基に隣接する両隣の位置に、−OSO基[RはC2m+1(mは整数)あるいはアルキルで置換されていてもよいアリール又はヘテロアリール基である]と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物であって、前記トリアルキルシリル基、−OSO基及び−X基が直接結合している環が炭素六員環である芳香族化合物である。
本発明の他の態様は、−H(水素)基と、該−H基に隣接する位置に、トリアルキルシリルオキシ基と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物を、リチウムアミド、又はマグネシウムアミドもしくは亜鉛アミドとリチウム塩とのアート錯体型の複塩と反応させる工程を含む、アライン生成中間体化合物(トリアルキルシリル基と、該トリアルキルシリル基に隣接する両隣の位置に、−OSO基[RはC2m+1(mは整数)あるいはアルキルで置換されていてもよいアリール又はヘテロアリール基である]と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物)を合成するための方法(合成方法;または製造するための方法(製造方法))である。
本発明のある別の態様は、上記トリアルキルシリル基、−OSO基及び−X基が直接結合している環が炭素六員環である、上記態様の方法である。
An embodiment of the present invention, a trialkylsilyl group, the position of both sides adjacent to the trialkylsilyl group, -OSO 2 R 1 group [R 1 is substituted with C m F 2m + 1 (m is an integer) or alkyl An aromatic or heteroaryl group] and an —X group [X is F, Cl or Br], wherein the trialkylsilyl group, —OSO 2 R 1 group And an aromatic compound in which the ring to which the -X group is directly bonded is a carbon six-membered ring.
Another embodiment of the present invention has a —H (hydrogen) group, a trialkylsilyloxy group at a position adjacent to the —H group, and a —X group [X is F, Cl, or Br]. A process for reacting an aromatic compound with lithium amide, or an art complex-type double salt of magnesium amide or zinc amide and a lithium salt. the positions of adjacent both sides, -OSO 2 R 1 group and [R 1 is C m F 2m + 1 (m is an integer) or may be substituted with an alkyl aryl or heteroaryl group], -X group [X Is F, Cl or Br]. (Method of synthesis; or method of production (manufacturing method)).
Another embodiment of the present invention is the method of the above embodiment, wherein the ring to which the trialkylsilyl group, —OSO 2 R 1 group and —X group are directly bonded is a carbon six-membered ring.

本発明の芳香族化合物は、フッ化物イオンと反応させることにより、温和な条件で容易にアライン(3−ハロアライン)を発生させることができる。本芳香族化合物から生成したアラインは、種々の求核剤と位置選択的に反応し、種々の置換芳香族化合物を与える。更には、ジエン類などを付加させた場合には、多環性芳香族化合物も得ることができる。
本発明の芳香族化合物は、その特徴的な置換基の配置(トリアルキルシリル基に隣接する両隣の位置に、−OSO基と、−X基とを有する配置)を利用して、一般的なアライン生成中間体化合物と異なり、少ない工程数で、より簡便に合成することができる。さらに、従来方法に比べ、用いる試薬数も少ないため、経済的であり得る。さらに、工程数や用いる試薬数が少ないため、生成物の処理や精製もより簡便となり得、総じて良好な収率を与える。これらのことにより、工業的に実現可能な水準で、多彩な置換基を有するアライン前駆体を供給し得る。
The aromatic compound of the present invention can easily generate alignment (3-halo alignment) under mild conditions by reacting with fluoride ions. Alignments produced from the present aromatic compounds react regioselectively with various nucleophiles to give various substituted aromatic compounds. Furthermore, when a diene or the like is added, a polycyclic aromatic compound can also be obtained.
Aromatic compound of the present invention, (the position of both sides adjacent to the trialkylsilyl group, a -OSO 2 R 1 group, arrangement with a -X group) arrangement of its characteristic substituents utilizing, Unlike general align-forming intermediate compounds, it can be synthesized more easily with fewer steps. Furthermore, since the number of reagents used is small compared to the conventional method, it can be economical. Furthermore, since the number of steps and the number of reagents used are small, the processing and purification of the product can be made simpler, giving an overall good yield. By these things, the aligning precursor which has various substituents can be supplied on the industrially realizable level.

特に、ハロゲン置換ヘテロ環アライン前駆体(非特許文献7)は、従来法でも合成することは可能ではあったが、ヘテロ環よりアニオンの発生しにくい炭素六員環を有するハロゲン置換アライン前駆体化合物(本発明の置換基配置を有するもの)については、従来法で合成することは容易ではなく、煩雑な反応が必要であった。
また、この芳香族化合物は、保存安定性も高く、例えば、−30℃〜室温下で一〜二年程度以上といった長期保存も可能となり得る。さらに、この芳香族化合物は、湿気のない条件での保存が好ましいが、通常の空気中でも保存し得る。
In particular, a halogen-substituted heterocycle alignment precursor (Non-patent Document 7), which could be synthesized by a conventional method, has a halogen-substituted lane precursor compound having a carbon six-membered ring that is less likely to generate anions than a heterocycle. About (the thing which has the substituent arrangement | positioning of this invention), it was not easy to synthesize | combine by the conventional method, and complicated reaction was required.
In addition, this aromatic compound has high storage stability, and can be stored for a long period of time, for example, from about -30 ° C. to room temperature for about one to two years or more. Furthermore, the aromatic compound is preferably stored under conditions free from moisture, but can be stored in normal air.

上記態様のアライン生成中間体化合物は、「−H(水素)基と、該−H基に隣接する位置に、トリアルキルシリルオキシ基と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物」(出発原料のシリルエーテル化合物)を、特定の強塩基で処理する工程を含む方法により、合成することができる。特定の強塩基としては、リチウムアミド、又はマグネシウムアミドもしくは亜鉛アミドとリチウム塩とのアート錯体型の複塩などが挙げられる。上記工程の反応により、「トリアルキルシリル基と、該トリアルキルシリル基に隣接する両隣の位置に、ヒドロキシル基と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物」(目的のフェノール化合物)を合成することができる。この化合物を、ハロアルキルスルホン酸エステル化試薬あるいは(アルキル置換)アリール又はヘテロアリールスルホン酸エステル化試薬(これに限定されるものではないが、C2m+1SOF(例えば、トリフルオロメタンスルホニルフルオリド、ヘプタフルオロプロピルスルホニルフルオリド、パーフルオロブタンスルホニルフルオリド)、TfO(トリフルオロメタンスルホン酸無水物)、TsCl(塩化p−トルエンスルホニル)、塩化ベンゼンスルホニル、N,N’−スルホニルジイミダゾール等)を用い、常法に従って対応するスルホン酸エステルへと変換することにより、目的のアライン生成中間体化合物を合成することができる。The align-generating intermediate compound of the above embodiment is “-H (hydrogen) group, trialkylsilyloxy group and —X group [X is F, Cl or Br] at a position adjacent to the —H group”. Can be synthesized by a method including a step of treating with a specific strong base. Specific strong bases include lithium amide, or an art complex type double salt of magnesium amide or zinc amide and a lithium salt. By the reaction in the above step, “an aromatic compound having a trialkylsilyl group, a hydroxyl group and a —X group [X is F, Cl, or Br] at positions adjacent to the trialkylsilyl group. (The desired phenolic compound) can be synthesized. This compound may be converted to a haloalkyl sulfonate esterifying reagent or (alkyl-substituted) aryl or heteroaryl sulfonate esterifying reagent (including but not limited to C m F 2m + 1 SO 2 F (eg, trifluoromethanesulfonyl fluoride) , Heptafluoropropylsulfonyl fluoride, perfluorobutanesulfonyl fluoride), Tf 2 O (trifluoromethanesulfonic anhydride), TsCl (p-toluenesulfonyl chloride), benzenesulfonyl chloride, N, N′-sulfonyldiimidazole, etc. ) And converting to the corresponding sulfonic acid ester according to a conventional method, the target aligning intermediate compound can be synthesized.

なお、出発原料である「−H(水素)基と、該−H基に隣接する位置に、トリアルキルシリルオキシ基と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物」(出発原料のシリルエーテル化合物)は、これに限定されるものではないが、対応する「−H(水素)基と、該−H基に隣接する位置に、ヒドロキシル基と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物」(出発原料のフェノール化合物)に、シリルエーテル化試薬(HMDS(ビス(トリメチルシリル)アミン(別称:1,1,1,3,3,3−ヘキサメチルジシラザン))、TMSCl(塩化トリメチルシラン)、TBDMSCl(塩化t−ブチルジメチルシラン)等)を反応させ、常法に従ってシリルエーテル化することによって、得ることができる。なお、出発原料の上記シリルエーテル化合物は、これに限定されるものではなく、芳香環に対して、置換基導入反応等を行うことにより、様々な経路で合成可能である。   In addition, the fragrance having “—H (hydrogen) group as a starting material, a trialkylsilyloxy group at a position adjacent to the —H group, and an —X group [X is F, Cl, or Br]. The “group compound” (starting silyl ether compound) is not limited thereto, but includes a corresponding “—H (hydrogen) group, a hydroxyl group at a position adjacent to the —H group, and —X The aromatic compound having the group [X is F, Cl or Br] (starting phenol compound) is added to a silyl etherification reagent (HMDS (bis (trimethylsilyl) amine (also known as 1,1,1,3)). , 3,3-hexamethyldisilazane)), TMSCl (trimethylsilane chloride), TBDMSCl (t-butyldimethylsilane chloride, etc.), and silyl etherification according to a conventional method It can be. The silyl ether compound as a starting material is not limited to this, and can be synthesized by various routes by performing a substituent introduction reaction on an aromatic ring.

上記態様のアライン生成中間体化合物の合成反応は、当業者であれば、反応させるシリルエーテル化合物等に応じて、適切な溶媒、温度等の諸条件を適宜設定できる。具体的な反応条件は、例えば、非特許文献5などの公知文献を参照にして設定することもできるが、一例として、これに限定されるものではないが、溶媒:非プロトン性溶媒(例えば、テトラヒドロフラン、1,2−ジメトキシエタン、ジエチルエーテルやこれらの混合溶媒など)、温度:−80℃〜0℃といった条件が挙げられる。さらに、湿気のない条件下、例えばAr雰囲気下等での反応がより好ましい。   A person skilled in the art can appropriately set various conditions such as an appropriate solvent and temperature for the synthesis reaction of the align-forming intermediate compound of the above embodiment according to the silyl ether compound to be reacted. Specific reaction conditions can be set with reference to known documents such as Non-Patent Document 5, for example. However, as an example, the reaction conditions are not limited thereto, but a solvent: an aprotic solvent (for example, Tetrahydrofuran, 1,2-dimethoxyethane, diethyl ether and a mixed solvent thereof), and temperature: -80 ° C to 0 ° C. Furthermore, the reaction is more preferable under moisture-free conditions, for example, in an Ar atmosphere.

上記態様の発明は、これに限定されるものではないが、以下のように図示することができる(芳香族化合物部分は、フェニルを用いて例示している)。

Figure 0006461914
The invention of the above embodiment is not limited to this, but can be illustrated as follows (the aromatic compound portion is exemplified using phenyl).
Figure 0006461914

本発明のアライン生成中間体化合物は図中(4)の化合物であり、本発明のアライン生成中間体化合物の合成方法は、出発原料であるシリルエーテル(2)からフェノール化合物(3)への反応を特徴とする方法である。なお、シリルエーテル(2)の合成方法の一例としては、出発原料のフェノール化合物(1)のような、対応するフェノール化合物のシリルエーテル化を挙げることができる。
シリルエーテル(2)からフェノール化合物(3)への反応においては、強塩基を用いて塩素原子のortho位(図中2位)をアニオンとし、転位反応による2位へのシリル基の導入と1位フェノール性水酸基の再生とを一挙に達成している。本反応において、ハロゲン原子の脱離に伴うアラインの生成を抑制するため、シリル基の導入をmeta位(図中1位)のシリルエーテル基からの転位反応により達成している。このように、本発明の合成法では、シリルエーテル基とハロゲン原子を活用して、ハロゲン−リチウム交換反応を用いず、位置選択的にアニオンを発生させ、シリル基を導入することに成功している。
The align-forming intermediate compound of the present invention is the compound of (4) in the figure, and the method of synthesizing the align-generating intermediate compound of the present invention is a reaction from the starting material silyl ether (2) to the phenol compound (3). It is the method characterized by this. An example of a method for synthesizing silyl ether (2) is silyl etherification of a corresponding phenol compound such as the starting phenol compound (1).
In the reaction from the silyl ether (2) to the phenol compound (3), a strong base is used to make the ortho position of the chlorine atom (the 2nd position in the figure) an anion, and the introduction of the silyl group to the 2nd position by the rearrangement reaction and the 1 Regeneration of the secondary phenolic hydroxyl group is achieved at once. In this reaction, the introduction of a silyl group is achieved by a rearrangement reaction from a silyl ether group at the meta position (position 1 in the figure) in order to suppress the formation of alignment due to the elimination of the halogen atom. Thus, in the synthesis method of the present invention, a silyl ether group and a halogen atom were utilized, and an anion was generated regioselectively without using a halogen-lithium exchange reaction, and a silyl group was successfully introduced. Yes.

また、本発明の更なる他の態様は、上記態様の芳香族化合物からなるアラインの合成中間体又は合成前駆体(アラインの生成のための合成中間体又は合成前駆体)である。
また、本発明の更なる他の態様は、上記態様の化合物にフッ化物イオンを反応させることを含む、アライン(3−ハロアライン)の生成方法である。
また、本発明の更なる他の態様は、上記態様の化合物にフッ化物イオンを反応させることで得られるアライン又は得られたアライン(3−ハロアライン)、あるいは上記態様の化合物にフッ化物イオンを反応させることで得られるアライン又は得られたアライン(3−ハロアライン)を含む反応混合物または産物である。
Still another embodiment of the present invention is an alignment synthetic intermediate or synthesis precursor (synthetic intermediate or synthesis precursor for producing alignment) comprising the aromatic compound of the above embodiment.
Yet another embodiment of the present invention is a method for producing an align (3-haloalign), which comprises reacting the compound of the above embodiment with a fluoride ion.
Still another embodiment of the present invention is the alignment obtained by reacting the compound of the above embodiment with fluoride ion or the obtained align (3-haloalign), or the compound of the above embodiment is reacted with fluoride ion. Or a reaction mixture or product containing the resulting alignment (3-haloalignment).

本発明のアライン生成中間体化合物は、フッ化物イオンと反応させることにより、温和な条件で容易にアライン(例えば、ベンザイン、ナフトライン、ピリダイン等)を生成することができる。生成されたアラインは、種々の求核剤と位置選択的に反応し、種々の置換芳香族化合物や多置換芳香族化合物を与える。アラインは、生物活性物質や機能性分子の合成など多方面で利用可能である。
本発明のアライン生成中間体化合物は、一般的なアライン生成中間体化合物と異なり、少ない工程数で、より簡便に合成することができるため、より効率的にアラインを生成させることができる。また、その合成の際に本発明の合成方法を用いることにより、より高い収率で合成することもできる。さらに、その保存安定性が高いことも、所望する時にアラインを生成させる際に利便性が高い。
The align-forming intermediate compound of the present invention can easily generate aligns (for example, benzyne, naphtholine, pyridyne, etc.) under mild conditions by reacting with fluoride ions. The produced alignment reacts regioselectively with various nucleophiles to give various substituted aromatic compounds and polysubstituted aromatic compounds. Align can be used in many ways, including the synthesis of biologically active substances and functional molecules.
Unlike the general alignment generating intermediate compound, the alignment generating intermediate compound of the present invention can be synthesized more easily with a smaller number of steps, and therefore alignment can be generated more efficiently. Moreover, it can also synthesize | combine by a higher yield by using the synthesis method of this invention in the case of the synthesis | combination. Furthermore, its high storage stability is also convenient when generating an alignment when desired.

本発明のアライン生成中間体化合物を用いたアラインの発生については、例えば、非特許文献1又は5、あるいは特許文献1に記載の方法など、公知の方法に従い、フッ化物イオンと反応させることにより、温和な条件で容易にアラインを生成することができる。
フッ化物イオンの供給源としては、TBAF(テトラ−n−ブチルアンモニウム フルオリド)、TBAHF、CsF、KF、TBAT(テトラ−n−ブチルアンモニウム ジフルオロトリフェニルシリカート)、TBAH、HF・ピリジン、HF・トリエチルアミンを例示することができるが、好ましくは、TBAF、TBAHF、CsF、KF、TBAT、TBAH、より好ましくは、TBAF、TBAHF、CsFを用いることができる。
For the occurrence of alignment using the alignment-generating intermediate compound of the present invention, for example, by reacting with fluoride ions according to a known method such as the method described in Non-Patent Document 1 or 5, or Patent Document 1, Alignment can be easily generated under mild conditions.
As a source of fluoride ions, TBAF (tetra -n- butylammonium fluoride), TBAHF 2, CsF, KF , TBAT ( tetra -n- butylammonium difluorophenyl triphenyl silicate), TBAH 2 F 3, HF · pyridine HF and triethylamine can be exemplified, and preferably TBAF, TBAHF 2 , CsF, KF, TBAT, TBAH 2 F 3 , more preferably TBAF, TBAHF 2 , and CsF can be used.

フッ化物イオンを用いたアラインの生成反応自体は当業者には公知の反応であり、当業者であれば、常法(例えば、非特許文献1又は5、あるいは特許文献1)に従い反応条件を適宜設定することができる。具体的には、反応条件はフッ化物イオンが作用する条件であれば特に限定されるものではなく、そのような条件の一例として、これに限定されるものではないが、溶媒:極性非プロトン性溶媒(例えば、アセトニトリル、テトラヒドロフラン、1,2−ジメトキシエタン、N,N−ジメチルホルムアミド(試薬兼溶媒)やこれらの混合溶媒など;アルコール溶媒は好ましくない)、温度:0〜100℃、より好ましくは20〜80℃(−80℃などの超低温は好ましくない)といった条件が挙げられる。さらに、湿気のない条件下、例えばAr雰囲気下等での反応がより好ましい。
本発明により生成されたアラインについては、そのまま反応系中で、種々の球核剤と反応させ、所望の化学構造を有する目的化合物を得ることができる。本発明によるアラインの生成は、比較的温和な条件で行われるため、当該化合物に存在するその他の置換基は影響を受けにくく、合成工程の最終工程付近で本発明を用いることも可能である。
The alignment reaction itself using fluoride ions is a reaction well known to those skilled in the art, and those skilled in the art can appropriately change the reaction conditions according to conventional methods (for example, Non-Patent Document 1 or 5, or Patent Document 1). Can be set. Specifically, the reaction conditions are not particularly limited as long as fluoride ions act, and examples of such conditions include, but are not limited to, solvent: polar aprotic Solvent (for example, acetonitrile, tetrahydrofuran, 1,2-dimethoxyethane, N, N-dimethylformamide (reagent and solvent) or a mixed solvent thereof; alcohol solvent is not preferred), temperature: 0 to 100 ° C., more preferably Conditions such as 20 to 80 ° C. (super low temperature such as −80 ° C. is not preferable) can be mentioned. Furthermore, the reaction is more preferable under moisture-free conditions, for example, in an Ar atmosphere.
About the alignment produced | generated by this invention, it can be made to react with various sphere nucleating agents in a reaction system as it is, and the target compound which has a desired chemical structure can be obtained. Since the generation of align according to the present invention is performed under relatively mild conditions, other substituents present in the compound are not easily affected, and the present invention can be used in the vicinity of the final step of the synthesis step.

上記態様の発明(アラインの発生及びその後の反応)は、これに限定されるものではないが、以下のように図示することができる(芳香族化合物部分は、フェニルを用いて例示しており、代表的な最終生成物X、Y、Zを例示している)。

Figure 0006461914
The invention of the above embodiment (generation of alignment and subsequent reaction) is not limited to this, but can be illustrated as follows (the aromatic compound portion is exemplified using phenyl, Illustrative representative end products X, Y, Z).
Figure 0006461914

本発明の好ましいある態様は、芳香族化合物が、置換されていてもよいアリール又はヘテロアリールに、前記トリアルキルシリル基、−OSO基及び−X基が結合した芳香族化合物である、上記何れかの態様の芳香族化合物(合成中間体)又は方法である。本発明のアライン前駆体合成方法は、トリアルキルシリル基、−OSO基及び−X基の配置と性質を利用するため、本発明で規定される置換基さえ適切な配置で有していれば、他の部分の構造・骨格(例えば、単環、縮合環等)によらず、実施することができる。In a preferred aspect of the present invention, the aromatic compound is an aromatic compound in which the trialkylsilyl group, —OSO 2 R 1 group, and —X group are bonded to optionally substituted aryl or heteroaryl. An aromatic compound (synthetic intermediate) or method according to any one of the above aspects. Since the alignment precursor synthesis method of the present invention utilizes the arrangement and nature of the trialkylsilyl group, —OSO 2 R 1 group, and —X group, even the substituents defined in the present invention have an appropriate arrangement. If it is, it can implement irrespective of the structure and frame | skeleton (For example, a monocyclic ring, a condensed ring, etc.) of another part.

本発明の好ましいある別の態様は、芳香族化合物が、置換されていてもよいベンゼン、ピリジン、ピリミジン、ナフタレン、インドール、ベンズイミダゾール、キノリン、イソキノリン、ベンゾフランまたはベンゾチオフェンあるいは置換されていてもよいベンゼン、ピリジン、ピリミジン、ナフタレン、インドール、キノリン、イソキノリン、ベンゾフランまたはベンゾチオフェンに、前記トリアルキルシリル基、−OSO基及び−X基が結合した芳香族化合物である、上記何れかの態様の芳香族化合物(合成中間体)又は方法である。芳香族部分は、さらに好ましくはベンゼン、ピリジン、ナフタレ、キノリン、ピリミジン、イソキノリンであり、さらにより好ましくはベンゼン、ピリジン、ナフタレンである。これらの部分を有する化合物では、より確実に本発明の効果を奏することができる。In another preferred embodiment of the present invention, the aromatic compound is an optionally substituted benzene, pyridine, pyrimidine, naphthalene, indole, benzimidazole, quinoline, isoquinoline, benzofuran or benzothiophene or an optionally substituted benzene. , Pyridine, pyrimidine, naphthalene, indole, quinoline, isoquinoline, benzofuran or benzothiophene, which is an aromatic compound in which the trialkylsilyl group, —OSO 2 R 1 group and —X group are bonded. An aromatic compound (synthetic intermediate) or method. The aromatic moiety is more preferably benzene, pyridine, naphthale, quinoline, pyrimidine, isoquinoline, and even more preferably benzene, pyridine, naphthalene. In the compound having these portions, the effects of the present invention can be more reliably exhibited.

また、産業上の有用性、反応のより確実な進行あるいはアラインの反応選択性の観点に加え、従来の合成法による合成の困難性の観点(本発明により特に有利に合成することができる点)からは、芳香族部分は、ベンゼン環を含むことが好ましく、ベンゼン、ナフタレン、インドール、ベンズイミダゾール、キノリン、イソキノリン、ベンゾフランまたはベンゾチオフェンあるいはベンゼン、ナフタレン、インドール、キノリン、イソキノリン、ベンゾフランまたはベンゾチオフェンであることがさらに好ましく、ベンゼン、ナフタレン、インドール、ベンゾフラン、ベンゾチオフェンがさらにより好ましく、ベンゼン、ナフタレンがさらにより好ましい。   In addition to industrial usefulness, more reliable progress of reaction or reaction selectivity of aligning, viewpoint of difficulty in synthesis by conventional synthesis methods (point that can be synthesized particularly advantageously by the present invention) The aromatic moiety preferably comprises a benzene ring and is benzene, naphthalene, indole, benzimidazole, quinoline, isoquinoline, benzofuran or benzothiophene or benzene, naphthalene, indole, quinoline, isoquinoline, benzofuran or benzothiophene. More preferably, benzene, naphthalene, indole, benzofuran, and benzothiophene are even more preferable, and benzene and naphthalene are even more preferable.

上記何れかの態様の芳香族化合物(合成中間体)又は方法において、トリアルキルシリル基、−OSO基及び−X基が直接結合する環は、六員環であることが好ましく、炭素六員環であることがさらに好ましい。本発明によれば、特に、炭素六員環アライン前駆体については、ヘテロ六員環アライン前駆体と比べ、従来法よりもさらに容易に合成することができる。In the aromatic compound (synthetic intermediate) or method of any of the above embodiments, the ring to which the trialkylsilyl group, —OSO 2 R 1 group and —X group are directly bonded is preferably a six-membered ring, More preferably, it is a six-membered ring. According to the present invention, in particular, a carbon 6-membered ring alignment precursor can be synthesized more easily than a conventional method compared to a hetero 6-membered ring alignment precursor.

また、上記芳香族化合物の芳香族部分(母環)は、目的化合物の構造に応じた任意の置換基によって置換されていてもよい。本発明のアライン生成中間体化合物の合成方法及び当該アライン生成中間体化合物からのアラインの生成方法は、温和な条件で進行する特異性の高い反応であるため、置換基についての制限は少なく、特に、脱プロトン化されにくく、転位しにくい官能基であれば有利に反応を進めることができる。   Moreover, the aromatic part (parent ring) of the aromatic compound may be substituted with any substituent according to the structure of the target compound. Since the method for synthesizing an align-generating intermediate compound of the present invention and the method for generating an align from the align-generating intermediate compound are highly specific reactions that proceed under mild conditions, there are few restrictions on substituents. If the functional group is difficult to be deprotonated and hardly rearranged, the reaction can be advantageously advanced.

このような一又は複数の置換基Rの具体例としては、これに限定されるものではないが、ハロゲン、ニトロ、シアノ、三級アミノ(二置換アミノ)、アルキル、ハロアルキル、アルケン、ハロアルケン、アルキン、ハロアルキン、アルコキシ、エステル(例えば、Rがここに定義されるRC(O)O−又はROC(O)−など)、スルホン酸エステル(例えば、Rがここに定義されるROS(=O)O−など)、アリール、アリールオキシ、アリールアルキル、アリールアルコキシ、複素環基等が挙げられる。また、これらの置換基Rは、さらに一又は複数の置換基Rによって置換されていてもよい。上記置換基Rは、好ましくは、ハロゲン、アルキル、ハロアルキル、アルコキシ、アルケン、アルキン、アリール、アリールオキシであり、より好ましくはハロゲン、アルキル、ハロアルキル、アルコキシである。二以上の置換基Rは、一緒になって、環構造を形成していてもよい。
なお、本発明のアライン生成中間体化合物の芳香族部分に対する置換基としては、1〜3、1又は2、あるいは1の何れの数の置換基が好適に用いられる。
Specific examples of such one or more substituents R include, but are not limited to, halogen, nitro, cyano, tertiary amino (disubstituted amino), alkyl, haloalkyl, alkene, haloalkene, alkyne. , Haloalkyne, alkoxy, ester (eg, RC (O) O— or ROC (O) —, where R is defined herein), sulfonate ester (eg, ROS (═O) 2, where R is defined herein) O- and the like), aryl, aryloxy, arylalkyl, arylalkoxy, heterocyclic group and the like. Further, these substituents R may be further substituted with one or more substituents R. The substituent R is preferably halogen, alkyl, haloalkyl, alkoxy, alkene, alkyne, aryl, aryloxy, more preferably halogen, alkyl, haloalkyl, alkoxy. Two or more substituents R may be taken together to form a ring structure.
In addition, as a substituent with respect to the aromatic part of the align production | generation intermediate compound of this invention, any number of 1-3, 1 or 2, or 1 substituent is used suitably.

本発明のある態様は、Xがクロロ又はフルオロである、上記何れかの態様の芳香族化合物(合成中間体)又は方法である。Xがクロロ又はフルオロであることにより、本発明のアライン生成中間体化合物をより高い収率で合成することができる。収率やアラインの反応選択性の観点からはXがフルオロであることが有利であり、アラインを利用した反応生成物において、Xをアルキル、アリール、アルコキシ、ホルミル、アルキルカルボニルなど他の置換基へ変換することが容易であるという観点からは、Xがクロロであることが有利である。   One embodiment of the present invention is the aromatic compound (synthetic intermediate) or method of any of the above embodiments, wherein X is chloro or fluoro. When X is chloro or fluoro, the aligning intermediate compound of the present invention can be synthesized in a higher yield. From the viewpoint of yield and reaction selectivity of alignment, it is advantageous that X is fluoro. In the reaction product using alignment, X is converted to other substituents such as alkyl, aryl, alkoxy, formyl, alkylcarbonyl and the like. From the standpoint of ease of conversion, it is advantageous that X is chloro.

本発明のある態様は、RがC2m+1(mは整数)である、上記何れかの態様の芳香族化合物(合成中間体)又は方法である。これに限定されるものではないが、m=1〜4のものが好適に用いられ、特に、mが1又は4である−OSO基、すなわちトリフルオロメタン/パーフルオロブタンスルホン酸基は、有機合成化学の分野において汎用されており、より容易に本発明を実施することができる。mが1であるトリフルオロメタンスルホン酸基が最も好ましい。One embodiment of the present invention is the aromatic compound (synthetic intermediate) or method according to any one of the above embodiments, wherein R 1 is C m F 2m + 1 (m is an integer). Although not limited thereto, those having m = 1 to 4 are preferably used, and in particular, the —OSO 2 R 1 group in which m is 1 or 4, that is, the trifluoromethane / perfluorobutanesulfonic acid group is It is widely used in the field of organic synthetic chemistry, and the present invention can be carried out more easily. Most preferred is a trifluoromethanesulfonic acid group in which m is 1.

本発明のある態様は、Rがアルキルで置換されていてもよいアリールである、上記何れかの態様の芳香族化合物(合成中間体)又は方法である。アリールがベンゼン、またはヘテロアリールがイミダゾールである、上記何れかの態様の芳香族化合物(合成中間体)又は方法である。特に、Rがトルエニルである−OSO基、すなわちトルエンスルホン酸基は、有機合成化学の分野において汎用されており、より容易に本発明を実施することができる。One embodiment of the present invention is the aromatic compound (synthetic intermediate) or method of any of the above embodiments, wherein R 1 is aryl optionally substituted with alkyl. The aromatic compound (synthetic intermediate) or method according to any one of the above embodiments, wherein aryl is benzene or heteroaryl is imidazole. In particular, the -OSO 2 R 1 group in which R 1 is toluenyl, that is, a toluenesulfonic acid group, is widely used in the field of organic synthetic chemistry, and the present invention can be more easily carried out.

本発明のある態様は、上記アルキルシリル基が、トリ低級アルキルシリル基、特にトリメチルシリル基、トリエチルシリル基又はtert−ブチルジメチルシリル基である、上記何れかの態様の芳香族化合物(合成中間体)又は方法である。これらの態様では、より確実に効率よく反応を行うことができるが、反応の効率の観点からは、トリメチルシリル基又はトリエチルシリル基が好ましく、トリメチルシリル基が更に好ましい。   In one embodiment of the present invention, the aromatic compound (synthesis intermediate) according to any one of the above embodiments, wherein the alkylsilyl group is a tri-lower alkylsilyl group, particularly a trimethylsilyl group, a triethylsilyl group, or a tert-butyldimethylsilyl group. Or a method. In these embodiments, the reaction can be carried out more reliably and efficiently, but from the viewpoint of reaction efficiency, a trimethylsilyl group or a triethylsilyl group is preferable, and a trimethylsilyl group is more preferable.

本発明のある態様は、リチウムアミド、又はマグネシウムアミドもしくは亜鉛アミドとリチウム塩とのアート錯体型の複塩が、マグネシウムビステトラメチルピペリジド・2リチウム塩(Mg(TMP)・2LiX)、リチウムアルキルアミド、ジンクビステトラメチルピペリジド・2リチウム塩(Zn(TMP)・2LiX)、クロロ又はブロモマグネシウムテトラメチルピペリジド・リチウム塩((TMP)MgX・LiX)、あるいはクロロ又はブロモジンクテトラメチルピペリジド・リチウム塩((TMP)ZnX・LiX)である、上記何れかの態様の方法である(XはCl又はBrである)。これらの強塩基は、有機合成の分野で一般的に用いられており、より安価で確実に本発明の反応を行うことができる。これらの中では、収率の観点からは、Mg(TMP)・2LiClが好ましく、調製の容易さなどの観点からは、リチウムアルキルアミドが好ましい。リチウムアルキルアミドの例には、これに限定されるものではないが、リチウムジイソプロピルアミド(LiN(i−Pr);LDA)やリチウムテトラメチルピペリジド(Li(TMP))が含まれる。In one embodiment of the present invention, lithium amide or an art complex-type double salt of magnesium amide or zinc amide and a lithium salt is magnesium bistetramethylpiperidide.2 lithium salt (Mg (TMP) 2 .2LiX), Lithium alkylamide, zinc bistetramethylpiperidide dilithium salt (Zn (TMP) 2 · 2LiX), chloro or bromomagnesium tetramethylpiperidide lithium salt ((TMP) MgX · LiX), or chloro or bromo Zinc tetramethylpiperidide lithium salt ((TMP) ZnX.LiX) is the method according to any of the above embodiments (X is Cl or Br). These strong bases are generally used in the field of organic synthesis, and the reaction of the present invention can be reliably carried out at a lower cost. Among these, Mg (TMP) 2 · 2LiCl is preferable from the viewpoint of yield, and lithium alkylamide is preferable from the viewpoint of ease of preparation. Examples of lithium alkylamides include, but are not limited to, lithium diisopropylamide (LiN (i-Pr) 2 ; LDA) and lithium tetramethylpiperidide (Li (TMP)).

本発明の芳香族化合物(アライン生成中間体化合物)から生成したアラインは、種々の求核剤と位置選択的(例えば、芳香族上の置換基Xに対するmeta位)に反応し、多置換芳香族化合物を与える。アラインと求核剤とを用いた反応としては多数の反応が公知であり、目的とする化合物の構造に応じて所望の求核剤及び反応を用いることができる。反応の例としては、ジエン類(例えば、シクロペンタジエン、シクロヘキサジエン、アントラセン等)を用いたDiels−Alder型の付加反応により、多環性芳香環を合成できるほか、公知の方法により様々な多環性複素環(例えば、イソキノリン、キサンテン、クマリン、インドリン、クロメン、ジヒドロベンゾフラン、ベンゾフランの誘導体)を合成することが挙げられる。   The alignment produced from the aromatic compound of the present invention (alignment intermediate compound) reacts with various nucleophiles in a regioselective manner (for example, the meta position relative to the substituent X on the aromatic) to produce a polysubstituted aromatic Give compound. Many reactions are known as reactions using align and nucleophile, and a desired nucleophile and reaction can be used depending on the structure of the target compound. Examples of the reaction include synthesis of polycyclic aromatic rings by Diels-Alder type addition reaction using dienes (for example, cyclopentadiene, cyclohexadiene, anthracene, etc.), and various polycyclic rings by known methods. Synthetic heterocycles (for example, derivatives of isoquinoline, xanthene, coumarin, indoline, chromene, dihydrobenzofuran, benzofuran).

また、芳香環上にF、Cl又はBrを有する化合物(例えば、エファピレンツ、シタフロキサンなどの医薬品、又はバーバマート、シハロホップブチル、ハロキシホップなどの農薬、又はそれらの誘導体)は、本発明のアライン生成中間体化合物の構造を利用して合成することもできる。
また、実際の合成例は後述するが、ベンゾジアゼピン系化合物の合成中間体(テトラヒドロベンゾジアゼピン系化合物)を簡便に合成することもでき、種々のベンゾジアゼピン系医薬品および誘導体の合成に利用することができる。

Figure 0006461914
In addition, compounds having F, Cl or Br on the aromatic ring (for example, pharmaceuticals such as efapirenz and sitafuroxane, or agricultural chemicals such as barbamate, cyhalohop butyl and haloxy hop, or derivatives thereof) are produced by the alignment of the present invention. It can also be synthesized utilizing the structure of the intermediate compound.
Moreover, although the actual synthesis example is mentioned later, the synthetic intermediate (tetrahydrobenzodiazepine compound) of a benzodiazepine compound can also be simply synthesize | combined, and it can utilize for the synthesis | combination of various benzodiazepine pharmaceuticals and derivatives.
Figure 0006461914

さらに、本発明のアライン生成中間体化合物の反応選択性を利用して、アライン経由の置換基導入を行った後に、公知の各種カップリング反応により、芳香環上の置換基Xを、炭素原子、窒素原子、酸素原子等に変換することにより、従来にない戦略で所望の構造の化合物を合成することもできる。   Furthermore, after introducing substituents via align using the reaction selectivity of the align-forming intermediate compound of the present invention, the substituent X on the aromatic ring is converted to a carbon atom, by various known coupling reactions. By converting to a nitrogen atom, an oxygen atom, etc., a compound having a desired structure can be synthesized by an unprecedented strategy.

なお、上記態様により説明される合成中間体化合物並びに各合成方法等は、本発明を限定するものではなく、例示することを意図して開示されているものである。本発明の技術的範囲は、特許請求の範囲の記載により定められるものであり、当業者は、特許請求の範囲に記載された発明の技術的範囲において種々の設計的変更が可能である。   It should be noted that the synthetic intermediate compounds and the respective synthesis methods described by the above embodiments are not intended to limit the present invention, but are disclosed for the purpose of illustration. The technical scope of the present invention is defined by the description of the claims, and those skilled in the art can make various design changes within the technical scope of the invention described in the claims.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれらに限定して解釈されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention should not be construed as being limited thereto.

〔アライン前駆体の合成〕
TMSエーテル(シリルエーテル)調製の手順
出発原料のフェノール化合物(20.0mmol)の、新たに蒸留したTHF(20mL)溶液に、1,1,1,3,3,3−ヘキサメチルジシラザン(HMDS、6.26mL、30.0mmol)を、室温、Ar雰囲気下で添加した。3〜12時間、50℃で攪拌した後、反応混合液を減圧下で濃縮した。残渣を精製せずに、次の反応に用いた。
[Synthesis of Aligned Precursor]
Procedure for preparing TMS ether (silyl ether) To a freshly distilled THF (20 mL) solution of the starting phenol compound (20.0 mmol), 1,1,1,3,3,3-hexamethyldisilazane (HMDS) was added. 6.26 mL, 30.0 mmol) was added at room temperature under Ar atmosphere. After stirring at 50 ° C. for 3-12 hours, the reaction mixture was concentrated under reduced pressure. The residue was used in the next reaction without purification.

試薬MgTMP・2LiCl調製の手順
金属マグネシウム(削り屑状、535mg、22.0mmol)の、新たに蒸留したTHF(55mL)懸濁液に、1,2−ジクロロエタン(1.72mL、22.0mmol)を、室温、Ar雰囲気下で添加し、室温で1時間攪拌し、MgCl溶液を調製した。別の二口フラスコで、2,2,6,6−テトラメチルピペリジン(TMPH、7.43mL, 44.0mmol)を、25℃でAr雰囲気下、新たに蒸留したTHF(22mL)に溶解させた。この溶液を−80℃に冷却し、n−BuLi(1.6Mヘキサン溶液、27.5 mL、44.0mmol)を滴下した。添加が完了した後、反応混合液を0℃に温め、その温度で30分間攪拌した。その後、上記MgCl溶液をLiTMP溶液に滴下して加え、反応混合液を0℃で1時間攪拌し、MgTMP・2LiCl溶液を調製した。
Reagents MgTMP procedures magnesium metal 2 · 2LiCl preparation (turnings, 535 mg, 22.0 mmol) of the freshly distilled THF (55 mL) suspension of 1,2-dichloroethane (1.72 mL, 22.0 mmol) Was added at room temperature under an Ar atmosphere and stirred at room temperature for 1 hour to prepare a MgCl 2 solution. In another two-necked flask, 2,2,6,6-tetramethylpiperidine (TMPH, 7.43 mL, 44.0 mmol) was dissolved in freshly distilled THF (22 mL) at 25 ° C. under an Ar atmosphere. . The solution was cooled to −80 ° C., and n-BuLi (1.6 M hexane solution, 27.5 mL, 44.0 mmol) was added dropwise. After the addition was complete, the reaction mixture was warmed to 0 ° C. and stirred at that temperature for 30 minutes. Then added dropwise the MgCl 2 solution LiTMP solution, the reaction mixture was stirred for 1 hour at 0 ° C., was prepared MgTMP 2 · 2LiCl solution.

2−TMS−1−ヒドロキシアレン類(ortho位TMS化フェノール化合物)の調製法(1)
TMSエーテル(20.0mmol)の、新たに蒸留したTHF(20mL)溶液に、MgTMP・2LiCl(THF溶液、22.0mmol又は、24.0mmol)を−80℃、Ar雰囲気下で添加した。1時間、同じ温度で攪拌した後、反応混合液を0℃まで上昇させ、同じ温度で12時間攪拌した。反応混合液は、冷0.5M(+)−酒石酸ナトリウム溶液で希釈し、その後、ヘキサンあるいは酢酸エチルを用いて抽出した。有機相をNaSOで乾燥させ、減圧下で濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィー(AcOEt:ヘキサン=0:1〜1:1)により精製し、2−TMS−1−ヒドロキシアレン類を得た。
Preparation of 2-TMS-1-hydroxyallenes (ortho-positioned TMS-phenol compounds) (1)
MgTMP 2 · 2LiCl (THF solution, 22.0 mmol or 24.0 mmol) was added to a freshly distilled THF (20 mL) solution of TMS ether (20.0 mmol) at −80 ° C. in an Ar atmosphere. After stirring at the same temperature for 1 hour, the reaction mixture was raised to 0 ° C. and stirred at the same temperature for 12 hours. The reaction mixture was diluted with cold 0.5M (+)-sodium tartrate solution and then extracted with hexane or ethyl acetate. The organic phase was dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (AcOEt: hexane = 0: 1 to 1: 1) to give 2-TMS-1-hydroxyallenes.

2−TMS−1−ヒドロキシアレン類(ortho位TMS化フェノール化合物)の調製法(2)
N,N−ジイソプロピルアミン(3.4mL、24.0mmol)の、新たに蒸留したTHF(12mL)溶液に、n−BuLi(1.6Mヘキサン溶液、15.0mL、24.0mmol)を−80℃、Ar雰囲気下で滴下した。添加が完了した後、反応混合液を0℃に温め、その温度で30分間攪拌し、LiN(i−Pr)溶液を調製した。別の二口フラスコで、TMSエーテル(20.0mmol)の、新たに蒸留したTHF(20mL)溶液に、上記LiN(i−Pr)溶液を−80℃、Ar雰囲気下で添加した。1時間、同じ温度で攪拌した後、反応混合液を0℃まで上昇させ、同じ温度で12時間攪拌した。反応混合液は、冷飽和食塩水で希釈し、その後、酢酸エチルを用いて抽出した。有機相をNaSOで乾燥させ、減圧下で濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィー(AcOEt:ヘキサン=0:1〜1:1)により精製し、2−TMS−1−ヒドロキシアレン類を得た。
Preparation of 2-TMS-1-hydroxyallenes (ortho-positioned TMS-phenol compounds) (2)
To a freshly distilled THF (12 mL) solution of N, N-diisopropylamine (3.4 mL, 24.0 mmol) was added n-BuLi (1.6 M hexane solution, 15.0 mL, 24.0 mmol) at −80 ° C. And dropped in an Ar atmosphere. After the addition was complete, the reaction mixture was warmed to 0 ° C. and stirred at that temperature for 30 minutes to prepare a LiN (i-Pr) 2 solution. In a separate two-necked flask, the above LiN (i-Pr) 2 solution was added to a freshly distilled THF (20 mL) solution of TMS ether (20.0 mmol) at −80 ° C. in an Ar atmosphere. After stirring at the same temperature for 1 hour, the reaction mixture was raised to 0 ° C. and stirred at the same temperature for 12 hours. The reaction mixture was diluted with cold saturated brine and then extracted with ethyl acetate. The organic phase was dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (AcOEt: hexane = 0: 1 to 1: 1) to give 2-TMS-1-hydroxyallenes.

スルホン酸エステルの調製法(1)
2−TMS−1−ヒドロキシアレン類(6.0mmol)の無水ジクロロメタン(15mL)溶液に、N,N−ジイソプロピルエチルアミン(1.20mL、6.9mmol)を室温、Ar雰囲気下で添加した。この溶液を−40℃まで冷却し、トリフルオロメタンスルホン酸無水物あるいは塩化p−トルエンスルホニル(6.6mmol)を添加した。3〜12時間、同一の温度で攪拌した後、反応混合液を氷水で希釈し、その後、ジクロロメタンを用いて抽出した。有機相をNaSOで乾燥させ、減圧下で濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィー(AcOEt:ヘキサン=0:1〜1:6)により精製し、スルホン酸エステルを得た。
Preparation of sulfonate ester (1)
To a solution of 2-TMS-1-hydroxyallenes (6.0 mmol) in anhydrous dichloromethane (15 mL), N, N-diisopropylethylamine (1.20 mL, 6.9 mmol) was added at room temperature under Ar atmosphere. The solution was cooled to −40 ° C. and trifluoromethanesulfonic anhydride or p-toluenesulfonyl chloride (6.6 mmol) was added. After stirring at the same temperature for 3-12 hours, the reaction mixture was diluted with ice water and then extracted with dichloromethane. The organic phase was dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (AcOEt: hexane = 0: 1 to 1: 6) to obtain a sulfonic acid ester.

スルホン酸エステルの調製法(2)
2−TMS−1−ヒドロキシアレン類(6.0mmol)の無水ピリジン(15mL)溶液に、トリフルオロメタンスルホン酸無水物あるいは塩化p−トルエンスルホニル(6.6mmol)を−20℃、Ar雰囲気下で添加した。添加が完了した後、反応混合液を0℃に温め、3〜12時間、同一の温度で攪拌した。反応混合液を冷飽和食塩水で希釈し、その後、酢酸エチルを用いて抽出した。有機相をNaSOで乾燥させ、減圧下で濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィー(AcOEt:ヘキサン=0:1〜1:2)により精製し、スルホン酸エステルを得た。
Preparation of sulfonate ester (2)
To a solution of 2-TMS-1-hydroxyallenes (6.0 mmol) in anhydrous pyridine (15 mL), trifluoromethanesulfonic anhydride or p-toluenesulfonyl chloride (6.6 mmol) was added at −20 ° C. in an Ar atmosphere. did. After the addition was complete, the reaction mixture was warmed to 0 ° C. and stirred at the same temperature for 3-12 hours. The reaction mixture was diluted with cold saturated brine and then extracted with ethyl acetate. The organic phase was dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (AcOEt: hexane = 0: 1 to 1: 2) to obtain a sulfonic acid ester.

〔実験例〕
上記手順またはこれと同様の手順に従い、以下のアライン前駆体を合成した。特記のない原料等については、市販のものを用いた。
[Experimental example]
The following align precursors were synthesized according to the above procedure or similar procedures. About the raw material etc. which have no special mention, the commercially available thing was used.

〔3-クロロ-アライン前駆体の合成〕
(シリルエーテルの合成)
1-クロロ-3-(トリメチルシリルオキシ)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 7.15 (1H, br t, J = 8.0 Hz), 6.95 (1H, ddd, J = 8.0, 2.1, 1.0 Hz), 6.85 (1H, br t, J = 2.1 Hz), 6.72 (1H, ddd, J = 8.2, 2.1, 1.0 Hz), 0.27 (9H, s).
(フェノール化合物の合成)
3-クロロ-2-(トリメチルシリル)フェノール
無色オイル。 1H-NMR (CDCl3) δ : 7.11 (1H, br t, J = 8.0 Hz), 6.91 (1H, d, J = 7.8 Hz), 6.60 (1H, d, J = 8.2 Hz), 5.20 (1H, br s), 0.45 (9H, s).
(アライン前駆体の合成1)
3-クロロ-2-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2959, 1586, 1422, 1361 cm-1. 1H-NMR (CDCl3) δ : 7.37 (1H, dd, J = 7.9, 1.5 Hz), 7.34 (1H, dd, J = 7.9 Hz), 7.26 (1H, dd, J = 7.9, 1.5 Hz), 0.49 (9H, s). 13C-NMR δC : 154.5, 142.4, 131.9, 131.2, 129.8, 118.9, 118.6, 1.3. 19F-NMR δF : -73.1 (3F, s). HRMS (ESI-) calcd for C7H3 35ClF3O3S (M-TMS-): 258.9449, Found: 258.9400; calcd for C7H3 37ClF3O3S (M+2-TMS-): 260.9420, Found: 260.9403.
(アライン前駆体の合成2)
3-クロロ-2-(トリメチルシリル)フェニル p-トルエンスルホナート
無色結晶。 Mp 70-72℃(ジクロロメタン-ヘキサン). IR (KBr) 2956, 2900, 1597, 1581, 1556, 1423, 1374 cm-1. 1H-NMR (CDCl3) δ : 7.70 (2H, br d, J = 8.2 Hz), 7.32 (2H, br d, J = 8.2 Hz), 7.23 (1H, dd, J = 7.8, 1.0 Hz), 7.14 (1H, br t, J = 8.0 Hz), 6.87 (1H, dd, J = 8.2, 1.0 Hz), 2.45 (3H, s), 0.37 (9H, s). 13C-NMR δC : 154.8, 145.5, 141.9, 132.9, 132.4, 130.5, 129.8, 128.6, 128.5, 119.7, 21.7, 1.4. HRMS (ESI+) calcd for C16H19 35ClO3SSiNa (M+Na+): 377.0405, Found: 377.0351; calcd for C16H19 37ClO3SSiNa (M+2+Na+): 379.0097, Found: 379.0325.
(Synthesis of 3-chloro-aligned precursor)
(Synthesis of silyl ether)
1-Chloro-3- (trimethylsilyloxy) benzene Colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.15 (1H, br t, J = 8.0 Hz), 6.95 (1H, ddd, J = 8.0, 2.1, 1.0 Hz), 6.85 (1H, br t, J = 2.1 Hz ), 6.72 (1H, ddd, J = 8.2, 2.1, 1.0 Hz), 0.27 (9H, s).
(Synthesis of phenolic compounds)
3-Chloro-2- (trimethylsilyl) phenol Colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.11 (1H, br t, J = 8.0 Hz), 6.91 (1H, d, J = 7.8 Hz), 6.60 (1H, d, J = 8.2 Hz), 5.20 (1H , br s), 0.45 (9H, s).
(Synthesis of Aligned Precursor 1)
3-Chloro-2- (trimethylsilyl) phenyl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2959, 1586 , 1422, 1361 cm -1 1 H-NMR (CDCl 3) δ: 7.37 (1H, dd, J = 7.9, 1.5 Hz), 7.34 (1H, dd, J = 7.9 Hz) , 7.26 (1H, dd, J = 7.9, 1.5 Hz), 0.49 (9H, s) 13 C-NMR δ C:.. 154.5, 142.4, 131.9, 131.2, 129.8, 118.9, 118.6, 1.3 19 F-NMR δ F: -73.1 (3F, s) HRMS (ESI -) calcd for C 7 H 3 35 ClF 3 O 3 S (M-TMS -): 258.9449, Found:. 258.9400; calcd for C 7 H 3 37 ClF 3 O 3 S (M + 2-TMS -): 260.9420, Found: 260.9403.
(Synthesis of Aligned Precursor 2)
3-Chloro-2- (trimethylsilyl) phenyl p-toluenesulfonate Colorless crystals. Mp 70-72 ° C (dichloromethane-hexane). IR (KBr) 2956, 2900, 1597, 1581, 1556, 1423, 1374 cm -1 . 1 H-NMR (CDCl 3 ) δ: 7.70 (2H, br d, J = 8.2 Hz), 7.32 (2H, br d, J = 8.2 Hz), 7.23 (1H, dd, J = 7.8, 1.0 Hz), 7.14 (1H, br t, J = 8.0 Hz), 6.87 (1H, dd , J = 8.2, 1.0 Hz) , 2.45 (3H, s), 0.37 (9H, s) 13 C-NMR δ C:. 154.8, 145.5, 141.9, 132.9, 132.4, 130.5, 129.8, 128.6, 128.5, 119.7, 21.7, 1.4. HRMS (ESI + ) calcd for C 16 H 19 35 ClO 3 SSiNa (M + Na + ): 377.0405, Found: 377.0351; calcd for C 16 H 19 37 ClO 3 SSiNa (M + 2 + Na + ) : 379.0097, Found: 379.0325.

〔3,5-ジクロロ-アライン前駆体の合成〕
(シリルエーテルの合成)
1,3-ジクロロ-5-(トリメチルシリルオキシ)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 6.98 (1H, t, J = 1.8 Hz), 6.74 (2H, d, J = 1.8 Hz), 0.28 (9H, s).
(フェノール化合物の合成)
3,5-ジクロロ-2-(トリメチルシリル)フェノール
無色オイル。 1H-NMR (CDCl3) δ : 6.93 (1H, d, J = 1.8 Hz), 6.64 (1H, d, J = 1.8 Hz), 5.77 (1H, br s), 0.43 (9H, s).
(アライン前駆体の合成)
3,5-ジクロロ-2-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2959, 1579, 1538, 1429, 1368 cm-1. 1H-NMR (CDCl3) δ : 7.39 (1H, d, J = 1.8 Hz), 7.28 (1H, d, J = 1.8 Hz), 0.48 (9H, s). 13C-NMR δC : 154.2, 142.9, 136.4, 130.5, 129.8, 119.6, 118.5 (q, J = 322 Hz), 1.2. 19F-NMR δF : -73.0 (3F, s). HRMS (ESI-) calcd for C10H10 35Cl2F3O3SSi (M-H-): 364.9456, Found: 364.9396; calcd for C10H10 35Cl37ClF3O3SSi (M+2-H-): 366.9426, Found: 366.9345. Calcd for C7H2 35Cl2F3O3S (M-TMS-): 292.9059, Found: 292.8981; Calcd for C7H2 35Cl37ClF3O3S (M+2-TMS-): 294.9093, Found: 294.8974.
(Synthesis of 3,5-dichloro-aligned precursor)
(Synthesis of silyl ether)
1,3-Dichloro-5- (trimethylsilyloxy) benzene Colorless oil. 1 H-NMR (CDCl 3 ) δ: 6.98 (1H, t, J = 1.8 Hz), 6.74 (2H, d, J = 1.8 Hz), 0.28 (9H, s).
(Synthesis of phenolic compounds)
3,5-dichloro-2- (trimethylsilyl) phenol A colorless oil. 1 H-NMR (CDCl 3 ) δ: 6.93 (1H, d, J = 1.8 Hz), 6.64 (1H, d, J = 1.8 Hz), 5.77 (1H, br s), 0.43 (9H, s).
(Synthesis of aligned precursors)
3,5-dichloro-2- (trimethylsilyl) phenyl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2959, 1579 , 1538, 1429, 1368 cm -1 1 H-NMR (CDCl 3) δ: 7.39 (1H, d, J = 1.8 Hz), 7.28 (1H, d, J = 1.8 Hz) , 0.48 (9H, s) 13 C-NMR δ C:. 154.2, 142.9, 136.4, 130.5, 129.8, 119.6, 118.5 (q, J = 322 Hz), 1.2 19 F-NMR δ F:. -73.0 (3F , s) HRMS (ESI -) calcd for C 10 H 10 35 Cl 2 F 3 O 3 SSi (MH -): 364.9456, Found:. 364.9396; calcd for C 10 H 10 35 Cl 37 ClF 3 O 3 SSi (M + 2-H -): 366.9426 , Found: 366.9345 Calcd for C 7 H 2 35 Cl 2 F 3 O 3 S (M-TMS -): 292.9059, Found:. 292.8981; Calcd for C 7 H 2 35 Cl 37 ClF 3 O 3 S (M + 2 -TMS -): 294.9093, Found: 294.8974.

〔3-クロロ-5-トリフルオロメチル-アライン前駆体の合成〕
(シリルエーテルの合成)
1-クロロ-3-(トリメチルシリルオキシ)-5-(トリフルオロメチル)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 7.22 (1H, br s), 7.00 (1H, t, J = 1.8 Hz), 6.96 (1H, br s), 0.30 (9H, s).
(フェノール化合物の合成)
3-クロロ-5-トリフルオロメチル-2-(トリメチルシリル)フェノール
無色オイル。 1H-NMR (CDCl3) δ : 7.17 (1H, br s), 6.84 (1H, br s), 0.47 (9H, s); 交換可能なOH基プロトンの検出は不明瞭であった。
(アライン前駆体の合成)
3-クロロ-5-トリフルオロメチル-2-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2961, 1554, 1449, 1431 cm-1. 1H-NMR (CDCl3) δ : 7.62 (1H, br d, J = 1.0 Hz), 7.48 (1H, br s), 0.51 (9H, s). 13C-NMR δC : 154.1, 143.3, 136.9, 133.6 (q, J = 35 Hz), 126.5 (q, J = 4 Hz), 122.2 (q, J = 273 Hz), 118.5 (q, J = 322 Hz), 116.1, 1.1. 19F-NMR δF : -63.9 (3F, s), -72.9 (3F, s). HRMS (ESI-) calcd for C8H2 35ClF6O3S (M-TMS-): 326.9323, Found: 326.9303; calcd for C8H2 37ClF6O3S (M+2-TMS-): 328.9294, Found: 328.9269.
(Synthesis of 3-chloro-5-trifluoromethyl-align precursor)
(Synthesis of silyl ether)
1-chloro-3- (trimethylsilyloxy) -5- (trifluoromethyl) benzene colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.22 (1H, br s), 7.00 (1H, t, J = 1.8 Hz), 6.96 (1H, br s), 0.30 (9H, s).
(Synthesis of phenolic compounds)
3-Chloro-5-trifluoromethyl-2- (trimethylsilyl) phenol Colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.17 (1H, br s), 6.84 (1H, br s), 0.47 (9H, s); Detection of exchangeable OH group protons was unclear.
(Synthesis of aligned precursors)
3-Chloro-5-trifluoromethyl-2- (trimethylsilyl) phenyl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2961, 1554 , 1449, 1431 cm -1 1 H-NMR (CDCl 3) δ: 7.62 (1H, br d, J = 1.0 Hz), 7.48 (1H, br s), 0.51 (9H, 13 C-NMR δ C : 154.1, 143.3, 136.9, 133.6 (q, J = 35 Hz), 126.5 (q, J = 4 Hz), 122.2 (q, J = 273 Hz), 118.5 (q, . J = 322 Hz), 116.1 , 1.1 19 F-NMR δ F:. -63.9 (3F, s), -72.9 (3F, s) HRMS (ESI -) calcd for C 8 H 2 35 ClF 6 O 3 S (M-TMS -): 326.9323 , Found: 326.9303; calcd for C 8 H 2 37 ClF 6 O 3 S (M + 2-TMS -): 328.9294, Found: 328.9269.

〔4-ブロモ-3,6-ジクロロ-アライン前駆体の合成〕
(シリルエーテルの合成)
1-ブロモ-2,5-ジクロロ-4-(トリメチルシリルオキシ)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 7.59 (1H, s), 6.99 (1H, s), 0.30 (9H, s).
(フェノール化合物の合成)
4-ブロモ-3,6-ジクロロ-2-(トリメチルシリル)フェノール
無色オイル。 1H-NMR (CDCl3) δ : 7.20 (1H, s), 0.56 (9H, s); 交換可能なOH基プロトンの検出は不明瞭であった。
(アライン前駆体の合成)
4-ブロモ-3,6-ジクロロ-2-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2961, 2901, 1552, 1434, 1361 cm-1. 1H-NMR (CDCl3) δ : 7.47 (1H, s), 0.59 (9H, s). 13C-NMR δC : 145.1, 144.6, 135.2, 132.4, 130.0, 124.3, 118.5 (q, J = 322 Hz), 3.6. 19F-NMR δF : -73.8 (3F, s). HRMS (ESI-) calcd for C10H9 79Br35Cl2F3O3SSi (M-H-): 442.8560, Found: 442.8544; calcd for C10H9BrCl2F3O3SSi (M+2-H-): 444.8536, Found: 444.8517; calcd for C10H9BrCl2F3O3SSi (M+4-H-): 446.8509, Found: 446.8502. Calcd for C7H79Br35Cl2F3O3S (M-TMS-): 370.8164, Found: 370.8146; calcd for C7HBrCl2F3O3S (M+2-TMS-): 372.8140, Found: 372.8121; calcd for C7HBrCl2F3O3S (M+4-TMS-): 374.8113, Found: 374.8145.
(Synthesis of 4-bromo-3,6-dichloro-align precursor)
(Synthesis of silyl ether)
1-Bromo-2,5-dichloro-4- (trimethylsilyloxy) benzene colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.59 (1H, s), 6.99 (1H, s), 0.30 (9H, s).
(Synthesis of phenolic compounds)
4-Bromo-3,6-dichloro-2- (trimethylsilyl) phenol Colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.20 (1H, s), 0.56 (9H, s); Detection of exchangeable OH group protons was unclear.
(Synthesis of aligned precursors)
4-Bromo-3,6-dichloro-2- (trimethylsilyl) phenyl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2961, 2901 , 1552, 1434, 1361 cm -1 1 H-NMR (CDCl 3) δ: 7.47 (1H, s), 0.59 (9H, s) 13 C-NMR δ C:. 145.1, .. 144.6, 135.2, 132.4, 130.0, 124.3, 118.5 (q, J = 322 Hz), 3.6 19 F-NMR δ F: -73.8 (3F, s) HRMS (ESI -) calcd for C 10 H 9 79 Br 35 Cl 2 F 3 O 3 SSi (MH -): 442.8560, Found: 442.8544; calcd for C 10 H 9 BrCl 2 F 3 O 3 SSi (M + 2-H -): 444.8536, Found: 444.8517; calcd for C 10 H 9 BrCl 2 F 3 O 3 SSi (M + 4-H -):. 446.8509, Found: 446.8502 Calcd for C 7 H 79 Br 35 Cl 2 F 3 O 3 S (M-TMS -): 370.8164, Found : 370.8146; calcd for C 7 HBrCl 2 F 3 O 3 S (M + 2-TMS -): 372.8140, Found: 372.8121; calcd for C 7 HBrCl 2 F 3 O 3 S (M + 4-TMS -): 374.8113 , Found: 374.8145.

〔3-クロロ-4-メチル-アライン前駆体の合成〕
(シリルエーテルの合成)
2-クロロ-1-メチル-4-(トリメチルシリルオキシ)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 7.06 (1H, d, J = 8.2 Hz), 6.86 (1H, d, J = 2.5 Hz), 6.65 (1H, dd, J = 8.2, 2.5 Hz), 2.29 (3H, s), 0.26 (9H, s).
(フェノール化合物の合成)
3-クロロ-4-メチル-2-(トリメチルシリル)フェノール
無色オイル。 1H-NMR (CDCl3) δ : 7.07 (1H, d, J = 8.2 Hz), 6.56 (1H, d, J = 8.2 Hz), 5.19 (1H, br s), 2.27 (3H, s), 0.46 (9H, s).
(アライン前駆体の合成)
3-クロロ-4-メチル-2-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2959, 1575, 1422 cm-1. 1H-NMR (CDCl3) δ : 7.28 (1H, d, J = 8.2 Hz), 7.15 (1H, d, J = 8.2 Hz), 2.38 (3H, s), 0.49 (9H, s). 13C-NMR δC : 152.4, 134.2, 136.9, 132.5, 131.9, 118.8, 118.5 (q, J = 323 Hz), 20.7, 1.5. 19F-NMR δF : -73.0 (3F, t, J = 2 Hz). HRMS (ESI-) calcd for C8H5 35ClF3O3S (M-TMS-): 272.9605, Found: 272.9602; calcd for C8H5 37ClF3O3S (M+2-TMS-): 274.9577, Found: 274.9544.
Synthesis of 3-chloro-4-methyl-align precursor
(Synthesis of silyl ether)
2-Chloro-1-methyl-4- (trimethylsilyloxy) benzene A colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.06 (1H, d, J = 8.2 Hz), 6.86 (1H, d, J = 2.5 Hz), 6.65 (1H, dd, J = 8.2, 2.5 Hz), 2.29 ( 3H, s), 0.26 (9H, s).
(Synthesis of phenolic compounds)
3-Chloro-4-methyl-2- (trimethylsilyl) phenol A colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.07 (1H, d, J = 8.2 Hz), 6.56 (1H, d, J = 8.2 Hz), 5.19 (1H, br s), 2.27 (3H, s), 0.46 (9H, s).
(Synthesis of aligned precursors)
3-Chloro-4-methyl-2- (trimethylsilyl) phenyl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2959, 1575 , 1422 cm -1 1 H-NMR (CDCl 3) δ: 7.28 (1H, d, J = 8.2 Hz), 7.15 (1H, d, J = 8.2 Hz), 2.38 (3H , s), 0.49 (9H, s) 13 C-NMR δ C:.. 152.4, 134.2, 136.9, 132.5, 131.9, 118.8, 118.5 (q, J = 323 Hz), 20.7, 1.5 19 F-NMR δ F : -73.0 (3F, t, J = 2 Hz) HRMS (ESI -) calcd for C 8 H 5 35 ClF 3 O 3 S (M-TMS -): 272.9605, Found:. 272.9602; calcd for C 8 H 5 37 ClF 3 O 3 S (M + 2-TMS -): 274.9577, Found: 274.9544.

〔2-クロロ-3,4-アライン前駆体の合成〕
(シリルエーテルの合成)
2-クロロ-3-(トリメチルシリルオキシ)ピリジン
無色オイル。 1H-NMR (CDCl3) δ : 8.02 (1H, dd, J = 4.6, 1.8 Hz), 7.18 (1H, dd, J = 7.8, 1.8 Hz), 7.13 (1H, dd, J = 7.8, 4.6 Hz), 0.31 (9H, s).
(フェノール化合物の合成)
2-クロロ-3-ヒドロキシ-4-(トリメチルシリル)ピリジン
無色固体。 IR (KBr) 3059 (br), 2958, 2634, 1572, 1394 cm-1. 1H-NMR (CDCl3) δ : 7.93 (1H, d, J = 4.6 Hz), 7.19 (1H, d, J = 4.6 Hz), 5.81 (1H, br s), 0.33 (9H. s). 13C-NMR δC : 151.8, 140.5, 137.5, 136.7, 128.8, -1.7.
(アライン前駆体の合成1)
2-クロロ-4-(トリメチルシリル)ピリジン-3-イル トリフルオロメタンスルホナート
無色結晶。 Mp 59-60℃(ジクロロメタン-ヘキサン). IR (KBr) 2960, 2905, 1571, 1507, 1415, 1361 cm-1. 1H-NMR (CDCl3) δ : 8.35 (1H, d, J = 4.6 Hz), 7.40 (1H, d, J = 4.6 Hz), 0.44 (9H, s). 13C-NMR δC : 148.6, 147.6, 145.2, 144.6, 129.4, 118.5 (q, J = 323 Hz), -0.6. 19F-NMR δF : -72.0 (3F, s). HRMS (ESI-) calcd for C9H10 35ClF3NO3SSi (M-H-): 331.9797, Found: 331.9746; calcd for C9H10 37ClF3NO3SSi (M+2-H-): 333.9769, Found: 333.9715. Calcd for C6H2 35ClF3NO3S (M-TMS-): 259.9402, Found: 259.9352; calcd for C6H2 37ClF3NO3S (M+2-TMS-): 261.9372, Found: 261.9320.
(アライン前駆体の合成2)
2-クロロ-4-(トリメチルシリル)ピリジン-3-イル トルエンスルホナート
無色結晶。 Mp 101-102℃(アセトン-ヘキサン). IR (KBr) 2956, 2901, 1597, 1569, 1362 cm-1. 1H-NMR (CDCl3) δ : 8.22 (1H, dd, J = 4.6, 1.0 Hz), 7.81 (2H, br d, J = 8.2 Hz), 7.37 (1H, br d, J = 5.0 Hz), 7.35 (2H, br d, J = 8.2 Hz), 2.47 (3H, s), 0.47 (9H, d, J = 1.0 Hz). 13C-NMR δC : 149.4, 146.2, 146.1, 145.8, 145.4, 133.5, 129.8, 129.2, 128.7, 21.8, -0.3. HRMS (ESI+) calcd for C15H18 35ClNO3SSiNa (M+Na+): 378.0357, Found: 378.0302; calcd for C15H18 37ClNO3SSiNa (M+2+Na+): 380.0332, Found: 380.0270.
(Synthesis of 2-chloro-3,4-align precursor)
(Synthesis of silyl ether)
2-Chloro-3- (trimethylsilyloxy) pyridine colorless oil. 1 H-NMR (CDCl 3 ) δ: 8.02 (1H, dd, J = 4.6, 1.8 Hz), 7.18 (1H, dd, J = 7.8, 1.8 Hz), 7.13 (1H, dd, J = 7.8, 4.6 Hz ), 0.31 (9H, s).
(Synthesis of phenolic compounds)
2-Chloro-3-hydroxy-4- (trimethylsilyl) pyridine Colorless solid. . IR (KBr) 3059 (br ), 2958, 2634, 1572, 1394 cm -1 1 H-NMR (CDCl 3) δ: 7.93 (1H, d, J = 4.6 Hz), 7.19 (1H, d, J = . 4.6 Hz), 5.81 (1H , br s), 0.33 (9H s) 13 C-NMR δ C:. 151.8, 140.5, 137.5, 136.7, 128.8, -1.7.
(Synthesis of Aligned Precursor 1)
2-Chloro-4- (trimethylsilyl) pyridin-3-yl trifluoromethanesulfonate colorless crystals. Mp 59-60 ° C (dichloromethane-hexane). IR (KBr) 2960, 2905, 1571, 1507, 1415, 1361 cm -1 . 1 H-NMR (CDCl 3 ) δ: 8.35 (1H, d, J = 4.6 Hz ), 7.40 (1H, d, J = 4.6 Hz), 0.44 (9H, s) 13 C-NMR δ C:. 148.6, 147.6, 145.2, 144.6, 129.4, 118.5 (q, J = 323 Hz), -0.6 .. 19 F-NMR δ F : -72.0 (3F, s) HRMS (ESI -) calcd for C 9 H 10 35 ClF 3 NO 3 SSi (MH -): 331.9797, Found: 331.9746; calcd for C 9 H 10 . 37 ClF 3 NO 3 SSi ( M + 2-H -): 333.9769, Found: 333.9715 calcd for C 6 H 2 35 ClF 3 NO 3 S (M-TMS -): 259.9402, Found: 259.9352; calcd for C 6 H 2 37 ClF 3 NO 3 S (M + 2-TMS -): 261.9372, Found: 261.9320.
(Synthesis of Aligned Precursor 2)
2-Chloro-4- (trimethylsilyl) pyridin-3-yl toluenesulfonate Colorless crystals. .. Mp 101-102 ℃ (acetone - hexane) IR (KBr) 2956, 2901 , 1597, 1569, 1362 cm -1 1 H-NMR (CDCl 3) δ: 8.22 (1H, dd, J = 4.6, 1.0 Hz ), 7.81 (2H, br d, J = 8.2 Hz), 7.37 (1H, br d, J = 5.0 Hz), 7.35 (2H, br d, J = 8.2 Hz), 2.47 (3H, s), 0.47 ( 13 C-NMR δ C : 149.4, 146.2, 146.1, 145.8, 145.4, 133.5, 129.8, 129.2, 128.7, 21.8, -0.3.HRMS (ESI + ) calcd for C 15 H 18 35 ClNO 3 SSiNa (M + Na + ): 378.0357, Found: 378.0302; calcd for C 15 H 18 37 ClNO 3 SSiNa (M + 2 + Na + ): 380.0332, Found: 380.0270.

〔5-クロロ-3,4-アライン前駆体の合成〕
(シリルエーテルの合成)
5-クロロ-3-(トリメチルシリルオキシ)ピリジン
無色オイル。 1H-NMR (CDCl3) δ : 8.20 (1H, d, J = 1.8 Hz), 8.11 (1H, d, J = 2.3 Hz), 7.17 (1H, t, J = 2.3 Hz), 0.30 (9H, s).
(フェノール化合物の合成)
5-クロロ-3-ヒドロキシ-4-(トリメチルシリル)ピリジン
無色固体。 IR (KBr) 3133 (br), 2956, 2790, 2640, 1577, 1465, 1406 cm-1. 1H-NMR (CDCl3) δ : 10.79 (1H, br s), 8.04 (1H, s), 7.99 (1H, s), 0.46 (9H, s). 13C-NMR δC : 159.9 (d, J = 7 Hz), 139.1 (br), 139.0 (d, J = 4 Hz), 135.5 (d, J = 6 Hz), 133.2 (d, J = 4 Hz), 1.0.
(アライン前駆体の合成)
5-クロロ-4-(トリメチルシリル)ピリジン-3-イル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2961, 2905, 1507, 1429, 1305 cm-1. 1H-NMR (CDCl3) δ : 8.54 (1H, br s), 8.48 (1H, br s), 0.52 (9H, s). 13C-NMR δC : 150.4, 148.8, 141.6, 139.9, 138.7, 118.5 (q, J = 322 Hz), 0.56. 19F-NMR δF : -72.8 (3F, d, J = 2 Hz). HRMS (ESI-) calcd for C9H10 35ClF3NO3SSi (M-H-): 331.9797, Found: 331.9804; calcd for C9H10 37ClF3NO3SSi (M+2-H-): 333.9769, Found: 333.9732. Calcd for C6H2 35ClF3NO3S (M-TMS-): 259.9402, Found: 259.9407; calcd for C6H2 37ClF3NO3S (M+2-TMS-): 261.9372, Found: 261.9385.
(Synthesis of 5-chloro-3,4-align precursor)
(Synthesis of silyl ether)
5-Chloro-3- (trimethylsilyloxy) pyridine colorless oil. 1 H-NMR (CDCl 3 ) δ: 8.20 (1H, d, J = 1.8 Hz), 8.11 (1H, d, J = 2.3 Hz), 7.17 (1H, t, J = 2.3 Hz), 0.30 (9H, s).
(Synthesis of phenolic compounds)
5-Chloro-3-hydroxy-4- (trimethylsilyl) pyridine Colorless solid. IR (KBr) 3133 (br), 2956, 2790, 2640, 1577, 1465, 1406 cm -1 . 1 H-NMR (CDCl 3 ) δ: 10.79 (1H, br s), 8.04 (1H, s), 7.99 (1H, s), 0.46 ( 9H, s) 13 C-NMR δ C:. 159.9 (d, J = 7 Hz), 139.1 (br), 139.0 (d, J = 4 Hz), 135.5 (d, J = 6 Hz), 133.2 (d, J = 4 Hz), 1.0.
(Synthesis of aligned precursors)
5-Chloro-4- (trimethylsilyl) pyridin-3-yl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2961, 2905 , 1507, 1429, 1305 cm -1 1 H-NMR (CDCl 3) δ: 8.54 (1H, br s), 8.48 (1H, br s), 0.52 (9H, s). 13 C-NMR δ C : 150.4, 148.8, 141.6, 139.9, 138.7, 118.5 (q, J = 322 Hz), 0.56. 19 F-NMR δ F : -72.8 (3F, d, J = 2 Hz). HRMS (ESI -) calcd for C 9 H 10 35 ClF 3 NO 3 SSi (MH -): 331.9797, Found: 331.9804; calcd for C 9 H 10 37 ClF 3 NO 3 SSi (M + 2-H -): 333.9769, . Found: 333.9732 calcd for C 6 H 2 35 ClF 3 NO 3 S (M-TMS -): 259.9402, Found: 259.9407; calcd for C 6 H 2 37 ClF 3 NO 3 S (M + 2-TMS -): 261.9372, Found: 261.9385.

〔2-クロロ-3,4-アライン前駆体の合成〕
(シリルエーテルの合成)
2-クロロ-4-(トリメチルシリルオキシ)ピリジン
無色オイル。 1H-NMR (CDCl3) δ : 8.17 (1H, d, J = 5.5 Hz), 6.79 (1H, d, J = 2.3 Hz), 6.69 (1H, dd, J = 5.5, 2.3 Hz), 0.33 (9H, s).
(フェノール化合物の合成)
2-クロロ-4-ヒドロキシ-3-(トリメチルシリル)ピリジン
無色オイル。 1H-NMR (CDCl3) δ : 7.91 (1H, d, J = 6.0 Hz), 6.57 (1H, d, J = 6.0 Hz), 0.44 (9H, s); 交換可能なOH基プロトンの検出は不明瞭であった。
(アライン前駆体の合成)
2-クロロ-3-(トリメチルシリル)ピリジン-4-イル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2960, 2904, 1567, 1541, 1427, 1335 cm-1. 1H-NMR (CDCl3) δ : 8.43 (1H, d, J = 5.5 Hz), 7.29 (1H, d, J = 5.5 Hz), 0.50 (9H, s). 13C-NMR δC : 162.1, 159.0, 151.5, 127.4, 118.4 (q, J = 323 Hz), 113.7, 0.9. 19F-NMR δF : -73.0 (3F, s). HRMS (ESI-) calcd for C9H10 35ClF3NO3SSi (M-H-): 331.9797, Found: 331.9812; calcd for C9H10 37ClF3NO3SSi (M+2-H-): 333.9769, Found: 333.9804. Calcd for C6H2 35ClF3NO3S (M-TMS-): 259.9401, Found: 259.9407; calcd for C6H2 37ClF3NO3S (M+2-TMS-): 261.9372, Found: 261.9376.
(Synthesis of 2-chloro-3,4-align precursor)
(Synthesis of silyl ether)
2-Chloro-4- (trimethylsilyloxy) pyridine colorless oil. 1 H-NMR (CDCl 3 ) δ: 8.17 (1H, d, J = 5.5 Hz), 6.79 (1H, d, J = 2.3 Hz), 6.69 (1H, dd, J = 5.5, 2.3 Hz), 0.33 ( 9H, s).
(Synthesis of phenolic compounds)
2-Chloro-4-hydroxy-3- (trimethylsilyl) pyridine colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.91 (1H, d, J = 6.0 Hz), 6.57 (1H, d, J = 6.0 Hz), 0.44 (9H, s); Detection of exchangeable OH group protons is It was unclear.
(Synthesis of aligned precursors)
2-Chloro-3- (trimethylsilyl) pyridin-4-yl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2960, 2904 , 1567, 1541, 1427, 1335 cm -1 1 H-NMR (CDCl 3) δ: 8.43 (1H, d, J = 5.5 Hz), 7.29 (1H, d, J = 5.5 Hz), 0.50 (9H, s ) 13 C-NMR δ C:. 162.1, 159.0, 151.5, 127.4, 118.4 (q, J = 323 Hz), 113.7, 0.9 19 F-NMR δ F:. -73.0 (3F , s) HRMS (ESI -) calcd for C 9 H 10 35 ClF 3 NO 3 SSi (MH -): 331.9797, Found:. 331.9812; calcd for C 9 H 10 37 ClF 3 NO 3 SSi (M + 2-H -): 333.9769, Found: 333.9804 calcd for C 6 H 2 35 ClF 3 NO 3 S (M-TMS -): 259.9401, Found:. 259.9407; calcd for C 6 H 2 37 ClF 3 NO 3 S (M + 2 -TMS -): 261.9372, Found: 261.9376.

〔3-フルオロ-アライン前駆体の合成〕
(シリルエーテルの合成)
1-フルオロ-3-(トリメチルシリルオキシ)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 7.17 (1H, td, J = 8.2, 7.8 Hz), 6.68 (1H, tdd, J = 8.2, 2.3, 1.0 Hz), 6.62 (1H, br dd, J = 8.2, 2.3 Hz), 6.56 (1H, dt, J = 10.6, 2.3 Hz), 0.27 (9H, s).
(フェノール化合物の合成)
3-フルオロ-2-(トリメチルシリル)フェノール
無色オイル。 1H-NMR (CDCl3) δ : 7.16 (1H, td, J = 8.2, 6.9 Hz), 6.57 (1H, td, J = 8.2, 1.0 Hz), 6.48 (1H, dd, J = 8.2, 1.0 Hz), 5.15 (1H, br s), 0.37 (9H, d, J = 1.8 Hz).
(アライン前駆体の合成)
3-フルオロ-2-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色オイル。 1H-NMR (CDCl3) δ : 7.41 (1H, td, J = 8.2, 6.4 Hz), 7.16 (1H, br d, J = 8.7 Hz), 7.03 (1H, td, J = 8.2, 1.0 Hz), 0.42 (9H, d, J = 1.8 Hz). 13C-NMR δC : 167.3 (d, J = 247 Hz), 154.1 (d, J = 15 Hz), 131.9 (d, J = 11 Hz), 120.3 (d, J = 35 Hz), 118.5 (q, J = 322 Hz), 166.1 (br), 115.1 (d, J = 27 Hz), 0.3 (d, J = 4 Hz). 19F-NMR δF : -73.5 (3F, s). -94.1 (1F, m). HRMS (ESI-) calcd for C7H3F4O3S (M-TMS-): 242.9745, Found: 242.9793.
[Synthesis of 3-fluoro-aligned precursor]
(Synthesis of silyl ether)
1-Fluoro-3- (trimethylsilyloxy) benzene A colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.17 (1H, td, J = 8.2, 7.8 Hz), 6.68 (1H, tdd, J = 8.2, 2.3, 1.0 Hz), 6.62 (1H, br dd, J = 8.2 , 2.3 Hz), 6.56 (1H, dt, J = 10.6, 2.3 Hz), 0.27 (9H, s).
(Synthesis of phenolic compounds)
3-Fluoro-2- (trimethylsilyl) phenol colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.16 (1H, td, J = 8.2, 6.9 Hz), 6.57 (1H, td, J = 8.2, 1.0 Hz), 6.48 (1H, dd, J = 8.2, 1.0 Hz) ), 5.15 (1H, br s), 0.37 (9H, d, J = 1.8 Hz).
(Synthesis of aligned precursors)
3-Fluoro-2- (trimethylsilyl) phenyl trifluoromethanesulfonate Colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.41 (1H, td, J = 8.2, 6.4 Hz), 7.16 (1H, br d, J = 8.7 Hz), 7.03 (1H, td, J = 8.2, 1.0 Hz) , 0.42 (9H, d, J = 1.8 Hz) 13 C-NMR δ C:. 167.3 (d, J = 247 Hz), 154.1 (d, J = 15 Hz), 131.9 (d, J = 11 Hz), 120.3 (d, J = 35 Hz), 118.5 (q, J = 322 Hz), 166.1 (br), 115.1 (d, J = 27 Hz), 0.3 (d, J = 4 Hz). 19 F-NMR δ F: -73.5 (3F, s) -94.1 (1F, m) HRMS (ESI -) calcd for C 7 H 3 F 4 O 3 S (M-TMS -):.. 242.9745, Found: 242.9793.

〔3-フルオロ-6-メトキシ-アライン前駆体の合成〕
(シリルエーテルの合成)
1-フルオロ-4-メトキシ-3-(トリメチルシリルオキシ)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 6.77 (1H, dd, J = 8.8, 5.6 Hz), 6.63-6.59 (2H, m), 3.78 (3H, s), 0.25 (9H, s).
(フェノール化合物の合成)
5-フルオロ-2-メトキシ-6-(トリメチルシリル)フェノール
無色オイル。 1H-NMR (CDCl3) δ : 6.77 (1H, dd, J = 8.7, 5.0 Hz), 6.47 (1H, t, J = 8.7 Hz), 5.97 (1H, br d, J = 1.4 Hz), 3.85 (3H, s), 0.35 (9H, d, J = 1.8 Hz).
(アライン前駆体の合成)
5-フルオロ-2-メトキシ-6-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色結晶。 Mp 21-23℃(ヘキサン). IR (KBr) 2960, 1578, 1464, 1417 cm-1. 1H-NMR (CDCl3) δ : 7.00 (1H, dd, J = 9.2, 7.6 Hz), 6.97 (1H, dd, J = 9.2, 5.5 Hz), 3.84 (3H, s), 0.43 (9H, d, J = 1.8 Hz). 13C-NMR δC : 160.1 (d, J = 239 Hz), 147.3 (d, J = 3 Hz), 141.6 (d, J = 15 Hz), 122.8 (d, 35 Hz), 118.8 (q, J = 323 Hz), 115.2 (d, J = 29 Hz), 114.3 (d, J = 10 Hz), 56.1, 0.3 (d, J = 4 Hz). 19F-NMR δF : -71.9 (3F, m), -105.9 (1F, m). HRMS (ESI-) calcd for C11H13F4O4SSi (M-H-): 345.0245, Found: 345.0236. Calcd for C8H5F4O4S (M-TMS-): 272.9850, Found: 272.9844.
Synthesis of 3-fluoro-6-methoxy-align precursor
(Synthesis of silyl ether)
1-Fluoro-4-methoxy-3- (trimethylsilyloxy) benzene Colorless oil. 1 H-NMR (CDCl 3 ) δ: 6.77 (1H, dd, J = 8.8, 5.6 Hz), 6.63-6.59 (2H, m), 3.78 (3H, s), 0.25 (9H, s).
(Synthesis of phenolic compounds)
5-Fluoro-2-methoxy-6- (trimethylsilyl) phenol Colorless oil. 1 H-NMR (CDCl 3 ) δ: 6.77 (1H, dd, J = 8.7, 5.0 Hz), 6.47 (1H, t, J = 8.7 Hz), 5.97 (1H, br d, J = 1.4 Hz), 3.85 (3H, s), 0.35 (9H, d, J = 1.8 Hz).
(Synthesis of aligned precursors)
5-Fluoro-2-methoxy-6- (trimethylsilyl) phenyl trifluoromethanesulfonate colorless crystals. Mp 21-23 ° C (Hexane). IR (KBr) 2960, 1578, 1464, 1417 cm −1 . 1 H-NMR (CDCl 3 ) δ: 7.00 (1H, dd, J = 9.2, 7.6 Hz), 6.97 ( 1H, dd, J = 9.2, 5.5 Hz), 3.84 (3H, s), 0.43 (9H, d, J = 1.8 Hz) 13 C-NMR δ C:. 160.1 (d, J = 239 Hz), 147.3 ( d, J = 3 Hz), 141.6 (d, J = 15 Hz), 122.8 (d, 35 Hz), 118.8 (q, J = 323 Hz), 115.2 (d, J = 29 Hz), 114.3 (d, . J = 10 Hz), 56.1 , 0.3 (d, J = 4 Hz) 19 F-NMR δ F:. -71.9 (3F, m), -105.9 (1F, m) HRMS (ESI -) calcd for C 11 H 13 F 4 O 4 SSi ( MH -):. 345.0245, Found: 345.0236 Calcd for C 8 H 5 F 4 O 4 S (M-TMS -): 272.9850, Found: 272.9844.

〔3,4,5-トリフルオロ-アライン前駆体の合成〕
(シリルエーテルの合成)
1,2,3-トリフルオロ-5-(トリメチルシリルオキシ)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 6.44 (2H, m), 0.26 (9H, s).
(フェノール化合物の合成)
3,4,5-トリフルオロ-2-(トリメチルシリル)フェノール
無色オイル。 1H-NMR (CDCl3) δ : 6.34 (1H, ddd, J = 11.0, 5.0, 2.3 Hz), 5.52 (1H, br s), 0.36 (9H, d, J = 1.8 Hz).
(アライン前駆体の合成)
3,4,5-トリフルオロ-2-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2963, 1626, 1496, 1430 cm-1. 1H-NMR (CDCl3) δ: 7.06 (1H, ddd, J = 9.6, 5.0, 2.3 Hz), 0.43 (9H, d, J = 1.8 Hz). 13C-NMR δC : 155.0 (ddd, J = 247, 10, 5 Hz), 151.3 (ddd, J = 255, 12, 6 Hz), 147.1 (ddd, J = 16, 12, 5 Hz), 139.3 (ddd, J = 257, 20, 14 Hz), 118.4 (q, J = 322 Hz), 118.3 (dt, J = 31, 4 Hz), 106.5 (d, J = 21 Hz), 0.2 (d, J = 4 Hz). 19F-NMR δF : -73.4 (3F, s), -117.4 (1F, ddd, J = 23, 7, 2 Hz), -129.6 (1F, dt, J = 20, 10 Hz), -160.1 (1F, ddd, J = 23, 20, 5 Hz). HRMS (ESI-) calcd for C10H9F6O3SSi (M-H-): 350.9951, Found: 350.9825. Calcd for C7HF6O3S (M-TMS-): 278.9556, Found: 278.9551.
(Synthesis of 3,4,5-trifluoro-aligned precursor)
(Synthesis of silyl ether)
1,2,3-Trifluoro-5- (trimethylsilyloxy) benzene Colorless oil. 1 H-NMR (CDCl 3 ) δ: 6.44 (2H, m), 0.26 (9H, s).
(Synthesis of phenolic compounds)
3,4,5-trifluoro-2- (trimethylsilyl) phenol Colorless oil. 1 H-NMR (CDCl 3 ) δ: 6.34 (1H, ddd, J = 11.0, 5.0, 2.3 Hz), 5.52 (1H, br s), 0.36 (9H, d, J = 1.8 Hz).
(Synthesis of aligned precursors)
3,4,5-trifluoro-2- (trimethylsilyl) phenyl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2963, 1626 , 1496, 1430 cm -1 1 H-NMR (CDCl 3) δ: 7.06 (1H, ddd, J = 9.6, 5.0, 2.3 Hz), 0.43 (9H, d, J = 1.8 13 C-NMR δ C : 155.0 (ddd, J = 247, 10, 5 Hz), 151.3 (ddd, J = 255, 12, 6 Hz), 147.1 (ddd, J = 16, 12, 5 Hz ), 139.3 (ddd, J = 257, 20, 14 Hz), 118.4 (q, J = 322 Hz), 118.3 (dt, J = 31, 4 Hz), 106.5 (d, J = 21 Hz), 0.2 ( 19 F-NMR δ F : -73.4 (3F, s), -117.4 (1F, ddd, J = 23, 7, 2 Hz), -129.6 (1F, dt, J = 20 , 10 Hz), -160.1 (1F , ddd, J = 23, 20, 5 Hz) HRMS (ESI -) calcd for C 10 H 9 F 6 O 3 SSi (MH -):.. 350.9951, Found: 350.9825 calcd for C 7 HF 6 O 3 S (M-TMS -): 278.9556, Found: 278.9551.

〔3-ブロモ-アライン前駆体の合成〕
(シリルエーテルの合成)
1-ブロモ-3-(トリメチルシリルオキシ)ベンゼン
無色オイル。 1H-NMR (CDCl3) δ : 7.09 (2H, m), 7.01 (1H, br t, J = 1.6 Hz), 6.76 (1H, m), 0.27 (9H, s).
(フェノール化合物の合成)
3-ブロモ-2-(トリメチルシリル)-フェノール
無色オイル。 1H-NMR (CDCl3) δ : 7.13 (1H, dd, J = 7.8, 1.0 Hz), 7.03 (1H, br t, J = 7.8 Hz), 6.64 (1H, dd, J = 7.8, 1.0 Hz), 5.35 (1H, br s), 0.48 (9H, s).
(アライン前駆体の合成)
3-ブロモ-2-(トリメチルシリル)フェニル トリフルオロメタンスルホナート
無色オイル。 IR (KBr) 2960, 1583, 1552, 1421 cm-1. 1H-NMR (CDCl3) δ : 7.58 (1H, dd, J = 7.8, 1.4 Hz), 7.34-7.23 (2H, m), 0.52 (9H, s). 13C-NMR δC : 155.2, 134.9, 134.4, 132.3, 132.2, 120.4, 119.4, 2.5. 19F-NMR δF : -73.1 (3F, s). HRMS (ESI-) calcd for C10H11 79BrF3O3SSi (M-H-): 374.9339, Found: 374.9281; calcd for C10H11 81BrF3O3SSi (M+2-H-): 376.9319, Found: 376.9253. Calcd for C7H3 79BrF3O3S (M-TMS-): 302.8944, Found: 302.8868; calcd for C7H3 81BrF3O3S (M+2-TMS-): 304.8923, Found: 304.8881.
(Synthesis of 3-bromo-aligned precursor)
(Synthesis of silyl ether)
1-Bromo-3- (trimethylsilyloxy) benzene colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.09 (2H, m), 7.01 (1H, br t, J = 1.6 Hz), 6.76 (1H, m), 0.27 (9H, s).
(Synthesis of phenolic compounds)
3-Bromo-2- (trimethylsilyl) -phenol colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.13 (1H, dd, J = 7.8, 1.0 Hz), 7.03 (1H, br t, J = 7.8 Hz), 6.64 (1H, dd, J = 7.8, 1.0 Hz) , 5.35 (1H, br s), 0.48 (9H, s).
(Synthesis of aligned precursors)
3-Bromo-2- (trimethylsilyl) phenyl trifluoromethanesulfonate Colorless oil. . IR (KBr) 2960, 1583 , 1552, 1421 cm -1 1 H-NMR (CDCl 3) δ: 7.58 (1H, dd, J = 7.8, 1.4 Hz), 7.34-7.23 (2H, m), 0.52 ( ... 9H, s) 13 C-NMR δ C: 155.2, 134.9, 134.4, 132.3, 132.2, 120.4, 119.4, 2.5 19 F-NMR δ F: -73.1 (3F, s) HRMS (ESI -) calcd for C 10 H 11 79 BrF 3 O 3 SSi (MH -): 374.9339, Found:. 374.9281; calcd for C 10 H 11 81 BrF 3 O 3 SSi (M + 2-H -): 376.9319, Found: 376.9253 calcd for C 7 H 3 79 BrF 3 O 3 S (M-TMS -): 302.8944, Found: 302.8868; calcd for C 7 H 3 81 BrF 3 O 3 S (M + 2-TMS -): 304.8923, Found: 304.8881.

〔アライン前駆体合成反応における強塩基の検討〕
上述した3−クロロアライン前駆体の合成反応(下記シリルエーテル(2)からフェノール化合物(3)への反応)について、各強塩基を用いた場合の収率を検討し、結果を下記の表1に示した。
表1に示されるように、Mg(TMP)・2LiClが最も収率が良かった。他方、調製の容易なLDAでも、本反応を用いることで、中程度の収率で目的のフェノール(3)を得ることができた。

Figure 0006461914
Figure 0006461914
(反応時間は、(1)→(2)については約6〜16時間、(2)→(3)については約16時間とした。)[Examination of strong bases in the alignment precursor synthesis reaction]
With respect to the synthesis reaction of the 3-chloroaline precursor described above (reaction from the following silyl ether (2) to the phenol compound (3)), the yield when each strong base was used was examined, and the results are shown in Table 1 below. It was shown to.
As shown in Table 1, Mg (TMP) 2 · 2LiCl had the best yield. On the other hand, the target phenol (3) could be obtained in a moderate yield by using this reaction even with LDA which was easily prepared.
Figure 0006461914
Figure 0006461914
(The reaction time was about 6 to 16 hours for (1) → (2) and about 16 hours for (2) → (3).)

〔アライン前駆体からアラインの生成〕
アライン前駆体からのアラインの発生については、例えば、非特許文献5に記載の方法など、公知の方法に従い、フッ化物イオンと反応させることにより、温和な条件で容易にアラインを生成することができる。また、生成したアラインは、種々の求核剤と位置選択的に反応し、多置換芳香族化合物を与える。アラインと求核剤とを用いた反応は、非特許文献5に記載されるように多数の反応が公知であり、目的とする化合物の構造に応じて所望の求核剤及び反応を用いることができる。
以下に、典型的なアライン発生反応及び発生されたアラインの反応の例を示すが、本発明はこれに限られるものではなく、非特許文献5等、公知の方法にしたがって、アラインを発生させ、これを利用することができる。
[Generating Alignment from Aligned Precursor]
Regarding the generation of alignment from the align precursor, for example, alignment can be easily generated under mild conditions by reacting with fluoride ions according to a known method such as the method described in Non-Patent Document 5. . In addition, the generated alignment reacts with various nucleophiles in a regioselective manner to give a polysubstituted aromatic compound. As described in Non-Patent Document 5, many reactions are known for the reaction using align and nucleophile, and a desired nucleophile and reaction may be used depending on the structure of the target compound. it can.
Examples of typical alignment generating reactions and generated alignment reactions are shown below, but the present invention is not limited thereto, and alignment is generated according to a known method such as Non-Patent Document 5, This can be used.

〔従来のアライン前駆体との比較〕

Figure 0006461914
図中、従来のアライン前駆体化合物を1aで示し、本発明のアライン前駆体化合物を1bで示した。
1a、bからアラインを発生させるにあたり、従来のアライン前駆体化合物1aからは、副反応として生じる転位体と目的とする3−クロロアラインとが反応した二量化体2aが生じることが報告されている(非特許文献8)。他方、対応本発明のアライン前駆体化合物1bからは、同様の実験条件を用いても副反応を経由した二量化体2bを生じることなく、発生したアラインは、溶媒であるアセトニトリルと反応し、化合物3、4が生じた。[Comparison with conventional align precursors]
Figure 0006461914
In the drawing, the conventional align precursor compound is indicated by 1a, and the align precursor compound of the present invention is indicated by 1b.
In generating alignment from 1a and b, it is reported that the conventional alignment precursor compound 1a produces a dimer 2a in which a rearrangement produced as a side reaction reacts with the target 3-chloroalign. (Non-patent document 8). On the other hand, from the alignment precursor compound 1b of the present invention, the generated alignment reacts with acetonitrile as a solvent without generating the dimer 2b via the side reaction even under the same experimental conditions, 3 and 4 occurred.

N-(3-クロロフェニル)アセトアミド:化合物3
無色オイル。 1H-NMR (CDCl3) δ : 7.62 (1H, s), 7.34 (1H, d, J = 7.8 Hz), 7.27 (1H, br s), 7.23 (1H, t, J = 7.8 Hz), 7.08 (1H, d, J = 7.8 Hz), 2.18 (3H, s). 13C-NMRδC : 168.3, 139.0, 134.6, 130.0, 124.3, 119.8, 117.7, 24.6. HRMS (ESI+) calcd for C8H8 35ClNONa (M+Na+): 192.0187, Found: 192.0191; calcd for C8H8 37ClNONa (M+2+Na+): 194.0159, Found: 194.0169.
N,N-ビス(3-クロロフェニル)アセトアミド:化合物4
無色オイル。 1H-NMR (CDCl3) δ : 7.32-7.25 (6H, br m), 7.16 (2H, br d, J = 7.8 Hz), 2.07 (3H, s). 13C-NMRδC : 170.1, 154.6 (br), 135.0 (br), 130.4 (br), 127.6 (br), 125.4 (br), 23.8; One aryl carbon peak was missing due to overlapping with other aryl carbon peak. HRMS (ESI+) calcd for C14H11 35Cl2NONa (M+Na+): 302.0110, Found: 302.0123; calcd for C14H11 35Cl37ClNONa (M+2+Na+): 304.0082, Found: 304.0087.
N- (3-chlorophenyl) acetamide: Compound 3
Colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.62 (1H, s), 7.34 (1H, d, J = 7.8 Hz), 7.27 (1H, br s), 7.23 (1H, t, J = 7.8 Hz), 7.08 (1H, d, J = 7.8 Hz), 2.18 (3H, s) 13 C-NMRδ C:.. 168.3, 139.0, 134.6, 130.0, 124.3, 119.8, 117.7, 24.6 HRMS (ESI +) calcd for C 8 H 8 35 ClNONa (M + Na + ): 192.0187, Found: 192.0191; calcd for C 8 H 8 37 ClNONa (M + 2 + Na + ): 194.0159, Found: 194.0169.
N, N-bis (3-chlorophenyl) acetamide: Compound 4
Colorless oil. 1 H-NMR (CDCl 3) δ: 7.32-7.25 (6H, br m), 7.16 (2H, br d, J = 7.8 Hz), 2.07 (3H, s) 13 C-NMRδ C:. 170.1, 154.6 ( br), 135.0 (br), 130.4 (br), 127.6 (br), 125.4 (br), 23.8; One aryl carbon peak was missing due to overlapping with other aryl carbon peak.HRMS (ESI + ) calcd for C 14 H 11 35 Cl 2 NONa (M + Na + ): 302.0110, Found: 302.0123; calcd for C 14 H 11 35 Cl 37 ClNONa (M + 2 + Na + ): 304.0082, Found: 304.0087.

また、1a、bから上記とは別反応でアラインを発生させるにあたり、従来のアライン前駆体化合物1aからは、生成したアラインが反応した結果の化合物5が収率41%で得られたことが報告されている(非特許文献3)。これに対し、本発明のアライン前駆体1bを用いた場合、同様の実験条件を用いると、より高い収率(91%)で化合物5が得られた。
(2-クロロ-6-フルオロフェニル)トリブチルすず:化合物5
無色オイル。 1H-NMR (CDCl3) δ : 7.20 (1H, td, J = 7.8, 6.9 Hz), 7.13 (1H, d, J = 7.8 Hz), 6.88 (1H, br t, J = 7.8 Hz), 1.58-1.48 (6H, m), 1.33 (6H, sex, J = 7.3 Hz), 1.28-1.12 (6H, m), 0.89 (9H, t, J = 7.3 Hz). 13C-NMRδC : 167.3 (d, J = 240 Hz), 142.7 (d, J = 17 Hz), 130.9 (d, J = 9 Hz), 128.6 (d, J = 50 Hz), 124.8 (d, J = 3 Hz), 112.7 (d, J = 30 Hz), 28.9 (t, J = 10 Hz), 27.2 (t, J = 33 Hz), 13.6, 12.0 (d, J = 3 Hz). 19F-NMR δF : -91.0 (1F, t, J = 7 Hz). HRMS (ESI-) calcd for C14H21 35ClFSn (M-Bu-): 363.0339, Found: 363.0352; calcd for C14H21 37ClFSn (M+2-Bu-): 365.0330, Found: 365.0375.
Moreover, when generating alignment from 1a and b by a reaction different from the above, it was reported that compound 5 as a result of reaction of the generated alignment was obtained from conventional alignment precursor compound 1a in a yield of 41%. (Non-Patent Document 3). On the other hand, when the align precursor 1b of the present invention was used, Compound 5 was obtained in a higher yield (91%) using the same experimental conditions.
(2-Chloro-6-fluorophenyl) tributyltin: Compound 5
Colorless oil. 1 H-NMR (CDCl 3 ) δ: 7.20 (1H, td, J = 7.8, 6.9 Hz), 7.13 (1H, d, J = 7.8 Hz), 6.88 (1H, br t, J = 7.8 Hz), 1.58 -1.48 (6H, m), 1.33 (6H, sex, J = 7.3 Hz), 1.28-1.12 (6H, m), 0.89 (9H, t, J = 7.3 Hz). 13 C-NMRδ C : 167.3 (d , J = 240 Hz), 142.7 (d, J = 17 Hz), 130.9 (d, J = 9 Hz), 128.6 (d, J = 50 Hz), 124.8 (d, J = 3 Hz), 112.7 (d , J = 30 Hz), 28.9 (t, J = 10 Hz), 27.2 (t, J = 33 Hz), 13.6, 12.0 (d, J = 3 Hz). 19 F-NMR δ F : -91.0 (1F , t, J = 7 Hz) HRMS (ESI -) calcd for C 14 H 21 35 ClFSn (M-Bu -): 363.0339, Found:. 363.0352; calcd for C 14 H 21 37 ClFSn (M + 2-Bu - ): 365.0330, Found: 365.0375.

以上のように、従来の構造のアライン前駆体化合物と比較して、本発明のアライン前駆体化合物は、アラインを生成させるにあたり、より高い反応選択性と収率とを有することが確認された。   As described above, it was confirmed that the align precursor compound of the present invention has higher reaction selectivity and yield in producing the align than the align precursor compound having the conventional structure.

〔アラインの生成及びアラインの反応(アミン付加反応)〕
CsF(91mg、0.60mmol)の無水アセトニトリル(2mL)溶液に、二級アミン(0.40mmol)を室温、Ar雰囲気下で添加した。つづいて、本発明のアライン前駆体化合物であるトリフラート化合物(0.20mmol)を添加し、3時間、同一の温度で攪拌した。反応混合液を氷水で希釈し、その後、酢酸エチルを用いて抽出した。有機相をNaSOで乾燥させ、減圧下で濃縮した。残渣を分取TLC(AcOEt:ヘキサン=1:10〜1:2)により精製し、アミン付加体を得た。
〔実験例〕
上記手順またはこれと同様の手順に従い、以下の生成物が得られるように、アラインの反応を行った。特記のない原料等については、市販のものを用いた。
[Alignment generation and alignment reaction (amine addition reaction)]
To a solution of CsF (91 mg, 0.60 mmol) in anhydrous acetonitrile (2 mL), secondary amine (0.40 mmol) was added at room temperature under Ar atmosphere. Then, the triflate compound (0.20 mmol) which is the align precursor compound of this invention was added, and it stirred at the same temperature for 3 hours. The reaction mixture was diluted with ice water and then extracted with ethyl acetate. The organic phase was dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by preparative TLC (AcOEt: hexane = 1: 10 to 1: 2) to obtain an amine adduct.
[Experimental example]
According to the above procedure or a procedure similar thereto, the alignment reaction was performed so as to obtain the following product. About the raw material etc. which have no special mention, the commercially available thing was used.

1-(3-クロロフェニル)ピロリジン(本生成物:付加反応位置異性体の比率=88:12)
無色オイル。 IR (KBr) 2969, 2839, 1596, 1497, 1485 cm-1. 1H-NMR (CDCl3) δ : 7.12 (1H, t, J = 8.2 Hz), 6.62 (1H, ddd, J = 7.8, 1.8, 1.0 Hz), 6.53 (1H, br t, J = 2.1 Hz), 6.43 (1H, dd, J = 8.2, 2.3 Hz), 3.26 (4H, br t, J = 6.7 Hz), 2.01 (4H, m). 13C-NMRδC : 148.8, 134.9, 129.9, 115.0, 111.3, 109.8, 47.5, 25.4. HRMS (ESI+) calcd for C10H13 35ClN (M+H+): 182.0731, Found: 182.0748; calcd for C10H13 37ClN (M+2+H+): 184.0703, Found: 184.0720.
1- (3-Chlorophenyl) pyrrolidine (the ratio of this product: addition reaction regioisomer = 88: 12)
Colorless oil. . IR (KBr) 2969, 2839 , 1596, 1497, 1485 cm -1 1 H-NMR (CDCl 3) δ: 7.12 (1H, t, J = 8.2 Hz), 6.62 (1H, ddd, J = 7.8, 1.8 , 1.0 Hz), 6.53 (1H, br t, J = 2.1 Hz), 6.43 (1H, dd, J = 8.2, 2.3 Hz), 3.26 (4H, br t, J = 6.7 Hz), 2.01 (4H, m 13 C-NMRδ C : 148.8, 134.9, 129.9, 115.0, 111.3, 109.8, 47.5, 25.4.HRMS (ESI + ) calcd for C 10 H 13 35 ClN (M + H + ): 182.0731, Found: 182.0748; calcd for C 10 H 13 37 ClN (M + 2 + H + ): 184.0703, Found: 184.0720.

1-(2-クロロフェニル)ピロリジン
無色オイル。 IR (KBr) 2969, 2874, 1592, 1481, 1440 cm-1. 1H-NMR (CDCl3) δ: 7.29 (1H, dd, J = 7.8, 1.4 Hz), 7.14 (1H, ddd, J = 8.2, 7.3, 1.4 Hz), 6.89 (1H, dd, J = 8.2, 1.4 Hz), 6.78 (1H, br td, J = 7.6, 1.4 Hz), 3.37 (4H, m), 1.95 (4H, m). 13C-NMRδC : 147.1, 131.2, 127.1, 123.4, 120.1, 117.0, 30.69, 25.2. HRMS (ESI+) calcd for C10H13 35ClN (M+H+): 182.0731, Found: 182.0693; calcd for C10H13 37ClN (M+2+H+): 184.0703, Found: 184.0749.
1- (2-Chlorophenyl) pyrrolidine colorless oil. . IR (KBr) 2969, 2874 , 1592, 1481, 1440 cm -1 1 H-NMR (CDCl 3) δ: 7.29 (1H, dd, J = 7.8, 1.4 Hz), 7.14 (1H, ddd, J = 8.2 , 7.3, 1.4 Hz), 6.89 (1H, dd, J = 8.2, 1.4 Hz), 6.78 (1H, br td, J = 7.6, 1.4 Hz), 3.37 (4H, m), 1.95 (4H, m). 13 C-NMRδ C : 147.1, 131.2, 127.1, 123.4, 120.1, 117.0, 30.69, 25.2.HRMS (ESI + ) calcd for C 10 H 13 35 ClN (M + H + ): 182.0731, Found: 182.0693; calcd for C 10 H 13 37 ClN (M + 2 + H + ): 184.0703, Found: 184.0749.

1-(3,5-ジクロロフェニル)ピロリジン
白色固体。 IR (KBr) 2971, 2846, 1585, 1551, 1475, 1461 cm-1. 1H-NMR (CDCl3) δ: 6.60 (1H, t, J = 1.8 Hz), 6.38 (2H, d, J = 1.8 Hz), 3.24 (4H, m), 2.01 (4H, m). 13C-NMRδC : 149.0, 135.2, 114.8, 109.8, 47.6, 25.4. HRMS (ESI+) calcd for C10H12 35Cl2N (M+H+): 216.0341, Found: 216.0204; calcd for C10H12 35Cl37ClN (M+2+H+): 218.0313, Found: 218.0238.
1- (3,5-dichlorophenyl) pyrrolidine white solid. . IR (KBr) 2971, 2846 , 1585, 1551, 1475, 1461 cm -1 1 H-NMR (CDCl 3) δ: 6.60 (1H, t, J = 1.8 Hz), 6.38 (2H, d, J = 1.8 Hz), 3.24 (4H, m ), 2.01 (4H, m) 13 C-NMRδ C:.. 149.0, 135.2, 114.8, 109.8, 47.6, 25.4 HRMS (ESI +) calcd for C 10 H 12 35 Cl 2 N (M + H + ): 216.0341, Found: 216.0204; calcd for C 10 H 12 35 Cl 37 ClN (M + 2 + H + ): 218.0313, Found: 218.0238.

〔アラインの生成及びアラインの反応([3+2]環化付加反応)〕
CsF(76mg、0.50mmol)の無水アセトニトリル(2mL)溶液に、アジド化合物(0.20mmol)を室温、Ar雰囲気下で添加した。つづいて、本発明のアライン前駆体化合物であるトリフラート化合物(0.20mmol)を添加し、3時間、同一の温度で攪拌した。反応混合液を氷水で希釈し、その後、酢酸エチルを用いて抽出した。有機相をNaSOで乾燥させ、減圧下で濃縮した。残渣を分取TLC(AcOEt:ヘキサン=1:6)により精製し、ベンゾトリアゾール誘導体を得た。
〔実験例〕
上記手順またはこれと同様の手順に従い、以下の生成物が得られるように、アラインの反応を行った。特記のない原料等については、市販のものを用いた。
[Alignment generation and alignment reaction ([3 + 2] cycloaddition reaction)]
To a solution of CsF (76 mg, 0.50 mmol) in anhydrous acetonitrile (2 mL), an azide compound (0.20 mmol) was added at room temperature under Ar atmosphere. Then, the triflate compound (0.20 mmol) which is the align precursor compound of this invention was added, and it stirred at the same temperature for 3 hours. The reaction mixture was diluted with ice water and then extracted with ethyl acetate. The organic phase was dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by preparative TLC (AcOEt: hexane = 1: 6) to obtain a benzotriazole derivative.
[Experimental example]
According to the above procedure or a procedure similar thereto, the alignment reaction was performed so as to obtain the following product. About the raw material etc. which have no special mention, the commercially available thing was used.

1-ベンジル-4-クロロ-1,2,3-ベンゾトリアゾール
無色結晶。 Mp 78-80℃ (AcOEt-ヘキサン). IR (KBr) 3067, 3033, 1609, 1581, 1494, 1454, 1424 cm-1. 1H-NMR (CDCl3) δ: 7.37-7.23 (8H, m), 5.86 (2H, s). 13C-NMRδC : 144.0, 134.2, 134.1, 129.1, 128.6, 127.9, 127.6, 125.5, 123.8, 108.5, 52.7. HRMS (ESI+) calcd for C13H11 35ClN3 (M+H+): 244.0636, Found: 244.0637; calcd for C13H11 37ClN3 (M+2+H+): 246.0609, Found: 246.0610.
1-Benzyl-4-chloro-1,2,3-benzotriazole colorless crystals. Mp 78-80 ° C (AcOEt-hexane). IR (KBr) 3067, 3033, 1609, 1581, 1494, 1454, 1424 cm -1 . 1 H-NMR (CDCl 3 ) δ: 7.37-7.23 (8H, m) , 5.86 (2H, s) 13 C-NMRδ C:.. 144.0, 134.2, 134.1, 129.1, 128.6, 127.9, 127.6, 125.5, 123.8, 108.5, 52.7 HRMS (ESI +) calcd for C 13 H 11 35 ClN 3 (M + H + ): 244.0636, Found: 244.0637; calcd for C 13 H 11 37 ClN 3 (M + 2 + H + ): 246.0609, Found: 246.0610.

〔アラインの生成及びアラインの反応(三成分連結反応)〕
CsF(91mg、0.60mmol)の無水DMF(2mL)溶液に、活性メチレン化合物(0.30mmol)を室温、Ar雰囲気下で添加した。つづいて、本発明のアライン前駆体化合物であるトリフラート化合物(0.20mmol)を添加し、3時間、同一の温度で攪拌した。反応混合液を氷水で希釈し、その後、酢酸エチルを用いて抽出した。有機相をNaSOで乾燥させ、減圧下で濃縮した。残渣を分取TLC(AcOEt:ヘキサン=1:6〜1:1)により精製し、クマリン類を得た。
(クマリンの基本骨格)

Figure 0006461914
〔実験例〕
上記手順またはこれと同様の手順に従い、以下の生成物が得られるように、アラインの反応を行った。特記のない原料等については、市販のものを用いた。[Alignment generation and alignment reaction (three-component ligation reaction)]
To a solution of CsF (91 mg, 0.60 mmol) in anhydrous DMF (2 mL), an active methylene compound (0.30 mmol) was added at room temperature under Ar atmosphere. Then, the triflate compound (0.20 mmol) which is the align precursor compound of this invention was added, and it stirred at the same temperature for 3 hours. The reaction mixture was diluted with ice water and then extracted with ethyl acetate. The organic phase was dried over Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by preparative TLC (AcOEt: hexane = 1: 6 to 1: 1) to obtain coumarins.
(Basic skeleton of Coumarin)
Figure 0006461914
[Experimental example]
According to the above procedure or a procedure similar thereto, the alignment reaction was performed so as to obtain the following product. About the raw material etc. which have no special mention, the commercially available thing was used.

5-クロロ-2-オキソ-2H-1-ベンゾピラン-3-カルボン酸, エチルエステル
淡黄色結晶。 Mp 140-143℃ (AcOEt-ヘキサン). IR (KBr) 3087, 2980, 1766, 1719, 1595, 1562, 1451 cm-1. 1H-NMR (CDCl3) δ: 8.84 (1H, s), 7.55 (1H, t, J = 8.2 Hz), 7.37 (1H, dd, J = 8.2, 1.0 Hz), 7.26 (1H, br d, J = 8.7 Hz), 4.43 (2H, q, J = 7.1 Hz), 1.41 (3H, t, J = 7.1 Hz). 13C-NMRδC : 162.7, 155.9, 155.8, 144.6, 134.2, 134.0, 125.4, 119.0, 116.6, 115.6, 62.2, 14.2. HRMS (ESI+) calcd for C12H9 35ClO4Na (M+Na+): 275.0082, Found: 275.0121; calcd for C12H9 37ClO4Na (M+2+Na+): 277.0056, Found: 277.0065.
5-chloro-2-oxo-2H-1-benzopyran-3-carboxylic acid, ethyl ester pale yellow crystals. .. Mp 140-143 ℃ (AcOEt- hexane) IR (KBr) 3087, 2980 , 1766, 1719, 1595, 1562, 1451 cm -1 1 H-NMR (CDCl 3) δ: 8.84 (1H, s), 7.55 (1H, t, J = 8.2 Hz), 7.37 (1H, dd, J = 8.2, 1.0 Hz), 7.26 (1H, br d, J = 8.7 Hz), 4.43 (2H, q, J = 7.1 Hz), 1.41 (3H, t, J = 7.1 Hz) 13 C-NMRδ C:.. 162.7, 155.9, 155.8, 144.6, 134.2, 134.0, 125.4, 119.0, 116.6, 115.6, 62.2, 14.2 HRMS (ESI +) calcd for C 12 H 9 35 ClO 4 Na (M + Na + ): 275.0082, Found: 275.0121; calcd for C 12 H 9 37 ClO 4 Na (M + 2 + Na + ): 277.0056, Found: 277.0065.

5-フルオロ-2-オキソ-2H-1-ベンゾピラン-3-カルボン酸, エチルエステル
淡黄色結晶。 Mp 124-126 ℃ (ジクロロメタン-ヘキサン). 1H-NMR (CDCl3) δ: 8.73 (1H, s), 7.60 (1H, br td, J = 8.4, 6.0 Hz), 7.16 (1H, br d, J = 8.2 Jz), 7.04 (1H, br t, J = 8.4 Hz), 4.43 (2H, q, J = 7.2 Hz), 1.42 (3H, t, J = 7.2 Hz). 13C-NMRδC : 162.6, 159.3 (d, J = 260 Hz), 155.9, 155.4 (d, J = 5 Hz), 141.4 (d, J = 4 Hz), 134.9 (d, J = 11 Hz), 118.4, 112.6 (d, J = 4 Hz), 110.6 (d, J = 19 Hz), 108.3 (d, J = 18 Hz), 62.2, 14.2. 19F-NMRδF : -117.0 (1F, dd, J = 9, 6 Hz). HRMS (ESI+) calcd for C12H9FO4Na (M+Na+): 259.0377, Found: 259.0372.
5-Fluoro-2-oxo-2H-1-benzopyran-3-carboxylic acid, ethyl ester Pale yellow crystals. Mp 124-126 ° C (dichloromethane-hexane). 1 H-NMR (CDCl 3 ) δ: 8.73 (1H, s), 7.60 (1H, br td, J = 8.4, 6.0 Hz), 7.16 (1H, br d, J = 8.2 Jz ), 7.04 (1H, br t , J = 8.4 Hz), 4.43 (2H, q, J = 7.2 Hz), 1.42 (3H, t, J = 7.2 Hz) 13 C-NMRδ C:. 162.6, 159.3 (d , J = 260 Hz), 155.9, 155.4 (d, J = 5 Hz), 141.4 (d, J = 4 Hz), 134.9 (d, J = 11 Hz), 118.4, 112.6 (d, J = 4 Hz) , 110.6 (d, J = 19 Hz), 108.3 (d, J = 18 Hz), 62.2, 14.2. 19 F-NMRδ F : -117.0 (1F, dd, J = 9, 6 Hz). HRMS (ESI + ) calcd for C 12 H 9 FO 4 Na (M + Na + ): 259.0377, Found: 259.0372.

5-ブロモ-2-オキソ-2H-1-ベンゾピラン-3-カルボン酸, エチルエステル
褐色結晶。 Mp 113-114 ℃ (ジクロロメタン-ヘキサン). 1H-NMR (CDCl3) δ: 8.82 (1H, s), 7.56 (1H, d, J = 8.2 Hz), 7.48 (1H, t, J = 8.2 Hz), 7.32 (1H, d, J = 8.2 Hz), 4.44 (2H, q, J = 7.2 Hz), 1.42 (3H, t, J = 7.2 Hz). 13C-NMRδC : 162.7, 156.1, 155.7, 147.1, 134.5, 128.9, 123.9, 119.4, 118.1, 116.3, 62.3, 14.2. HRMS (ESI+) calcd for C12H9 79BrO4Na (M+Na+): 318.9576, Found: 318.9597; calcd for C12H9 81BrO4Na (M+2+Na+): 320.9557, Found: 320.9584.
5-Bromo-2-oxo-2H-1-benzopyran-3-carboxylic acid, ethyl ester brown crystals. Mp 113-114 ° C (dichloromethane-hexane). 1 H-NMR (CDCl 3 ) δ: 8.82 (1H, s), 7.56 (1H, d, J = 8.2 Hz), 7.48 (1H, t, J = 8.2 Hz), 7.32 ( 1H, d, J = 8.2 Hz ), 4.44 (2H, q, J = 7.2 Hz), 1.42 (3H, t, J = 7.2 Hz) 13 C-NMRδ C:. 162.7, 156.1, 155.7, 147.1, 134.5, 128.9, 123.9, 119.4, 118.1, 116.3, 62.3, 14.2.HRMS (ESI + ) calcd for C 12 H 9 79 BrO 4 Na (M + Na + ): 318.9576, Found: 318.9597; calcd for C 12 H 9 81 BrO 4 Na (M + 2 + Na + ): 320.9557, Found: 320.9584.

〔アラインの生成及びアラインの反応(ベンゾジアゼピン系化合物)〕
CsF(91mg、0.60mmol)の無水DMI(1mL)溶液に、本発明のアライン前駆体化合物であるトリフラート化合物(0.20mmol)を添加し、3時間、同一の温度で攪拌した。反応混合液を酢酸エチルで希釈し、MgSOを加え、濾別し有機相を得た。これを減圧下で濃縮し、残渣を分取TLC(AcOEt:ヘキサン=2:1)により精製し、ベンゾジアゼピン類を得た。
(ベンゾジアゼピンの基本骨格の一例)

Figure 0006461914
〔実験例〕
上記手順またはこれと同様の手順に従い、以下の生成物が得られるように、アラインの反応を行った。特記のない原料等については、市販のものを用いた。[Alignment generation and alignment reaction (benzodiazepine compounds)]
To a solution of CsF (91 mg, 0.60 mmol) in anhydrous DMI (1 mL), the triflate compound (0.20 mmol), which is an align precursor compound of the present invention, was added and stirred at the same temperature for 3 hours. The reaction mixture was diluted with ethyl acetate, MgSO 4 was added, and filtered to obtain an organic phase. This was concentrated under reduced pressure, and the residue was purified by preparative TLC (AcOEt: hexane = 2: 1) to obtain benzodiazepines.
(An example of the basic skeleton of benzodiazepine)
Figure 0006461914
[Experimental example]
According to the above procedure or a procedure similar thereto, the alignment reaction was performed so as to obtain the following product. About the raw material etc. which have no special mention, the commercially available thing was used.

6-クロロ-1,2,3,4-テトラヒドロ-1,4-ジメチル-5H-1,4-ベンゾジアゼピン-5-オン
無色結晶。 Mp 166-168 ℃ (ジクロロメタン-ヘキサン). 1H-NMR (CDCl3) δ: 7.23 (1H, br t, J = 8.0 Hz), 7.06 (1H, dd, J = 7.8, 1.0 Hz), 6.81 (1H, d, J = 7.8 Hz), 3.41 (2H, br m), 3.22 (3H, s), 3.18 (2H, br m), 2.79 (3H, s). 13C-NMRδC : 167.1, 148.1, 132.7, 131.0, 128.8, 124.1, 116.2, 57.1, 47.8, 10.1, 33.4. HRMS (ESI+) calcd for C11H14 35ClN2O (M+H+): 225.0789, Found: 225.0734; calcd for C11H14 37ClN2O (M+2+H+): 227.0762, Found: 227.0693.
6-chloro-1,2,3,4-tetrahydro-1,4-dimethyl-5H-1,4-benzodiazepin-5-one colorless crystals. Mp 166-168 1 H-NMR (CDCl 3 ) δ: 7.23 (1H, br t, J = 8.0 Hz), 7.06 (1H, dd, J = 7.8, 1.0 Hz), 6.81 (1H, d, J = 7.8 Hz), 3.41 ( 2H, br m), 3.22 (3H, s), 3.18 (2H, br m), 2.79 (3H, s) 13 C-NMRδ C:. 167.1, 148.1, 132.7, 131.0, 128.8, 124.1, 116.2, 57.1, 47.8, 10.1, 33.4.HRMS (ESI + ) calcd for C 11 H 14 35 ClN 2 O (M + H + ): 225.0789, Found: 225.0734; calcd for C 11 H 14 37 ClN 2 O (M + 2 + H + ): 227.0762, Found: 227.0693.

6-クロロ-8-トリフルオロメチル-1,2,3,4-テトラヒドロ-1,4-ジメチル-5H-1,4-ベンゾジアゼピン-5-オン
無色結晶。 Mp 139-140 ℃ (ジクロロメタン-ヘキサン). 1H-NMR (CDCl3) δ: 7.31 (1H, br d, J = 1.0 Hz), 7.01 (1H, br s)3.44 (2H, br s), 3.24 (2H, br s), 3.22 (3H, s), 2.84 (3H, s). 13C-NMRδC : 165.9, 148.4, 133.7, 133.2 (q, J = 33 Hz), 131.5, 123.1 (q, J = 274 Hz), 120.6 (q, J = 4 Hz), 113.1 (q, J = 4 Hz), 56.9, 47.6, 10.1, 33.5. 19F-NMR δF : -63.7 (3F, s). HRMS (ESI+) calcd for C12H12 35ClF3N2ONa (M+Na+): 315.0482, Found: 315.0502; calcd for C12H12 37ClF3N2ONa (M+2+Na+): 317.0456, Found: 317.0473.
6-Chloro-8-trifluoromethyl-1,2,3,4-tetrahydro-1,4-dimethyl-5H-1,4-benzodiazepin-5-one colorless crystals. Mp 139-140 ° C (dichloromethane-hexane). 1 H-NMR (CDCl 3 ) δ: 7.31 (1H, br d, J = 1.0 Hz), 7.01 (1H, br s) 3.44 (2H, br s), 3.24 (2H, br s), 3.22 (3H, s ), 2.84 (3H, s) 13 C-NMRδ C:. 165.9, 148.4, 133.7, 133.2 (q, J = 33 Hz), 131.5, 123.1 (q, J = 274 Hz) , 120.6 (q, J = 4 Hz), 113.1 (q, J = 4 Hz), 56.9, 47.6, 10.1, 33.5. 19 F-NMR δ F : -63.7 (3F, s). HRMS (ESI + ) calcd for C 12 H 12 35 ClF 3 N 2 ONa (M + Na + ): 315.0482, Found: 315.0502; calcd for C 12 H 12 37 ClF 3 N 2 ONa (M + 2 + Na + ): 317.0456, Found: 317.0473 .

以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
なお、本明細書に引用された特許、特許出願、および出版物の開示内容は全て、参照により本明細書に援用される。
In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.
It should be noted that the disclosures of patents, patent applications, and publications cited in this specification are all incorporated herein by reference.

本発明により生成されたアラインは、種々の求核剤と位置選択的に反応し、種々の置換芳香族化合物や多環性芳香族化合物を与えることができる。したがって、本発明は、生物活性物質、医薬品、医薬品中間体や、電子デバイス材料(絶縁膜)などの機能性分子の合成など、多方面で利用可能である。   The aligns produced according to the present invention can react regioselectively with various nucleophiles to give various substituted aromatic compounds and polycyclic aromatic compounds. Therefore, the present invention can be used in various fields such as synthesis of functional molecules such as biologically active substances, pharmaceuticals, pharmaceutical intermediates, and electronic device materials (insulating films).

Claims (6)

−H(水素)基と、該−H基が結合する炭素原子に隣接する両隣の炭素原子に、トリアルキルシリルオキシ基と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物を、リチウムアミド、又はマグネシウムアミドもしくは亜鉛アミドとリチウム塩とのアート錯体型の複塩と反応させる工程を含む、
トリアルキルシリル基と、該トリアルキルシリル基が結合する炭素原子に隣接する両隣の炭素原子に、−OSO基[RはC2m+1(mは整数)あるいはアルキルで置換されていてもよいアリール又はヘテロアリール基である]と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物を合成するための方法。
A -H and (hydrogen) group, the carbon atom of the neighboring adjacent to the carbon atom to which the -H group is attached, and trialkyl silyl group, -X group [X is F, Cl or Br] and Reacting an aromatic compound with lithium amide or an art complex type double salt of magnesium amide or zinc amide and a lithium salt,
A trialkylsilyl group, the carbon atom of the neighboring adjacent to the carbon atom to which the trialkylsilyl group is bonded, -OSO 2 R 1 group [R 1 is substituted by C m F 2m + 1 (m is an integer) or alkyl Is an aryl or heteroaryl group which may be] and a method for synthesizing an aromatic compound having a -X group [X is F, Cl or Br].
−H(水素)基と、該−H基が結合する炭素原子に隣接する両隣の炭素原子に、トリアルキルシリルオキシ基と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物を、リチウムアミド、又はマグネシウムアミドもしくは亜鉛アミドとリチウム塩とのアート錯体型の複塩と反応させ、トリアルキルシリル基と、該トリアルキルシリル基が結合する炭素原子に隣接する両隣の炭素原子に、−OSO基[RはC2m+1(mは整数)あるいはアルキルで置換されていてもよいアリール又はヘテロアリール基である]と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物を得る工程と、
前記芳香族化合物にフッ化物イオンを反応させる工程とを含む、アラインを生成するための方法。
A -H and (hydrogen) group, the carbon atom of the neighboring adjacent to the carbon atom to which the -H group is attached, and trialkyl silyl group, -X group [X is F, Cl or Br] and An aromatic compound is reacted with lithium amide, or an ate complex type double salt of magnesium amide or zinc amide and a lithium salt, and a trialkylsilyl group and a carbon atom to which the trialkylsilyl group is bonded are adjacent to each other. carbon atoms, -OSO 2 R 1 group and [R 1 is C m F 2m + 1 (m is an integer) or may be substituted with an alkyl aryl or heteroaryl group], -X group [X is F, Obtaining an aromatic compound comprising: Cl or Br].
Reacting fluoride ions with the aromatic compound. A method for producing alignment.
−H(水素)基と、該−H基が結合する炭素原子に隣接する両隣の炭素原子に、トリアルキルシリルオキシ基と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物を、リチウムアミド、又はマグネシウムアミドもしくは亜鉛アミドとリチウム塩とのアート錯体型の複塩と反応させ、
トリアルキルシリル基と、該トリアルキルシリル基が結合する炭素原子に隣接する両隣の炭素原子に、−OSO基[RはC2m+1(mは整数)あるいはアルキルで置換されていてもよいアリール又はヘテロアリール基である]と、−X基[XはF、Cl又はBrである]とを有する芳香族化合物を得る工程と、
該芳香族化合物にフッ化物イオンを反応させ、アラインを生成する工程と、
該アラインに求核剤を反応させる工程と、
を含む、多環性芳香族化合物又は置換芳香族化合物を合成するための方法。
A -H and (hydrogen) group, the carbon atom of the neighboring adjacent to the carbon atom to which the -H group is attached, and trialkyl silyl group, -X group [X is F, Cl or Br] and Reacting an aromatic compound with lithium amide, or an art complex type double salt of magnesium amide or zinc amide and a lithium salt;
A trialkylsilyl group, the carbon atom of the neighboring adjacent to the carbon atom to which the trialkylsilyl group is bonded, -OSO 2 R 1 group [R 1 is substituted by C m F 2m + 1 (m is an integer) or alkyl An aromatic or heteroaryl group] and -X group [X is F, Cl or Br] to obtain an aromatic compound;
Reacting the aromatic compound with fluoride ions to produce alignment;
Reacting the align with a nucleophile;
A process for synthesizing a polycyclic aromatic compound or a substituted aromatic compound.
トリアルキルシリル基と、該トリアルキルシリル基が結合する炭素原子に隣接する両隣の炭素原子に、−OSO基[RはC2m+1(mは整数)あるいはアルキルで置換されていてもよいアリール又はヘテロアリール基である]と、フルオロ基とを有する芳香族化合物であって、
前記トリアルキルシリル基、−OSO基及びフルオロ基が直接結合している環が炭素六員芳香族環である該炭素六員芳香族環単環化合物又は該炭素六員芳香族環の縮合環化合物である、芳香族化合物。
A trialkylsilyl group, the carbon atom of the neighboring adjacent to the carbon atom to which the trialkylsilyl group is bonded, -OSO 2 R 1 group [R 1 is substituted by C m F 2m + 1 (m is an integer) or alkyl An aryl or heteroaryl group] and a fluoro group,
The trialkylsilyl group, -OSO 2 R 1 groups and carbon Motoroku membered aromatic ring fluoro group is bonded directly Ru Oh carbon six-membered aromatic rings monocyclic compound or a carbon Motoroku membered aromatic ring An aromatic compound which is a condensed ring compound of
請求項4に記載の化合物からなるアラインの生成のための中間体。 An intermediate for the production of an align consisting of the compound of claim 4 . 請求項4に記載の化合物にフッ化物イオンを反応させることを含む、アラインを生成するための方法。 A method for producing alignment, comprising reacting a compound of claim 4 with fluoride ions.
JP2016507803A 2014-03-13 2015-03-11 Synthetic intermediate for producing 3-haloalignment and method for synthesizing the same Active JP6461914B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014050883 2014-03-13
JP2014050883 2014-03-13
PCT/JP2015/057210 WO2015137417A1 (en) 2014-03-13 2015-03-11 Synthetic intermediate for producing 3-haloaryne and method for synthesising said synthetic intermediate

Publications (2)

Publication Number Publication Date
JPWO2015137417A1 JPWO2015137417A1 (en) 2017-04-06
JP6461914B2 true JP6461914B2 (en) 2019-01-30

Family

ID=54071856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016507803A Active JP6461914B2 (en) 2014-03-13 2015-03-11 Synthetic intermediate for producing 3-haloalignment and method for synthesizing the same

Country Status (2)

Country Link
JP (1) JP6461914B2 (en)
WO (1) WO2015137417A1 (en)

Also Published As

Publication number Publication date
WO2015137417A1 (en) 2015-09-17
JPWO2015137417A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
Guo et al. Palladium catalyzed direct α-arylation of α, α-difluoroketones with aryl bromides
Dangroo et al. An efficient synthesis of phosphoramidates from halides in aqueous ethanol
JP2013170151A (en) Direct method for producing indole-3-triflone and indole triflone derivative
Zhang et al. Cu-catalyzed chlorotrifluoromethylation of alkenes with CF3SO2Cl
WO2013108024A1 (en) Aromatic compounds and methods of making the same
Lu et al. Dipeptide-derived multifunctional phosphonium salt as a catalyst to synthesize highly functionalized chiral cyclopentanes
CN111393393B (en) Preparation method of racemic beta-aryl-gamma-butyrolactone compound
CN110669002B (en) Synthetic method of 2-fluoro-3-hydroxypyridine-4-carboxylic acid
JP6461914B2 (en) Synthetic intermediate for producing 3-haloalignment and method for synthesizing the same
CN115010753A (en) Method for preparing phosphorylated gem-difluorodiene compound in aqueous phase
WO2022170218A1 (en) Intramolecular cyclization for general synthesis of bicyclic alkyl bioisostere boronates
US10544177B2 (en) Chiral dihydrobenzooxaphosphole ligands and synthesis thereof
CN108659028B (en) (Z) -type fluoroalkyl alkenyl borate and preparation method and application thereof
JP4083028B2 (en) Method for producing arylborane compound
EP3484842B1 (en) Halogen-containing metathesis catalysts and methods thereof
WO2014126990A1 (en) Synthesis and use of fluorinated compounds
KR102050066B1 (en) New 1,1-diboryl-1-metalic alkyl compounds, preparation method thereof and preparation method of 1,1,-diboronate ester compounds using the same
WO2019159596A1 (en) Method for preparing coupled body of leaving group-containing organic compound and organosilicon compound
WO2009081872A1 (en) Method for producing 6-halogeno-3-arylpyridine derivative
JP4509327B2 (en) Process for producing N, N-disubstituted-4-aminocrotonic acid ester
JP4643474B2 (en) Method for producing mono-substituted succinimide
CN117715882A (en) Method
JP6659445B2 (en) Debenzylation method
RU2565780C1 (en) Method of producing 3-(2-alkynyl)-1,3-oxazolidines
Wang et al. Copper-catalysed regio-and stereoselective addition of N-heterocycles to gem-dihalo-olefins: synthesis of useful N-vinyl halides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6461914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250