JP6461592B2 - 磁気に基づく体内プローブ追跡システムのための薄型位置特定パッド - Google Patents

磁気に基づく体内プローブ追跡システムのための薄型位置特定パッド Download PDF

Info

Publication number
JP6461592B2
JP6461592B2 JP2014258372A JP2014258372A JP6461592B2 JP 6461592 B2 JP6461592 B2 JP 6461592B2 JP 2014258372 A JP2014258372 A JP 2014258372A JP 2014258372 A JP2014258372 A JP 2014258372A JP 6461592 B2 JP6461592 B2 JP 6461592B2
Authority
JP
Japan
Prior art keywords
magnetic field
housing
pad
field generator
flat surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258372A
Other languages
English (en)
Other versions
JP2015119971A (ja
Inventor
アサフ・ゴバリ
ヤロン・エフラス
アンドレス・クラウディオ・アルトマン
バディム・グリナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Israel Ltd
Original Assignee
Biosense Webster Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Israel Ltd filed Critical Biosense Webster Israel Ltd
Publication of JP2015119971A publication Critical patent/JP2015119971A/ja
Application granted granted Critical
Publication of JP6461592B2 publication Critical patent/JP6461592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、概して、体内位置追跡に関し、特に、体内プローブの磁気に基づく位置追跡に関する。
カテーテルなどの体内プローブの位置は、磁気位置追跡技術を使用して患者の身体内で追跡することができる。例えば、その開示を参照により本明細書に援用する米国特許出願公開第2007/0265526号は、患者に対して医療処置を行うための、磁気位置追跡システムについて記載している。患者は、患者の体の下にあるテーブルの上面上に位置付けられた、位置特定パッドを含むテーブルの上面上に位置付けられる。位置特定パッドは、それぞれの磁場を発生させるように動作可能であって、位置特定パッドの厚さ寸法が3センチメートル以下であるように配置される、1つ又は2つ以上の磁場発生器を含む。ポジションセンサが、患者の身体内に挿入される侵襲性医療用デバイスに固定され、身体内における医療用デバイスの位置を測定するのに、磁場を感知するように配置される。
磁気共鳴映像法(MRI)は、患者の組織を、特に軟組織を可視化するのに使用される撮像技術である。この技術は、原子核、典型的には水素原子核をそれらの平衡状態から励起することと、原子核が平衡状態に緩和するときに原子核により放出される共鳴高周波信号を測定することとに依存する。測定された共鳴高周波信号は、組織の高品質画像を作成するのに使用される。医療従事者は、MRIを他の医療処置と併せて使用してもよい。
本発明の一実施形態は、平坦な表面を有するハウジングと、複数の磁場発生器とを含む、位置特定パッドを提供する。複数の磁場発生器は、ハウジングに固定され、平坦な表面に垂直なそれぞれの軸線を有するそれぞれの磁場を発生させるように構成される。
いくつかの実施形態では、平坦な表面は面内にある。他の実施形態では、平坦な表面は湾曲している。更に他の実施形態では、ハウジングは5ミリメートル以下の厚さを有する。いくつかの実施形態では、磁場発生器は、表面に平行な巻き線を有するコイルを含む。他の実施形態では、ハウジングは、磁場発生器を保持するとともに、磁場発生器内の共鳴を緩衝するように構成された弾性材料を含む。
また、本発明の一実施形態によれば、平坦な表面を有するハウジングを提供することを含む、位置特定パッドを作成する方法が提供される。複数の磁場発生器は、磁場発生器が平坦な表面に垂直なそれぞれの軸線を有するそれぞれの磁場を発生させるようにして、ハウジングに固定される。
更に、本発明の一実施形態によれば、患者の身体の近傍で平坦な表面に連結された複数の磁場発生器を、複数のそれぞれの駆動信号を用いて駆動して、磁場発生器によって平坦な表面に垂直なそれぞれの軸線を有するそれぞれの磁場を発生させることを含む、位置追跡方法が提供される。患者の身体内に挿入された体内プローブに連結されたポジションセンサ内で磁場によって誘起される、少なくとも1つの電気信号が測定される。身体内におけるプローブの位置は、電気信号に基づいて推定される。
いくつかの実施形態では、ポジションセンサは単軸センサを含む。他の実施形態では、プローブの位置を推定することは、電気信号の平均の大きさを計算することと、平均の大きさに応じて、平坦な表面からのプローブの距離を推定することとを含む。
いくつかの実施形態では、プローブの位置を推定することは、複数の磁場発生器によって発生した磁場によってそれぞれ誘起される電気信号の複数成分の大きさを計算することと、平均の大きさに応じて、磁場発生器に対するプローブの横方向位置を推定することとを含む。他の実施形態では、磁場発生器を駆動することは、異なるそれぞれの周波数を有する複数の駆動信号を発生させることを’含み、大きさを計算することは、異なる周波数同士を弁別することによって電気信号の成分同士を区別することを含む。更に他の実施形態では、プローブの位置を推定することは、少なくとも横方向位置を初期条件として使用する繰返し位置推定プロセスを行うことによって、プローブの位置を更に精密にすることを含む。
本発明は、図面と併せてとらえることで、以下の本発明の実施形態の詳細な説明から、より十分に理解されるであろう。
本発明の一実施形態による、磁気共鳴映像(MRI)システムと並置された磁気カテーテル追跡システムの概略描画図である。 本発明の実施形態による、位置特定パッドの概略描画図である。 本発明の実施形態による、位置特定パッドの概略描画図である。 本発明の一実施形態による、位置特定パッドに対するカテーテルの位置を推定する方法を概略的に示すフローチャートである。
概論
カテーテルなどの体内プローブは、様々な治療的及び診断的医療処置で使用される。プローブは、患者の生体に挿入され、体腔内の標的領域へと進められて医療処置を行う。磁場に基づく位置追跡システムでは、外部磁場が患者の身体に印加される。カテーテルの遠位端付近に設置されたセンサは、電気信号を生成することによって磁場に応答する。信号は、追跡システムによって、患者の身体内におけるカテーテルの位置及び配向を位置決めするのに使用される。磁場は、一般的に、複数の磁場発生器、例えば磁場発生コイルによって生成される。
本明細書に記載する本発明の実施形態は、小型で平らな位置特定パッド構成を提供する。開示する位置特定パッドは、表面上に取り付けられた複数の磁場発生器(例えば、平面コイル)を備える。磁場発生器の軸線は全て表面に対して垂直である。表面が全体的に平らであるとき、磁場発生器の軸線は互いに平行である。
結果として得られる位置特定パッドは薄型であり、患者の身体の下に簡単に敷くことができる。いくつかの実施形態では、例えばMRIスキャナの形に適合させるために、位置特定パッドの表面は僅かに成形されており、即ち、平面から僅かに偏向している。
いくつかの実施形態では、位置特定パッド内の磁場発生器は、異なる周波数を有する交流(AC)駆動信号を用いて駆動されるので、カテーテルの遠位端にあるセンサ内で誘起される信号を互いに区別することができる。平行な軸線を有する磁場発生器を使用することで、結果として得られる磁場を数学的にモデリングすることが容易になり、それによって、カテーテルのセンサ出力に基づくカテーテルの遠位端の位置及び配向の計算が簡略化される。
一実施例では、プローブ位置は二段階プロセスで推定される。第一段階で、プローブ内のポジションセンサによって感知されたコンポジット信号の絶対量から、位置特定パッドの面からのプローブの高さが推定される。次に、コンポジット信号における異なる周波数の相対振幅を分析することによって、位置特定パッドに対するプローブの横断方向位置を決定することができる。この初期推定値は、それ自体を出力することができ、又はより正確な繰返し位置推定プロセスに対する開始点として使用することができる。
いくつかの実施形態では、磁場発生器は、MRIスキャナによって発生することがある可聴周波数共鳴(audio frequency resonance)を緩衝するように、ハウジング内のシリコーンに埋め込まれたコイルを備える。他の実施形態では、高インピーダンスの磁気コイル内へと信号を駆動するのに使用される低インピーダンス増幅器間におけるインピーダンス整合のため、変圧器が使用される。
要約すると、本明細書に記載する改善された位置特定パッドの構成により、患者がMRIスキャナの二次磁場環境(second magnetic environment)内に置かれた状態で、磁気プローブ追跡システムを動作させることが可能になる。開示する位置特定パッドは、プローブ内の単軸ポジションセンサと共に使用するのに適しているので、より単純でより薄いプローブが医療処置に使用されてもよい。
システムの説明
図1は、本発明の一実施形態による、磁気共鳴映像(MRI)と並置された磁気カテーテル追跡システム20の概略描画図である。システム20は、MRIスキャナ22と、カテーテルなどの体内プローブ24と、制御コンソール26とを備える。プローブ24は、カテーテル24の遠位端34に(図2Aにおいて後で示されるように)、患者32の身体内におけるカテーテル24の位置を追跡するのに使用されるセンサを備える。
カテーテル24は、例えば、複数の地点で心臓腔の組織に接触する、カテーテル24の遠位端34付近に配設された複数の電極を用いて、患者32の心臓28の心腔内における電位をマッピングするのに使用されてもよい。代替実施形態では、カテーテル24は、変更すべきところは変更して、心臓又は他の身体器官において、他の治療及び/又は診断目的のために使用されてもよい。
心臓専門医などの操作者30は、本明細書では心腔であると仮定される体腔にプローブの遠位端34が入るように、患者32の血管系を通してプローブ24を経皮的に挿入する。遠位端34については、図2Aを参照してより詳細に例示し説明する。
コンソール26は、磁気位置感知を使用して、心臓28内部におけるカテーテル24の遠位端34の配向及び位置座標を決定する。感知に関して、コンソール26は、挿入図に示され、且つその下ではテーブル37上にいる患者の胴体の下に断面で示されるような、位置特定パッド38内の1つ又は2つ以上の磁場発生器39を駆動する、駆動回路36を動作させる。遠位端34に設置されたポジションセンサは、位置特定パッド38によって発生した磁場に応答して電気信号を発生させ、それによってコンソール26が、位置特定パッド38に対する遠位端34の位置及び配向を、したがって患者32の心臓内における位置及び配向を決定することができる。
MRIスキャナ22は、併せて空間的に異なる磁場を発生させる、傾斜磁場コイルを含む磁場コイル29を備える。空間的に異なる磁場は、スキャナによって発生する高周波(RF)信号の空間位置確認を提供する。更に、スキャナは、送信/受信コイル31を備える。送信モードでは、コイル31は、患者32に対してRFエネルギーを放射し、このRFエネルギーは患者の組織の核スピンと相互作用し、それによって原子核の磁気モーメントをそれらの平衡位置から離れて再整列させる。受信モードでは、コイル31は、組織の原子核がそれらの平衡状態へと緩和するときに患者の組織から受信するRF信号を検出する。
プロセッサ40は、図1に示される実施形態においては二重の機能性を有する。第一に、プロセッサ40は、位置特定パッド38によって発生する磁場に応答して、カテーテルの遠位端34においてセンサ内で誘起される電気信号を受信する、インターフェース回路構成(図示なし)を有し、受信した電気信号を使用して、患者の身体内におけるカテーテルの位置を特定する。
第二に、プロセッサ40は、必要な傾斜磁場を形成することを含めて、回路構成を使用してMRIコイル29を制御し、並びに他の回路構成を使用して、患者32の周囲で送信/受信コイル31を動作させることによって、MRIスキャナ22を動作させる。プロセッサ40は、コイル31が受信する信号を使用して、患者32の心臓28の、又は少なくとも撮像すべき心腔のMRIデータを取得する。このデータを使用して、プロセッサ40は、心臓28の画像44をディスプレイ42上で操作者30に表示する。別の方法としては、プロセッサ40の機能は、磁気位置追跡システムを管理するものと、MRIスキャナを管理するものとの2つのプロセッサ間で分割されてもよい。
いくつかの実施形態では、磁気追跡システムによって取得したカテーテルの位置を、MRIスキャナ22によって取得した、ディスプレイ42上の心臓28の画像44に重ね合わせることができる。更に他の実施形態では、操作者30は、1つ又は2つ以上の入力デバイス46を使用して画像44を操作することができる。
プロセッサ40はまた、例えばシステム性能を低下させることがある、それぞれのMRIシステム及び磁気カテーテル追跡システムのあらゆる磁気妨害を、又はそれらが共存することによる影響を低減するように構成されてもよい。言い換えると、プロセッサ40は、例えば、MRIスキャナ22で使用されるMRIコイル29及び31によって発生する磁場と、磁気カテーテル追跡システム用の位置特定パッド38内にある磁場発生器39との間のあらゆる結合作用を補償するように構成される。
典型的には、プロセッサ40は一般用途コンピュータで構成され、コンピュータには、本明細書に記載する機能を実行するソフトウェアがプログラムされている。ソフトウェアは、例えば、ネットワークを介して電子形式でプロセッサ40にダウンロードされてもよく、或いは、光学的、磁気的、又は電子的記憶媒体などの有形の持続的な媒体上で提供されてもよい。別の方法としては、プロセッサ40のいくつかの又は全ての機能は、専用の若しくはプログラム可能なデジタルハードウェア構成要素によって、又はハードウェア要素とソフトウェア要素との組み合わせを使用することによって、実施されてもよい。
磁気カテーテル追跡システムは、本明細書に記載の処置を実行するように好適に変更された、Biosense Webster,Inc.(Diamond Bar,California)から入手可能な、CARTO XP EP Navigation and Ablation Systemとして実現することができる。
図1に示される実施形態は、単に概念を明確にするためのものであり、本発明の実施形態を限定しようとするものではない。MRIスキャナ22及び磁気カテーテル追跡システムは、各システムに対して別個のプロセッサを有し、システム20で示される実施形態のように共有していなくてもよい。MRIスキャナ及びカテーテル追跡システムに対して、単一の又は別個のディスプレイが使用されてもよい。
MRIと互換性のある位置特定パッド
図2Aは、本発明の一実施形態による、位置特定パッド38の概略描画図である。位置特定パッド38は、図2Aの横断方向のXY面で示される、アレイ状に配置された複数の磁場発生器39を備える。均等なサイズの12個の発生器39が、図2Aの実施形態に示されている。アレイは、様々なプラスチックなど、任意の好適な材料から作られてもよい、ハウジング内で保持される。XYZ座標軸は、厚さtを有する位置特定パッド39のハウジングの左下に示されている。
各発生器39は、巻き線がXY面に平行である平面コイル100を備える。いくつかの実施形態では、コイル100はトレンチ105に取り囲まれている。コイルは、銅などの任意の好適な材料から形成されてもよい。一般的には電流である信号がコイル100に印加されると、コイル100は、印加信号に応答してZ軸に沿って、且つコイルの面(XY面)に垂直に配向される、磁場Bを発生させる。この例では、全ての磁場の軸線は互いに平行であり、位置特定パッドの表面に垂直である。位置特定パッドの上方の領域における合成磁場は、複数の磁場発生器による磁場Bを重ね合わせたものを含む。
患者32が、図1の挿入図に示されるように位置特定パッド38上に横たわっており、カテーテル24が位置特定パッドの上にいる患者の身体内の標的領域内へと進められると、カテーテルの遠位端34付近にある磁気センサコイル120が、合成磁場に応答して、一般的には電圧である電気信号を発生させる。センサコイル120は、ここでは、カテーテル24の遠位端34にある単軸センサであるものと仮定する。(別の方法としては、カテーテル24は、多軸ポジションセンサ、例えば3つの相互に直交するコイルを備えるセンサを備えてもよい。)
本明細書に提示する実施形態では、位置特定パッドは、例えば患者が位置特定パッドの上に横たわった状態で、患者とテーブル37の上面との間に配置されるように構成される。位置特定パッドの横断方向寸法は、一般的に、MRIスキャナ内へと移動する、患者テーブル37の横断方向寸法に限定される。位置特定パッドの厚さtは、通常、5mm以下であるように構成される。このようにして、MRIスキャナが磁気追跡システムの位置特定パッド38に衝突若しくは干渉することがなく、又はその逆もない。
システム20のプロセッサ40は、センサ120が感知した電気信号を使用して、XYZ軸の原点に対するセンサ120の位置
Figure 0006461592
ベクトル及び配向ベクトル
Figure 0006461592
を計算するように構成される。位置ベクトル
Figure 0006461592
はセンサ120の原点からのベクトルである。配向ベクトル
Figure 0006461592
はカテーテル24を通る軸性ベクトルである。図2Aに示されるXYZ座標系の原点の位置は、単に概念を明確にするためのものであり、本発明の実施形態を限定しようとするものではない。原点は、位置特定パッドに対する任意の好適な位置に規定されてもよい。
図2Bは、本発明の一実施形態による、位置特定パッドの代替実施形態の概略描画図である。この実施形態では、コイル100の各列140は平面であるが、列同士は僅かに湾曲した表面上にある。この構成でも、コイル100によって発生する磁場の軸線は位置特定パッドの表面に垂直である。図2Bの湾曲した構成は、例えば、MRIスキャナ22のチャンバ内に適合させるのに有用である。
図2Bに示される右端の列において、磁場発生器39は、アレイ全体を覆う、プラスチックなどの任意の好適な材料から形成されてもよい、コイル100を覆う蓋150を有している。
図2Bの構成では、後述するように、コイル100によって発生する磁場Bは互いに対してほぼ平行である。図2Bに示される湾曲によって、磁場Bが平行から僅かに偏向している場合、カテーテル位置追跡システムの精度に対する影響は無視できる程度であることが見出されている。
位置特定パッド38をMRI環境で使用すると、大型の磁気MRIコイルは、0.5〜3テスラの範囲などの非常に大きな磁場を発生させる。CARTOシステムなどの磁気カテーテル追跡システムは、可聴周波数範囲内のAC周波数を有する磁石を使用する。したがって、大型のMRI磁石の存在下で可聴周波数を用いて磁気コイル100を駆動させると、小型の磁気コイル100は、例えば19〜22kHzからの可聴周波数で共鳴する場合がある。そのため、いくつかの実施形態では、この共鳴を緩衝するか又は別の形で防ぐために、シリコーン若しくは他の任意の好適な材料などの弾性材料にコイルが埋め込まれる。例えば、コイル100の周囲のトレンチ105及び他の任意の領域を、MRI環境内で位置特定パッド38内のコイル100の可聴周波数共鳴を緩衝する、シリコーン又は他の任意の好適な材料で充填することができる。
小型の磁気コイル100はまた、例えば、これらの周波数における皮膚の作用並びにコイル100の小型サイズにより、600Ω程度の大きいインピーダンスを呈する可能性がある。これらのコイルは、一般的に6Ω程度の出力特性インピーダンスを有する、ドライバ増幅器36を用いて駆動される。いくつかの実施形態では、これらの高インピーダンスコイルを駆動するため、6Ω〜600Ωのインピーダンス不整合を克服するインピーダンス変換比を有する変圧器を、ドライバ増幅器36に使用することができる。
図2A及び2Bのアレイ構成は、単に視覚的に明瞭にするために示されるものであり、本発明の実施形態を限定しようとするものではない。任意の好適な数の磁気コイル100が、任意の好適な構成で使用されてもよい。コイル100は平らな円形に限定されず、任意の好適な形状のものであってもよい。
MRIに適合性をもつ位置特定パッドを用いたカテーテルの位置及び配向の計算
上述したように、開示する実施形態では、位置特定パッド38のコイル100によって発生する磁場は、互いに平行であって、位置特定パッドの表面に垂直である。結果として、合成磁場の大きさは、Z座標に伴って変動するが、X及びYの関数としては実質的に一定である。したがって、単軸センサ(例えば、図2Aのセンサ120)を使用すると、センサによって感知されるコンポジット信号の大きさは、位置特定パッド38からの遠位端34の高さを強く示唆するが、位置特定パッドに対する遠位先端の横方向位置に対しては非感受性である。この非感受性により、プロセッサ40によって行われる位置及び配向推定プロセスにおいて、変換が不正確になるか、又は更には変換がなされないことがある。
この問題に対する1つの可能な解決策は、三軸センサなどのより複雑なポジションセンサを、カテーテル内で使用することである。かかる構成は、上記に挙げた米国特許出願第2007/0265526号に記載されている。しかしながら、この解決策は複雑であり、カテーテルの直径が増大する。
いくつかの実施形態では、プロセッサ40は、二段階プロセスでカテーテル24の位置及び配向を推定する。後述するこのプロセスにより、単軸センサを薄型位置特定パッドと併用することができる。開示するプロセスは、コンピュータ的に単純であり、迅速且つ効率的に収束する。一般的に、正確な位置を提供するには合計5個のコイル100で十分であるが、より高い精度及び堅牢性のためには、より多数のコイル(例えば、図2A及び2Bに示されるような12個のコイル)が好ましい。
いくつかの実施形態では、コイル100は、異なるそれぞれの周波数を有するAC信号を用いて駆動されるので、単軸センサコイル内で誘起される信号を互いに区別することができる。
図3は、本発明の一実施形態による、位置特定パッド38に対するカテーテル24の遠位端34の位置を推定する方法を概略的に示すフローチャートである。位置決めステップ200で、位置特定パッド38を患者32の下に位置決めする。挿入ステップ210で、カテーテル24を患者32に挿入する。発生ステップ220で、異なる周波数を有するそれぞれのAC駆動信号を用いてコイル100を駆動する。
測定ステップ230で、磁場に応答してカテーテルセンサ120内で誘起される電圧信号をプロセッサ40によって測定する。第1の推定ステップ240で、電圧信号の平均(例えば、RMS)強度(コイル100によって生成される合成磁場の平均の大きさに比例する)を計算することによって、位置特定パッドからのセンサの初期Z方向距離をプロセッサ40によって推定する。
第2の推定ステップ250で、誘起電圧信号における個別の異なる周波数成分の相対振幅を分析することによって、位置特定パッド38に対するセンサの初期XY位置をプロセッサ40によって推定する。各信号成分は異なる周波数を有するので、プロセッサ40は、異なるコイル100によって誘起される信号成分同士を弁別することができる。プロセッサ40は、この目的に適したデジタルフィルタ処理を用いて、センサ120が感知した信号をフィルタ処理してもよい。
繰返し推定ステップ260で、センサのステップ250による初期XY位置推定値とステップ240によるZ位置推定値とを、プロセッサ40によって更に精密にする。一般的に、プロセッサ40は、初期XYZ座標(ステップ240及び250の出力)を初期条件として使用する、繰返し位置推定プロセスを実施する。初期条件が比較的正確であることにより、繰返しプロセスは、カテーテル遠位端の正確なXYZ座標へと迅速に信頼性高く収束する。
したがって、上述の実施形態は一例として引用したものであり、また本発明は上記に具体的に図示及び記載したものに限定されないことは認識されるであろう。むしろ、本発明の範囲には、上述された種々の特徴の組み合わせ及び下位の組み合わせ、並びに上記の説明を読むことで当業者には想到されるであろう、先行技術に開示されていないそれらの変形及び修正が含まれる。参照により本特許出願に組み込まれた文書は、これらの組み込まれた文書内のどんな用語でも、本明細書で明示的又は暗黙的に行われる定義と相反するように定義される場合を除き、本出願の一体部分と見なされるべきであり、本明細書における定義のみが検討されるべきである。
〔実施の態様〕
(1) 平坦な表面を有するハウジングと、
前記ハウジングに固定され、前記平坦な表面に垂直なそれぞれの軸線を有するそれぞれの磁場を発生させるように構成された、複数の磁場発生器と、を含む、位置特定パッド(location pad)。
(2) 前記平坦な表面が面内にある、実施態様1に記載の位置特定パッド。
(3) 前記平坦な表面が湾曲している、実施態様1に記載の位置特定パッド。
(4) 前記ハウジングが5ミリメートル以下の厚さを有する、実施態様1に記載の位置特定パッド。
(5) 前記磁場発生器が前記表面に平行な巻き線を有するコイルを備える、実施態様1に記載の位置特定パッド。
(6) 前記ハウジングが、前記磁場発生器を保持するとともに、前記磁場発生器内の共鳴を緩衝するように構成された弾性材料を含む、実施態様1に記載の位置特定パッド。
(7) 位置特定パッドを作成する方法であって、
平坦な表面を有するハウジングを提供することと、
複数の磁場発生器を前記ハウジングに固定することであって、前記磁場発生器が前記平坦な表面に垂直なそれぞれの軸線を有するそれぞれの磁場を発生させるようにする、ことと、を含む、方法。
(8) 前記平坦な表面が面内にある、実施態様7に記載の方法。
(9) 前記平坦な表面が湾曲している、実施態様7に記載の方法。
(10) 前記ハウジングが5ミリメートル以下の厚さを有する、実施態様7に記載の方法。
(11) 前記磁場発生器が前記表面に平行な巻き線を有するコイルを備える、実施態様7に記載の方法。
(12) 前記磁場発生器を前記ハウジングに固定することが、前記磁場発生器内の共鳴を緩衝するように、弾性材料を使用して前記磁場発生器を前記ハウジング内で保持することを含む、実施態様7に記載の方法。
(13) 位置追跡方法であって、
患者の身体の近傍で平坦な表面に連結された複数の磁場発生器を、複数のそれぞれの駆動信号を用いて駆動して、前記複数の磁場発生器によって前記平坦な表面に垂直なそれぞれの軸線を有するそれぞれの磁場を発生させることと、
前記患者の身体内に挿入された体内プローブに連結されたポジションセンサ内で前記磁場によって誘起される、少なくとも1つの電気信号を測定することと、
前記電気信号に基づいて、前記身体内における前記プローブの位置を推定することと、を含む、方法。
(14) 前記ポジションセンサが単軸センサを含む、実施態様13に記載の方法。
(15) 前記プローブの位置を推定することが、前記電気信号の平均の大きさを計算することと、前記平均の大きさに応じて、前記平坦な表面からの前記プローブの距離を推定することと、を含む、実施態様13に記載の方法。
(16) 前記プローブの位置を推定することが、前記複数の磁場発生器によって発生した前記磁場によってそれぞれ誘起される前記電気信号の複数成分の大きさを計算することと、前記平均の大きさに応じて、前記磁場発生器に対する前記プローブの横方向位置を推定することと、を含む、実施態様13に記載の方法。
(17) 前記磁場発生器を駆動することが、異なるそれぞれの周波数を有する前記複数の駆動信号を発生させることを含み、前記大きさを計算することが、前記異なる周波数同士を弁別することによって前記電気信号の成分同士を区別することを含む、実施態様16に記載の方法。
(18) 前記プローブの位置を推定することが、少なくとも前記横方向位置を初期条件として使用する繰返し位置推定プロセスを行うことによって、前記プローブの位置を更に精密にすることを含む、実施態様16に記載の方法。

Claims (9)

  1. 複数の平坦な表面を有するハウジングであって、隣り合う平坦な表面が互いに曲がって接続されることで前記ハウジングが全体として湾曲した形状であるハウジングと、
    前記ハウジングの前記複数の平坦な表面の各々に固定され、前記複数の平坦な表面の各々に垂直なそれぞれの軸線を有するそれぞれの磁場を発生させるように構成された、複数の磁場発生器と、を含み、
    前記ハウジングの前記複数の平坦な表面の各々に固定される前記複数の磁場発生器の複数の軸線は、同一方向に延びる、位置特定パッド。
  2. 前記ハウジングが5ミリメートル以下の厚さを有する、請求項1に記載の位置特定パッド。
  3. 前記磁場発生器が前記表面に平行な巻き線を有するコイルを備える、請求項1に記載の位置特定パッド。
  4. 前記ハウジングが、前記磁場発生器を保持するとともに、前記磁場発生器内の共鳴を緩衝するように構成された弾性材料を含む、請求項1に記載の位置特定パッド。
  5. 請求項1〜4の何れか1つに記載の位置特定パッドと、前記位置特定パッドによって発生した磁場に応答して電気信号を発生させるセンサを有する体内プローブと、前記センサにより発生された前記電気信号に基づき、患者の身体内における前記体内プローブの位置を決定する制御コンソールと、を備えた体内プローブ追跡システム。
  6. 位置特定パッドを作成する方法であって、
    複数の平坦な表面を有するハウジングであって、隣り合う平坦な表面が互いに曲がって接続されることで前記ハウジングが全体として湾曲した形状であるハウジングを提供することと、
    複数の磁場発生器を前記ハウジングの前記複数の平坦な表面の各々に固定することであって、前記複数の磁場発生器が前記複数の平坦な表面の各々に垂直なそれぞれの軸線を有するそれぞれの磁場を発生させるようにする、ことと、を含み、
    前記ハウジングの前記複数の平坦な表面の各々に固定される前記複数の磁場発生器の複数の軸線は、同一方向に延びる、方法。
  7. 前記ハウジングが5ミリメートル以下の厚さを有する、請求項に記載の方法。
  8. 前記磁場発生器が前記表面に平行な巻き線を有するコイルを備える、請求項に記載の方法。
  9. 前記磁場発生器を前記ハウジングに固定することが、前記磁場発生器内の共鳴を緩衝するように、弾性材料を使用して前記磁場発生器を前記ハウジング内で保持することを含む、請求項に記載の方法。
JP2014258372A 2013-12-23 2014-12-22 磁気に基づく体内プローブ追跡システムのための薄型位置特定パッド Active JP6461592B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/138,654 US9474466B2 (en) 2013-12-23 2013-12-23 Low-profile location pad for magnetic-based intra-body probe tracking system
US14/138,654 2013-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018239320A Division JP6710747B2 (ja) 2013-12-23 2018-12-21 位置追跡システム

Publications (2)

Publication Number Publication Date
JP2015119971A JP2015119971A (ja) 2015-07-02
JP6461592B2 true JP6461592B2 (ja) 2019-01-30

Family

ID=52231970

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014258372A Active JP6461592B2 (ja) 2013-12-23 2014-12-22 磁気に基づく体内プローブ追跡システムのための薄型位置特定パッド
JP2018239320A Active JP6710747B2 (ja) 2013-12-23 2018-12-21 位置追跡システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018239320A Active JP6710747B2 (ja) 2013-12-23 2018-12-21 位置追跡システム

Country Status (7)

Country Link
US (1) US9474466B2 (ja)
EP (1) EP2886054A1 (ja)
JP (2) JP6461592B2 (ja)
CN (2) CN104720803A (ja)
AU (2) AU2014274640B2 (ja)
CA (1) CA2875170A1 (ja)
IL (1) IL235533B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10321848B2 (en) 2013-11-06 2019-06-18 St. Jude Medical International Holding S.À R.L. Magnetic field generator with minimal image occlusion and minimal impact on dimensions in C-arm x-ray environments
JP6789942B2 (ja) * 2014-12-01 2020-11-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 医療器具を追跡するためのシステム及び医療デバイス
US11033201B2 (en) 2015-09-04 2021-06-15 Biosense Webster (Israel) Ltd. Inconsistent field-based patch location coordinate correction
US11006853B2 (en) * 2015-09-04 2021-05-18 Biosense Webster (Israel) Ltd. Field-based location coordinate correction
US20170239120A1 (en) * 2016-02-19 2017-08-24 Covidien Lp Bed leveling systems for a surgical table
CN109952071B (zh) 2016-11-21 2022-04-26 圣犹达医疗用品国际控股有限公司 荧光磁场发生器
JP6816285B2 (ja) * 2016-12-13 2021-01-20 セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエルSt. Jude Medical International Holding S.a,r.l. 多層平坦コイル磁気トランスミッタ
US10517612B2 (en) 2017-09-19 2019-12-31 Biosense Webster (Israel) Ltd. Nail hole guiding system
US10278779B1 (en) * 2018-06-05 2019-05-07 Elucent Medical, Inc. Exciter assemblies
EP3843628A1 (en) * 2018-08-30 2021-07-07 Trig Medical Ltd. Birth delivery magnetic tracking system
US11304623B2 (en) 2018-12-25 2022-04-19 Biosense Webster (Israel) Ltd. Integration of medical imaging and location tracking
US20220036560A1 (en) * 2020-07-30 2022-02-03 Biosense Webster (Israel) Ltd. Automatic segmentation of anatomical structures of wide area circumferential ablation points

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370106U (ja) * 1989-11-15 1991-07-12
US5239489A (en) * 1991-05-06 1993-08-24 International Business Machines Corporation Pen position and tilt estimators for a digitizer tablet
CA2197986C (en) * 1994-08-19 2008-03-18 Shlomo Ben-Haim Medical diagnosis, treatment and imaging systems
US5729129A (en) * 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US7809421B1 (en) * 2000-07-20 2010-10-05 Biosense, Inc. Medical system calibration with static metal compensation
US6484118B1 (en) * 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
US20060241397A1 (en) * 2005-02-22 2006-10-26 Assaf Govari Reference pad for position sensing
US9295529B2 (en) * 2005-05-16 2016-03-29 Biosense Webster, Inc. Position tracking using quasi-DC magnetic fields
JP5451076B2 (ja) * 2005-12-15 2014-03-26 コーニンクレッカ フィリップス エヌ ヴェ 参照センサーのモジュラー・アレイを使った金属アーチファクト補償のための電磁的追跡の方法および装置。
US20070265526A1 (en) 2006-05-11 2007-11-15 Assaf Govari Low-profile location pad
US20070265690A1 (en) * 2006-05-12 2007-11-15 Yoav Lichtenstein Position tracking of passive resonance-based transponders
US8082020B2 (en) * 2006-08-07 2011-12-20 Biosense Webster, Inc. Distortion-immune position tracking using redundant magnetic field measurements
EP1944581B1 (en) * 2007-01-15 2011-09-07 Sony Deutschland GmbH Distance, orientation and velocity measurement using multi-coil and multi-frequency arrangement
US7912662B2 (en) 2007-09-24 2011-03-22 General Electric Company System and method for improving the distortion tolerance of an electromagnetic tracking system
US9037213B2 (en) * 2008-01-08 2015-05-19 Robin Medical Inc. Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging
US8504139B2 (en) * 2009-03-10 2013-08-06 Medtronic Xomed, Inc. Navigating a surgical instrument
CA2733621C (en) * 2010-03-10 2017-10-10 Northern Digital Inc. Multi-field magnetic tracking
US9211094B2 (en) * 2010-12-10 2015-12-15 Biosense Webster (Israel), Ltd. System and method for detection of metal disturbance based on contact force measurement
US8847587B2 (en) 2011-07-13 2014-09-30 Biosense Webster (Israel) Ltd. Field generator patch with distortion cancellation
US8644917B2 (en) 2011-09-20 2014-02-04 Albert Einstein Healthcare Network Cardio mapping system and method for cardio mapping
US9173622B2 (en) * 2011-11-03 2015-11-03 Creative Ultrasound Imaging, Inc. Elevating and rotating ultrasound patient stand
JP5836760B2 (ja) * 2011-11-04 2015-12-24 キヤノン株式会社 音響波取得装置および音響波取得方法
NL2009885C2 (en) * 2011-11-30 2014-12-09 Gen Electric System and method for automated landmarking.
JP6272294B2 (ja) 2012-03-18 2018-01-31 トラウマテック ソリューションズ ベー.フェー. 血管内アクセスおよび治療のためのデバイスおよび方法

Also Published As

Publication number Publication date
JP2019080934A (ja) 2019-05-30
JP2015119971A (ja) 2015-07-02
AU2014274640A1 (en) 2015-07-09
US20150173643A1 (en) 2015-06-25
AU2014274640B2 (en) 2019-03-07
AU2019201943A1 (en) 2019-04-11
CN113768489A (zh) 2021-12-10
JP6710747B2 (ja) 2020-06-17
CN104720803A (zh) 2015-06-24
EP2886054A1 (en) 2015-06-24
IL235533B (en) 2018-01-31
IL235533A0 (en) 2015-02-26
CA2875170A1 (en) 2015-06-23
US9474466B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6710747B2 (ja) 位置追跡システム
CN101248996B (zh) 用于电磁跟踪方法和系统的线圈排列
US7650178B2 (en) Magnetic field sensor-based navigation system to track MR image-guided interventional procedures
JP6679786B2 (ja) 扁平型の位置特定パッド用の較正治具および較正方法
US6516213B1 (en) Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging
JP5581042B2 (ja) 物体を追跡するシステム
US20160161575A1 (en) Combined field location and mri tracking
EP1112025B1 (en) Method and apparatus to estimate location and orientation of objects during magnetic resonance imaging
US20130317334A1 (en) Position sensing using electric dipole fields
US20160183838A1 (en) Catheter with synthetic aperture mri sensor
JP7286407B2 (ja) 位置センサを含むカテーテルの較正治具
CN110870790A (zh) 使用外部磁体的具有霍尔传感器的单轴传感器(sas)
Gao et al. Towards magnetic field gradient-based imaging and control of in-body devices
Yusupov et al. Biopsy needle localization using magnetic induction imaging principles: A feasibility study
WO2024074416A1 (en) A medical microdevice and registration apparatus for registering an ultrasound system and a localization system of the microdevice

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6461592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250