JP6460063B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP6460063B2
JP6460063B2 JP2016158093A JP2016158093A JP6460063B2 JP 6460063 B2 JP6460063 B2 JP 6460063B2 JP 2016158093 A JP2016158093 A JP 2016158093A JP 2016158093 A JP2016158093 A JP 2016158093A JP 6460063 B2 JP6460063 B2 JP 6460063B2
Authority
JP
Japan
Prior art keywords
electrode
active material
battery
material layer
endothermic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016158093A
Other languages
Japanese (ja)
Other versions
JP2018010848A (en
Inventor
英世 戎崎
英世 戎崎
英晃 西村
英晃 西村
祐貴 松下
祐貴 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to KR1020170056748A priority Critical patent/KR101949016B1/en
Priority to US15/610,122 priority patent/US10439260B2/en
Priority to CN201710401851.0A priority patent/CN107565187B/en
Publication of JP2018010848A publication Critical patent/JP2018010848A/en
Application granted granted Critical
Publication of JP6460063B2 publication Critical patent/JP6460063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、積層された複数の固体電池と吸熱層とを備える電池に関する。   The present invention relates to a battery including a plurality of stacked solid state batteries and an endothermic layer.

電池は釘刺し等の外部衝撃による短絡等で急激に発熱する場合がある。この場合、電池の一部に吸熱材を用いることで、熱を適切に吸収して、温度上昇を抑制することが可能になる。   A battery may suddenly generate heat due to a short circuit caused by an external impact such as nail penetration. In this case, by using an endothermic material for a part of the battery, it is possible to appropriately absorb heat and suppress an increase in temperature.

このような吸熱材を用いた電池に関する技術として、例えば特許文献1には、正極及び負極の少なくとも一方に吸熱材が設けられた非水電解液二次電池が開示されている。また、特許文献2には、電池の昇温時に吸熱反応を起こして、電池の熱暴走を抑制する吸熱物質を含有させたリチウム二次電池が開示されている。この特許文献2には、正極や負極に、吸熱物質を含有させることができると記載されており、固体電解質中に吸熱物質を混入させる形態についても開示されている。
また、特許文献3には、正極及び負極の少なくとも一方が、集電体と電極合剤との間に介在された導電層を有し、該導電層が、導電材と、結着剤としてのポリフッ化ビニリデンとを含む、非水電解液を備えた非水二次電池が開示されている。そして、この特許文献3には、導電材としてのアセチレンブラックと結着剤としてのポリフッ化ビニリデンとの質量比を28:72にすることが記載されている。また、特許文献4には、正極と、負極と、正極及び負極間に配設された電解液を保持するセパレータとを有するリチウム二次電池に、融点が65℃以上100℃未満、及び融解熱が吸熱である吸熱剤を添加することが開示されている。さらに、この特許文献4の図1には、正極とセパレータとの間に吸熱剤層が配置された形態が開示され、同図3には、正極とセパレータとの間、及び、負極とセパレータとの間に吸熱剤層が配置された形態が開示され、同図4には、負極とセパレータとの間に吸熱剤層が配置された形態が開示されている。また、特許文献4には、正極及び/又は負極内に吸熱剤が混合される形態も開示されている。
As a technique related to a battery using such an endothermic material, for example, Patent Document 1 discloses a non-aqueous electrolyte secondary battery in which an endothermic material is provided on at least one of a positive electrode and a negative electrode. Patent Document 2 discloses a lithium secondary battery containing an endothermic substance that causes an endothermic reaction at the time of temperature rise of the battery and suppresses thermal runaway of the battery. This Patent Document 2 describes that an endothermic substance can be contained in the positive electrode and the negative electrode, and a form in which the endothermic substance is mixed into the solid electrolyte is also disclosed.
Further, in Patent Document 3, at least one of a positive electrode and a negative electrode has a conductive layer interposed between a current collector and an electrode mixture, and the conductive layer includes a conductive material and a binder. A non-aqueous secondary battery including a non-aqueous electrolyte solution containing polyvinylidene fluoride is disclosed. And this patent document 3 describes that the mass ratio of acetylene black as a conductive material to polyvinylidene fluoride as a binder is 28:72. Patent Document 4 discloses that a lithium secondary battery having a positive electrode, a negative electrode, and a separator that holds an electrolytic solution disposed between the positive electrode and the negative electrode has a melting point of 65 ° C. or higher and lower than 100 ° C., and a heat of fusion. It is disclosed to add an endothermic agent that is endothermic. Further, FIG. 1 of Patent Document 4 discloses a form in which an endothermic agent layer is disposed between the positive electrode and the separator, and FIG. 3 illustrates a configuration between the positive electrode and the separator and between the negative electrode and the separator. A form in which the endothermic agent layer is disposed between the two is disclosed, and FIG. 4 discloses a form in which the endothermic agent layer is disposed between the negative electrode and the separator. Patent Document 4 also discloses a form in which an endothermic agent is mixed in the positive electrode and / or the negative electrode.

特開平10−233237号公報Japanese Patent Laid-Open No. 10-233237 特開平11−233150号公報JP-A-11-233150 特開2012−104422号公報JP 2012-104422 A 特開2009−238705号公報JP 2009-238705 A

特許文献1や特許文献4に開示されているように、電解液を用いる二次電池に吸熱材を用いる場合には、イオン伝導性能を大きく低下させることなく、熱を適切に吸収することが可能になると考えられる。これに対し、特許文献2に開示されているように、難燃性の固体電解質を用いた固体電解質層を有する電池(例えば、リチウムイオン二次電池等。以下において「固体電池」ということがある。)の、正極、負極、又は固体電解質層に吸熱材を含有させると、熱を吸収することは可能と考えられる一方で、吸熱材は一般的にイオン伝導性及び電子伝導性がともに低いため、イオン伝導度及び電子伝導度が著しく低下すると考えられる。イオン伝導度や電子伝導度が低下すると固体電池の出力性能が低下するため、従来の技術では、固体電池においては、吸熱材を用いて、出力性能低下を抑制しつつ短絡等の電池発熱時に電池の温度上昇を抑制することは困難であった。また、特許文献3に開示されている導電層は、短絡等による異常発熱時に高抵抗化することにより、電池反応を停止させることが可能になると考えられる。しかしながら、この導電層は、電池反応を停止させるシャットダウン機能が発現するまでの時間が長いため、電池の温度上昇を抑制する効果が限定される。それゆえ、特許文献1〜4に開示されている技術を組み合わせても、電池出力性能の低下を抑制しつつ、短絡等の電池発熱時に電池の温度上昇を抑制することは困難であった。   As disclosed in Patent Document 1 and Patent Document 4, when a heat absorbing material is used for a secondary battery using an electrolytic solution, it is possible to appropriately absorb heat without greatly degrading ion conduction performance. It is thought that it becomes. On the other hand, as disclosed in Patent Document 2, a battery having a solid electrolyte layer using a flame-retardant solid electrolyte (for example, a lithium ion secondary battery or the like. Hereinafter, it may be referred to as a “solid battery”). )), It is considered possible to absorb heat when the positive electrode, the negative electrode, or the solid electrolyte layer contains a heat absorbing material, but the heat absorbing material generally has low ion conductivity and electronic conductivity. It is considered that the ionic conductivity and the electronic conductivity are remarkably lowered. Since the output performance of a solid state battery decreases when the ionic conductivity or the electronic conductivity decreases, the conventional technology uses a heat absorbing material in the solid state battery to suppress a decrease in output performance while the battery generates heat such as a short circuit. It was difficult to suppress the temperature rise. In addition, the conductive layer disclosed in Patent Document 3 is considered to be able to stop the battery reaction by increasing the resistance when abnormal heat is generated due to a short circuit or the like. However, since this conductive layer takes a long time until the shutdown function for stopping the battery reaction is exhibited, the effect of suppressing the temperature rise of the battery is limited. Therefore, even when the techniques disclosed in Patent Documents 1 to 4 are combined, it is difficult to suppress a rise in battery temperature during battery heat generation such as a short circuit while suppressing a decrease in battery output performance.

そこで本発明は、電池出力性能の低下を抑制しつつ、短絡等の電池発熱時に電池の温度上昇を抑制することが可能な電池を提供することを課題とする。   Then, this invention makes it a subject to provide the battery which can suppress the temperature rise of a battery at the time of battery heat_generation | fever, such as a short circuit, suppressing the fall of battery output performance.

本発明者は、正極活物質層、負極活物質層、正極活物質層と負極活物質層との間に設けられた固体電解質層を有する電極体を複数備える電池において、イオン伝導性や電子伝導性の低い吸熱材を、電極体の内部ではなく、電極体の外側に配置することを検討した。その結果、少なくとも1つの隣接する電極体間に少なくとも2つの集電体を備えて、単位電池を構成し、前記単位電池の間、つまり、前記2つの集電体間に吸熱材を配置することにより、電池の出力性能の低下を抑制しつつ、短絡等の電池発熱時における電池の温度上昇を抑制することが可能になることを知見した。本発明は、当該知見に基づいて完成させた。   The present inventor provides a positive electrode active material layer, a negative electrode active material layer, and a battery including a plurality of electrode bodies each having a solid electrolyte layer provided between a positive electrode active material layer and a negative electrode active material layer. It was considered to arrange a heat absorbing material having low property outside the electrode body, not inside the electrode body. As a result, at least two current collectors are provided between at least one adjacent electrode bodies to form a unit cell, and an endothermic material is disposed between the unit cells, that is, between the two current collectors. Thus, it has been found that it is possible to suppress an increase in battery temperature during battery heat generation such as a short circuit while suppressing a decrease in the output performance of the battery. The present invention has been completed based on this finding.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明は、積層された複数の単位電池を備える電池であって、該単位電池は、積層方向の両端にそれぞれ配置された一対の集電体と、該一対の集電体の間に配置された、第1極の活物質層及び該第1極とは異なる第2極の活物質層、並びに、これらの間に配置された固体電解質層、を備える少なくとも1つの電極体と、を具備し、一対の集電体は、第1極の活物質層又は第2極の活物質層と接触しており、積層方向に隣接する単位電池の間に、吸熱材を含む吸熱層を備える、電池である。
In order to solve the above problems, the present invention takes the following means. That is,
The present invention is a battery comprising a plurality of unit batteries stacked, the unit batteries being disposed between a pair of current collectors disposed at both ends in the stacking direction, and the pair of current collectors, respectively. And at least one electrode body comprising a first electrode active material layer, a second electrode active material layer different from the first electrode, and a solid electrolyte layer disposed therebetween. The pair of current collectors is in contact with the active material layer of the first electrode or the active material layer of the second electrode, and includes a heat absorbing layer including a heat absorbing material between unit cells adjacent in the stacking direction. It is.

ここに、本発明において、「第1極」とは、正極又は負極を言う。また、「第1極とは異なる第2極」とは、第1極が正極である場合には第2極が負極であることを言い、第1極が負極である場合には第2極が正極であることを言う。また、本発明において、一対の集電体は、その両方が第1極の活物質層と接触していても良く、その両方が第2極の活物質層と接触していても良く、その一方が第1極の活物質層と接触し且つ他方が第2極の活物質層と接触していても良い。
電池の積層方向に単位電池が複数形成され、単位電池間に吸熱層が備えられることにより、電池の通常使用時には固体電池内部のイオン伝導や電子伝導を妨げることがないので電池の出力性能を維持できる。また、短絡等の電池発熱時には、電池内部(例えば積層方向中央)の電極体で発生した発熱についても、吸熱層によって吸熱することができるため、迅速に温度上昇を抑制することができる。これにより、電池出力性能の低下を抑制しつつ、短絡等の電池発熱時における電池の温度上昇を抑制することができる。
Here, in the present invention, the “first electrode” refers to a positive electrode or a negative electrode. The “second pole different from the first pole” means that the second pole is a negative electrode when the first pole is a positive pole, and the second pole when the first pole is a negative pole. Is the positive electrode. In the present invention, the pair of current collectors may both be in contact with the active material layer of the first electrode, or both of them may be in contact with the active material layer of the second electrode. One may be in contact with the active material layer of the first electrode and the other may be in contact with the active material layer of the second electrode.
Multiple unit cells are formed in the battery stacking direction, and an endothermic layer is provided between the unit cells, so that the ionic conduction and electronic conduction inside the solid battery are not hindered during normal use of the battery, thus maintaining the output performance of the battery. it can. In addition, when the battery generates heat such as a short circuit, the heat generated in the electrode body inside the battery (for example, the center in the stacking direction) can also be absorbed by the endothermic layer, so that the temperature rise can be quickly suppressed. Thereby, the temperature rise of the battery at the time of battery heat generation, such as a short circuit, can be suppressed, suppressing the fall of battery output performance.

また、上記本発明において、上記吸熱層が、上記第1の活物質層と接触している、積層方向に隣接する集電体の間、又は、上記第2の活物質層と接触している、積層方向に隣接する集電体の間に備えられていても良い。これにより、隣接する集電体が同一の極となっており、集電体間の絶縁性を考慮しなくてよいため、上記効果に加えて、吸熱層の厚さなどの設計自由度を高くすることができる。   In the present invention, the endothermic layer is in contact with the first active material layer, between current collectors adjacent in the stacking direction, or in contact with the second active material layer. Further, it may be provided between current collectors adjacent in the stacking direction. As a result, adjacent current collectors have the same pole, and it is not necessary to consider the insulation between the current collectors. In addition to the above effects, the degree of freedom in design such as the thickness of the heat absorption layer is increased. can do.

また、上記本発明において、上記一対の集電体が、いずれも、第1極の活物質層、又は、第2極の活物質層と接触していることが好ましい。このような形態にすることにより、単位電池に偶数個(2個、4個、6個、…)の電極体が備えられる形態にすることができる。これにより、線対称な形状とすることができる。その結果、上記効果に加えて、単位電池形成時、特にプレス成型時に反りを少なくすることができるので、反りが少ない電池を提供することができる。   In the present invention, the pair of current collectors are preferably in contact with the active material layer of the first electrode or the active material layer of the second electrode. By adopting such a form, the unit battery can be provided with an even number (2, 4, 6,...) Of electrode bodies. Thereby, it can be set as a line symmetrical shape. As a result, in addition to the above effects, the warpage can be reduced when the unit battery is formed, particularly at the time of press molding, so that a battery with less warpage can be provided.

また、上記一対の集電体が、いずれも、第1極の活物質層、又は、第2極の活物質層と接触している上記本発明において、上記単位電池は、積層方向の両端にそれぞれ配置された一対の第1極の集電体、該一対の第1極の集電体の、互いに対向する面に接触するようにそれぞれ配置された一対の第1極の活物質層、該一対の第1極の活物質層の、第1極の集電体に接触する面とは反対側の面にそれぞれ接触するように配置された一対の固体電解質層、該一対の固体電解質層の、第1極の活物質層に接触する面とは反対側の面にそれぞれ接触するように配置された、一対の、上記第1極とは異なる第2極の活物質層、及び、該一対の第2極の活物質層の間に、一対の第2極の活物質層のそれぞれと接触するように配置された第2極の集電体、を具備することが好ましい。このような形態にすることにより、単位電池に2個の電極体が備えられる形態にすることができる。これにより、電極体あたりの吸熱材の量が多いので、上記効果に加えて、電極体で発生した熱をより効果的に吸熱層で吸収することができる。また、単位電池を構成する電極体数が少ないことで、製造しやすいという利点もある。   In the present invention in which each of the pair of current collectors is in contact with the active material layer of the first electrode or the active material layer of the second electrode, the unit cell is disposed at both ends in the stacking direction. A pair of first-pole current collectors, a pair of first-pole current collectors, and a pair of first-pole active material layers respectively disposed so as to contact surfaces facing each other; A pair of solid electrolyte layers disposed so as to be in contact with the surfaces of the pair of first electrode active material layers opposite to the surfaces in contact with the current collector of the first electrode, and the pair of solid electrolyte layers , A pair of active material layers of a second electrode different from the first electrode, the active material layers disposed on the opposite side of the surface contacting the active material layer of the first electrode, and the pair A second electrode current collector disposed between the second electrode active material layers in contact with each of the pair of second electrode active material layers, It is preferable to Bei. By adopting such a form, the unit battery can be provided with two electrode bodies. Thereby, since there is much quantity of the thermal absorption material per electrode body, in addition to the said effect, the heat | fever which generate | occur | produced in the electrode body can be more effectively absorbed in the thermal absorption layer. Further, since the number of electrode bodies constituting the unit battery is small, there is an advantage that it is easy to manufacture.

また、上記本発明において、積層方向に隣接する単位電池の間、及び、積層方向の端に配置された単位電池の表面に、吸熱層を備え、積層方向の中央に備えられる吸熱材が、積層方向の端に備えられる吸熱材よりも多いことが好ましい。ここで、「積層方向の端に配置された単位電池の表面」とは、積層方向の上端に配置された単位電池の上面、及び、積層方向の下端に配置された単位電池の下面を言う。積層された複数の単位電池を備える電池は、短絡等により通常時よりも発熱すると、積層方向の端よりも積層方向の中央に、熱が篭りやすい。積層方向の端よりも熱が篭りやすく高温になりやすい積層方向の中央に、より多くの吸熱材を配置することにより、短絡等の電池発熱時に電池の温度上昇を抑制しやすくなる。   In the present invention, the endothermic material provided between the unit cells adjacent to each other in the stacking direction and on the surface of the unit cell disposed at the end in the stacking direction is provided with an endothermic layer and provided in the center in the stacking direction. More than the endothermic material provided at the end of the direction. Here, “the surface of the unit cell disposed at the end in the stacking direction” refers to the upper surface of the unit cell disposed at the upper end in the stacking direction and the lower surface of the unit cell disposed at the lower end in the stacking direction. When a battery including a plurality of unit batteries stacked generates heat more than usual due to a short circuit or the like, heat is more likely to be generated in the center in the stacking direction than at the end in the stacking direction. By disposing more heat-absorbing material at the center in the stacking direction, where heat is more likely to be generated and the temperature is higher than at the end in the stacking direction, it is easy to suppress the temperature rise of the battery when the battery is heated such as a short circuit.

また、上記本発明において、積層方向の中央に配置された単位電池に備えられる電極体の数が、積層方向の端に配置された単位電池に備えられる電極体の数よりも少ないことが好ましい。単位電池に備えられる電極体の数を少なくすることにより、短絡等の電池発熱時に発熱量を低減することが可能になる。また、上述のように、積層方向の中央は積層方向の端よりも熱が篭りやすく高温になりやすいので、熱が篭りやすい積層方向の中央に配置された単位電池に備えられる電極体の数を少なくすることにより、単位電池の間、つまり、吸熱層を配置できる部分を多くすることができるので、電池の温度上昇を抑制しやすくなる。   Moreover, in the said invention, it is preferable that the number of the electrode bodies with which the unit battery arrange | positioned in the center of the lamination direction is equipped is less than the number of the electrode bodies with which the unit battery arrange | positioned at the end of the lamination direction is equipped. By reducing the number of electrode bodies provided in the unit battery, it is possible to reduce the amount of heat generated during battery heat generation such as a short circuit. In addition, as described above, the center in the stacking direction tends to heat more easily than the end in the stacking direction, and the temperature tends to rise, so the number of electrode bodies provided in the unit cell arranged in the center in the stacking direction where heat tends to be generated By reducing the number, it is possible to increase the portion between the unit batteries, that is, the portion where the endothermic layer can be arranged, and thus it is easy to suppress the temperature rise of the battery.

また、上記本発明において、さらに、第1極の活物質層と接触している集電体の、第1極の活物質層側の表面、又は、第2極の活物質層と接触している集電体の、第2極の活物質層側の表面、又は、第1極の活物質層と接触している集電体の、第1極の活物質層側の表面、及び、第2極の活物質層と接触している集電体の、第2極の活物質層側の表面に、導電材及び樹脂を有するPPTC膜を備えることが好ましい。ここで、「PPTC(Polymer Positive Temperature Coefficient)膜」とは、PPTC素子として機能する膜(PPTC素子である膜)を言う。PPTC膜は、高抵抗化するまでに所定の時間が必要である。本発明では、吸熱層とともにPPTC膜を用いるので、PPTC膜が高抵抗化するまでの間も、吸熱層によって、電池の温度上昇を抑制できる。そして、PPTC膜が高抵抗化することにより電池反応が停止された後は、電池内で発生している熱を吸熱層で吸収することが可能なので、電池の温度を低下させることが可能になる。   In the present invention, the current collector in contact with the active material layer of the first electrode, or the surface on the active material layer side of the first electrode or in contact with the active material layer of the second electrode. The surface of the current collector on the second electrode active material layer side, or the surface of the current collector on the first electrode active material layer side in contact with the first electrode active material layer side, and It is preferable to provide a PPTC film having a conductive material and a resin on the surface on the second electrode active material layer side of the current collector in contact with the bipolar electrode active material layer. Here, the “PPTC (Polymer Positive Temperature Coefficient) film” refers to a film that functions as a PPTC element (a film that is a PPTC element). The PPTC film requires a predetermined time until the resistance is increased. In the present invention, since the PPTC film is used together with the endothermic layer, the temperature increase of the battery can be suppressed by the endothermic layer until the PPTC film increases in resistance. Then, after the battery reaction is stopped by increasing the resistance of the PPTC film, the heat generated in the battery can be absorbed by the endothermic layer, so that the temperature of the battery can be lowered. .

また、PPTC膜を備える上記本発明において、上記樹脂は、100℃よりも高温で溶融する熱可塑性樹脂である。   In the present invention provided with a PPTC film, the resin is a thermoplastic resin that melts at a temperature higher than 100 ° C.

本発明によれば、電池出力性能の低下を抑制しつつ、短絡等の電池発熱時における電池の温度上昇を抑制することが可能な電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the battery which can suppress the temperature rise of the battery at the time of battery heat_generation | fever, such as a short circuit, can be provided, suppressing the fall of battery output performance.

本発明の電池10を説明する図である。It is a figure explaining the battery 10 of this invention. 単位電池1を説明する図である。1 is a diagram illustrating a unit battery 1. FIG. 短絡時の放熱メカニズムを説明する概念図である。It is a conceptual diagram explaining the heat dissipation mechanism at the time of a short circuit. 高容量型電池の放熱メカニズムを説明する概念図である。It is a conceptual diagram explaining the heat dissipation mechanism of a high capacity type battery. PPTC膜の配置を説明するための概略図である。It is the schematic for demonstrating arrangement | positioning of a PPTC film | membrane. 吸熱層の作製方法を説明するための概略図である。It is the schematic for demonstrating the preparation methods of an endothermic layer. 試験用サンプルの形態を説明する図である。It is a figure explaining the form of the sample for a test. 釘刺し試験の条件を説明する図である。It is a figure explaining the conditions of a nail penetration test. 釘刺し後の経過時間と温度との関係を説明する図である。It is a figure explaining the relationship between the elapsed time after nail penetration and temperature. 電池の充放電性能を説明する図である。It is a figure explaining the charging / discharging performance of a battery. 釘刺し後の経過時間と温度との関係を説明する図である。It is a figure explaining the relationship between the elapsed time after nail penetration and temperature. PPTC膜特性評価試験の結果を説明する図である。It is a figure explaining the result of a PPTC film | membrane characteristic evaluation test. 釘刺し後の経過時間と温度との関係を説明する図である。It is a figure explaining the relationship between the elapsed time after nail penetration and temperature.

以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例であり、本発明は以下に示す形態に限定されない。   The present invention will be described below with reference to the drawings. In addition, the form shown below is an example of this invention and this invention is not limited to the form shown below.

図1は、本発明の電池10を説明する図である。図1の紙面上下方向が積層方向であり、図1では電池10を簡略化して示している。図1に示したように、本発明の電池10は、複数の単位電池1と、シート状の吸熱層3(以下において、「吸熱シート3」と称することがある。)と、これらを収容する外装体2と、を有している。外装体2に収容されている複数の単位電池1及び吸熱シート3は、交互に配置されるように積層されており、吸熱シート3は、積層方向の上端、積層方向に隣接する単位電池1の間、及び、積層方向の下端に配置されている。それぞれの単位電池1は、正極集電体が正極リード4に、負極集電体が負極リード5に、それぞれ接続されており、正極リード4及び負極リード5の一端は、外装体2の外側へと導かれている。正極リード4や負極リード5が外装体2を貫通する箇所には、図示しないシール部材が配置されており、これにより、外装体2の密閉性が保たれている。   FIG. 1 is a diagram illustrating a battery 10 of the present invention. 1 is the stacking direction, and FIG. 1 shows the battery 10 in a simplified manner. As shown in FIG. 1, the battery 10 of the present invention accommodates a plurality of unit batteries 1, a sheet-like endothermic layer 3 (hereinafter sometimes referred to as “endothermic sheet 3”), and these. And an exterior body 2. The plurality of unit cells 1 and the endothermic sheets 3 accommodated in the exterior body 2 are stacked so as to be alternately arranged, and the endothermic sheet 3 is arranged at the upper end of the stacking direction, the unit cells 1 adjacent to each other in the stacking direction. It is arrange | positioned in between and the lower end of the lamination direction. Each unit battery 1 has a positive electrode current collector connected to the positive electrode lead 4 and a negative electrode current collector connected to the negative electrode lead 5, and one end of each of the positive electrode lead 4 and the negative electrode lead 5 goes to the outside of the outer package 2. It is led with. A seal member (not shown) is arranged at a location where the positive electrode lead 4 and the negative electrode lead 5 penetrate the outer package 2, and thereby the hermeticity of the outer package 2 is maintained.

図2は、単位電池1を説明する図である。図2の紙面上下方向が積層方向であり、図2では単位電池1を簡略化して示している。図2に示したように、単位電池1は、積層方向の両端にそれぞれ配置された一対の正極集電体1a、該一対の正極集電体1aの、互いに対向する面に接触するようにそれぞれ配置された一対の正極活物質層1b、該一対の正極活物質層1bの、正極集電体1aに接触する面とは反対側の面にそれぞれ接触するように配置された一対の固体電解質層1c、該一対の固体電解質層1cの、正極活物質層1bに接触する面とは反対側の面にそれぞれ接触するように配置された、一対の負極活物質層1d、及び、該一対の負極活物質層1dの間に、一対の負極活物質層1dのそれぞれと接触するように配置された負極集電体1eを備えている。すなわち、単位電池1は、互いに接触するように配置された正極活物質層1b及び負極活物質層1d並びにこれらの間に配置された固体電解質層1cを具備する電極体1fを、負極集電体1eの上側及び下側のそれぞれに備えている。   FIG. 2 is a diagram illustrating the unit battery 1. The vertical direction on the paper surface of FIG. 2 is the stacking direction, and FIG. 2 shows the unit battery 1 in a simplified manner. As shown in FIG. 2, the unit battery 1 includes a pair of positive electrode current collectors 1 a disposed at both ends in the stacking direction, and contacts the surfaces of the pair of positive electrode current collectors 1 a facing each other. A pair of disposed positive electrode active material layers 1b, and a pair of solid electrolyte layers disposed so as to be in contact with the surfaces of the pair of positive electrode active material layers 1b opposite to the surfaces in contact with the positive electrode current collector 1a, respectively. 1c, a pair of negative electrode active material layers 1d disposed so as to be in contact with the surfaces of the pair of solid electrolyte layers 1c opposite to the surfaces in contact with the positive electrode active material layer 1b, and the pair of negative electrodes A negative electrode current collector 1e is provided between the active material layers 1d so as to be in contact with each of the pair of negative electrode active material layers 1d. That is, the unit battery 1 includes a positive electrode active material layer 1b and a negative electrode active material layer 1d disposed so as to be in contact with each other, and an electrode body 1f including a solid electrolyte layer 1c disposed therebetween. 1e is provided on each of the upper side and the lower side.

上述のように、本発明の電池10では、積層方向に隣接する単位電池1の間や積層方向の端に、吸熱シート3を配置している。この理由を以下に説明する。   As described above, in the battery 10 of the present invention, the endothermic sheet 3 is disposed between the unit batteries 1 adjacent in the stacking direction or at the end in the stacking direction. The reason for this will be described below.

図3Aは釘刺しにより発生した短絡時の放熱メカニズムを説明する概念図であり、図3Bは釘刺しにより高容量型電池に発生した短絡時の放熱メカニズムを説明する図である。図3Aは、正極集電体、正極活物質層、固体電解質層、負極活物質層、及び、負極集電体をこの順に備える2つの固体電池9の、積層方向上側から釘Xが刺さることにより短絡が生じ、これにより発熱した様子を簡略化して示している。一方、図3Bは、積層された複数の単位電池1の、積層方向上側から釘Xが刺さることにより短絡が生じ、これにより発熱した様子を簡略化して示している。図3A及び図3Bの紙面上下方向が、積層方向である。   FIG. 3A is a conceptual diagram illustrating a heat dissipation mechanism at the time of a short circuit generated by nail penetration, and FIG. 3B is a diagram illustrating a heat dissipation mechanism at the time of a short circuit generated in a high capacity battery by nail penetration. FIG. 3A shows that a nail X is stuck from the upper side in the stacking direction of two solid batteries 9 each including a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector in this order. A state in which a short circuit occurs and heat is thereby generated is shown in a simplified manner. On the other hand, FIG. 3B shows a simplified state in which a plurality of unit cells 1 are short-circuited when the nail X is pierced from the upper side in the stacking direction, thereby generating heat. 3A and 3B is the stacking direction.

図3Aに示したように、釘刺し時に電池が発熱すると、熱は固体電池9の集電体を介して、面内方向(積層方向に交差する方向)へと拡散するとともに、正極活物質層や負極活物質層を介して積層方向(電池の最表面方向)にも拡散していく。   As shown in FIG. 3A, when the battery generates heat during nail penetration, the heat diffuses in the in-plane direction (direction intersecting the stacking direction) through the current collector of the solid battery 9, and the positive electrode active material layer And also diffused in the stacking direction (battery outermost surface direction) through the negative electrode active material layer.

図3Bに示したように、積層された多数の単位電池1に釘Xが刺さることにより短絡が生じて発熱すると、図3Aと同様に、熱は面内方向及び積層方向へと拡散していく。この際、積層方向の中央に配置された単位電池1で生じた熱は、積層方向の端に配置された単位電池1で生じた熱と比較して、積層方向の端へと逃げ難い。そのため、図3Bに示した形態の電池では、積層方向の中央に熱が篭りやすい。本発明では、吸熱シート3を用いることにより、この熱の篭りを抑制する。吸熱シート3を、単位電池1の内部ではなく、積層方向に隣接する単位電池1の間や積層方向の端、すなわち、単位電池1に備えられる集電体の表面に配置するのは、単位電池1の内部におけるイオン及び電子の移動を妨げないようにするためである。積層方向に隣接する単位電池1の間や積層方向の端に吸熱シート3を配置することにより、単位電池1の内部におけるイオンの移動を妨げることなく、吸熱することが可能なので、これにより、電池出力性能の低下を抑制しつつ、短絡等の電池発熱時における温度上昇を抑制することが可能になる。   As shown in FIG. 3B, when a short circuit occurs due to the nail X being stuck in the stacked unit cells 1, heat is diffused in the in-plane direction and the stacking direction, as in FIG. 3A. . At this time, the heat generated in the unit cells 1 arranged in the center in the stacking direction is less likely to escape to the end in the stacking direction than the heat generated in the unit cells 1 arranged in the end in the stacking direction. Therefore, in the battery of the form shown in FIG. 3B, heat is likely to be generated at the center in the stacking direction. In the present invention, by using the endothermic sheet 3, this heat distortion is suppressed. It is not the inside of the unit cell 1 but the endothermic sheet 3 that is arranged between the unit cells 1 adjacent in the stacking direction or at the end in the stacking direction, that is, on the surface of the current collector provided in the unit cell 1. This is to prevent the movement of ions and electrons in the interior of 1. By disposing the endothermic sheet 3 between the unit cells 1 adjacent to each other in the stacking direction or at the end in the stacking direction, it is possible to absorb heat without hindering the movement of ions inside the unit cell 1. It is possible to suppress a temperature rise during battery heat generation such as a short circuit while suppressing a decrease in output performance.

電池10に使用可能な材料、各層の形態や作製方法について、以下に説明する。   The materials that can be used for the battery 10, the form of each layer, and the manufacturing method will be described below.

1.吸熱層
本発明に係る電池は吸熱層の配置に一つの特徴を有する。本発明において、吸熱層は、所定の温度領域(例えば60℃以上250℃以下の温度領域)において吸熱性能を発現する物質(吸熱材料)を有していれば、その形態は特に限定されない。本発明における吸熱層は、吸熱性能を向上させやすい形態にする観点から、糖アルコール及び炭化水素から選ばれる少なくとも一種の有機吸熱材料と、無機水和物とを含んでいることが好ましい。また、成形性を向上させやすい形態にする観点から、吸熱層は、さらにバインダーを含んでいることが好ましい。
1. Endothermic Layer The battery according to the present invention has one characteristic in the arrangement of the endothermic layer. In the present invention, the form of the endothermic layer is not particularly limited as long as it has a substance (endothermic material) that exhibits endothermic performance in a predetermined temperature range (for example, a temperature range of 60 ° C. to 250 ° C.). The endothermic layer in the present invention preferably contains at least one organic endothermic material selected from sugar alcohols and hydrocarbons and an inorganic hydrate from the viewpoint of making the endothermic performance easy to improve. Moreover, it is preferable that the heat absorption layer contains the binder further from a viewpoint of making it easy to improve a moldability.

1.1.有機吸熱材料
本発明において、吸熱層は、糖アルコール及び炭化水素から選ばれる少なくとも一種の有機吸熱材料を含むことが好ましい。当該有機吸熱材料は、電池の通常時は固体として存在する一方で、短絡等の電池発熱(以下において、「異常発熱」と称することがある。)時は融解することで熱を吸収する。これにより、電池の釘刺し試験時に、釘まわりに融解した有機吸熱材料を付着させることができるので、釘刺し時に釘に流れる電流量を低減することができ、結果として電池の異常発熱を抑制する効果(以下において、この効果を「シャットダウン効果」と称することがある。)が得られる。このような効果は有機吸熱材料を含む吸熱層により奏される特有の効果であり、無機水和物や無機水酸化物からなる吸熱層ではこのような効果は得られない。
1.1. Organic endothermic material In the present invention, the endothermic layer preferably contains at least one organic endothermic material selected from sugar alcohols and hydrocarbons. The organic endothermic material normally exists as a solid in a battery, but absorbs heat by melting when the battery generates heat such as a short circuit (hereinafter sometimes referred to as “abnormal heat generation”). As a result, the organic endothermic material melted around the nail can be adhered during the nail penetration test of the battery, so that the amount of current flowing to the nail during the nail penetration can be reduced, and as a result, the abnormal heat generation of the battery is suppressed. An effect (hereinafter, this effect may be referred to as a “shutdown effect”) is obtained. Such an effect is a characteristic effect exhibited by the endothermic layer containing the organic endothermic material, and such an effect cannot be obtained in the endothermic layer made of inorganic hydrate or inorganic hydroxide.

本発明者の知見によれば、糖アルコールや炭化水素はいずれも(I)融解により吸熱する材料であり、(II)無機水和物よりも軟らかく成形時に塑性変形が可能であり、(III)無機水和物と反応し難い。そのため、吸熱層に糖アルコール及び炭化水素のいずれを含ませた場合であっても、吸熱層の緻密度を適切に増大させることができるとともに、無機水和物との相乗効果によって吸熱層の単位体積当たりの吸熱量を大きく増大させることができる。好ましくは、糖アルコール及び炭化水素のうち、吸熱温度(融解温度)が高温であり、且つ、単位体積当たりの吸熱量の大きなものを選択する。本発明者が確認した限りでは、炭化水素よりも糖アルコールが好ましい。   According to the inventor's knowledge, both sugar alcohols and hydrocarbons are (I) materials that absorb heat by melting, (II) are softer than inorganic hydrates, and can be plastically deformed during molding, (III) Difficult to react with inorganic hydrates. Therefore, even if any of sugar alcohol and hydrocarbon is included in the endothermic layer, the density of the endothermic layer can be appropriately increased, and the unit of the endothermic layer can be obtained by a synergistic effect with the inorganic hydrate. The endothermic amount per volume can be greatly increased. Preferably, a sugar alcohol and a hydrocarbon having a high endothermic temperature (melting temperature) and a large endothermic amount per unit volume are selected. As far as the present inventors have confirmed, sugar alcohols are preferable to hydrocarbons.

電池の異常発熱時において、より適切に吸熱できる観点から、有機吸熱材料は60℃以上250℃以下に吸熱開始温度及び吸熱ピーク温度を有するものが好ましい。或いは、有機吸熱材料は、示差走査熱量測定(アルゴン雰囲気下、昇温速度10℃/分)によって得られるDSC曲線において、60℃以上250℃以下で吸熱反応が完了するものが好ましい。このような炭化水素としてはヘクタン、アントラセンが挙げられる。一方、糖アルコールとしては、マンニトール、キシリトール、エリスリトール、ラクチトール、マルチトール、ソルビトール、ガラクチトール等が挙げられる。最も好ましい糖アルコールはマンニトールである。本発明者が確認した限りでは、マンニトールは90℃以上200℃以下における吸熱量が他の糖アルコールに比べて大きい。また、マンニトールを用いることで、電池の異常発熱時の発熱温度と吸熱層の吸熱温度とを一致させることができる。   The organic endothermic material preferably has an endothermic onset temperature and an endothermic peak temperature at 60 ° C. or higher and 250 ° C. or lower from the viewpoint of being able to absorb heat more appropriately during abnormal heat generation of the battery. Alternatively, the organic endothermic material is preferably one that completes the endothermic reaction at 60 ° C. or more and 250 ° C. or less in a DSC curve obtained by differential scanning calorimetry (in an argon atmosphere, a temperature increase rate of 10 ° C./min). Examples of such hydrocarbons include hectane and anthracene. On the other hand, examples of the sugar alcohol include mannitol, xylitol, erythritol, lactitol, maltitol, sorbitol, galactitol and the like. The most preferred sugar alcohol is mannitol. As far as the present inventors have confirmed, mannitol has a large endotherm at 90 ° C. or more and 200 ° C. or less compared to other sugar alcohols. Further, by using mannitol, the heat generation temperature at the time of abnormal heat generation of the battery can be matched with the heat absorption temperature of the heat absorption layer.

1.2.無機水和物
本発明において、吸熱層には無機水和物が含まれていることが好ましい。無機水和物は、電池の通常時は固体として存在する一方で、電池の異常発熱時は水和水を放出することで熱を吸収する。
1.2. Inorganic hydrate In the present invention, the endothermic layer preferably contains an inorganic hydrate. The inorganic hydrate exists as a solid during normal battery operation, and absorbs heat by releasing hydration water during abnormal battery heat generation.

電池の異常発熱時において、より適切に吸熱できる観点から、無機水和物は60℃以上250℃以下のいずれかの温度で水和水の少なくとも一部を失うものが好ましい。或いは、無機水和物は、示差走査熱量測定(アルゴン雰囲気下、昇温速度10℃/分)によって得られるDSC曲線において、60℃以上250℃以下に吸熱反応が完了するものが好ましい。このような無機水和物の具体例としては、硫酸カルシウム・二水和物、硫酸銅(II)・五水和物、硫酸リチウム・一水和物、塩化マグネシウム・二水和物、硫酸ジルコニウム(IV)・四水和物が挙げられる。最も好ましい無機水和物は硫酸カルシウム・二水和物である。硫酸カルシウム・二水和物は60℃以上250℃以下における吸熱量が大きい。また、硫酸カルシウム・二水和物を用いることで、電池の異常発熱時の発熱温度と吸熱層の吸熱温度とを一致させることができる。   In view of more appropriate heat absorption during abnormal heat generation of the battery, it is preferable that the inorganic hydrate lose at least a part of the hydrated water at any temperature between 60 ° C. and 250 ° C. Alternatively, the inorganic hydrate is preferably one in which the endothermic reaction is completed at 60 ° C. or more and 250 ° C. or less in a DSC curve obtained by differential scanning calorimetry (under an argon atmosphere, a heating rate of 10 ° C./min). Specific examples of such inorganic hydrates include calcium sulfate dihydrate, copper sulfate (II) pentahydrate, lithium sulfate monohydrate, magnesium chloride dihydrate, zirconium sulfate. (IV) tetrahydrate. The most preferred inorganic hydrate is calcium sulfate dihydrate. Calcium sulfate dihydrate has a large endotherm at 60 ° C. or more and 250 ° C. or less. Further, by using calcium sulfate dihydrate, the heat generation temperature at the time of abnormal heat generation of the battery can be matched with the heat absorption temperature of the heat absorption layer.

1.3.バインダー
本発明において、吸熱層にはバインダーが含まれていても良い。バインダーは、上記の有機吸熱材料と無機水和物とを結着する。バインダーは、有機吸熱材料及び無機水和物に対して化学反応を起こさないものであれば良い。ブタジエンゴム(BR)、アクリレートブタジエンゴム(ABR)、ポリフッ化ビニリデン(PVdF)等の種々のバインダーを用いることができる。
1.3. Binder In the present invention, the endothermic layer may contain a binder. The binder binds the organic endothermic material and the inorganic hydrate. The binder may be any one that does not cause a chemical reaction with respect to the organic endothermic material and the inorganic hydrate. Various binders such as butadiene rubber (BR), acrylate butadiene rubber (ABR), and polyvinylidene fluoride (PVdF) can be used.

なお、本発明の効果を阻害しない範囲で、吸熱層には、上記の有機吸熱材料、無機水和物及びバインダー以外の成分が含まれていてもよい。   In addition, in the range which does not inhibit the effect of this invention, components other than said organic endothermic material, inorganic hydrate, and a binder may be contained in the endothermic layer.

1.4.吸熱層における各成分の含有量
吸熱層は、上記の有機吸熱材料を5質量%以上95質量%以下、無機水和物を5質量%以上95質量%以下含むことが好ましい。また、吸熱層は、有機吸熱材料と無機水和物とを合計で98質量%以上含むことが好ましい。一方で、吸熱層がバインダーを含む場合、その含有量は2質量%以下であることが好ましい。
1.4. Content of each component in the endothermic layer The endothermic layer preferably contains 5% by mass to 95% by mass of the organic endothermic material and 5% by mass to 95% by mass of the inorganic hydrate. Moreover, it is preferable that an endothermic layer contains 98 mass% or more of organic endothermic materials and inorganic hydrates in total. On the other hand, when the endothermic layer contains a binder, the content is preferably 2% by mass or less.

一方で、本発明者は、鋭意研究により、吸熱層において、質量基準で無機水和物よりも上記の有機吸熱材料が多量に含まれている場合に、吸熱層が所定の両立効果を発揮することを見出した。すなわち、吸熱層は、有機吸熱材料と無機水和物との合計を基準(100質量%)として、当該有機吸熱材料を50質量%以上含む、または、吸熱層が有機吸熱材料を10mg/cm以上含むことが最も好ましい。これにより、吸熱層の緻密度が90%以上に増大するとともに、吸熱層がシャットダウン効果(例えば釘刺し試験時に、釘刺し時に釘に流れる電流量を低減することができ、結果として電池の異常発熱を抑制する効果。以下において同じ。)を発揮する。 On the other hand, the present inventor has shown that the endothermic layer exhibits a predetermined coexistence effect when the endothermic layer contains a large amount of the above-mentioned organic endothermic material rather than the inorganic hydrate on a mass basis through intensive studies. I found out. That is, the endothermic layer contains 50% by mass or more of the organic endothermic material based on the total of the organic endothermic material and the inorganic hydrate (100% by mass), or the endothermic layer contains 10 mg / cm 2 of the organic endothermic material. It is most preferable to include the above. As a result, the density of the endothermic layer increases to 90% or more, and the endothermic layer has a shutdown effect (for example, during the nail penetration test, the amount of current flowing through the nail during nail penetration can be reduced, resulting in abnormal heat generation of the battery. (The same applies to the following).

1.5.吸熱層の形状
吸熱層の形状は、電池の形状に応じて適宜決定すれば良いが、シート状であることが好ましい。この場合、吸熱層の厚みは5μm以上500μm以下であることが好ましい。下限がより好ましくは0.1μm以上であり、上限がより好ましくは1000μm以下である。吸熱層をシート状とすることで、電池に占める吸熱層の体積比を小さくすることができる。なお、本発明に係る吸熱層は、塑性変形が可能な上記の有機吸熱材料が含まれることにより、無機水和物からなる吸熱層よりも、成形性に優れるとともに、柔軟性に優れた吸熱層にすることができる。すなわち、このような形態にすることにより、吸熱層を薄くしたとしても割れ難くすることが可能になる。
1.5. Shape of endothermic layer The shape of the endothermic layer may be appropriately determined according to the shape of the battery, but is preferably in the form of a sheet. In this case, the thickness of the endothermic layer is preferably 5 μm or more and 500 μm or less. The lower limit is more preferably 0.1 μm or more, and the upper limit is more preferably 1000 μm or less. By making the endothermic layer into a sheet, the volume ratio of the endothermic layer in the battery can be reduced. In addition, the endothermic layer according to the present invention includes the organic endothermic material that can be plastically deformed, so that the endothermic layer has excellent moldability and excellent flexibility than the endothermic layer made of inorganic hydrate. Can be. That is, by adopting such a configuration, even if the endothermic layer is thinned, it can be made difficult to break.

吸熱層は緻密度が80%以上であることが好ましい。より好ましくは緻密度が85%以上である。本発明では、例えば吸熱層が上記の有機吸熱材料を含むことで、このような高い緻密度を達成できる。緻密度が高い場合、単位体積当たりの吸熱量を増加させることができる。また、電池からの熱を吸熱層内に素早く伝播させることができるため、電池の異常な発熱に対して、速やかに熱を吸収できるという効果も奏する。なお、吸熱層の「緻密度」は以下のようにして算出する。まず、吸熱層の重量と体積を測定し、密度を算出する。算出した密度を真密度で除することで緻密度を算出できる。   The endothermic layer preferably has a density of 80% or more. More preferably, the density is 85% or more. In the present invention, such a high density can be achieved, for example, when the endothermic layer contains the organic endothermic material. When the density is high, the amount of heat absorbed per unit volume can be increased. In addition, since heat from the battery can be quickly propagated in the endothermic layer, there is an effect that heat can be quickly absorbed with respect to abnormal heat generation of the battery. The “dense density” of the endothermic layer is calculated as follows. First, the weight and volume of the endothermic layer are measured, and the density is calculated. The density can be calculated by dividing the calculated density by the true density.

1.6.吸熱層の形成・作製方法
本発明では、例えば、上記の有機吸熱材料、無機水和物、及び、任意にバインダーを混合したものを種々の形状に成形することにより、吸熱層を作製することができる。成形は乾式であっても湿式であっても良い。例えば、湿式成形の場合、溶媒に上記の各成分を添加してスラリーとし、当該スラリーを基材上に塗布して乾燥し、任意にプレスすることで、上述したようなシート状の吸熱層を得ることができる。溶媒としては、例えば、ヘプタン、エタノール、N−メチルピロリドン、酢酸ブチル、酪酸ブチルを用いることができる。
1.6. In the present invention, for example, the endothermic layer can be produced by molding the organic endothermic material, inorganic hydrate, and optionally a binder, into various shapes. it can. Molding may be dry or wet. For example, in the case of wet molding, each of the above components is added to a solvent to form a slurry, and the slurry is applied onto a substrate, dried, and optionally pressed to form a sheet-like endothermic layer as described above. Can be obtained. As the solvent, for example, heptane, ethanol, N-methylpyrrolidone, butyl acetate, and butyl butyrate can be used.

2.外装体
外装体としては、単位電池及び吸熱層を収容可能なものであれば、材質や形状は特に限定されない。例えば、金属製の筐体や、積層された金属箔と樹脂フィルムとを有するラミネートフィルム等を、外装体として用いることができる。なお、単位電池を内包した外装体を複数用意し、これをさらに外装体に内包することで電池としても良い。
2. Exterior Body The exterior body is not particularly limited in material and shape as long as it can accommodate a unit battery and an endothermic layer. For example, a metal housing, a laminated film having a laminated metal foil and a resin film, or the like can be used as the exterior body. In addition, it is good also as a battery by preparing several exterior bodies which included the unit battery, and enclosing this further in an exterior body.

3.単位電池
本発明において、外装体の内部に収容される単位電池は、固体電池である。本発明における単位電池は、積層方向の両端にそれぞれ配置された一対の集電体と、該一対の集電体の間に互いに接触するように配置された、第1極の活物質層及び該第1極とは異なる第2極の活物質層、並びに、これらの間に配置された固体電解質層、を具備する電極体と、を具備していれば良い。図2には、2つの電極体を備える単位電池1を示したが、本発明における単位電池に備えられる電極体の数は、1以上の任意の数にすることができる。ただし、反りが少ない電池を提供しやすい形態にする等の観点からは、単位電池に備えられる電極体の数は、偶数個(2個、4個、6個、…)にすることが好ましい。
3. Unit Battery In the present invention, the unit battery accommodated in the exterior body is a solid battery. The unit battery according to the present invention includes a pair of current collectors disposed at both ends in the stacking direction, a first electrode active material layer disposed so as to be in contact with each other between the pair of current collectors, and the What is necessary is just to comprise the active material layer of the 2nd pole different from a 1st pole, and the electrode body which comprises the solid electrolyte layer arrange | positioned among these. Although FIG. 2 shows the unit battery 1 including two electrode bodies, the number of electrode bodies included in the unit battery in the present invention can be any number of 1 or more. However, it is preferable that the number of electrode bodies provided in the unit battery is an even number (2, 4, 6,...) From the viewpoint of easily providing a battery with less warpage.

以下、単位電池としてリチウム全固体電池を例示して説明するが、本発明において単位電池として適用可能な電池は、リチウム電池に限定されない。ナトリウム電池としても良いし、その他の金属イオン電池としても良い。また、単位電池は一次電池であっても良いし、二次電池であっても良い。ただし、電池の異常発熱は、充放電を繰り返して電池を長期間使用する場合に発生し易い。すなわち、本発明による効果がより顕著となる観点から、一次電池よりも二次電池が好ましい。   Hereinafter, a lithium all-solid battery will be described as an example of the unit battery. However, a battery applicable as the unit battery in the present invention is not limited to a lithium battery. A sodium battery may be used, and other metal ion batteries may be used. Further, the unit battery may be a primary battery or a secondary battery. However, abnormal heat generation of the battery is likely to occur when the battery is used for a long time by repeated charging and discharging. That is, the secondary battery is preferable to the primary battery from the viewpoint that the effect of the present invention becomes more remarkable.

3.1.正極活物質層及び負極活物質層
正極活物質層及び負極活物質層は、少なくとも活物質を含み、さらに任意に固体電解質、バインダー及び導電助剤を含む。活物質はリチウムイオンを吸蔵放出することが可能な任意の活物質を用いることができる。活物質のうち、リチウムイオンを吸蔵放出する電位(充放電電位)の異なる2つの物質を選択し、貴な電位を示す物質を正極活物質とし、卑な電位を示す物質を後述の負極活物質として、それぞれ用いることができる。例えば、正極活物質としてLiNi1/3Co1/3Mn1/3、負極活物質としてグラファイトを用いることができる。固体電解質は無機固体電解質が好ましい。有機ポリマー電解質と比較してイオン伝導度が高いためである。また、有機ポリマー電解質と比較して、耐熱性に優れるためである。好ましい固体電解質としては、LiPO等の酸化物固体電解質やLiS−P等の硫化物固体電解質を例示することができる。これらの中でも、特に、LiS−Pを含む硫化物固体電解質が好ましい。バインダーは吸熱層に用いられるバインダーと同様のものを用いることができる。導電助剤としてはアセチレンブラックやケッチェンブラック等の炭素材料や、ニッケル、アルミニウム、ステンレス鋼等の金属材料を用いることができる。正極活物質層及び負極活物質層における各成分の含有量や正極活物質層及び負極活物質層の形状は、従来と同様にすることができる。なお、正極活物質層及び負極活物質層は、活物質と、任意に含有させる固体電解質、バインダー及び導電助剤を溶剤に入れて混練することによりスラリー状の電極組成物を得た後、この電極組成物を集電体の表面に塗布し乾燥する等の過程を経ることにより、作製することができる。
3.1. Positive electrode active material layer and negative electrode active material layer The positive electrode active material layer and the negative electrode active material layer include at least an active material, and optionally further include a solid electrolyte, a binder, and a conductive additive. As the active material, any active material capable of occluding and releasing lithium ions can be used. Of the active materials, two materials having different potentials (charge / discharge potentials) for occluding and releasing lithium ions are selected, a material exhibiting a noble potential is used as a positive electrode active material, and a material exhibiting a base potential is described later as a negative electrode active material. Can be used respectively. For example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be used as the positive electrode active material, and graphite can be used as the negative electrode active material. The solid electrolyte is preferably an inorganic solid electrolyte. This is because the ionic conductivity is higher than that of the organic polymer electrolyte. Moreover, it is because it is excellent in heat resistance compared with an organic polymer electrolyte. Preferred solid electrolytes include oxide solid electrolytes such as Li 3 PO 4 and sulfide solid electrolytes such as Li 2 S—P 2 S 5 . Among these, a sulfide solid electrolyte containing Li 2 S—P 2 S 5 is particularly preferable. As the binder, the same binder as that used for the endothermic layer can be used. As the conductive assistant, carbon materials such as acetylene black and ketjen black, and metal materials such as nickel, aluminum, and stainless steel can be used. The content of each component in the positive electrode active material layer and the negative electrode active material layer and the shapes of the positive electrode active material layer and the negative electrode active material layer can be the same as those in the past. In addition, the positive electrode active material layer and the negative electrode active material layer are obtained by obtaining a slurry-like electrode composition by kneading an active material and a solid electrolyte, a binder, and a conductive additive that are optionally contained in a solvent. The electrode composition can be produced by a process such as applying to the surface of the current collector and drying.

3.2.正極集電体及び負極集電体
本発明では、正極集電体や負極集電体の表面(正極活物質層や負極活物質層とは反対側の表面)に、吸熱層が設けられる。正極集電体及び負極集電体は、金属箔や金属メッシュ等により構成すれば良い。特に金属箔が好ましい。集電体として金属箔を用いた場合、当該集電体の表面に吸熱層を設けたとしても、吸熱層が正極活物質層や負極活物質層と直接接触することがなく、吸熱層と電池材料とが反応することがない。正極集電体及び負極集電体を構成し得る金属としては、Cu、Ni、Al、Fe、Ti等を例示することができる。
3.2. Positive electrode current collector and negative electrode current collector In the present invention, an endothermic layer is provided on the surface of the positive electrode current collector or the negative electrode current collector (the surface opposite to the positive electrode active material layer or the negative electrode active material layer). The positive electrode current collector and the negative electrode current collector may be formed of a metal foil, a metal mesh, or the like. Metal foil is particularly preferable. When a metal foil is used as the current collector, even if an endothermic layer is provided on the surface of the current collector, the endothermic layer is not in direct contact with the positive electrode active material layer or the negative electrode active material layer. The material does not react. Cu, Ni, Al, Fe, Ti etc. can be illustrated as a metal which can comprise a positive electrode collector and a negative electrode collector.

3.3.固体電解質層
固体電解質層は、固体電解質と任意にバインダーとを含む。固体電解質は上述した無機固体電解質が好ましい。バインダーは吸熱層に用いられるバインダーと同様のものを用いることができる。固体電解質層における各成分の含有量は、従来と同様にすることができる。なお、固体電解質層は、固体電解質と、任意に含有させるバインダーとを溶剤に入れて混練することによりスラリー状の電解質組成物を得た後、この電解質組成物を基材の表面に塗布し乾燥する等の過程を経ることにより、作製することができる。固体電解質層の厚さは、例えば数十μm程度にすることができる。
3.3. Solid electrolyte layer The solid electrolyte layer comprises a solid electrolyte and optionally a binder. The solid electrolyte is preferably the inorganic solid electrolyte described above. As the binder, the same binder as that used for the endothermic layer can be used. Content of each component in a solid electrolyte layer can be made into the same as the past. The solid electrolyte layer is obtained by applying a slurry electrolyte composition by mixing a solid electrolyte and an arbitrarily contained binder in a solvent to obtain a slurry electrolyte composition, and then applying the electrolyte composition to the surface of the substrate and drying it. It can be manufactured through a process such as. The thickness of the solid electrolyte layer can be, for example, about several tens of μm.

本発明に関する上記説明では、負極集電体の上下に電極体を1つずつ有する単位電池1と吸熱層3とが交互に積層されている形態を例示したが、本発明の電池は当該形態に限定されない。2つの電極体を有する単位電池と吸熱層とを積層して本発明の電池を構成する場合、単位電池1における正極と負極とを逆にした形態(積層方向両端に一対の負極集電体を配置するとともに、それぞれの負極集電体に接触させるように負極活物質層を配置し、且つ、積層方向中央に正極集電体を配置するとともに当該正極集電体の上面及び下面に正極活物質層を配置する形態)の単位電池が備えられていても良い。   In the above description related to the present invention, the unit battery 1 and the endothermic layer 3 having one electrode body on each of the upper and lower sides of the negative electrode current collector are exemplified, but the battery of the present invention is in this form. It is not limited. When a unit battery having two electrode bodies and an endothermic layer are laminated to form a battery of the present invention, the unit battery 1 has a configuration in which the positive electrode and the negative electrode are reversed (a pair of negative electrode current collectors at both ends in the stacking direction). The negative electrode active material layer is disposed so as to be in contact with each negative electrode current collector, and the positive electrode current collector is disposed at the center in the stacking direction, and the positive electrode active material is disposed on the upper and lower surfaces of the positive electrode current collector. A unit battery of a form in which layers are arranged may be provided.

また、上記説明では、2個の電極体を有する単位電池が備えられる形態を例示したが、本発明は当該形態に限定されない。本発明における単位電池に備えられる電極体の数は、1個のみであっても良く、3個以上であっても良い。   Moreover, in the said description, although the form with which the unit battery which has two electrode bodies was provided was illustrated, this invention is not limited to the said form. The number of electrode bodies provided in the unit battery in the present invention may be only one, or may be three or more.

また、上記説明では、電池に備えられるすべての単位電池に、同じ数の電極体(2個の電極体)が備えられる形態を例示したが、本発明は当該形態に限定されない。本発明の電池に備えられる単位電池は、それぞれ異なる数の電極体を有していても良い。それぞれ異なる数の電極体を有する複数の単位電池と吸熱層とを積層して本発明の電池を構成する場合、熱が篭りやすい積層方向中央における温度上昇を抑制しやすい形態にする観点からは、積層方向中央に配置される単位電池に備えられる電極体の数を、積層方向の端に配置される単位電池に備えられる電極体の数よりも少なくすることが好ましい。   Moreover, in the said description, although the form with which the same number of electrode bodies (two electrode bodies) are provided in all the unit batteries with which a battery is equipped was illustrated, this invention is not limited to the said form. The unit batteries provided in the battery of the present invention may have different numbers of electrode bodies. From the viewpoint of forming a battery of the present invention by laminating a plurality of unit batteries each having a different number of electrode bodies and an endothermic layer, from the viewpoint of easily suppressing the temperature rise at the center in the stacking direction where heat is easily generated, It is preferable that the number of electrode bodies provided in the unit battery arranged at the center in the stacking direction is smaller than the number of electrode bodies provided in the unit battery arranged at the end in the stacking direction.

また、上記説明では、積層方向の上端及び下端、並びに、積層方向に隣接する単位電池の間に、吸熱層3が配置される形態を例示したが、本発明は当該形態に限定されない。積層方向の上端及び/又は下端には吸熱層を配置しない形態にすることも可能である。ただし、熱が篭りやすい箇所に吸熱層を配置することにより、温度上昇を抑制しやすい形態にする観点からは、少なくとも積層方向に隣接する単位電池の間、より好ましくは少なくとも積層方向中央で隣接する単位電池の間に、吸熱層を配置することが好ましい。   Moreover, in the said description, although the form in which the endothermic layer 3 is arrange | positioned between the unit cell adjacent to the upper end and lower end of a lamination direction and a lamination direction was illustrated, this invention is not limited to the said form. It is also possible to adopt a form in which no endothermic layer is disposed at the upper end and / or the lower end in the stacking direction. However, from the viewpoint of making it easy to suppress temperature rise by disposing an endothermic layer in a place where heat is likely to be generated, at least between unit cells adjacent in the stacking direction, more preferably at least adjacent in the center of the stacking direction. It is preferable to dispose an endothermic layer between the unit cells.

また、上記説明では、積層方向の上端及び下端、並びに、積層方向に隣接する単位電池の間に、同じ形態の吸熱層3が配置される形態を例示したが、本発明は当該形態に限定されない。本発明では、積層方向の位置に応じて、配置される吸熱層の形態を変えても良く、適切に吸熱しやすい形態の電池を提供する観点からは、熱が篭りやすい積層方向中央には、積層方向の端よりも多くの吸熱材を配置することが好ましい。ここで、積層方向の端よりも積層方向の中央に多くの吸熱材を配置する具体的な形態としては、
(1)複数枚の同形態の吸熱層を準備したうえで、積層方向の中央に配置する吸熱層の枚数を、積層方向の端に配置する吸熱層の枚数よりも多くする(例えば、積層方向の中央で隣接する単位電池の間には3〜5枚の吸熱層を配置し、積層方向の端には1枚の吸熱層を配置する。)
(2)吸熱材の含有量を変えた複数枚の吸熱層を準備したうえで、積層方向の中央には複数枚の吸熱層の中で相対的に吸熱材の含有量が多い吸熱層を配置するとともに、積層方向の端には複数枚の吸熱層の中で相対的に吸熱材の含有量が少ない吸熱層を配置する
(3)同じ原料を使って厚さが異なる複数枚の吸熱層を準備した上で、積層方向の中央には複数枚の吸熱層の中で相対的に厚さが厚い吸熱層を配置するとともに、積層方向の端には複数枚の吸熱層の中で相対的に厚さが薄い吸熱層を配置する
等を例示することができる。
Moreover, in the said description, although the endothermic layer 3 of the same form was arrange | positioned between the upper end and lower end of a lamination direction, and the unit cell adjacent to a lamination direction, this invention is not limited to the said form. . In the present invention, depending on the position in the stacking direction, the form of the endothermic layer may be changed.From the viewpoint of providing a battery in a form that easily absorbs heat appropriately, It is preferable to dispose more endothermic material than the end in the stacking direction. Here, as a specific form of disposing more endothermic material in the center of the stacking direction than the end of the stacking direction,
(1) After preparing a plurality of endothermic layers having the same form, the number of endothermic layers arranged in the center in the stacking direction is made larger than the number of endothermic layers disposed at the end in the stacking direction (for example, stacking direction). 3 to 5 endothermic layers are arranged between adjacent unit cells at the center of the center, and one endothermic layer is arranged at the end in the stacking direction.)
(2) After preparing a plurality of endothermic layers with different contents of the endothermic material, an endothermic layer having a relatively high endothermic material content among the plurality of endothermic layers is arranged at the center in the stacking direction. In addition, an endothermic layer having a relatively small endothermic material content among the plurality of endothermic layers is disposed at the end in the stacking direction. (3) A plurality of endothermic layers having different thicknesses using the same raw material. After the preparation, a relatively thick endothermic layer among the plurality of endothermic layers is disposed at the center in the stacking direction, and the end of the stacking direction is relatively positioned among the plurality of endothermic layers. For example, a thin endothermic layer may be disposed.

また、上記説明では、すべての単位電池に、2個の電極体が備えられる形態を例示したため、積層方向に隣接する単位電池にそれぞれ備えられる、正極集電体1aの間に、吸熱シート3が備えられていたが、本発明は当該形態に限定されない。例えば、単位電池1における正極と負極とを逆にした形態の単位電池が備えられる場合には、積層方向に隣接する単位電池にそれぞれ備えられる、負極集電体の間に、吸熱シートが備えられる形態にすることができる。このほか、例えば、本発明の電池に、奇数個の電極体を有する単位電池が備えられる場合には、積層方向に隣接する一方の単位電池に備えられる正極集電体と、他方の単位電池に備えられる負極集電体との間に、吸熱シートが備えられる形態にすることができる。   Further, in the above description, since an example in which all the unit batteries are provided with two electrode bodies is illustrated, the endothermic sheet 3 is provided between the positive electrode current collectors 1a respectively provided in the unit batteries adjacent in the stacking direction. Although provided, this invention is not limited to the said form. For example, when a unit battery having a configuration in which the positive electrode and the negative electrode are reversed in the unit battery 1 is provided, an endothermic sheet is provided between the negative electrode current collectors respectively provided in the unit batteries adjacent in the stacking direction. It can be in the form. In addition, for example, when the battery of the present invention is provided with a unit battery having an odd number of electrode bodies, the positive electrode current collector provided in one unit battery adjacent in the stacking direction and the other unit battery are provided. An endothermic sheet can be provided between the negative electrode current collector provided.

3.4.PPTC膜
図4は、本発明の好ましい形態を説明する図である。図4では、本発明の電池(吸熱層を備える電池)のうち、PPTC膜6が備えられる箇所を抽出し、これを拡大し簡略化して示している。なお、図4には、正極集電体1aの、正極活物質層1b側の表面にPPTC膜6が備えられる形態を示したが、本発明は当該形態に限定されない。PPTC膜は、負極集電体の、負極活物質層側の表面に備えられていても良く、正極集電体の正極活物質層側の表面、及び、負極集電体の負極活物質層側の表面に、備えられていても良い。
3.4. PPTC membrane FIG. 4 is a diagram illustrating a preferred embodiment of the present invention. In FIG. 4, a portion where the PPTC film 6 is provided is extracted from the battery (battery provided with an endothermic layer) of the present invention, and this is shown enlarged and simplified. 4 shows a mode in which the PPTC film 6 is provided on the surface of the positive electrode current collector 1a on the positive electrode active material layer 1b side, the present invention is not limited to this mode. The PPTC film may be provided on the surface of the negative electrode current collector on the negative electrode active material layer side, the surface of the positive electrode current collector on the positive electrode active material layer side, and the negative electrode current collector on the negative electrode active material layer side The surface may be provided.

図4に示したように、本発明の電池は、活物質層と接触している集電体の、当該活物質層側の表面(図4の例では、正極集電体1aの、正極活物質層1b側の表面)に、導電材と樹脂とを有するPPTC膜6が備えられることが好ましい。PPTC膜6は、100℃以上の所定の温度で高抵抗化する膜であり、高抵抗化することにより、電池反応を停止する。電池反応を停止することにより、電池の更なる発熱を防止することが可能になる。   As shown in FIG. 4, the battery of the present invention has a current collector surface in contact with the active material layer on the surface of the active material layer side (in the example of FIG. 4, the positive electrode active material 1a of the positive electrode current collector 1a). A PPTC film 6 having a conductive material and a resin is preferably provided on the surface of the material layer 1b. The PPTC film 6 is a film that increases the resistance at a predetermined temperature of 100 ° C. or higher, and stops the battery reaction by increasing the resistance. By stopping the battery reaction, it becomes possible to prevent further heat generation of the battery.

PPTC膜は、高抵抗化するまでに、所定の時間が必要である。本発明では、吸熱層(吸熱シート3)とともに、PPTC膜6が備えられるので、PPTC膜6が高抵抗化するまでの間も、吸熱層によって、電池の温度上昇を抑制できる。そして、PPTC膜6が高抵抗化することにより電池反応が停止された後は、電池内で発生している熱を吸熱層で吸収することが可能なので、電池の温度を低下させることが可能になる。   The PPTC film requires a predetermined time until the resistance is increased. In the present invention, since the PPTC film 6 is provided together with the endothermic layer (the endothermic sheet 3), the temperature increase of the battery can be suppressed by the endothermic layer until the PPTC film 6 is increased in resistance. Then, after the battery reaction is stopped by increasing the resistance of the PPTC film 6, the heat generated in the battery can be absorbed by the endothermic layer, so that the temperature of the battery can be lowered. Become.

PPTC膜6は、導電材及び樹脂を含有している。PPTC膜6に用いる導電材としては、PPTC素子に使用可能であり、且つ、電池10の使用時の環境に耐えることが可能な導電材であれば、特に限定されない。そのような導電材としては、ファーネスブラック、ケッチェンブラック、アセチレンブラック等の炭素材料、銀等の金属、チタンカーバイド等の導電性セラミックス等を例示することができる。PPTC膜6に用いる導電材の形状は特に限定されず、例えば、PPTC膜6内に導電材を均一に分散させやすい形態にする等の観点から、導電材は粉末状であることが好ましい。   The PPTC film 6 contains a conductive material and a resin. The conductive material used for the PPTC film 6 is not particularly limited as long as it is a conductive material that can be used for a PPTC element and can withstand the environment during use of the battery 10. Examples of such conductive materials include carbon materials such as furnace black, ketjen black, and acetylene black, metals such as silver, and conductive ceramics such as titanium carbide. The shape of the conductive material used for the PPTC film 6 is not particularly limited. For example, the conductive material is preferably in the form of a powder from the viewpoint of easily dispersing the conductive material in the PPTC film 6.

また、PPTC膜6に用いる樹脂は、PPTC素子に使用可能であり、且つ、電池10の使用時の環境に耐えることが可能であり、且つ、100℃よりも高温で溶融する樹脂であれば、特に限定されない。そのような樹脂としては、ポリフッ化ビニリデン(以下において、「PVDF」と称する。)のほか、ポリエチレン(PE)、ポリプロピレン(PP)等を例示することができる。これらの樹脂は、熱可塑性樹脂である。また、高温時に、集電体と活物質層との間にPPTC膜6が留まり続けることにより、内部短絡を長時間に亘って抑制しやすい形態にする等の観点から、上記樹脂の中でも、分子量の大きい樹脂を用いることが好ましい。そのような樹脂としては、超高分子量ポリエチレン、分子量が1.0×10以上を示すPVDF等を例示することができる。 The resin used for the PPTC film 6 can be used for a PPTC element, can withstand the environment when the battery 10 is used, and is a resin that melts at a temperature higher than 100 ° C. There is no particular limitation. Examples of such a resin include polyvinylidene fluoride (hereinafter referred to as “PVDF”), polyethylene (PE), polypropylene (PP), and the like. These resins are thermoplastic resins. In addition, among the resins described above, the molecular weight of the PPTC film 6 remains between the current collector and the active material layer at a high temperature, so that an internal short circuit can be easily suppressed for a long time. It is preferable to use a resin having a large size. Examples of such a resin include ultra high molecular weight polyethylene and PVDF having a molecular weight of 1.0 × 10 5 or more.

PPTC膜6の作製方法の一例を、以下に記載する。PPTC膜6を作製する際には、例えば、N−メチル−2−ピロリドン(以下において、「NMP」と称する。)等の有機溶剤に導電材である炭素材料を分散させることにより、炭素材料分散溶液を調製する。また、NMPにPVDFを分散させることにより、樹脂分散溶液を調製する。その後、炭素材料分散溶液と、樹脂分散溶液とを混合することにより調製した導電層形成用組成物を、集電体の表面(例えば表裏面)に塗布し、その後に乾燥することにより、PPTC膜6を作製することができる。このようにして作製可能なPPTC膜6は、電池のエネルギー密度を高めやすい形態にする観点から、上記効果を発現可能な限りにおいて、その厚さを薄くすることが好ましい。また、抵抗を高めやすい形態のPPTC膜6にする観点から、導電層にPPTC膜を形成した後に、120℃以上165℃以下の範囲内の温度で熱処理をすることが好ましい。これにより、固体電池の正常作動時(例えば100℃以下)には抵抗が低く、且つ、固体電池が短絡することにより発熱して150℃以上になった後に抵抗を高めやすくなるので、電池反応を停止させやすくなる。これにより、正常作動時にはPPTC膜6の抵抗が低いことにより電池の性能が高く、且つ、高温時にのみPPTC膜6の抵抗が増大して、安全に電池反応を停止させることにより温度上昇を抑制することが可能な、電池を提供することができる。   An example of a method for producing the PPTC film 6 will be described below. When the PPTC film 6 is produced, the carbon material is dispersed by dispersing the carbon material, which is a conductive material, in an organic solvent such as N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”). Prepare the solution. Moreover, a resin dispersion solution is prepared by dispersing PVDF in NMP. Thereafter, the conductive layer forming composition prepared by mixing the carbon material dispersion solution and the resin dispersion solution is applied to the front surface (for example, the front and back surfaces) of the current collector, and then dried to obtain a PPTC film. 6 can be produced. The PPTC film 6 that can be produced in this manner is preferably thinned as long as the above effects can be exhibited, from the viewpoint of easily increasing the energy density of the battery. Further, from the viewpoint of making the PPTC film 6 in a form in which resistance can be easily increased, it is preferable to heat-treat at a temperature in the range of 120 ° C. to 165 ° C. after the PPTC film is formed on the conductive layer. As a result, the resistance of the solid battery is low during normal operation (for example, 100 ° C. or lower), and it is easy to increase the resistance after the solid battery is heated and heated to 150 ° C. or higher. It becomes easy to stop. As a result, the battery performance is high due to the low resistance of the PPTC film 6 during normal operation, and the resistance of the PPTC film 6 increases only at high temperatures, and the battery reaction is safely stopped to suppress the temperature rise. A battery can be provided.

1.吸熱層及び単位電池の作製
1.1.吸熱層の作製
図5に示す方法にて、正極集電体の上に吸熱層を形成した。まず、有機吸熱材料(マンニトール)と無機水和物(硫酸カルシウム・二水和物)とバインダー(アクリレートブタジエンゴム、ABR)を含む溶媒(ヘプタン)とを準備し(図5の「秤量」)、これらを混合し、超音波ホモジナイザーを用いて溶媒中に固形分を分散させることにより、スラリーを得た(図5の「混練」)。得られたスラリーを正極集電体(アルミニウム箔)の上に塗工し、続いて乾燥させた後(図5の「塗工・乾燥」)、冷間等方圧プレス(CIP)により加圧(4ton/cm)することにより(図5の「プレス工程」)、正極集電体の上に吸熱層を形成した。吸熱層における、有機吸熱材料と無機水和物とバインダーとの質量比は、有機吸熱材料:無機水和物:バインダー=49:49:2であった。
1. Production of endothermic layer and unit cell 1.1. Production of Endothermic Layer An endothermic layer was formed on the positive electrode current collector by the method shown in FIG. First, an organic endothermic material (mannitol), an inorganic hydrate (calcium sulfate dihydrate), and a solvent (heptane) containing a binder (acrylate butadiene rubber, ABR) are prepared ("Weighing" in FIG. 5). These were mixed and a solid content was dispersed in a solvent using an ultrasonic homogenizer to obtain a slurry (“kneading” in FIG. 5). The obtained slurry was coated on a positive electrode current collector (aluminum foil) and then dried (“Coating / Drying” in FIG. 5), and then pressed by a cold isostatic press (CIP). (4 ton / cm 2 ) (“pressing step” in FIG. 5), an endothermic layer was formed on the positive electrode current collector. The mass ratio of the organic endothermic material, the inorganic hydrate, and the binder in the endothermic layer was organic endothermic material: inorganic hydrate: binder = 49: 49: 2.

1.2.固体電解質の合成
特開2012−48973号公報に記載された方法にて、硫化物固体電解質である10LiI−90(0.75LiS−0.25P)を合成した。合成した硫化物固体電解質を特開2014−102987号公報に記載の方法にて結晶化及び微粒子化した。
1.2. Synthesis of Solid Electrolyte 10LiI-90 (0.75Li 2 S-0.25P 2 S 5 ), which is a sulfide solid electrolyte, was synthesized by the method described in JP 2012-48973 A. The synthesized sulfide solid electrolyte was crystallized and finely divided by the method described in JP-A No. 2014-102987.

1.3.正極合剤スラリーの作製
LiNi1/3Co1/3Mn1/3(日亜化学工業社製、平均粒径(D50)=5μm)にLiNbOをコートして得られる正極活物質52gと、気相法炭素繊維(VGCF)(昭和電工社製)1gと、上記硫化物固体電解質17gと、脱水ヘプタン(関東化学社製)15gとを混合することにより、正極合剤スラリーを得た。LiNi1/3Co1/3Mn1/3へのLiNbOのコートについては、特開2010−73539号公報に記載の方法にしたがった。
1.3. Preparation of positive electrode mixture slurry LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation, average particle diameter (D 50 ) = 5 μm) and obtained by coating LiNbO 3 A positive electrode mixture slurry is obtained by mixing 52 g, 1 g of vapor grown carbon fiber (VGCF) (manufactured by Showa Denko KK), 17 g of the sulfide solid electrolyte, and 15 g of dehydrated heptane (manufactured by Kanto Chemical Co., Inc.). It was. For coating LiNbO 3 onto LiNi 1/3 Co 1/3 Mn 1/3 O 2 , the method described in JP 2010-73539 A was followed.

1.4.負極合剤スラリーの作製
グラファイト(三菱化学社製)36gと上記硫化物固体電解質25gと脱水ヘプタン(関東化学社製)32gとを混合して負極合剤スラリーを得た。
1.4. Preparation of Negative Electrode Mixture Slurry 36 g of graphite (Mitsubishi Chemical Co., Ltd.), 25 g of the sulfide solid electrolyte and 32 g of dehydrated heptane (Kanto Chemical Co., Ltd.) were mixed to obtain a negative electrode mixture slurry.

1.5.単位電池の作製
正極集電体として吸熱層を塗工したアルミニウム箔、負極集電体として銅箔を用意し、それぞれに上述の正極合剤スラリー、負極合剤スラリーを塗工・乾燥し、正極集電体の表面に正極活物質層を有する一対の正極と、負極集電体の表裏面に負極活物質層を有する負極を得た。一対の正極活物質層と負極集電体の表裏面に形成された負極活物質層との間に上記の硫化物固体電解質(固体電解質層)を配置し、プレスして一体化することにより、2個の電極体を有する単位電池を得た。同様の方法にて単位電池を複数作製した。
1.5. Preparation of unit battery Aluminum foil coated with an endothermic layer as a positive electrode current collector and copper foil as a negative electrode current collector were prepared, and the above-described positive electrode mixture slurry and negative electrode mixture slurry were respectively applied and dried. A pair of positive electrodes having a positive electrode active material layer on the surface of the current collector and a negative electrode having a negative electrode active material layer on the front and back surfaces of the negative electrode current collector were obtained. By placing the above-mentioned sulfide solid electrolyte (solid electrolyte layer) between the pair of positive electrode active material layers and the negative electrode active material layers formed on the front and back surfaces of the negative electrode current collector, pressing and integrating them, A unit cell having two electrode bodies was obtained. A plurality of unit cells were produced by the same method.

2.熱篭り検証試験
上述の方法で作製した複数の単位電池と、熱電対とを用いて、図6に示す形態で温度を測定した。図6に示したように、熱電対は、単位電池の積層方向中央に3つ、積層方向上端に2つ配置し、これを、一対のシリコンシート、ベーク板、及び、拘束板で挟むことにより固定した。この状態で単位電池を作動させた後、25℃の温度環境下で、一対の拘束板を貫通するように、直径8mm、先端角60°の釘を、速度25mm/sで刺した。図6に示したように、積層方向上端に配置した熱電対と釘との距離は16mmであり、積層方向中央に配置した熱電対のうち、釘に一番近い熱電対と釘との距離は14mmであった。釘刺し試験の条件を図7に、釘刺し後の経過時間と温度との関係を図8に、それぞれ示す。図8の縦軸が温度[℃]であり、横軸が釘刺し後の経過時間[s]である。
2. Heating verification test The temperature was measured in the form shown in FIG. 6 using a plurality of unit cells produced by the above-described method and a thermocouple. As shown in FIG. 6, three thermocouples are arranged at the center in the stacking direction of the unit cells and two at the upper end in the stacking direction, and are sandwiched between a pair of silicon sheets, a bake plate, and a restraint plate. Fixed. After operating the unit cell in this state, a nail having a diameter of 8 mm and a tip angle of 60 ° was pierced at a speed of 25 mm / s so as to penetrate the pair of restraint plates in a temperature environment of 25 ° C. As shown in FIG. 6, the distance between the thermocouple arranged at the upper end of the stacking direction and the nail is 16 mm, and among the thermocouples arranged in the center of the stacking direction, the distance between the thermocouple closest to the nail and the nail is 14 mm. FIG. 7 shows the conditions of the nail penetration test, and FIG. 8 shows the relationship between the elapsed time after the nail penetration and the temperature. The vertical axis in FIG. 8 is the temperature [° C.], and the horizontal axis is the elapsed time [s] after nail penetration.

図8に示したように、電池の積層方向中央の温度は、積層方向端の温度よりも高かった。積層方向中央の温度が高かったのは、熱が篭ったためである。   As shown in FIG. 8, the temperature at the center in the stacking direction of the battery was higher than the temperature at the end in the stacking direction. The reason why the temperature in the center in the stacking direction was high was that the heat was burned.

3.電池性能評価試験
上述の方法で作製した10個の単位電池及び吸熱層を用いて、図1に示す形態の本発明の電池を作製した。一方、吸熱層を使用しなかったほかは同様にして、比較例の電池を作製した。使用する電池が異なるほかは、充放電の条件を同一にすることにより、本発明の電池及び比較例の電池の充放電性能を調査した。結果を図9に示す。図9の縦軸は電圧[V]であり、横軸は容量[mAh/g]である。
3. Battery Performance Evaluation Test A battery of the present invention having the form shown in FIG. 1 was prepared using the 10 unit batteries and the endothermic layer prepared by the method described above. On the other hand, a comparative battery was prepared in the same manner except that the endothermic layer was not used. The charge / discharge performance of the battery of the present invention and the battery of the comparative example was investigated by making the charge / discharge conditions the same except that the batteries used were different. The results are shown in FIG. The vertical axis of FIG. 9 is voltage [V], and the horizontal axis is capacity [mAh / g].

図9に示したように、本発明の電池及び比較例の電池は、充電特性が一致し、放電特性もほぼ同等であった。この結果から、単位電池の表面や隣接する単位電池の間に絶縁性の吸熱層を配置しても、電池性能はほとんど変化しないことが分かった。   As shown in FIG. 9, the battery of the present invention and the battery of the comparative example had the same charge characteristics and almost the same discharge characteristics. From this result, it was found that the battery performance hardly changed even when an insulating endothermic layer was disposed between the surface of the unit battery or between adjacent unit batteries.

4.吸熱性能調査
上記「3.電池性能評価試験」で使用した本発明の電池、及び、比較例の電池を用いて、図7に示した条件にて電池の釘刺し試験を行い、釘刺し後の経過時間と積層方向中央に設置した熱電対で測定した温度との関係を調査することにより、吸熱層による吸熱性能を調べた。結果を図10に示す。図10の縦軸は温度[℃]、横軸は釘刺し後の経過時間[s]である。
4). Endothermic performance investigation Using the battery of the present invention used in the above "3. Battery performance evaluation test" and the battery of the comparative example, a battery nail penetration test was performed under the conditions shown in FIG. The endothermic performance of the endothermic layer was investigated by investigating the relationship between the elapsed time and the temperature measured by a thermocouple installed in the center of the stacking direction. The results are shown in FIG. The vertical axis in FIG. 10 is the temperature [° C.], and the horizontal axis is the elapsed time [s] after nail penetration.

図10に示したように、本発明の電池(吸熱シート有り)は、釘刺し直後から温度が徐々に上昇し、釘刺しから30秒程度経過するまでは温度が上昇したが、その後は温度がほぼ一定であった。これは、本発明の電池に備えられていた吸熱層によって、電池の温度上昇が抑制されたためであると考えられる。
これに対し、図10に示したように、比較例の電池(吸熱シート無し)は、釘刺し直後から温度が急激に上昇し、釘刺しから15秒程度経過するまでの間に温度が上昇した。釘刺し後の温度最大値から釘刺し前の温度を引くことにより得られる温度上昇量で評価すると、比較例の電池の温度上昇量は、本発明の電池の温度上昇量の約5倍であった。
以上より、本発明によれば、釘刺し後の温度上昇を、吸熱層を用いない場合の1/5程度に低減できた。この結果と図9に示した結果とを合わせると、本発明によれば、電池出力性能の低下を抑制しつつ、短絡による電池発熱時における電池の温度上昇を抑制することが可能な電池を提供できることが確認された。
As shown in FIG. 10, the battery of the present invention (with an endothermic sheet) gradually increased in temperature immediately after nail penetration and increased until about 30 seconds had passed since nail penetration. It was almost constant. This is considered to be because the temperature increase of the battery was suppressed by the endothermic layer provided in the battery of the present invention.
On the other hand, as shown in FIG. 10, the battery of the comparative example (without endothermic sheet) rapidly increased in temperature immediately after nail penetration and increased in temperature until about 15 seconds had passed since nail penetration. . When evaluated by the temperature increase obtained by subtracting the temperature before nail penetration from the maximum temperature after nail penetration, the temperature increase of the battery of the comparative example was about 5 times the temperature increase of the battery of the present invention. It was.
From the above, according to the present invention, the temperature increase after nail penetration could be reduced to about 1/5 of the case where no endothermic layer was used. When this result and the result shown in FIG. 9 are combined, according to the present invention, there is provided a battery capable of suppressing an increase in battery temperature during battery heat generation due to a short circuit while suppressing a decrease in battery output performance. It was confirmed that it was possible.

5.PPTC膜の作製及び性能評価
5.1.PPTC膜の作製
導電材である平均一次粒子径66nmのファーネスブラック粉末(東海カーボン株式会社製)と、PVDF(クレハKFポリマーL#9130、株式会社クレハ製)とを、体積比で、導電材:PVDF=20:80となるように秤量した。そして、これらをNMP(日本リファイン株式会社製)と混合することにより、PPTC膜用のペースト状組成物を作製した。
次に、集電体である厚さ15μmのAl箔の表面へ、乾燥後のPPTC膜の厚さが10μmになるように、上記PPTC膜用ペースト状組成物を塗工した。その後、100℃の定置乾燥炉内で1時間に亘って乾燥することにより、表面にPPTC膜を有する、PPTC膜付き集電体を作製した。
5. Production and performance evaluation of PPTC film 5.1. Production of PPTC film A conductive material, furnace black powder having an average primary particle diameter of 66 nm (manufactured by Tokai Carbon Co., Ltd.) and PVDF (Kureha KF Polymer L # 9130, produced by Kureha Co., Ltd.), in a volume ratio, are as follows: Weighed so that PVDF = 20: 80. And the paste-form composition for PPTC films | membranes was produced by mixing these with NMP (made by Nippon Refine Co., Ltd.).
Next, the paste composition for PPTC film was applied to the surface of an Al foil having a thickness of 15 μm as a current collector so that the thickness of the PPTC film after drying was 10 μm. Then, the collector with a PPTC film | membrane which has a PPTC film | membrane on the surface was produced by drying over 1 hour in a 100 degreeC stationary drying furnace.

5.2.PPTC膜特性評価
このようにして作製したPPTC膜付き集電体を、直径11.28mm(面積1cm)の円形状に打ち抜いた後、PPTC膜側にAl箔を重ね、これを同径の円柱状端子で挟んだ。その後、PPTC膜付き集電体を挟んだ端子ごと、恒温槽内に設置し、一定の昇温速度で温度を200℃まで上昇させたときの電気抵抗を測定した。具体的には、端子間に1mAの定電流通電を行い、この時の端子間の電圧を測定して、抵抗値を算出した。結果を図11に示す。図11の横軸は温度[℃]であり、同縦軸は抵抗[Ω・cm]である。図11に示したように、PPTC膜付き集電体は、160℃を超えると抵抗が急激に増大した。
5.2. PPTC Film Characteristic Evaluation The current collector with a PPTC film produced in this way is punched into a circular shape with a diameter of 11.28 mm (area 1 cm 2 ), and then an Al foil is stacked on the PPTC film side, and this is made into a circle with the same diameter. It was sandwiched between column terminals. Thereafter, the terminals sandwiching the current collector with the PPTC film were installed in a thermostatic chamber, and the electrical resistance was measured when the temperature was increased to 200 ° C. at a constant rate of temperature increase. Specifically, a constant current of 1 mA was applied between the terminals, the voltage between the terminals at this time was measured, and the resistance value was calculated. The results are shown in FIG. In FIG. 11, the horizontal axis represents temperature [° C.], and the vertical axis represents resistance [Ω · cm 2 ]. As shown in FIG. 11, the resistance of the current collector with a PPTC film rapidly increased when the temperature exceeded 160 ° C.

5.3.温度上昇検証試験
上記「3.電池性能評価試験」で使用した本発明の電池(PPTC膜無し)、及び、正極集電体として正極活物質層側の表面にPPTC膜を備えるPPTC膜付き集電体を使用し、且つ、吸熱層の厚さをPPTC膜無しの電池よりも薄くしたほかはPPTC膜無しの電池と同様に構成した本発明の電池(PPTC膜有り)を用いて、図7に示した条件にて電池の釘刺し試験を行った。そして、釘刺し後の経過時間と積層方向中央に設置した熱電対で測定した温度との関係を調査した。結果を図12に示す。図12の縦軸は温度[℃]、横軸は釘刺し後の経過時間[s]である。また、PPTC膜無しの電池における吸熱層の厚さ、ならびに、PPTC膜有りの電池における吸熱層及びPPTC膜の厚さを、表1に示す。
5.3. Temperature rise verification test The battery of the present invention (without PPTC film) used in “3. Battery performance evaluation test”, and a current collector with a PPTC film comprising a PPTC film on the surface of the positive electrode active material layer side as a positive electrode current collector 7 using the battery (with PPTC film) of the present invention constructed in the same manner as the battery without the PPTC film except that the heat absorption layer is thinner than the battery without the PPTC film. A battery nail penetration test was performed under the conditions indicated. And the relationship between the elapsed time after nail penetration and the temperature measured with the thermocouple installed in the center of the lamination direction was investigated. The results are shown in FIG. The vertical axis in FIG. 12 is the temperature [° C.], and the horizontal axis is the elapsed time [s] after nail penetration. Table 1 shows the thickness of the endothermic layer in the battery without the PPTC film and the thickness of the endothermic layer and the PPTC film in the battery with the PPTC film.

表1に示したように、PPTC膜有りの電池における、PTTC膜と吸熱層との合計厚さは50μmであり、この厚さは、PPTC膜無しの電池における吸熱層の厚さ90μmよりも薄かった。一方で、図12に示したように、PPTC膜有りの電池は、釘刺し後の昇温速度がPPTC膜無しの電池よりも緩やかであり、且つ、釘刺し後の最高到達温度がPPTC膜無しの電池よりも低かった。PPTC膜有りの電池の方が昇温速度が緩やかであったのは、相変化による吸熱作用を利用している吸熱層による吸熱は、PPTC膜の抵抗上昇よりも応答が早いためであると考えられる。この結果から、吸熱層とともにPPTC膜が備えられる形態とすることにより、短絡等の電池発熱時における電池の温度上昇を抑制しやすくなることが確認された。   As shown in Table 1, the total thickness of the PTTC film and the endothermic layer in the battery with the PPTC film is 50 μm, and this thickness is thinner than the thickness of the endothermic layer in the battery without the PPTC film of 90 μm. It was. On the other hand, as shown in FIG. 12, in the battery with the PPTC film, the rate of temperature increase after nail penetration is slower than the battery without the PPTC film, and the maximum temperature reached after nail penetration is no PPTC film. It was lower than the battery. The reason why the temperature rise rate was slower in the battery with the PPTC film is that the heat absorption by the endothermic layer using the endothermic effect due to the phase change is faster than the resistance increase of the PPTC film. It is done. From this result, it was confirmed that by adopting a configuration in which the PPTC film is provided together with the endothermic layer, it is easy to suppress the temperature rise of the battery when the battery generates heat such as a short circuit.

また、吸熱層の吸熱量は吸熱材の量に比例するため、吸熱材を多量に用いることで、短絡等の電池発熱時における温度抑制を行いやすくなると考えられる。しかしながら、吸熱材を多量に用いると、電池体積が大きくなる懸念がある。これに対し、図12に示したように、PTTC膜と吸熱層とを併用することにより、電池全体としての厚さを薄くして電池体積の増加を抑制しつつ、電池の温度上昇を抑制することが可能になる。それゆえ、PTTC膜と吸熱層とを併用することにより、コンパクトに誤用安全性を高めることが可能な電池を提供できる。   Further, since the endothermic amount of the endothermic layer is proportional to the amount of the endothermic material, it is considered that the use of a large amount of the endothermic material facilitates temperature suppression during battery heat generation such as a short circuit. However, when a large amount of the endothermic material is used, there is a concern that the battery volume increases. On the other hand, as shown in FIG. 12, the combined use of the PTTC film and the endothermic layer reduces the thickness of the entire battery and suppresses the increase in battery volume while suppressing the increase in battery temperature. It becomes possible. Therefore, by using the PTTC film and the endothermic layer in combination, a battery capable of improving the safety of misuse in a compact manner can be provided.

1…単位電池
1a…正極集電体
1b…正極活物質層
1c…固体電解質層
1d…負極活物質層
1e…負極集電体
1f…電極体
2…外装体
3…吸熱層(吸熱シート)
4…正極リード
5…負極リード
6…PPTC膜
9…固体電池
10…電池
DESCRIPTION OF SYMBOLS 1 ... Unit battery 1a ... Positive electrode collector 1b ... Positive electrode active material layer 1c ... Solid electrolyte layer 1d ... Negative electrode active material layer 1e ... Negative electrode collector 1f ... Electrode body 2 ... Exterior body 3 ... Endothermic layer (endothermic sheet)
4 ... Positive electrode lead 5 ... Negative electrode lead 6 ... PPTC film 9 ... Solid battery 10 ... Battery

Claims (7)

積層された複数の単位電池を備える電池であって、
前記単位電池は、積層方向の両端にそれぞれ配置された一対の集電体と、該一対の集電体の間に配置された、第1極の活物質層及び該第1極とは異なる第2極の活物質層、並びに、これらの間に配置された固体電解質層、を備える少なくとも1つの電極体と、を具備し、
前記一対の集電体は、前記第1極の活物質層又は前記第2極の活物質層と接触しており、
前記積層方向に隣接する単位電池の間に、吸熱材を含む吸熱層を備え、
前記吸熱層が、前記第1の活物質層と接触している、前記積層方向に隣接する前記集電体の間、又は、前記第2の活物質層と接触している、前記積層方向に隣接する前記集電体の間に備えられる、
電池。
A battery comprising a plurality of unit batteries stacked,
The unit battery includes a pair of current collectors disposed at both ends in the stacking direction, a first electrode active material layer disposed between the pair of current collectors, and a first electrode different from the first electrode. Comprising at least one electrode body comprising a bipolar active material layer and a solid electrolyte layer disposed therebetween,
The pair of current collectors are in contact with the active material layer of the first electrode or the active material layer of the second electrode,
An endothermic layer containing an endothermic material is provided between unit cells adjacent in the stacking direction,
The stacked layer in which the endothermic layer is in contact with the active material layer of the first electrode , between the current collectors adjacent in the stacking direction, or in contact with the active material layer of the second electrode Provided between the current collectors adjacent in a direction;
battery.
積層された複数の単位電池を備える電池であって、
前記単位電池は、積層方向の両端にそれぞれ配置された一対の集電体と、該一対の集電体の間に配置された、第1極の活物質層及び該第1極とは異なる第2極の活物質層、並びに、これらの間に配置された固体電解質層、を備える少なくとも1つの電極体と、を具備し、
前記一対の集電体は、いずれも、前記第1極の活物質層、又は、前記第2極の活物質層と接触しており、
前記積層方向に隣接する単位電池の間に、吸熱材を含む吸熱層を備える、
電池。
A battery comprising a plurality of unit batteries stacked,
The unit battery includes a pair of current collectors disposed at both ends in the stacking direction, a first electrode active material layer disposed between the pair of current collectors, and a first electrode different from the first electrode. Comprising at least one electrode body comprising a bipolar active material layer and a solid electrolyte layer disposed therebetween,
The pair of current collectors are both in contact with the active material layer of the first electrode or the active material layer of the second electrode,
An endothermic layer including an endothermic material is provided between unit cells adjacent in the stacking direction.
battery.
前記単位電池は、
前記積層方向の両端にそれぞれ配置された、一対の第1極の集電体、
前記一対の第1極の集電体の、互いに対向する面に接触するようにそれぞれ配置された、一対の第1極の活物質層、
前記一対の第1極の活物質層の、前記第1極の集電体に接触する面とは反対側の面にそれぞれ接触するように配置された、一対の固体電解質層、
前記一対の固体電解質層の、前記第1極の活物質層に接触する面とは反対側の面にそれぞれ接触するように配置された、一対の、前記第1極とは異なる第2極の活物質層、及び、前記一対の第2極の活物質層の間に、前記一対の第2極の活物質層のそれぞれと接触するように配置された、第2極の集電体、
を具備する、
請求項2に記載の電池。
The unit cell is
A pair of first pole current collectors disposed at both ends in the stacking direction;
A pair of first electrode active material layers, each disposed so as to be in contact with mutually facing surfaces of the pair of first electrode current collectors;
A pair of solid electrolyte layers disposed so as to be in contact with the surfaces of the pair of first electrode active material layers opposite to the surfaces contacting the current collector of the first electrode,
A pair of second electrodes different from the first electrode, disposed so as to be in contact with the surfaces of the pair of solid electrolyte layers opposite to the surfaces contacting the active material layer of the first electrode, respectively. A second electrode current collector disposed between the active material layer and the pair of second electrode active material layers in contact with each of the pair of second electrode active material layers;
Comprising
The battery according to claim 2.
積層された複数の単位電池を備える電池であって、
前記単位電池は、積層方向の両端にそれぞれ配置された一対の集電体と、該一対の集電体の間に配置された、第1極の活物質層及び該第1極とは異なる第2極の活物質層、並びに、これらの間に配置された固体電解質層、を備える少なくとも1つの電極体と、を具備し、
前記一対の集電体は、前記第1極の活物質層又は前記第2極の活物質層と接触しており、
前記積層方向に隣接する単位電池の間、及び、前記積層方向の端に配置された前記単位電池の表面に、吸熱材を含む吸熱層を備え、
前記積層方向の中央に備えられる前記吸熱材が、前記積層方向の端に備えられる前記吸熱材よりも多い、
電池。
A battery comprising a plurality of unit batteries stacked,
The unit battery includes a pair of current collectors disposed at both ends in the stacking direction, a first electrode active material layer disposed between the pair of current collectors, and a first electrode different from the first electrode. Comprising at least one electrode body comprising a bipolar active material layer and a solid electrolyte layer disposed therebetween,
The pair of current collectors are in contact with the active material layer of the first electrode or the active material layer of the second electrode,
Between the unit cells adjacent to each other in the stacking direction and on the surface of the unit cell disposed at the end in the stacking direction, a heat absorbing layer including a heat absorbing material is provided.
The endothermic material provided at the center in the stacking direction is more than the endothermic material provided at the end in the stacking direction,
battery.
積層された複数の単位電池を備える電池であって、
前記単位電池は、積層方向の両端にそれぞれ配置された一対の集電体と、該一対の集電体の間に配置された、第1極の活物質層及び該第1極とは異なる第2極の活物質層、並びに、これらの間に配置された固体電解質層、を備える少なくとも1つの電極体と、を具備し、
前記一対の集電体は、前記第1極の活物質層又は前記第2極の活物質層と接触しており、
前記積層方向に隣接する単位電池の間に、吸熱材を含む吸熱層を備え、
前記積層方向の中央に配置された前記単位電池に備えられる前記電極体の数が、前記積層方向の端に配置された前記単位電池に備えられる前記電極体の数よりも少ない、
電池。
A battery comprising a plurality of unit batteries stacked,
The unit battery includes a pair of current collectors disposed at both ends in the stacking direction, a first electrode active material layer disposed between the pair of current collectors, and a first electrode different from the first electrode. Comprising at least one electrode body comprising a bipolar active material layer and a solid electrolyte layer disposed therebetween,
The pair of current collectors are in contact with the active material layer of the first electrode or the active material layer of the second electrode,
An endothermic layer containing an endothermic material is provided between unit cells adjacent in the stacking direction,
The number of the electrode bodies provided in the unit battery disposed in the center in the stacking direction is less than the number of the electrode bodies provided in the unit battery disposed at the end in the stacking direction.
battery.
積層された複数の単位電池を備える電池であって、
前記単位電池は、積層方向の両端にそれぞれ配置された一対の集電体と、該一対の集電体の間に配置された、第1極の活物質層及び該第1極とは異なる第2極の活物質層、並びに、これらの間に配置された固体電解質層、を備える少なくとも1つの電極体と、を具備し、
前記一対の集電体は、前記第1極の活物質層又は前記第2極の活物質層と接触しており、
前記積層方向に隣接する単位電池の間に、吸熱材を含む吸熱層を備え、
さらに、前記第1極の活物質層と接触している前記集電体の、前記第1極の活物質層側の表面、又は、
前記第2極の活物質層と接触している前記集電体の、前記第2極の活物質層側の表面、又は、
前記第1極の活物質層と接触している前記集電体の、前記第1極の活物質層側の表面、及び、前記第2極の活物質層と接触している前記集電体の、前記第2極の活物質層側の表面に、
導電材及び樹脂を有するPPTC膜を備える、
電池。
A battery comprising a plurality of unit batteries stacked,
The unit battery includes a pair of current collectors disposed at both ends in the stacking direction, a first electrode active material layer disposed between the pair of current collectors, and a first electrode different from the first electrode. Comprising at least one electrode body comprising a bipolar active material layer and a solid electrolyte layer disposed therebetween,
The pair of current collectors are in contact with the active material layer of the first electrode or the active material layer of the second electrode,
An endothermic layer containing an endothermic material is provided between unit cells adjacent in the stacking direction,
Further, the surface of the current collector that is in contact with the active material layer of the first electrode, on the active material layer side of the first electrode, or
The surface of the current collector in contact with the active material layer of the second electrode, or the surface on the active material layer side of the second electrode, or
The surface of the current collector in contact with the active material layer of the first electrode, the surface on the active material layer side of the first electrode, and the current collector in contact with the active material layer of the second electrode On the surface of the second electrode on the active material layer side,
A PPTC film having a conductive material and a resin;
battery.
前記樹脂が、100℃よりも高温で溶融する熱可塑性樹脂である、請求項6に記載の電池。 The battery according to claim 6, wherein the resin is a thermoplastic resin that melts at a temperature higher than 100 ° C. 7.
JP2016158093A 2016-06-30 2016-08-10 battery Active JP6460063B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020170056748A KR101949016B1 (en) 2016-06-30 2017-05-04 Battery
US15/610,122 US10439260B2 (en) 2016-06-30 2017-05-31 Battery
CN201710401851.0A CN107565187B (en) 2016-06-30 2017-06-01 Battery with a battery cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016130462 2016-06-30
JP2016130462 2016-06-30

Publications (2)

Publication Number Publication Date
JP2018010848A JP2018010848A (en) 2018-01-18
JP6460063B2 true JP6460063B2 (en) 2019-01-30

Family

ID=60995699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016158093A Active JP6460063B2 (en) 2016-06-30 2016-08-10 battery

Country Status (2)

Country Link
JP (1) JP6460063B2 (en)
KR (1) KR101949016B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910717A4 (en) * 2019-05-08 2022-02-23 Lg Energy Solution, Ltd. All-solid-state battery comprising composite electrode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160525A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 battery
JP6907999B2 (en) * 2018-05-16 2021-07-21 トヨタ自動車株式会社 All solid state battery
JP6973319B2 (en) 2018-07-27 2021-11-24 トヨタ自動車株式会社 Solid-state battery electrodes and solid-state batteries
JP7147330B2 (en) 2018-07-27 2022-10-05 トヨタ自動車株式会社 Electrodes for solid-state batteries and solid-state batteries
JP7087784B2 (en) 2018-07-27 2022-06-21 トヨタ自動車株式会社 Solid-state battery electrodes and solid-state batteries
JP6969518B2 (en) 2018-07-27 2021-11-24 トヨタ自動車株式会社 Manufacturing method of electrodes for solid-state batteries
JP6962286B2 (en) 2018-07-27 2021-11-05 トヨタ自動車株式会社 Solid-state battery electrodes and solid-state batteries

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337971A (en) * 1989-07-03 1991-02-19 Yuasa Battery Co Ltd Thin battery
JP2959298B2 (en) * 1992-10-08 1999-10-06 株式会社日立製作所 Lithium secondary battery device
JPH10233237A (en) * 1997-02-17 1998-09-02 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
KR100515572B1 (en) * 2000-02-08 2005-09-20 주식회사 엘지화학 Stacked electrochemical cell and method for preparing the same
KR100497147B1 (en) * 2000-02-08 2005-06-29 주식회사 엘지화학 Multiply stacked electrochemical cell and method for preparing the same
JP2001357854A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery
JP2004311073A (en) * 2003-04-02 2004-11-04 Matsushita Electric Ind Co Ltd Energy device with overcurrent protection and its manufacturing method
US6959913B2 (en) * 2003-06-13 2005-11-01 Dynamic Air Inc. Actuator
KR100933427B1 (en) * 2005-08-16 2009-12-23 주식회사 엘지화학 Electrochemical device consisting of cross separator
JP5139203B2 (en) * 2008-08-27 2013-02-06 旭化成イーマテリアルズ株式会社 Endothermic sheet
JP5540588B2 (en) * 2008-10-20 2014-07-02 日産自動車株式会社 Bipolar secondary battery, assembled battery and vehicle equipped with these batteries
KR101091228B1 (en) * 2008-12-30 2011-12-07 주식회사 엘지화학 A separator having porous coating layer and electrochemical device containing the same
JP2011210619A (en) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd Battery pack
JP5918019B2 (en) * 2012-05-18 2016-05-18 株式会社オハラ All solid state secondary battery
KR20140114688A (en) * 2013-03-19 2014-09-29 주식회사 엘지화학 A electrochemical device
CN105122522A (en) * 2013-03-29 2015-12-02 株式会社Uacj Collector, electrode structure, battery and capacitor
JP6394083B2 (en) * 2013-08-08 2018-09-26 Nok株式会社 All solid battery
JP6149657B2 (en) * 2013-09-30 2017-06-21 トヨタ自動車株式会社 All solid battery
JP2015232976A (en) * 2014-06-10 2015-12-24 Nok株式会社 All-solid battery
JP6191673B2 (en) * 2015-10-22 2017-09-06 トヨタ自動車株式会社 battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910717A4 (en) * 2019-05-08 2022-02-23 Lg Energy Solution, Ltd. All-solid-state battery comprising composite electrode

Also Published As

Publication number Publication date
KR101949016B1 (en) 2019-02-15
KR20180003418A (en) 2018-01-09
JP2018010848A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6460063B2 (en) battery
CN107565187B (en) Battery with a battery cell
US10038229B2 (en) Battery
JP6729410B2 (en) All solid state battery
KR102015267B1 (en) Sulfide all-solid-state battery
JP5193998B2 (en) Electrochemical element separator, electrode for electrochemical element, and electrochemical element
JP4986166B2 (en) Lithium secondary battery
JP6222142B2 (en) Method for manufacturing electrode body
JP2012109123A (en) Heat-resistant microporous film and separator for batteries
JP5729442B2 (en) Separator and battery using the same
JP2013175309A (en) Closed type nonaqueous electrolyte secondary battery
JP2006269358A (en) Porous separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using above
US9847518B2 (en) Separator with heat-resistant insulation layer
JP4840302B2 (en) Separator and battery using the same
JP2012003938A (en) Separator for cell and lithium secondary cell
JP2019160525A (en) battery
KR102525677B1 (en) Lithium secondary battery
JP2019200947A (en) All-solid battery
US20240120552A1 (en) Sulfide Solid-State Battery, Printed Circuit Board with Sulfide Solid-State Battery, and Manufacturing Method of Sulfide Solid-State Battery
KR102553087B1 (en) Lithium secondary battery
JP2008004440A (en) Lithium secondary battery and its using method
EP3232491A1 (en) Lithium secondary battery
JP2018190538A (en) All-solid battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20180220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R151 Written notification of patent or utility model registration

Ref document number: 6460063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151