JP6459488B2 - 印刷装置 - Google Patents

印刷装置 Download PDF

Info

Publication number
JP6459488B2
JP6459488B2 JP2014258514A JP2014258514A JP6459488B2 JP 6459488 B2 JP6459488 B2 JP 6459488B2 JP 2014258514 A JP2014258514 A JP 2014258514A JP 2014258514 A JP2014258514 A JP 2014258514A JP 6459488 B2 JP6459488 B2 JP 6459488B2
Authority
JP
Japan
Prior art keywords
time
patches
light
carriage
color chart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258514A
Other languages
English (en)
Other versions
JP2016118469A5 (ja
JP2016118469A (ja
Inventor
望 廣久保
望 廣久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014258514A priority Critical patent/JP6459488B2/ja
Priority to US14/974,200 priority patent/US9641727B2/en
Publication of JP2016118469A publication Critical patent/JP2016118469A/ja
Publication of JP2016118469A5 publication Critical patent/JP2016118469A5/ja
Application granted granted Critical
Publication of JP6459488B2 publication Critical patent/JP6459488B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • H04N1/6044Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis involving a sensor integrated in the machine or otherwise specifically adapted to read the test pattern
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • H04N1/605Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis for controlling ink amount, strike-through, bleeding soakage or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

本発明は、印刷装置に関する。
印刷装置によって、複数のパッチの集合体としてのカラーチャートを印刷するとともに、当該カラーチャートにおける複数のパッチのそれぞれを測色部によって測色する技術が知られている。この技術において、カラーチャートのパッチのサイズが測色結果に影響を与える場合がある。例えば、パッチのサイズが小さい場合には、測色対象としているパッチの色のみを純粋に得ることが難しい。一方で、パッチのサイズが大きい場合には、カラーチャートの印刷に長時間を要するとともに、インクや用紙の消費量も増大してしまう。
そこで、対象パッチのサイズを変えて複数印刷し、印刷したパッチを測色し、取得した測色値等に基づいて対象パッチのサイズのうち最小の(最適な)サイズを決定する技術が知られている(特許文献1参照)。
特開2010−201845号公報
しかしながら、上記技術では、最適なサイズのパッチを形成して測色する際に、サイズの異なるパッチを複数印刷する必要があるので、インクの消費量が増大する、時間がかかる、などの問題が指摘されている。
そこで、本発明のいくつかの態様の目的の一つは、測色に際し、インクの消費量の増大や、時間がかかるなどの問題を解消する技術を提供することにある。
上記目的の一つを達成するために、本発明の一態様に係る印刷装置は、複数のパッチが第1方向と前記第1方向とは異なる第2方向に沿って配列するカラーチャートを印刷する印刷部と、前記カラーチャートに光のスポットを照射するとともに、当該スポットによる反射光から、前記複数のパッチの各々をそれぞれ測色する測色部と、前記印刷部と測色部とが搭載されたキャリッジと、前記キャリッジを、前記カラーチャートに対して相対的に移動させる相対移動部と、を備え、前記複数のパッチの各々における前記第1方向の幅Wp(m)が、次式で表されることを特徴とする。
Wp=D+{(D・Tm/Tnl)・(W−D)}1/2
ただし、Dは、前記スポットにおける前記第1方向に沿った幅(m)であり、Tmは、前記キャリッジが前記カラーチャートに対し前記第1方向に相対移動して、前記複数のパッチのうち、1つのパッチの測色に要する時間(秒)であり、Tnlは、前記キャリッジが前記第2方向に前記複数のパッチの1行分相対移動するのに要する時間(秒)であり、Wは、前記カラーチャートにおける前記第1方向に沿った幅(m)である。
この一態様に係る印刷装置によれば、パッチにおける第1方向の幅Wpを、各種要素の値に対して上記式から算出するので、実際に測色した結果からパッチの幅を決定する工程が不要となる。このため、カラーチャートの作成に要する領域を削減するとともに、インクの消費量を抑え、時間の短縮化を図ることができる。
なお、後述するように、幅Wpについては、上記式通りに限られず、当該式で示される値に対し+10%の以内範囲は許容される。
上記一態様に係る印刷装置において、前記測色部は、複数の波長を時系列で順番に分光する構成としても良く、さらに、当該構成において、前記測色部は、分光された光を1つの受光部で受光しても良い。分光された光を1つの受光部で受光するので、複数の受光部で受光する構成と比較して、受光部同士のばらつきの影響を無視することができる。
上記一態様に係る印刷装置において、前記測色部は、互いに対向する反射膜間のギャップをQ(Qは複数)段階で制御される波長可変干渉フィルターと、前記波長可変干渉フィルターの透過光を受光する受光部と、を備え、前記時間Tmが次式で表される構成としても良い。
Tm=Te(Q−1)+Tr・Q
ただし、Teは、前記ギャップのQ段階の制御において1回のギャップ変動に要する平均時間(秒)であり、Trは、前記受光部が前記透過光を受光可能とする時間(秒)である。
また、上記目的は、次のような態様に係る印刷装置によっても達成することができる。すなわち、この態様に係る印刷装置は、複数のパッチが第1方向と前記第1方向とは異なる第2方向に沿って配列するカラーチャートを印刷する印刷部と、前記カラーチャートに光のスポットを照射するとともに、当該スポットによる反射光から、前記複数のパッチの各々をそれぞれ測色する測色部と、前記印刷部と測色部とが搭載されたキャリッジと、前記キャリッジを、前記カラーチャートに対して相対的に移動させる相対移動部と、を備え、前記複数のパッチの各々における前記第1方向の幅をWp(m)としたとき、前記複数のパッチの測色に要する時間Tall(秒)が、次式で表され、前記パッチの幅が当該時間Tallを最小にする値に設定されていることを特徴とする。
Tall=(Nall・Wp・Tm)(W−D)/{W(Wp−D)}
+Tnl{(Nall・Wp/W)−1}
ただし、Nallは、前記パッチの全個数であり、Tmは、前記キャリッジが前記カラーチャートに対し前記第1方向に相対移動して、前記複数のパッチのうち、1つのパッチの測色に要する時間(秒)であり、Wは、前記カラーチャートにおける前記第1方向に沿った幅(m)であり、Dは、前記スポットにおける前記第1方向に沿った幅(m)であり、Tnlは、前記キャリッジが前記第2方向に前記複数のパッチの1行分相対移動するのに要する時間(秒)である。
この一態様に係る印刷装置によれば、パッチにおける第1方向の幅Wpがパッチの測色に要する時間Tall(秒)を最小にする値に設定されているので、実際に測色した結果からパッチの幅を決定する工程が不要となり、インクの消費量を抑え、時間の短縮化を図ることができる。
実施形態に係る印刷装置の概略構成を示す図である。 印刷装置における測色部の構成を示す図である。 測色部における光学フィルターデバイスの構成を示す図である。 測色部によるカラーチャートの測色経路を示す図である。 パッチ幅を引数とする全測色時間の関数の特性を示す図である。 パッチを測色する際の光学フィルターデバイスの駆動等を示す図である。 パッチ間移動区間と初期化区間との関係を示す図である。 スポットの径を説明するための図である。
以下、図面を参照して本発明を実施するための形態について説明する。
図1は、印刷装置の概略構成を示す斜視図である。
この図に示されるように、印刷装置1は、キャリッジ20を、主走査方向(X方向、第1方向)に移動(往復動)させる移動機構6を備える。
移動機構6は、キャリッジ20を移動させるキャリッジモーター61と、両端が固定されたキャリッジガイド軸62と、キャリッジガイド軸62とほぼ平行に延在し、キャリッジモーター61により駆動されるタイミングベルト63と、を有している。
キャリッジ20は、キャリッジガイド軸62に往復動自在に支持されるとともに、タイミングベルト63の一部に固定されている。そのため、キャリッジモーター61によりタイミングベルト63を正逆走行させると、キャリッジ20がキャリッジガイド軸62に案内されて往復動する。
キャリッジ20には、吐出部30と測色部40とが搭載されている。このうち、吐出部30は、紙などの媒体Pと対向する部分に、インクを個別にZ方向に吐出する複数のノズルを有する印刷部である。なお、吐出部30は、カラー印刷のために、概略的に4つのブロックに分かれている。個々のブロックは、ブラック(Bk)、シアン(C)、マゼンタ(M)、イエロー(Y)のインクをそれぞれ吐出する。
また、測色部40は、後述するように、吐出部30により媒体Pに形成された画像(カラーチャート)を測色する。
なお、キャリッジ20には、メイン基板(図示省略)からフレキシブルケーブル190を介して吐出部30への制御信号や測色部40への駆動信号などが供給される一方で、測色部40からの検出信号がメイン基板に供給される構成となっている。
印刷装置1は、媒体Pを、プラテン70上で搬送させる搬送機構7を備える。搬送機構7は、駆動源である搬送モーター71と、搬送モーター71により回転して印刷媒体Pを副走査方向(Y方向、第2方向)に搬送する搬送ローラー72と、を備える。
このような構成において、キャリッジ20の主走査に合わせて吐出部30のノズルから印刷データに応じてインクを吐出させるとともに、媒体Pを搬送機構7によって搬送する動作を繰り返すことで、媒体Pの表面に画像(文字、図形、カラーチャート等を含む)が形成される。
また、印刷装置1は、所定の印刷データにしたがって媒体Pに形成したカラーチャートを測色する測色機能を有する。この測色機能は、例えば、測色したデータで示される色が上記所定の印刷データで規定される色となるようにキャリブレーションするために用いられたり、カラープロファイルの作成などに利用されたりする。
カラーチャートは、媒体Pに、後述するように複数色のパッチをマトリクス状に配列するように印刷したものであり、測色は、当該カラーチャートをキャリッジ20に搭載された測色部40をX方向に正逆移動させつつ、媒体PをY方向に搬送させながら実行される。
図2は、測色部40の構成、特に光学経路の例を示す図である。
この図に示されるように、測色部40は、内部空洞で直方体形状のケース401内において、光源410、集光レンズ412、反射鏡414、バンドパスフィルター416、光学フィルターデバイス420および受光部430を含む構成である。
ケース401には、媒体Pに対向する面402に開口部418が設けられている。
光源410は、例えば白色LEDであり、少なくとも測定の対象となる波長域にわたって分布する光を照射する。集光レンズ412は、光源410から照射される光をほぼ平行な光束として出射する。
集光レンズ412から出射した光は、開口部418を通過し、面402に対向する媒体Pに対し、直径D(m)のスポットで照射される。
反射鏡414は、媒体Pで反射し、開口部418を通過した光を、光学フィルターデバイス420および受光部430に反射・集光させる凹面鏡である。バンドパスフィルター416は、反射鏡414で反射して、光学フィルターデバイス420に入射する光のうち、測定対象とする色の波長域以外の有害光をカットする。
光学フィルターデバイス420は、ギャップが可変の2枚の反射膜を有し、バンドパスフィルター416を通過した光のうちの特定波長の光を、当該反射膜の反射および干渉によって透過させる。光学フィルターデバイス420において2枚の反射膜間のギャップは、例えばフレキシブルケーブル190を介して供給される駆動信号の電圧によって制御される。
受光部430は、特に図示はしないが、光学フィルターデバイス420を透過した特定波長の光を、電流に変換するフォトダイオードと、当該フォトダイオードによる電流を電圧に変換する変換回路とを含む。
図3は、光学フィルターデバイス420の構成を示す図である。
この図に示されるように、光学フィルターデバイス420は、筐体601と波長可変干渉フィルター5とを含む。
このうち、筐体601は、ベース基板610と、当該ベース基板610との間で内部空間を形成する封止用のリッド620とを含む。
ベース基板610には、Z方向から平面視したときに円形の形状の光透過領域に対応した光通過孔611が設けられるとともに、当該光通過孔611よりも径の大きいカバーガラス630が、リッド620とは反対側の面に取り付けられている。同様に、リッド620には、光透過領域に対応した光通過孔621が設けられるとともに、当該光通過孔621よりも径の大きいカバーガラス640が、ベース基板610とは反対側の面に取り付けられている。
波長可変干渉フィルター5は、リッド620に対して保持部材58によって固定された基板51と、当該基板51に接合された基板52とを有する。
基板51、52とは、いずれもガラスなどであり、光透過性を有する。基板51において基板52との対向面には、反射膜53が、光通過領域の中心を含み、かつ、平面視したときに円形の形状で設けられる。一方、基板52において基板51との対向面には、反射膜54が反射膜53と対向するように、かつギャップを保つように設けられる。なお、反射膜53、54には、反射率を高くするために、銀や、銀を主成分とする合金などが用いられる。
光学フィルターデバイス420では、カバーガラス640の側から入射した光が、反射膜53、54の間で繰り返して反射し、ギャップの2倍に相当する距離の整数倍となる波長の光が、カバーガラス630の側に出射する。
光学フィルターデバイス420において、基板52には、平面視したときに反射膜54が設けられる領域の外側であって、基板51との対向面の反対側の面に、ダイアフラム522が光通過孔611の外周縁と対向するように形成されている。
基板52において基板51との対向面には、ダイアフラム522の内側であって、反射膜54の外側に、平面視したときにリング状の電極564が形成されている。基板51において基板52との対向面には、この電極564と対向するように、同様にリング状の電極563が形成されている。
基板52において、ダイアフラム522は、他の部分と比較して撓みやすくなっているので、電極563、564に駆動信号を印加すれば、電極563、564の間の電位差に応じた静電引力が生じる。このため、ダイアフラム522の内側領域が基板51側に接近し、反射膜53、54のギャップが当該電位差に応じて小さくなる。一方、電極563、564への駆動信号の印加が停止すれば、反射膜53、54のギャップは元に戻る。
このため、光学フィルターデバイス420では、電極563、564に印加する駆動信号の電圧により反射膜53、54のギャップを制御することが可能となっており、カバーガラス640からの入射した光のうち、カバーガラス630から出射する光の波長を選定できる構成となっている。
このようにして光学フィルターデバイス420への駆動信号の電圧を変化させながら、すなわち、波長可変干渉フィルター5で取り出す光の波長を変化させながら、受光部430から出力される電圧を得ることで、波長に対する光の強度分布を求める構成となっている。換言すれば、複数の波長を時系列で順番に分光して、その分光強度を検出する構成となっている。また、分光強度は、1つの受光部430で検出するので、複数の受光部で異なる波長の分光強度を検出する構成と比較して、受光部同士のばらつきの影響を無視することができる。
図4は、媒体Pに形成されるカラーチャートと、当該カラーチャートの測色経路とを説明するためのである。
同図の(a)に示されるように、カラーチャートは、媒体Pに、互いに異なる複数色のパッチがマトリクス状に配列するように、吐出部30がインクを吐出することにより形成される。ここで、カラーチャートにおいてキャリッジの走査方向であるX方向の距離(幅)をW(m)とし、1色分のパッチにおける幅をWp(m)とする。
上述したように測色部40から媒体Pに照射される光のスポットは、直径Dである。当該スポットがパッチの境界にかかっているときは、隣り合うパッチの双方にスポットが照射されることになるので、正しく測色できない。同様に、当該スポットがカラーチャートの端部にかかっているときは、バッチと、カラーチャートが形成されていない媒体Pとにスポットが照射されることになるので、正しく測色できない。
詳細には、あるパッチについて、X方向負側に向かった一端からスポットの半径D/2だけX方向正側に離れた地点までの範囲、および、X方向正側に向かった他端からスポットの半径D/2だけX方向負側に離れた地点までの範囲に、スポットの中心が位置する場合には、当該パッチを正確に測色できない。
換言すれば、あるパッチについてスポットの中心が、これらの範囲を除いた地点に位置していれば、当該パッチを正確に測色できることになる。このパッチを測色できる距離は、パッチの幅Wpからスポットの直径Dを引いた(Wp−D)である。そして、キャリッジ20によって当該スポットの中心がX方向に距離(Wp−D)だけ移動している期間に、駆動信号の電圧によって波長可変干渉フィルター5を透過する光の波長を変化させる必要がある。
ここで、説明の便宜上、測色部40が1つのパッチの測色に要する時間をTm(秒)とする。この例において、時間Tmとして、スポットの中心が距離(Wp−D)を移動する時間とすると、キャリッジ20(スポット)の移動速度Vは、次式(1)のように表すことができる。
V=(Wp−D)/Tm …(1)
次に、カラーチャートのパッチ配列について、X方向の個数を「列」とし、Y方向の個数を「行」とする。1行を構成するパッチの列数Ncについては、一般に、次式(2)のように表すことができる。
Nc=W/Wp …(2)
なお、図4は、パッチの列数が「5」の例である。
また、カラーチャートを構成するパッチの全個数(色数)をNallとしたとき、カラーチャートの行数Lについては、一般に、全個数Nallを列数Ncで割った値、すなわち、次式(3)のように表すことができる。
L=Nall/Nc …(3)
式(3)のNcに、式(2)のNcを代入すると、式(3)は、次式(4)のように表すことができる。
L=(Nall・Wp)/W …(4)
なお、図4は、カラーチャートの行数Lが「4」の例である。
このようなカラーチャートのパッチを全て測色するためには、測色部40による照射光のスポットが、(a)において実線の太線で示される経路を辿るように、キャリッジ20をX方向の正側または負側に移動するとともに、媒体PをY方向に搬送させる必要がある。
このような経路については、同図の(b)に示されるように、キャリッジ20のみの移動に要する経路のL個分と、同図の(c)に示されるように、搬送機構7による媒体Pの搬送を伴う経路の(L−1)個分とに分解することができる。
ここで、カラーチャートの全パッチの測色に要する時間Tall(秒)の短縮化について検討する。時間Tallは、図4(b)で示した経路を辿るのに要する時間Tc(秒)と、図4(c)で示した経路を辿るのに要する時間Td(秒)との和で表すことができる。すなわち、次式(5)のように表すことができる。
Tall=Tc+Td …(5)
まず、時間Tcは、キャリッジ20が距離(W−D)を速度Vで移動する時間のL(行数)倍で表される。このため、次式(6)のように表すことができる。
Tc=L(W−D)/V …(6)
この式(6)を、式(1)および式(4)を用いて表すと、次式(7)のようになる。
Tc=(Nall・Wp・Tm)(W−D)/{W(Wp−D)} …(7)
次に、時間Tdは、キャリッジ20がカラーチャートの一端に達したときに、媒体Pを1行分だけY方向に搬送するのに要する時間Tnlの(L−1)倍である。このため、時間Tdは、次式(8)のように表すことができる。
Td=Tnl(L−1) …(8)
式(8)のLに、式(4)のLを代入すると、式(8)は、次式(9)のように表すことができる。
Td=Tnl{(Nall・Wp/W)−1} …(9)
したがって、式(5)の時間Tallは、式(7)および式(9)から、次式(10)のように表すことができる。
Tall=(Nall・Wp・Tm)(W−D)/{W(Wp−D)}
+Tnl{(Nall・Wp/W)−1} …(10)
ここで、時間Tallを、パッチの幅Wpを引数とし、他の値を一定とした関数と考えた場合、当該関数は、図5に示されるように下に凸となる特性で示され、幅WpがWp0のときに極小値Tall_minをとる。このときの値Wp0は、次式(11)のように表される。
Wp0=D+{(D・Tm/Tnl)・(W−D)}1/2 …(11)
したがって、カラーチャートを構成するパッチの幅Wpを式(11)で示されるWp0に最適化することによって、カラーチャートの測色時間を最小とすることができる。
図5に示される特性では、極小値Tall_minの負側(左側)において急峻に増加するが、正側(右側)にはおいては比較的なだらかに増加する。換言すれば、幅Wpが少しでも値Wp0より小さくなると、時間Tallは、極小値Tall_minに対して大きく増加するが、幅Wpが値Wp0よりも多少大きくなっても、時間Tallは、極小値Tall_minに対してわずかにしか増加しない。
カラーチャートの全パッチの測色に要する時間Tallを最小とするためには、当該カラーチャートのパッチの幅Wpを値Wp0とすれば良いが、幅Wが値Wp0より多少大きくなっても、時間Tallの増加は微小であるので、許容できる。具体的には、幅Wが値Wp0より+10%以内程度であれば、時間Tallの増加は許容できる。
図6の(a)は、パッチの測色に際し、測色部40から媒体Pに照射される光のスポットの移動の様子を示す図である。なお、この図においては、当該スポットがパッチ(N−1)、N、(N+1)という順番で移動する様子を示している。また、スポットの位置について便宜的に当該スポットの中心を用いて説明する。
上述したようにスポットの一部がパッチの境界にかかっているとき、詳細には、(a)において、スポットの(中心)位置が次の範囲に含まれる場合、正確に測色できない。すなわち、この範囲とは、パッチ(N−1)とパッチNとの境界である地点P2を基準にしてスポットの半径D/2だけ搬送方向で前方の地点P1から後方の地点P3までの範囲、および、パッチNとパッチ(N+1)との境界である地点P5を基準にしてスポットの半径D/2だけ搬送方向で前方の地点P4から後方の地点P6までの範囲、である。なお、このようにパッチの境界を基準にしてスポットの半径だけ前方の地点から後方の地点までをパッチ間移動区間(または時間)という場合がある。なお、ここでいうパッチ間移動区間の距離はスポットの直径Dであり、パッチ間移動時間はD/Vである。
換言すれば、パッチNについていえば、スポットの位置が地点P3から地点P4までの範囲にあれば、当該パッチNを正しく測色できることを意味する。なお、地点P3から地点P4までの距離は、上述したように(Wp−D)である。
図6の(b)は、光学フィルターデバイス420において波長可変干渉フィルター5を透過する光の波長の変化について、スポットの移動と対応付けて示す図である。光学フィルターデバイス420においては、1色のパッチを測色するに際し、波長可変干渉フィルター5で取り出す光の波長(透過光波長)を、例えば700nm(第1値)から400nm(第2値)まで、16段階で順番に制御するとともに、そのときの波長可変干渉フィルター5の透過光を受光部430が受光する構成となっている。具体的には、波長可変干渉フィルター5への駆動信号が透過光波長に対応する電圧に変化することによって、反射膜53、54のギャップが、700nmの透過光波長に対応する最大値から400nmの透過光波長に対応する最小値まで段階的に制御されて、各段階において波長可変干渉フィルター5の透過光の強度(分光強度)を受光部430が検出する構成となっている。
図6の(b)でいえば時刻t1から時刻t2までが、透過光波長の700nmの分光強度を検出するための時間であり、時刻t2から時刻t3までが、700nmから1段階、透過光波長を短くした波長の分光強度を検出するための時間であり、時刻t3から時刻t4までが、700nmから2段階、透過光波長を短くした波長の分光強度を検出するための時間であり、以降同様にして、時刻t16から時刻tbまでが、700nmから16段階、透過光波長を短くした400nmの分光強度を検出するための時間である。
なお、この例において、測色部40が1つのパッチの測色に要する時間Tmは、波長可変干渉フィルター5に対する制御の観点からいえば、一般に次式(12)のように表すことができる。
Tm=Te(Q−1)+Tr・Q …(12)
式(12)において、Qは、ギャップの制御する段階数、すなわち、測定する波長数であり、図の例では「16」である。Teは、対象とする段階の波長に対応するギャップに制御して安定するまでに要する平均時間(秒)である。なお、ギャップの変動量は、各段階で異なるので、時間Teについては平均値としている。また、最初の700nmについては、初期化期間後のギャップをそのまま用いるので、700nmの波長に対応するギャップに制御して安定するまでに要する時間はゼロである。
一方、光学フィルターデバイス420においては、透過光波長が400nmに変化し、当該波長の光の強度を受光部430が出力した後に、次のパッチの測色に備えて、透過光波長が700nmとなるように、ギャップの値を制御する(初期化する)初期化処理が実行される。
透過光波長を700nmに初期化するということは、ギャップが最小値から最大値まで戻る(いわゆる駆動戻り)ということであり、ギャップの変動量が大きい。このため、駆動戻り時において、図に示されるように、透過光波長が安定・収束するまでに長い時間を要する。詳細には、例えば時刻ta(tb)で、ギャップを透過光波長が400nmに対応する値から700nmに対応する初期値に制御されても、直ちに透過光波長が700nmに安定せず、当該透過光波長が700nmに対して閾値th内に収束するまで、ある程度の時間を要する。なお、ギャップを、透過光波長の700nmに対応する初期値に制御する時刻taから、実際の透過光波長が700nmに対して閾値th内に収束するまでの時間を初期化期間と呼び、この初期化期間にスポットが移動する区間を初期化区間と呼ぶことにする。図において、パッチNを測色するための初期化期間は、時刻taから時刻t1までのTtで表されている。
この初期化期間では、波長可変干渉フィルター5の透過光波長が変化し、安定しないので、パッチの測色に適さない。
本実施形態では、スポットが隣り合うパッチの双方を照射して正確に測色できないパッチ間移動区間(例えば地点P1から地点P3まで)と、波長可変干渉フィルター5の透過光波長が安定しないために測色に適さない初期化期間Ttとが一致しているので、カラーチャートのパッチに対するスポットの移動に対して、光学フィルターデバイス420における波長可変干渉フィルター5が適切なタイミングで制御されることになる。このため、本実施形態では、駆動戻りによる遅延を小さく抑えられるので、測色の精度を確保した上で、測色時間の短縮化を図ることができる。
なお、実施形態では、パッチ間移動区間(地点P1から地点P3まで)の距離であるDと、初期化期間Ttにスポットが移動する初期化区間とを一致させた例であるが、両者が一部重複する関係にあれば良い。
図7は、パッチ間移動区間と初期化区間とが一部重複する関係の例を示す図である。
まず、(a)は、パッチ間移動区間(地点P1から地点P3まで)と初期化区間Ltとを一致させた例である。
(b)は、初期化区間Ltがパッチ間移動区間よりも先行した場合の例である。この場合、スポットの中心がパッチ間移動区間に位置するよりも先に、初期化処理が開始することになるので、その分だけ、(a)の場合と比較して、パッチの測色に用いることができる距離(Wp−D)が浸食されることになる。
(c)は、逆に、初期化区間Ltがパッチ間移動区間よりも後行した場合の例である。この場合、スポットの中心がパッチ間移動区間から外れても、初期化処理が継続していることになる。
(d)は、パッチ間移動区間が初期化区間Ltに含まれる場合の例であって、スポットの直径Dに対して初期化区間Ltが長いとき(初期化処理に時間が要するとき)の例である。(e)は、逆に、初期化区間Ltがパッチ間移動区間に含まれる場合の例であって、スポットの直径Dに対して初期化区間が短いときの例である。
また、実施形態では、波長可変干渉フィルター5について、透過光波長を700nmから400nmに小さくする方向に変化させたが、逆に400nmから700nmへと、ギャップが狭い状態から広い状態へと段階的に変化させる構成としても良い。
この構成において初期化処理とは、ギャップを、透過光波長の400nmに対応する値に制御する処理をいうことになる。
実施形態では、カラーチャートの1行について、キャリッジ20が媒体Pに対してX方向に移動して測色する構成としたが、カラーチャートの1行をY方向とし、キャリッジ20を固定として、当該カラーチャートが形成された媒体PをY方向に搬送して測色する構成としても良い。要は、測色に際し、キャリッジ20とカラーチャートとを、1行のパッチが配列する方向に相対的に移動させる構成であれば良い。
実施形態では、カラーチャートに照射する光のスポットを、円形状として説明したが、集光レンズ412の収差や、面402とカラーチャートとが非平行となるなどの理由により、円形状とはならない場合がある。非円形となる場合のスポットについては、図8に示されるように、当該スポットにおけるX方向(キャリッジ20の移動方向)に沿った幅をDと考えれば良い。
1…印刷装置、5…波長可変干渉フィルター、6…移動機構、7…搬送機構、20…キャリッジ、30…吐出部、40…測色部、53、54…反射膜、420…光学フィルターデバイス、430…受光部430。

Claims (5)

  1. 複数のパッチが第1方向と前記第1方向とは異なる第2方向に沿って配列するカラーチャートを印刷する印刷部と、
    前記カラーチャートに光のスポットを照射するとともに、当該スポットによる反射光を用いて、前記複数のパッチの各々を測色する測色部と、
    前記印刷部と測色部とが搭載されたキャリッジと、
    前記キャリッジを、前記カラーチャートに対して相対的に移動させる相対移動部と、
    を備え、
    前記複数のパッチの各々における前記第1方向の幅Wp(m)が、次式で表される
    ことを特徴とする印刷装置。
    D+{(D・Tm/Tnl)・(W−D)}1/2≦Wp≦1.1[D+{(D・Tm/Tnl)・(W−D)}1/2]
    ただし、
    Dは、前記スポットにおける前記第1方向に沿った幅(m)であり、
    Tmは、前記キャリッジが前記カラーチャートに対し前記第1方向に相対移動して、前記複数のパッチのうち、1つのパッチを測色するのに要する時間(秒)であり、
    Tnlは、前記キャリッジが前記第2方向に前記複数のパッチの1行分相対移動するのに要する時間(秒)であり、
    Wは、前記カラーチャートにおける前記第1方向に沿った幅(m)である。
  2. 前記測色部は、前記反射光を複数の波長の光に分光する
    ことを特徴とする請求項1に記載の印刷装置。
  3. 前記測色部は、前記複数の波長の光の各々を1つの受光部で受光する
    ことを特徴とする請求項2に記載の印刷装置。
  4. 前記測色部は、
    互いに対向する反射膜間のギャップをQ(Qは複数)段階で制御される波長可変干渉フィルターと、
    前記波長可変干渉フィルターの透過光を受光する受光部と、
    を備え、
    前記時間Tmが次式で表される
    ことを特徴とする請求項1に記載の印刷装置。
    Tm=Te(Q−1)+Tr・Q
    ただし、
    Teは、前記ギャップのQ段階の制御において1回のギャップ変動に要する平均時間(秒)であり、
    Trは、前記受光部が前記透過光を受光する時間(秒)である。
  5. 複数のパッチが第1方向と前記第1方向とは異なる第2方向に沿って配列するカラーチャートを印刷する印刷部と、
    前記カラーチャートに光のスポットを照射するとともに、当該スポットによる反射光を用いて、前記複数のパッチの各々を測色する測色部と、
    前記印刷部と測色部とが搭載されたキャリッジと、
    前記キャリッジを、前記カラーチャートに対して相対的に移動させる相対移動部と、
    を備え、
    前記複数のパッチの各々における前記第1方向の幅をWp(m)としたとき、
    前記複数のパッチの測色に要する時間Tall(秒)が、次式で表され、
    前記パッチの幅が当該時間Tallを最小にする値である
    ことを特徴とする印刷装置。
    Tall=(Nall・Wp・Tm)(W−D)/{W(Wp−D)}
    +Tnl{(Nall・Wp/W)−1}
    ただし、
    Nallは、前記パッチの全個数であり、
    Tmは、前記キャリッジが前記カラーチャートに対し前記第1方向に相対移動して、前記複数のパッチのうち、1つのパッチの測色に要する時間(秒)であり、
    Wは、前記カラーチャートにおける前記第1方向に沿った幅(m)であり、
    Dは、前記スポットにおける前記第1方向に沿った幅(m)であり、
    Tnlは、前記キャリッジが前記第2方向に前記複数のパッチの1行分相対移動するのに要する時間(秒)である。
JP2014258514A 2014-12-22 2014-12-22 印刷装置 Active JP6459488B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014258514A JP6459488B2 (ja) 2014-12-22 2014-12-22 印刷装置
US14/974,200 US9641727B2 (en) 2014-12-22 2015-12-18 Printing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258514A JP6459488B2 (ja) 2014-12-22 2014-12-22 印刷装置

Publications (3)

Publication Number Publication Date
JP2016118469A JP2016118469A (ja) 2016-06-30
JP2016118469A5 JP2016118469A5 (ja) 2018-01-25
JP6459488B2 true JP6459488B2 (ja) 2019-01-30

Family

ID=56130969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258514A Active JP6459488B2 (ja) 2014-12-22 2014-12-22 印刷装置

Country Status (2)

Country Link
US (1) US9641727B2 (ja)
JP (1) JP6459488B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619771B2 (en) 2005-01-28 2009-11-17 Hewlett-Packard Development Company, L.P. Color calibration in a printer
US20070097390A1 (en) 2005-10-31 2007-05-03 Lexmark International, Inc. Method for correcting cartridge color shifts for performing imaging with an imaging apparatus using a cartridge
US8203749B2 (en) * 2006-06-16 2012-06-19 Hewlett-Packard Development Company, L.P. Printing device, carriage and color measurement method
JP5218159B2 (ja) * 2009-03-05 2013-06-26 セイコーエプソン株式会社 パッチサイズ決定方法、パッチサイズ決定システムおよび印刷装置
JP5988880B2 (ja) * 2013-01-15 2016-09-07 日立アプライアンス株式会社 冷蔵庫
JP6098197B2 (ja) 2013-02-05 2017-03-22 セイコーエプソン株式会社 光学フィルターデバイス、光学モジュール、及び電子機器
EP2979441B1 (en) * 2013-03-28 2019-08-28 Hewlett-Packard Development Company, L.P. Printer calibration

Also Published As

Publication number Publication date
US20160182766A1 (en) 2016-06-23
JP2016118469A (ja) 2016-06-30
US9641727B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
US10674042B2 (en) Wavelength variable interference filter and driving method of the wavelength variable interference filter
US9739662B2 (en) Spectrometry device and image forming apparatus
CN106289523B (zh) 分光测定装置、图像形成装置以及分光测定方法
EP3067673B1 (en) Image forming apparatus and dirtiness detection method
US20160370230A1 (en) Spectroscopic measurement device, image forming apparatus, and spectroscopic measurement method
US10247609B2 (en) Spectrometry device, image forming apparatus, and spectrometry method
JP2007091467A (ja) 記録装置および制御方法
US9998633B2 (en) Color irregularity detecting device, image forming apparatus, and color irregularity detecting method
JP5053700B2 (ja) 光学センサの状態判別方法およびインクジェット記録装置
JP6180146B2 (ja) 測色装置、記録装置、および測色方法
US10473527B2 (en) Measuring device and measuring method
US10306110B2 (en) Measuring device and printing apparatus
JP6471437B2 (ja) 撮像装置、測色装置および画像形成装置
US10442228B2 (en) Spectrometry device, image forming apparatus, and spectrometry method
US10308051B2 (en) Measurement device and printing apparatus
US10871446B2 (en) Measurement device, electronic apparatus and measurement method
JP6459488B2 (ja) 印刷装置
US11480466B2 (en) Measurement device and measurement method
US20170122864A1 (en) Measurement device and printing apparatus
US10406819B2 (en) Liquid ejecting apparatus, color measuring method, and driving method for liquid ejecting apparatus
JP2017129478A (ja) 記録装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6459488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150