JP6457298B2 - Conductive substrate, method for producing the same, and precursor - Google Patents

Conductive substrate, method for producing the same, and precursor Download PDF

Info

Publication number
JP6457298B2
JP6457298B2 JP2015035708A JP2015035708A JP6457298B2 JP 6457298 B2 JP6457298 B2 JP 6457298B2 JP 2015035708 A JP2015035708 A JP 2015035708A JP 2015035708 A JP2015035708 A JP 2015035708A JP 6457298 B2 JP6457298 B2 JP 6457298B2
Authority
JP
Japan
Prior art keywords
silver
conductive
substrate
precursor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015035708A
Other languages
Japanese (ja)
Other versions
JP2015187976A (en
Inventor
剛士 松野
剛士 松野
泰助 伊勢田
泰助 伊勢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2015035708A priority Critical patent/JP6457298B2/en
Publication of JP2015187976A publication Critical patent/JP2015187976A/en
Application granted granted Critical
Publication of JP6457298B2 publication Critical patent/JP6457298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリカーボネート基板の上に銀で形成された導電膜が積層した導電性基材並びにその製造方法及び前駆体に関する。   The present invention relates to a conductive base material in which a conductive film formed of silver is laminated on a polycarbonate substrate, a method for producing the same, and a precursor thereof.

銀は、金属中で室温における電気抵抗率が最も低く、高い導電性を有するため、導電性基材の導電膜として広く利用されている。例えば、プリント配線基板などの導電性基材として、ガラス基板などの耐熱性基板の上に銀で形成された導電膜を焼結させた導電性基材が普及している。一方、近年、導電性基材のフレキシブルな基板として、安価で透明性や耐衝撃性にも優れるポリカーボネートの使用も検討されている。しかし、ポリカーボネートは、ガラスやセラミックスなどの無機材料とは異なり、耐熱性の低い樹脂であり、導電膜の焼結温度を上昇させるのが困難である。そのため、ポリカーボネート基板に対して密着性が良好であり、かつ低抵抗な導電膜を形成するのは困難である。   Silver has the lowest electrical resistivity at room temperature among metals and has high conductivity, so that it is widely used as a conductive film for a conductive substrate. For example, as a conductive substrate such as a printed wiring board, a conductive substrate obtained by sintering a conductive film formed of silver on a heat-resistant substrate such as a glass substrate has been widespread. On the other hand, in recent years, the use of polycarbonate, which is inexpensive and excellent in transparency and impact resistance, has been studied as a flexible substrate of a conductive base material. However, unlike inorganic materials such as glass and ceramics, polycarbonate is a resin with low heat resistance, and it is difficult to raise the sintering temperature of the conductive film. Therefore, it is difficult to form a conductive film having good adhesion to the polycarbonate substrate and having a low resistance.

樹脂基板の上に、密着性及び導電性が高い導電膜を形成する方法としては、特開2010−80442号公報(特許文献1)には、有機素材で形成された基材に、銀ナノ粒子と、この銀ナノ粒子を被覆する保護コロイドとで構成された銀コロイド粒子を含む分散液であって、前記保護コロイドが、カルボキシル基を有する有機化合物と、高分子分散剤とで構成されている分散液をコーティングした後、得られた前駆体を熱処理して金属膜を形成させ、導電性基材を製造する方法が開示されている。この文献には、前記有機素材として、ポリカーボネートを含む有機材料が例示され、これらの有機材料のうち、芳香族ポリエステル系樹脂、ポリイミド系樹脂、ポリスルホン系樹脂、液晶ポリマー、フッ素樹脂などの耐熱性の高い材料が好ましいと記載されている。また、基材は易接着処理されていてもよいことが記載されている。実施例では、表面にポリエステル易接着層が形成されたポリエチレンテレフタレートが使用されている。また、この文献には、分散液に含まれる溶媒として、ジエチレングリコール、セロソルブ類を含む溶媒が例示され、これらの溶媒のうち、水、水溶性溶媒(脂肪族多価アルコールなどのアルコール類)が好ましいと記載され、実施例ではエチレングリコールが使用されている。   As a method for forming a conductive film having high adhesion and conductivity on a resin substrate, Japanese Patent Application Laid-Open No. 2010-80442 (Patent Document 1) discloses a method of forming silver nanoparticles on a base material formed of an organic material. And a dispersion liquid containing silver colloid particles composed of a protective colloid covering the silver nanoparticles, wherein the protective colloid is composed of an organic compound having a carboxyl group and a polymer dispersant. A method of manufacturing a conductive substrate by coating a dispersion and then heat-treating the obtained precursor to form a metal film is disclosed. In this document, an organic material containing polycarbonate is exemplified as the organic material, and among these organic materials, heat-resistant materials such as aromatic polyester resins, polyimide resins, polysulfone resins, liquid crystal polymers, and fluororesins are used. High materials are described as preferred. Further, it is described that the base material may be subjected to easy adhesion treatment. In the examples, polyethylene terephthalate having a polyester easy-adhesion layer formed on the surface is used. In addition, this document exemplifies a solvent containing diethylene glycol and cellosolves as a solvent contained in the dispersion, and among these solvents, water and water-soluble solvents (alcohols such as aliphatic polyhydric alcohols) are preferable. In the examples, ethylene glycol is used.

しかし、この方法では、導電膜の密着性が低いため、基材の上に易接着層を形成する必要があり、生産性が低下する。   However, in this method, since the adhesion of the conductive film is low, it is necessary to form an easy-adhesion layer on the base material, and productivity is lowered.

特開2012−18783号公報(特許文献2)には、低い温度で加熱しても導電膜の配線を形成できる導電性ペーストとして、平均粒径0.5μm以上の銀粒子及び平均一次粒子径10〜200nmの銀微粒子からなる金属成分と、フェノール樹脂やエポキシ樹脂などのバインダー樹脂と、硬化剤と、溶剤とを含む導電性ペーストが開示されている。この文献には、溶剤として、エステル系、エーテル系、ケトン系、エーテルエステル系、アルコール系、炭化水素系、アミン系などの有機溶剤を使用するのが好ましく、印刷時の揮発性が低い高沸点溶剤として、テルピネオール、ブチルカルビトールアセテート、オクタンジオールなどのジオールがさらに好ましいと記載されている。この文献の実施例では、溶剤としてテルピネオールを含む導電性ペーストをガラス基板上に描画した後、200℃で加熱している。   JP 2012-18783 A (Patent Document 2) discloses silver particles having an average particle diameter of 0.5 μm or more and an average primary particle diameter of 10 as a conductive paste capable of forming conductive film wiring even when heated at a low temperature. An electrically conductive paste containing a metal component composed of silver fine particles of ˜200 nm, a binder resin such as a phenol resin or an epoxy resin, a curing agent, and a solvent is disclosed. In this document, it is preferable to use an organic solvent such as ester, ether, ketone, ether ester, alcohol, hydrocarbon, or amine as the solvent, and has a high boiling point with low volatility during printing. It is described that diols such as terpineol, butyl carbitol acetate, and octanediol are more preferable as the solvent. In the example of this document, a conductive paste containing terpineol as a solvent is drawn on a glass substrate and then heated at 200 ° C.

しかし、この導電性ペーストには、バインダー樹脂が含まれるため、樹脂成分により導電成分である金属フィラー同士の接触が阻害され、抵抗が高くなる。   However, since this conductive paste contains a binder resin, the resin component impedes contact between metal fillers that are conductive components, and the resistance increases.

特開2010−80442(請求項8、段落[0021]〜[0023][0083][0084][0087]、実施例)JP 2010-80442 (Claim 8, paragraphs [0021] to [0023] [0083] [0084] [0087], Example) 特開2012−18783号公報(請求項1、段落[0025]、実施例)JP 2012-18783 A (claim 1, paragraph [0025], example)

従って、本発明の目的は、ポリカーボネート基材に対して密着性が高く、低抵抗な導電膜が形成された導電性基材(金属複合膜)並びにその製造方法及び前駆体を提供することにある。   Accordingly, an object of the present invention is to provide a conductive substrate (metal composite film) on which a conductive film having high adhesion to a polycarbonate substrate and having a low resistance is formed, a method for producing the same, and a precursor thereof. .

本発明の他の目的は、易接着層及び樹脂バインダー用いることなく、簡便な方法で、前記導電性基材を製造する方法を提供することにある。   Another object of the present invention is to provide a method for producing the conductive substrate by a simple method without using an easy adhesion layer and a resin binder.

本発明者らは、前記課題を達成するため鋭意検討した結果、特定の銀コロイド粒子と基材の表面改質剤としてのヒドロキシル基及びエーテル結合を有する分散媒とを組み合わせることにより、ポリカーボネート基材に対して密着性が高く、低抵抗な導電膜を形成できることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have combined a specific silver colloidal particle with a dispersion medium having a hydroxyl group and an ether bond as a surface modifying agent for the substrate, thereby producing a polycarbonate substrate. It was found that a conductive film having high adhesion and low resistance can be formed, and the present invention was completed.

すなわち、本発明の導電性基材の前駆体は、ポリカーボネート基材とこの基材の上に積層された塗膜とを含む導電性基材の前駆体であって、前記塗膜が、銀ナノ粒子及び保護コロイドを含む銀コロイド粒子と表面改質剤とを含み、前記銀ナノ粒子の最大一次粒径が200nm以下であり、かつ前記表面改質剤が、ヒドロキシル基及びエーテル結合を有する分散媒である。前記表面改質剤は、分子内にヒドロキシル基及びエーテル結合を有する脂肪族炭化水素であってもよく、沸点は100〜300℃程度であってもよい。前記銀コロイド粒子と前記表面改質剤との質量割合は、前者/後者=40/60〜95/5程度であってもよい。前記塗膜が樹脂成分を含んでいなくてもよい。本発明の前駆体は、基材と塗膜との間に易接着層が介在していなくてもよい。   That is, the precursor of the conductive substrate of the present invention is a precursor of a conductive substrate including a polycarbonate substrate and a coating film laminated on the substrate, and the coating film contains silver nano-particles. Dispersion medium comprising silver colloid particles containing particles and protective colloid and a surface modifier, wherein the silver nanoparticles have a maximum primary particle size of 200 nm or less, and the surface modifier has a hydroxyl group and an ether bond It is. The surface modifier may be an aliphatic hydrocarbon having a hydroxyl group and an ether bond in the molecule, and the boiling point may be about 100 to 300 ° C. The mass ratio of the silver colloid particles and the surface modifier may be the former / the latter = about 40/60 to 95/5. The coating film may not contain a resin component. In the precursor of the present invention, an easy adhesion layer may not be interposed between the substrate and the coating film.

本発明には、前記前駆体を焼成し、基材の上に導電膜を形成する焼成工程を含む導電性基材の製造方法も含まれる。前記焼成工程において、焼成温度は80〜150℃程度であってもよい。前記焼成工程の前に、前駆体を80℃未満で予備乾燥する乾燥工程を含んでいてもよい。   The manufacturing method of the electroconductive base material including the baking process which bakes the said precursor and forms an electrically conductive film on a base material is also contained in this invention. In the firing step, the firing temperature may be about 80 to 150 ° C. Before the firing step, a drying step of pre-drying the precursor at less than 80 ° C. may be included.

本発明には、前記方法で得られた導電性基材も含まれる。この導電性基材は、導電膜の比抵抗が10μΩ・cm以下であってもよい。   The conductive substrate obtained by the above method is also included in the present invention. The conductive substrate may have a specific resistance of the conductive film of 10 μΩ · cm or less.

本発明では、特定の銀コロイド粒子と表面改質剤としてのヒドロキシル基及びエーテル結合を有する分散媒とを組み合わせているため、易接着層及び樹脂バインダー用いることなく、簡便な方法で、ポリカーボネート基材に対して密着性が高く、低抵抗な導電膜を形成できる。   In the present invention, a specific silver colloid particle and a dispersion medium having a hydroxyl group and an ether bond as a surface modifier are combined, so that a polycarbonate substrate can be obtained by a simple method without using an easy adhesion layer and a resin binder. In contrast, a conductive film having high adhesion and low resistance can be formed.

本発明の導電性基材の前駆体は、ポリカーボネート基材とこの基材の上に積層された塗膜(導電性ペースト)とを含む積層体である。本発明では、基材(基板)の表面改質剤として機能する分散媒を含み、銀ナノ粒子ペーストを使用するため、低温焼結が可能であることに加え、前記表面改質剤により導電膜とポリカーボネート基材との密着性が向上する。特に、樹脂成分を配合することなく、銀ナノ粒子ペーストを調製すると、導電膜中に銀以外の成分(導電性を妨げる樹脂成分など)の割合が低くなり、高い導電率を実現できる。また、基板自体に易接着層を形成する工程や、導電膜をオーバーコートする工程を省くことが可能になり、極めて簡便に製造できる。   The precursor of the conductive substrate of the present invention is a laminate comprising a polycarbonate substrate and a coating film (conductive paste) laminated on the substrate. In the present invention, since a silver nanoparticle paste is used, which includes a dispersion medium that functions as a surface modifier of the base material (substrate), low-temperature sintering is possible, and in addition, a conductive film is formed by the surface modifier. And the adhesion between the polycarbonate substrate and the substrate are improved. In particular, when a silver nanoparticle paste is prepared without blending a resin component, the proportion of components other than silver (such as a resin component that hinders conductivity) is reduced in the conductive film, and high conductivity can be realized. In addition, it is possible to omit the process of forming an easy-adhesion layer on the substrate itself and the process of overcoating the conductive film, which makes it extremely easy to manufacture.

[ポリカーボネート基材]
ポリカーボネート基材(基板)を構成するポリカーボネートは、慣用のポリカーボネートを利用でき、脂肪族ポリカーボネート、芳香族ポリカーボネートのいずれであってもよいが、安価で、透明性や機械的特性に優れる点から、ビスフェノール類をベースとする芳香族ポリカーボネートが好ましく、ビスフェノールA型ポリカーボネートなどのビス(ヒドロキシフェニル)C1−6アルカン類をベースとするポリカーボネートが特に好ましい。
[Polycarbonate substrate]
The polycarbonate constituting the polycarbonate substrate (substrate) can be a conventional polycarbonate and may be either an aliphatic polycarbonate or an aromatic polycarbonate, but it is inexpensive and has excellent transparency and mechanical properties. Polycarbonates based on bis (hydroxyphenyl) C 1-6 alkanes such as bisphenol A type polycarbonates are particularly preferred.

ポリカーボネートの粘度平均分子量は、例えば、1,000〜100,000、好ましくは3,000〜50,000、さらに好ましくは6,000〜30,000程度である。粘度平均分子量は、ポリカーボネートを塩化メチレンに溶解し(濃度6.0g/L)、ウベローデ粘度管を用いて20℃における比粘度(ηsp)を測定し、下記の式により粘度平均分子量(Mv)を算出できる。 The viscosity average molecular weight of the polycarbonate is, for example, about 1,000 to 100,000, preferably about 3,000 to 50,000, and more preferably about 6,000 to 30,000. The viscosity average molecular weight is obtained by dissolving polycarbonate in methylene chloride (concentration 6.0 g / L), measuring the specific viscosity (η sp ) at 20 ° C. using an Ubbelohde viscosity tube, and calculating the viscosity average molecular weight (Mv) by the following formula: Can be calculated.

ηsp/C=[η](1+0.28ηsp
[η]=1.23×10−4Mv0.83
([η]は極限粘度、Cはポリマー濃度を示す)。
η sp /C=[η](1+0.28η sp)
[η] = 1.23 × 10 −4 Mv 0.83
([Η] is the intrinsic viscosity and C is the polymer concentration).

ポリカーボネート基材は、通常、板状であり、ポリカーボネート基板の市販品としては、例えば、ユーピロンシート(三菱ガス化学(株)製)、パンライトシート(帝人化成(株)製)、カーボグラス(旭硝子(株)製)、レキサンシート(旭硝子(株)製)、タキロンポリカーボネートプレート(タキロン(株)製)などを利用できる。   The polycarbonate substrate is usually plate-shaped, and examples of commercially available polycarbonate substrates include Iupilon sheet (manufactured by Mitsubishi Gas Chemical Co., Ltd.), Panlite sheet (manufactured by Teijin Chemicals Ltd.), Carbograss (Asahi Glass). (Manufactured by Co., Ltd.), Lexan sheet (manufactured by Asahi Glass Co., Ltd.), Takiron polycarbonate plate (manufactured by Takiron Co., Ltd.), and the like.

ポリカーボネート基材は、易接着層を有していてもよいが、導電性基材の生産性の点から、易接着層を有していない基材(易接着処理されていない基材)が好ましい。   The polycarbonate substrate may have an easy-adhesion layer, but from the viewpoint of the productivity of the conductive substrate, a substrate that does not have an easy-adhesion layer (a substrate that has not been subjected to an easy-adhesion treatment) is preferred. .

ポリカーボネート基材(基板)の厚み(平均厚み)は、用途に応じて適宜選択すればよく、例えば、0.001〜10mm、好ましくは0.01〜5mm、さらに好ましくは0.05〜3mm(特に0.1〜1mm)程度であってもよい。   What is necessary is just to select suitably the thickness (average thickness) of a polycarbonate base material (board | substrate) according to a use, for example, 0.001-10 mm, Preferably it is 0.01-5 mm, More preferably, it is 0.05-3 mm (especially). 0.1 to 1 mm).

[塗膜(導電性ペースト)]
塗膜は、導電材料として銀を含むペースト(導電性ペースト)であり、銀コロイド粒子と表面改質剤とを含む。
[Coating film (conductive paste)]
The coating film is a paste containing silver as a conductive material (conductive paste) and includes silver colloid particles and a surface modifier.

(銀コロイド粒子)
銀コロイド粒子は、銀ナノ粒子及び保護コロイドを含む。保護コロイドは、ペースト中での銀ナノ粒子の分散性などに作用し、ペースト中での存在形態(銀ナノ粒子との結合状態又は形態)は特に限定されないが、銀ナノ粒子表面を被覆していてもよい。
(Silver colloidal particles)
Silver colloidal particles include silver nanoparticles and protective colloids. The protective colloid affects the dispersibility of the silver nanoparticles in the paste, and the presence form (bonding state or form with the silver nanoparticles) in the paste is not particularly limited, but the surface of the silver nanoparticles is coated. May be.

(1)銀ナノ粒子
銀ナノ粒子はナノメーターサイズである。銀ナノ粒子の数平均粒径(数平均一次粒径)は50nm以下(例えば、1〜50nm)、好ましくは1.5〜45nm、さらに好ましくは2〜40nm、特に5〜40nm程度であってもよく、通常10〜40nm(例えば、20〜35nm)程度であってもよい。
(1) Silver nanoparticles Silver nanoparticles are nanometer-sized. The number average particle size (number average primary particle size) of the silver nanoparticles is 50 nm or less (for example, 1 to 50 nm), preferably 1.5 to 45 nm, more preferably 2 to 40 nm, especially about 5 to 40 nm. It may be about 10 to 40 nm (for example, about 20 to 35 nm).

また、銀ナノ粒子は、前記平均粒径を有するとともに、200nm以下の範囲で広い粒度分布を示すが、200nmを超える粗大粒子を殆ど含んでいなくてもよい。そのため、前記金属ナノ粒子の最大一次粒径は、例えば、200nm以下、好ましくは150nm以下、さらに好ましくは100nm以下である。   Further, the silver nanoparticles have the above average particle diameter and a wide particle size distribution in a range of 200 nm or less, but may contain almost no coarse particles exceeding 200 nm. Therefore, the maximum primary particle size of the metal nanoparticles is, for example, 200 nm or less, preferably 150 nm or less, and more preferably 100 nm or less.

銀ナノ粒子は、全体として、このような数十ナノサイズの微小な平均粒子径を有するとともに、100〜200nmの比較的大粒径の粒子も一定量含有するという特徴を有している。すなわち、銀ナノ粒子は、200nm以下の範囲で広い粒度分布を示す。具体的には、粒子径が100nm未満の銀ナノ粒子(小粒子群)と、粒子径が100〜200nmの銀ナノ粒子(大粒子群)との体積比率が、小粒子群/大粒子群=90/10〜30/70、好ましくは70/30〜30/70、さらに好ましくは60/40〜35/65(特に50/50〜40/60)程度である。100nm以上の粒子が一定の体積を占めることにより、大粒子の隙間に小粒子が充填され、焼成による焼結膜の特性が向上すると推定される。   The silver nanoparticles as a whole have such a small average particle diameter of several tens of nanometers, and a characteristic that a certain amount of particles having a relatively large particle diameter of 100 to 200 nm is contained. That is, silver nanoparticles exhibit a wide particle size distribution in a range of 200 nm or less. Specifically, the volume ratio of silver nanoparticles (small particle group) having a particle diameter of less than 100 nm and silver nanoparticles (large particle group) having a particle diameter of 100 to 200 nm is small particle group / large particle group = It is about 90/10 to 30/70, preferably 70/30 to 30/70, more preferably about 60/40 to 35/65 (particularly 50/50 to 40/60). It is presumed that when the particles of 100 nm or more occupy a certain volume, the small particles are filled in the gaps between the large particles, and the characteristics of the sintered film by firing are improved.

さらに、本発明における粒度分布は、偏りの少ない正規分布に近い分布であってもよいが、偏りのある分布であってもよく、例えば、小粒子群及び大粒子群のそれぞれの分布において1以上のピーク(極大部)を有していてもよい。特に、小粒子群では、比較的均一な分布であり、かつ大粒子群では、150〜200nmの比較的大きい粒子の割合が大きい分布であるのが好ましい。例えば、150〜200nmの粒子の体積比率が、全粒子に対して、例えば、10〜60体積%、好ましくは20〜55体積%、さらに好ましくは30〜50体積%であってもよい。このような150nmを超える粒子に対して、100nm未満の粒子が満遍なく存在することにより充填効率が向上すると推定される。さらに、小粒子群の数平均粒子径が、例えば、5〜50nm、好ましくは10〜40nm、さらに好ましくは15〜35nm程度であり、大粒子群の数平均粒子径が、例えば、120〜195nm、好ましくは150〜190nm、さらに好ましくは160〜190nm程度であってもよい。   Further, the particle size distribution in the present invention may be a distribution close to a normal distribution with little bias, but may also be a biased distribution, for example, one or more in each of the small particle group and the large particle group. May have a peak (local maximum). In particular, the small particle group preferably has a relatively uniform distribution, and the large particle group preferably has a distribution in which the proportion of relatively large particles of 150 to 200 nm is large. For example, the volume ratio of 150 to 200 nm particles may be, for example, 10 to 60% by volume, preferably 20 to 55% by volume, and more preferably 30 to 50% by volume with respect to all particles. It is presumed that the filling efficiency is improved by uniformly presenting particles smaller than 100 nm with respect to such particles larger than 150 nm. Furthermore, the number average particle diameter of the small particle group is, for example, 5 to 50 nm, preferably 10 to 40 nm, more preferably about 15 to 35 nm, and the number average particle diameter of the large particle group is, for example, 120 to 195 nm, Preferably, it may be about 150 to 190 nm, more preferably about 160 to 190 nm.

このような分布を有する銀ナノ粒子は、低温で焼成しても、緻密な膜を形成でき、導電性が高く、高硬度の膜を形成できる。さらに、大きい粒子が増加して粒子の表面積が減少し、表面に吸着する分散剤の量が減少するため、焼成した際に膜から保護コロイド由来の有機物を除去し易くなり、厚膜とした場合にも低抵抗の導体が得られる。   The silver nanoparticles having such a distribution can form a dense film even when fired at a low temperature, and can form a film having high conductivity and high hardness. In addition, when large particles increase, the surface area of the particles decreases, and the amount of dispersant adsorbed on the surface decreases, making it easier to remove organic matter derived from protective colloids from the film when firing, resulting in a thick film In addition, a low-resistance conductor can be obtained.

(2)保護コロイド
保護コロイドは、カルボキシル基を有する有機化合物と高分子分散剤とで構成されている。
(2) Protective colloid The protective colloid is composed of an organic compound having a carboxyl group and a polymer dispersant.

カルボキシル基を有する有機化合物としては、特開2010−80442号公報(特許文献1)に記載の有機化合物などが挙げられる。なかでも、飽和脂肪族カルボン酸(例えば、ギ酸、酢酸、プロピオン酸、ステアリン酸などのC1−24アルカン酸、脂環族ヒドロキシカルボン酸(又は脂環族骨格を有するヒドロキシカルボン酸、例えば、コール酸などのC6−34脂環族ヒドロキシカルボン酸、好ましくはC10−34脂環族ヒドロキシカルボン酸、さらに好ましくはC16−30脂環族ヒドロキシカルボン酸)が好ましい。特に、銀ナノ粒子の表面と親和性が高く、適度な分散性(凝集性)及び焼結性にも優れる点から、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸などのC1−10アルカン酸(アルカンカルボン酸)が好ましく、酢酸やプロピオン酸などのC1−6アルカン酸(好ましくはC1−4アルカン酸、さらに好ましくはC2−3アルカン酸、特に酢酸)がより好ましい。特に、酢酸などのC1−4アルカン酸を用いると、金属コロイド粒子が適度に分散及び凝集されているためか、燃焼時の割れやボイドの発生が抑制され、緻密で硬質な焼成膜を形成できる。 Examples of the organic compound having a carboxyl group include the organic compounds described in JP 2010-80442 A (Patent Document 1). Among them, saturated aliphatic carboxylic acids (for example, C 1-24 alkanoic acids such as formic acid, acetic acid, propionic acid, stearic acid, alicyclic hydroxycarboxylic acids (or hydroxycarboxylic acids having an alicyclic skeleton such as chol C 6-34 alicyclic hydroxycarboxylic acids such as acids, preferably C 10-34 alicyclic hydroxycarboxylic acids, more preferably C 16-30 alicyclic hydroxycarboxylic acids). C 1-10 alkanoic acids (alkane carboxylic acids) such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid and the like have high affinity with the surface and are excellent in moderate dispersibility (cohesiveness) and sinterability. preferably, C 1-6 alkanoic acid (preferably C 1-4 alkanoic acid such as acetic acid or propionic acid, more preferably C 2-3 alkanoic acid, especially acetic acid Are more preferred. Particularly, the use of C 1-4 alkanoic acid such as acetic acid, or the metal colloid particles are appropriately dispersed, and aggregation, generation of cracks and voids at the time of combustion is suppressed, a dense and hard A fired film can be formed.

高分子分散剤としても、特許文献1に記載の両親媒性の高分子分散剤(又はオリゴマー型分散剤)などが挙げられる。なかでも、カルボキシル基などの酸基を有する高分子分散剤として、ポリ(メタ)アクリル酸類[又はポリアクリル酸系樹脂、例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と共重合性単量体(例えば、(メタ)アクリレート、無水マレイン酸など)との共重合体などの(メタ)アクリル酸を主成分とするポリマー、これらの塩(例えば、ポリアクリル酸ナトリウムなどのアルカリ金属塩など)など]、ディスパービック190、ディスパービック194[ビックケミー・ジャパン(株)製]、アミノ基などの塩基性基を有する高分子分散剤として、ポリアルキレンイミン(ポリエチレンイミンなど)、ポリビニルピロリドン、ポリアリルアミン、ポリエーテルポリアミン(ポリオキシエチレンポリアミンなど)などが汎用され、カルボキシル基を有する高分子分散剤が好ましい。   Examples of the polymer dispersant include amphiphilic polymer dispersants (or oligomer type dispersants) described in Patent Document 1. Among them, poly (meth) acrylic acid [or polyacrylic acid-based resins such as poly (meth) acrylic acid, (meth) acrylic acid and copolymerizable monomers may be used as polymer dispersants having acid groups such as carboxyl groups. Polymers based on (meth) acrylic acid such as copolymers with monomers (for example, (meth) acrylate, maleic anhydride, etc.), salts thereof (for example, alkali metal salts such as sodium polyacrylate, etc.) Etc.], Dispersic 190, Dispersic 194 [manufactured by Big Chemie Japan Co., Ltd.], polymer dispersants having basic groups such as amino groups, polyalkyleneimines (polyethyleneimine, etc.), polyvinylpyrrolidone, polyallylamine , Polyether polyamines (polyoxyethylene polyamine, etc.) are widely used. Polymer dispersing agent having a Bokishiru group.

酸基(特にカルボキシル基)を有する高分子分散剤において、酸価は、例えば、1mgKOH/g以上(例えば、2〜1500mgKOH/g程度)、好ましくは3mgKOH/g以上(例えば、4〜1200mgKOH/g程度)、さらに好ましく5mgKOH/g以上(例えば、8〜1000mgKOH/g程度)、特に10mgKOH/g以上(例えば、12〜900mgKOH/g程度)の範囲から選択できる。特に、酸基(特にカルボキシル基)を有する高分子分散剤が、親水性ユニットおよび疎水性ユニットを有する化合物などである場合、酸価は、例えば、1mgKOH/g以上(例えば、2〜100mgKOH/g程度)、好ましくは3mgKOH/g以上(例えば、4〜90mgKOH/g程度)、さらに好ましくは5mgKOH/g以上(例えば、6〜80mgKOH/g程度)、特に7mgKOH/g以上(例えば、8〜70mgKOH/g程度)であってもよく、通常3〜50mgKOH/g程度(例えば、5〜30mgKOH/g程度)であってもよい。なお、酸基を有する高分子分散剤において、アミン価は0(又はほぼ0)であってもよい。   In the polymer dispersant having an acid group (particularly a carboxyl group), the acid value is, for example, 1 mgKOH / g or more (for example, about 2 to 1500 mgKOH / g), preferably 3 mgKOH / g or more (for example, 4 to 1200 mgKOH / g). About 5 mg KOH / g (for example, about 8 to 1000 mg KOH / g), particularly 10 mg KOH / g or more (for example, about 12 to 900 mg KOH / g). In particular, when the polymer dispersant having an acid group (particularly a carboxyl group) is a compound having a hydrophilic unit and a hydrophobic unit, the acid value is, for example, 1 mgKOH / g or more (for example, 2 to 100 mgKOH / g). Degree), preferably 3 mgKOH / g or more (for example, about 4 to 90 mgKOH / g), more preferably 5 mgKOH / g or more (for example, about 6 to 80 mgKOH / g), particularly 7 mgKOH / g or more (for example, 8 to 70 mgKOH / g). g), or about 3 to 50 mgKOH / g (for example, about 5 to 30 mgKOH / g). In the polymer dispersant having an acid group, the amine value may be 0 (or almost 0).

高分子分散剤の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)で測定したとき、ポリスチレン換算で、1000〜1000000(例えば、1200〜900000)程度の範囲から選択でき、例えば、1500〜800000、好ましくは2000〜700000、さらに好ましくは3000〜500000(例えば、5000〜300000)、特に7000〜200000程度であってもよい。   The number average molecular weight of the polymer dispersant can be selected from a range of about 1,000 to 1,000,000 (for example, 1200 to 900,000) in terms of polystyrene when measured by gel permeation chromatography (GPC), for example, 1500 to 800,000, preferably May be from 2,000 to 700,000, more preferably from 3,000 to 500,000 (for example, from 5,000 to 300,000), particularly from about 7,000 to 200,000.

銀コロイド粒子において、保護コロイド(カルボキシル基を有する有機化合物及び高分子分散剤の総量)の割合は、銀ナノ粒子100質量部に対して、例えば、0.1〜100質量部(例えば、0.5〜80質量部)、好ましくは1〜50質量部、さらに好ましくは2〜40質量部(特に、3〜30質量部)程度であってもよい。   In the silver colloidal particles, the ratio of the protective colloid (the total amount of the organic compound having a carboxyl group and the polymer dispersant) is, for example, 0.1 to 100 parts by mass (for example, 0.1% by mass) with respect to 100 parts by mass of the silver nanoparticles. 5 to 80 parts by mass), preferably 1 to 50 parts by mass, more preferably about 2 to 40 parts by mass (particularly 3 to 30 parts by mass).

銀コロイド粒子において、カルボキシル基を有する有機化合物の割合は、例えば、銀ナノ粒子100質量部に対して、例えば、0.05〜50質量部、好ましくは0.1〜40質量部、さらに好ましくは0.3〜30質量部程度であってもよい。   In the silver colloid particles, the proportion of the organic compound having a carboxyl group is, for example, 0.05 to 50 parts by mass, preferably 0.1 to 40 parts by mass, more preferably 100 parts by mass of the silver nanoparticles. About 0.3-30 mass parts may be sufficient.

銀コロイド粒子において、高分子分散剤の割合は、例えば、銀ナノ粒子100質量部に対して、例えば、0.01〜50質量部、好ましくは0.05〜30質量部、さらに好ましくは0.1〜20質量部程度であってもよい。   In the silver colloidal particles, the ratio of the polymer dispersant is, for example, 0.01 to 50 parts by mass, preferably 0.05 to 30 parts by mass, and more preferably 0.00 to 100 parts by mass of the silver nanoparticles. About 1-20 mass parts may be sufficient.

カルボキシル基を有する有機化合物と高分子分散剤との割合(溶媒などを含む場合は固形分)は、前者/後者(質量比)=99/1〜1/99の範囲から選択でき、例えば、97/3〜1/99、好ましくは95/5〜2/98、さらに好ましくは92/8〜3/97程度であってもよい。   The ratio of the organic compound having a carboxyl group to the polymer dispersant (solid content when a solvent or the like is included) can be selected from the range of the former / the latter (mass ratio) = 99/1 to 1/99. / 3 to 1/99, preferably 95/5 to 2/98, more preferably about 92/8 to 3/97.

なお、銀コロイド粒子は、保護コロイドとして少なくとも前記保護コロイドを含んでいればよく、他の保護コロイドを含んでいてもよい。他の保護コロイドとしては、特許文献1に記載の有機化合物などが挙げられる。保護コロイドの割合は、前記保護コロイド100質量部に対して、例えば、0.1〜100質量部、好ましくは0.5〜50質量部、さらに好ましくは1〜30質量部程度であってもよい。   In addition, the silver colloid particle should just contain the said protective colloid at least as a protective colloid, and may contain the other protective colloid. Examples of other protective colloids include organic compounds described in Patent Document 1. The proportion of the protective colloid may be, for example, 0.1 to 100 parts by mass, preferably 0.5 to 50 parts by mass, and more preferably about 1 to 30 parts by mass with respect to 100 parts by mass of the protective colloid. .

なお、銀コロイド粒子中の保護コロイドなどの割合は、慣用の方法、例えば、熱分析(例えば、熱質量/示差熱同時分析など)により、測定することができる。   The ratio of the protective colloid in the silver colloid particles can be measured by a conventional method, for example, thermal analysis (for example, thermal mass / differential thermal simultaneous analysis).

銀コロイド粒子の製造方法は、特に限定されず、慣用の方法、例えば、銀ナノ粒子に対応する銀化合物を、保護コロイド及び還元剤の存在下、溶媒中で還元することにより調製できる。具体的な製造方法としては、例えば、特許文献1や特開2010−229544号公報に記載の方法などが挙げられる。   The method for producing silver colloid particles is not particularly limited, and can be prepared by a conventional method, for example, by reducing a silver compound corresponding to silver nanoparticles in a solvent in the presence of a protective colloid and a reducing agent. Specific examples of the manufacturing method include the methods described in Patent Document 1 and Japanese Patent Application Laid-Open No. 2010-229544.

(表面改質剤)
表面改質剤(基材の表面改質剤)は、ヒドロキシル基及びエーテル結合を有する化合物であり、ポリカーボネート基材の表面を粗化して基材に対する導電膜の密着性を向上させる機能を有するとともに、分散媒(溶媒)としての機能も有している。
(Surface modifier)
The surface modifier (base surface modifier) is a compound having a hydroxyl group and an ether bond, and has a function of roughening the surface of the polycarbonate substrate to improve the adhesion of the conductive film to the substrate. Also, it has a function as a dispersion medium (solvent).

表面改質剤において、分子内のヒドロキシル基の数は1以上であればよく、例えば、1〜10、好ましくは1〜5、さらに好ましくは1〜3(特に1〜2)程度である。分子内のエーテル結合の数も1以上であればよく、例えば、1〜10、好ましくは1〜5、さらに好ましくは1〜3(特に1〜2)程度である。   In the surface modifier, the number of hydroxyl groups in the molecule may be 1 or more, for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3 (particularly 1 to 2). The number of ether bonds in the molecule may be one or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2).

表面改質剤は、前記範囲で分子内にヒドロキシル基とエーテル結合とを有していればよいが、通常、分子内にヒドロキシル基及びエーテル結合を有する炭化水素(エーテルアルコール類)である。エーテルアルコール類は、ヒドロキシル基及び不飽和エーテル結合を有する炭化水素であってもよいが、取り扱い性などの点から、ヒドロキシル基及び飽和エーテル結合を有する炭化水素が好ましい。   The surface modifier only needs to have a hydroxyl group and an ether bond in the molecule within the above range, but is usually a hydrocarbon (ether alcohol) having a hydroxyl group and an ether bond in the molecule. The ether alcohol may be a hydrocarbon having a hydroxyl group and an unsaturated ether bond, but is preferably a hydrocarbon having a hydroxyl group and a saturated ether bond from the viewpoint of handleability.

エーテルアルコール類(括弧内沸点)としては、例えば、ポリアルキレングリコール類[例えば、ジエチレングリコール(245℃)、トリエチレングリコール(179℃)、テトラエチレングリコール(327.3℃)、ポリエチレングリコールなど]、セロソルブ類[例えば、メチルセロソルブ(別名:エチレングリコールモノメチルエーテル)(124.5℃)、エチルセロソルブ(エチレングリコールモノエチルエーテル)(135.1℃)、エチレングリコールモノブチルエーテル(171.2℃)、エチレングリコールモノt−ブチルエーテル(別名:2−t−ブトキシエタノール)(152℃)などのC1−4アルキルセロソルブ;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテルなどのプロピレングリコールモノC1−4アルキルエーテルなど]、カルビトール類[例えば、メチルカルビトール(別名:ジエチレングリコールモノメチルエーテル)(194℃)、エチルカルビトール(200℃)、ブチルカルビトール(別名:2−(2−ブトキシエトキシ)エタノール)(230.4℃)などのC1−4アルキルカルビトール;ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテルなどのジプロピレングリコールモノC1−4アルキルエーテルなど]、トリエチレングリコールモノアルキルエーテル類[例えば、トリエチレングリコールモノメチルエーテル(249℃)、トリエチレングリコールモノブチルエーテル(271℃)などのトリエチレングリコールモノC1−4アルキルエーテルなど]、環状エーテルアルコール(例えば、ヒドロキシテトラヒドロフラン、ヒドロキシジオキサンなど)などが挙げられる。これらのエーテルアルコール類は、単独で又は二種以上組み合わせて使用できる。 Examples of ether alcohols (boiling point in parentheses) include polyalkylene glycols [eg, diethylene glycol (245 ° C.), triethylene glycol (179 ° C.), tetraethylene glycol (327.3 ° C.), polyethylene glycol, etc.], cellosolve [For example, methyl cellosolve (also known as ethylene glycol monomethyl ether) (124.5 ° C), ethyl cellosolve (ethylene glycol monoethyl ether) (135.1 ° C), ethylene glycol monobutyl ether (171.2 ° C), ethylene glycol C 1-4 alkyl cellosolve such as mono-t-butyl ether (also known as 2-t-butoxyethanol) (152 ° C.); propylene glycol monomethyl ether, propylene glycol monoethyl ether, pro Propylene glycol mono C 1-4 alkyl ether such as pyrene glycol monobutyl ether], carbitols [eg, methyl carbitol (also known as diethylene glycol monomethyl ether) (194 ° C.), ethyl carbitol (200 ° C.), butyl carbitol (Alternative name: 2- (2-butoxyethoxy) ethanol) (230.4 ° C.) and other C 1-4 alkyl carbitols; Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether propylene glycol mono C 1-4 alkyl ether, etc.], triethylene glycol monoalkyl ethers [e.g., triethylene glycol monomethyl ether (249 ° C.), triethylene glycol And triethylene glycol mono C 1-4 alkyl ethers, such as mono butyl ether (271 ° C.)], a cyclic ether alcohols (e.g., hydroxy tetrahydrofuran, hydroxy dioxane) and the like. These ether alcohols can be used alone or in combination of two or more.

これらのエーテルアルコール類のうち、分子内にヒドロキシル基及びエーテル結合を有する脂肪族炭化水素、例えば、ジエチレングリコールなどのポリC2−4アルキレングリコール、ブチルセロソルブなどのC1−4アルキルセロソルブ、ブチルカルビトールなどのC1−4アルキルカルビトールなどが好ましい。これらの脂肪族炭化水素の総炭素数は3以上であればよく、例えば、3〜12、好ましくは4〜10、さらに好ましくは4〜8程度である。 Among these ether alcohols, aliphatic hydrocarbons having a hydroxyl group and an ether bond in the molecule, for example, poly C 2-4 alkylene glycol such as diethylene glycol, C 1-4 alkyl cellosolv such as butyl cellosolv, butyl carbitol, etc. C 1-4 alkyl carbitol and the like are preferable. The total carbon number of these aliphatic hydrocarbons should just be 3 or more, for example, 3-12, Preferably it is 4-10, More preferably, it is about 4-8.

表面改質剤(混合物である場合、各分散媒の沸点)の沸点は、例えば、100〜300℃、好ましくは140〜250℃、さらに好ましくは200〜250℃程度である。沸点が低すぎると、作業中に揮発して導電性ペーストが固化する虞があり、高すぎると、乾燥及び焼成による除去が困難となる虞がある。   The boiling point of the surface modifier (in the case of a mixture, the boiling point of each dispersion medium) is, for example, about 100 to 300 ° C, preferably about 140 to 250 ° C, and more preferably about 200 to 250 ° C. If the boiling point is too low, there is a risk that the conductive paste will be volatilized during the operation and the conductive paste will solidify. If it is too high, removal by drying and baking may be difficult.

銀コロイド粒子と表面改質剤との質量割合は、例えば、前者/後者=40/60〜95/5、好ましくは50/50〜94/6、さらに好ましくは70/30〜93/7(特に80/20〜90/10)程度である。表面改質剤の割合が少なすぎると、導電膜の密着性が低下する虞があり、多すぎると、導電膜の割れが発生し易い。   The mass ratio between the silver colloid particles and the surface modifier is, for example, the former / the latter = 40/60 to 95/5, preferably 50/50 to 94/6, more preferably 70/30 to 93/7 (particularly 80/20 to 90/10). If the ratio of the surface modifier is too small, the adhesion of the conductive film may be reduced, and if it is too large, the conductive film is likely to crack.

(他の成分)
導電性ペーストは、銀ナノ粒子以外の導電材料(導電性フィラー)を含んでいてもよい。導電性フィラーとしては、慣用の導電性フィラーを利用でき、例えば、金属粒子(一次粒径200nmを超える銀粒子(銀粉)又は銀フレーク、銅ナノ粒子、銀コート銅粉、金ナノ粒子、金粉など)、炭素材料(カーボンブラック、グラファイトなど)などを利用できる。
(Other ingredients)
The conductive paste may contain a conductive material (conductive filler) other than silver nanoparticles. As the conductive filler, a conventional conductive filler can be used. For example, metal particles (silver particles (silver powder) or silver flakes having a primary particle size of more than 200 nm, copper nanoparticles, silver-coated copper powder, gold nanoparticles, gold powder, etc.) ), Carbon materials (carbon black, graphite, etc.) can be used.

導電性ペーストは、用途に応じて、さらに慣用の添加剤、例えば、着色剤(染顔料など)、色相改良剤、染料定着剤、光沢付与剤、金属腐食防止剤、安定剤(酸化防止剤、紫外線吸収剤など)、界面活性剤又は分散剤(アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤など)、分散安定化剤、増粘剤又は粘度調整剤、保湿剤、チクソトロピー性賦与剤、レベリング剤、消泡剤、殺菌剤、充填剤などを含んでいてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。   Depending on the application, the conductive paste may further contain conventional additives such as colorants (dyeing pigments, etc.), hue improvers, dye fixing agents, gloss imparting agents, metal corrosion inhibitors, stabilizers (antioxidants, UV absorbers, etc.), surfactants or dispersants (anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, etc.), dispersion stabilizers, thickeners or viscosity modifiers , Moisturizers, thixotropic agents, leveling agents, antifoaming agents, bactericides, fillers, and the like. These additives can be used alone or in combination of two or more.

なお、導電性ペーストは、密着性を向上させるために、バインダー樹脂などの樹脂成分を配合してもよいが、本発明では、銀コロイド粒子及び表面改質剤を含む塗膜は導電膜の密着性が高いため、バインダー樹脂が含まれていなくても、強固に密着した導電膜を形成できる。そのため、導電性を向上できる点から、バインダー樹脂などの樹脂成分を実質的に含まないのが好ましい。   In order to improve the adhesion, the conductive paste may contain a resin component such as a binder resin. However, in the present invention, the coating film containing silver colloid particles and the surface modifier is an adhesion of the conductive film. Therefore, even when the binder resin is not included, a tightly adhered conductive film can be formed. Therefore, it is preferable that a resin component such as a binder resin is not substantially contained from the viewpoint that the conductivity can be improved.

導電性ペーストは、前記構成のペーストを得ることができる限り特に限定されないが、通常、前記銀コロイド粒子を、前記表面改質剤(分散媒)に慣用の方法で分散させることにより得ることができる。   The conductive paste is not particularly limited as long as the paste having the above configuration can be obtained. Usually, the silver colloidal particles can be obtained by dispersing the silver colloid particles in the surface modifier (dispersion medium) by a conventional method. .

ポリカーボネート基材と塗膜との間には易接着層を形成してもよいが、前述のように、本発明では、易接着層を介在させなくても、強固な導電膜を形成できる。そのため、生産性の点から、易接着層を介在させない積層体が好ましい。   Although an easy adhesion layer may be formed between the polycarbonate substrate and the coating film, as described above, in the present invention, a strong conductive film can be formed without interposing the easy adhesion layer. Therefore, from the viewpoint of productivity, a laminate having no easy-adhesion layer interposed is preferable.

[導電性基材の前駆体及び導電性基材の製造方法]
本発明の導電性基材の前駆体(積層体)は、ポリカーボネート基材の上に、前記導電性ペーストを用いて塗膜を形成することにより製造できる。
[Precursor of conductive substrate and method for producing conductive substrate]
The precursor (laminated body) of the conductive base material of the present invention can be produced by forming a coating film on the polycarbonate base material using the conductive paste.

導電性ペーストを用いて塗膜を形成する方法としては、慣用のコーティング方法、例えば、フローコーティング法、ディスペンサーコーティング法、スピンコーティング法、スプレーコーティング法、スクリーン印刷法、フレキソ印刷法、キャスト法、バーコーティング法、カーテンコーティング法、ロールコーティング法、グラビアコーティング法、ディッピング法、スリット法、フォトリソグラフィ法、インクジェット法などを利用できる。前記コーティング方法において、塗膜でパターンを形成(描画)してもよく、形成されたパターン(描画パターン)を焼成処理することにより焼結パターン(焼結膜、金属膜、焼結体層、導体層)を形成できる。パターン(塗布層)を描画するための描画法(又は印刷法)としては、パターン形成可能な印刷法であれば特に限定されず、例えば、スクリーン印刷法、インクジェット印刷法、凹版印刷法(例えば、グラビア印刷法など)、オフセット印刷法、凹版オフセット印刷法、フレキソ印刷法などが挙げられる。   Methods for forming a coating film using a conductive paste include conventional coating methods such as flow coating method, dispenser coating method, spin coating method, spray coating method, screen printing method, flexographic printing method, casting method, bar A coating method, a curtain coating method, a roll coating method, a gravure coating method, a dipping method, a slit method, a photolithography method, an ink jet method and the like can be used. In the coating method, a pattern may be formed (drawn) with a coating film, and a sintered pattern (sintered film, metal film, sintered body layer, conductor layer) is formed by firing the formed pattern (drawn pattern). ) Can be formed. The drawing method (or printing method) for drawing the pattern (coating layer) is not particularly limited as long as it is a pattern forming printing method. For example, a screen printing method, an ink jet printing method, an intaglio printing method (for example, Gravure printing method), offset printing method, intaglio offset printing method, flexographic printing method and the like.

得られた積層体は、導電性基材の前駆体であり、塗膜を所定の温度で加熱(又は焼成又は加熱処理)する焼成工程に供される。なお、焼成工程に先立って、必要に応じて予備乾燥工程に供してもよい。   The obtained laminate is a precursor of a conductive substrate, and is subjected to a firing step in which the coating film is heated (or baked or heat-treated) at a predetermined temperature. In addition, you may use for a preliminary | backup drying process before a baking process as needed.

予備乾燥工程では、自然乾燥してもよいが、加熱して乾燥してもよい。予備乾燥工程では、溶媒の種類に応じた温度で乾燥され、例えば、80℃未満(例えば、10℃以上80℃未満)、好ましくは20〜60℃、さらに好ましくは30〜50℃で乾燥してもよい。予備乾燥は塗膜表面が乾燥すればよく、乾燥方法及び時間は特に限定されず、例えば、室温放置、温風乾燥、ホットプレート、オーブン等により5分以上(例えば30分〜1時間)程度乾燥してもよい。この予備乾燥により、焼成処理後の導電膜の割れなどを抑制できる。   In the preliminary drying step, natural drying may be performed, but heating and drying may be performed. In the preliminary drying step, the film is dried at a temperature corresponding to the type of the solvent, and is dried at, for example, less than 80 ° C. (eg, 10 ° C. or more and less than 80 ° C.), preferably 20 to 60 ° C., more preferably 30 to 50 ° C. Also good. Preliminary drying may be performed as long as the surface of the coating film is dried, and the drying method and time are not particularly limited. May be. By this preliminary drying, cracking of the conductive film after the baking treatment can be suppressed.

本発明では、比較的低温であっても、表面改質剤によりポリカーボネート基材の表面が粗化されるとともに、銀ナノ粒子が融着して連続膜を形成するため、低温での焼成が可能であり、ポリカーボネートで形成された基材であっても焼成できる。焼成温度は、例えば、80〜150℃、好ましくは90〜140℃、さらに好ましくは100〜130℃(特に110〜120℃)程度である。焼成温度は、高いほど銀ナノ粒子の焼結が進行し、導電性が向上するが、高すぎると、ポリカーボネート基材が劣化や変形する虞がある。焼成時間(加熱時間)は、例えば、30分以上、好ましくは30分〜3時間、さらに好ましくは45分〜2時間(例えば、1時間程度)であってもよい。   In the present invention, even at a relatively low temperature, the surface of the polycarbonate substrate is roughened by the surface modifier, and the silver nanoparticles are fused to form a continuous film. Even a substrate made of polycarbonate can be fired. A calcination temperature is about 80-150 degreeC, for example, Preferably it is 90-140 degreeC, More preferably, it is about 100-130 degreeC (especially 110-120 degreeC) grade. As the firing temperature is higher, the sintering of the silver nanoparticles proceeds and the conductivity is improved. However, if the firing temperature is too high, the polycarbonate substrate may be deteriorated or deformed. The firing time (heating time) may be, for example, 30 minutes or more, preferably 30 minutes to 3 hours, more preferably 45 minutes to 2 hours (for example, about 1 hour).

焼成は、空気中で行われてもよく、不活性ガス(例えば、窒素ガス、アルゴンガス、ヘリウムガスなど)雰囲気中で行われてもよい。   The firing may be performed in air or in an atmosphere of an inert gas (for example, nitrogen gas, argon gas, helium gas, etc.).

得られた焼成膜又は導電膜(焼結後の塗膜、焼結パターン)の厚みは、用途に応じて0.01〜10000μm程度の範囲から適宜選択でき、例えば、0.1〜50μm、好ましくは0.3〜30μm、さらに好ましくは0.5〜10μm程度であってもよい。   The thickness of the obtained fired film or conductive film (coating after sintering, sintered pattern) can be appropriately selected from the range of about 0.01 to 10000 μm depending on the application, for example, 0.1 to 50 μm, preferably May be about 0.3 to 30 μm, more preferably about 0.5 to 10 μm.

得られた導電膜は、導電性が高く、比抵抗が100μΩ・cm以下であってもよく、例えば、50μΩ・cm以下(例えば、0.1〜50μΩ・cm)、好ましくは30μΩ・cm以下(例えば、0.5〜30μΩ・cm)、さらに好ましくは20μΩ・cm以下(例えば、1〜20μΩ・cm)程度であってもよい。特に、バインダー樹脂を使用しない場合は、導電性を向上でき、比抵抗は、例えば、15μΩ・cm以下(例えば、1〜15μΩ・cm)、好ましくは10μΩ・cm以下(例えば、5〜10μΩ・cm)であってもよい。   The obtained conductive film may have high conductivity and a specific resistance of 100 μΩ · cm or less, for example, 50 μΩ · cm or less (for example, 0.1 to 50 μΩ · cm), preferably 30 μΩ · cm or less ( For example, it may be about 0.5 to 30 μΩ · cm, more preferably about 20 μΩ · cm or less (for example, 1 to 20 μΩ · cm). In particular, when no binder resin is used, the conductivity can be improved, and the specific resistance is, for example, 15 μΩ · cm or less (for example, 1 to 15 μΩ · cm), preferably 10 μΩ · cm or less (for example, 5 to 10 μΩ · cm). ).

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下の例において、導電膜の各物性における測定方法、実施例に用いた材料を以下に示す。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the following examples, the measurement methods for the physical properties of the conductive film and the materials used in the examples are shown below.

[導電膜の割れ]
導電膜の割れは、目視で割れの有無を観察し、評価した。
[Break of conductive film]
The crack of the conductive film was evaluated by visually observing the presence or absence of the crack.

[導電膜の比抵抗]
比抵抗は、四探針法での表面抵抗と膜厚とから算出した。実施例及び比較例で得られた導電膜について、それぞれ10サンプルの測定を行い、その平均値を求めた。
[Specific resistance of conductive film]
The specific resistance was calculated from the surface resistance and film thickness obtained by the four probe method. About the electrically conductive film obtained by the Example and the comparative example, 10 samples were measured, respectively, and the average value was calculated | required.

[導電膜の密着性]
導電膜の密着性は、JIS K5600−5−6クロスカット法に記載の試験方法に準じて、前記クロスカット法に記載の以下の基準にしたがって分類し、評価した。
[Adhesiveness of conductive film]
The adhesion of the conductive film was classified and evaluated according to the following criteria described in the crosscut method according to the test method described in JIS K5600-5-6 crosscut method.

分類0:カットの縁が完全に滑らかで、どの格子の目にもはがれがない
分類1:カットの交差点における塗膜の小さなはがれ。クロスカット部分で影響を受けるのは、明確に5%を上回ることはない
分類2:塗膜がカットの縁に沿って、及び/又は交差点においてはがれている。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない
分類3:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は目のいろいろな部分が部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に15%を超えるが35%を上回ることはない
分類4:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は数か所の目が部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは,明確に35%を上回ることはない
分類5:分類4でも分類できないはがれ程度のいずれか。
Category 0: The edges of the cut are completely smooth and there is no peeling to the eyes of any grid. Category 1: Small peeling of the coating film at the intersection of the cuts. It is clearly not more than 5% that is affected by the crosscut part. Category 2: The coating is peeled along the edge of the cut and / or at the intersection. The cross-cut part is clearly affected more than 5% but not more than 15%. Classification 3: The coating is partially or totally peeled along the edge of the cut, and / Or various parts of the eye are partially or totally peeled off. The cross-cut part is clearly affected by more than 15% but not more than 35%. Category 4: The coating is partially or totally peeled along the edge of the cut, And / or some of the eyes are partially or completely peeled off. The cross-cut part is clearly not affected by more than 35%. Category 5: Either the degree of peeling that cannot be classified even in Category 4.

[実施例1]
(銀コロイド粒子凝集体の合成)
硝酸銀66.8g、カルボキシル基を有する凝集助剤(B1)として酢酸(和光純薬工業(株)製)10g、高分子分散剤としてカルボキシル基を有する高分子分散剤(ビックケミー・ジャパン(株)製、「ディスパービック190」、親水性ユニットであるポリエチレンオキサイド鎖と疎水性ユニットであるアルキル基とを有する両親媒性分散剤、溶媒:水、不揮発成分40%、酸価10mgKOH/g、アミン価0)2.0gを、イオン交換水100gに投入し、激しく撹拌した。これに2−ジメチルアミノエタノール(和光純薬工業(株)製)100gを徐々に加えたところ、反応溶液が60℃まで上昇した。液温が50℃に下がったところで70℃に設定されたウォーターバス中で2時間加熱撹拌した。1時間後、銀コロイド粒子凝集体が灰色の沈殿物として得られた。この銀コロイド凝集体が沈殿した反応溶液の上澄み液を除去し、イオン交換水で希釈した。静置した後、上澄み液を除去し、メタノールでさらに希釈した。再度、静置後、上澄み液を除去し、メタノールで希釈した。その後、メンブレンフィルタ(アドバンテック社製、ポアサイズ0.5μm)を付けた加圧ろ過機で銀コロイド粒子凝集体を回収した。
[Example 1]
(Synthesis of silver colloidal particle aggregates)
66.8 g of silver nitrate, 10 g of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as an agglomeration aid (B1) having a carboxyl group, and a polymer dispersant having a carboxyl group as a polymer dispersant (manufactured by Big Chemie Japan Ltd.) , "Dispervic 190", an amphiphilic dispersant having a polyethylene oxide chain which is a hydrophilic unit and an alkyl group which is a hydrophobic unit, solvent: water, nonvolatile component 40%, acid value 10 mgKOH / g, amine value 0 ) 2.0 g was put into 100 g of ion-exchanged water and stirred vigorously. When 100 g of 2-dimethylaminoethanol (manufactured by Wako Pure Chemical Industries, Ltd.) was gradually added thereto, the reaction solution rose to 60 ° C. When the liquid temperature dropped to 50 ° C., the mixture was heated and stirred in a water bath set at 70 ° C. for 2 hours. After 1 hour, silver colloidal particle aggregates were obtained as gray precipitates. The supernatant of the reaction solution in which the silver colloid aggregates were precipitated was removed and diluted with ion-exchanged water. After standing, the supernatant was removed and further diluted with methanol. After standing again, the supernatant was removed and diluted with methanol. Thereafter, the silver colloidal particle aggregates were collected with a pressure filter equipped with a membrane filter (manufactured by Advantech, pore size 0.5 μm).

(銀コロイド粒子凝集体の分析)
特開2010−229544号公報の実施例1に記載の方法で、得られた銀ナノ粒子の数平均粒子径を算出したところ33nmであり、粒子の全体積中において100nm未満の粒子が65.3体積%、100〜200nmの粒子が34.7体積%であった。
(Analysis of silver colloidal particle aggregates)
When the number average particle diameter of the obtained silver nanoparticles was calculated by the method described in Example 1 of JP 2010-229544 A, it was 33 nm, and particles less than 100 nm were 65.3 in the total volume of the particles. Volume%, particles of 100-200 nm were 34.7% by volume.

(銀コロイド粒子凝集体の焼成)
合成により得られた銀コロイド粒子凝集体に、分散媒(表面改質剤)として2−(2−ブトキシエトキシ)エタノール(和光純薬工業(株)製)10gを添加して攪拌し、2−(2−ブトキシエトキシ)エタノール分散の銀ナノ粒子ペーストを作成した。このペーストをポリカーボネートシート(タキロン(株)製、サイズ2cm×2cm×厚み0.5mm)に7000rpmで10秒間スピンコートし、ホットプレート上において、40℃で予備乾燥後、120℃で60分間焼成して膜厚7μmの導電膜を有する導電性基材を得た。
(Sintering of silver colloidal particle aggregates)
To the silver colloidal particle aggregate obtained by synthesis, 10 g of 2- (2-butoxyethoxy) ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersion medium (surface modifier) is added and stirred. A silver nanoparticle paste dispersed in (2-butoxyethoxy) ethanol was prepared. This paste was spin-coated on a polycarbonate sheet (Takiron Co., Ltd., size 2 cm × 2 cm × thickness 0.5 mm) at 7000 rpm for 10 seconds, pre-dried on a hot plate at 40 ° C., and then baked at 120 ° C. for 60 minutes. Thus, a conductive substrate having a conductive film with a thickness of 7 μm was obtained.

[実施例2]
2−(2−ブトキシエトキシ)エタノールをジエチレングリコール(和光純薬工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Example 2]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to diethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.).

[比較例1]
2−(2−ブトキシエトキシ)エタノールを酢酸2−(2−ブトキシエトキシ)エチル(和光純薬工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Comparative Example 1]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to 2- (2-butoxyethoxy) ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.). .

[比較例2]
2−(2−ブトキシエトキシ)エタノールを1−デカノール(和光純薬工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Comparative Example 2]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to 1-decanol (manufactured by Wako Pure Chemical Industries, Ltd.).

[比較例3]
2−(2−ブトキシエトキシ)エタノールを1,5−ペンタンジオール(和光純薬工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Comparative Example 3]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to 1,5-pentanediol (manufactured by Wako Pure Chemical Industries, Ltd.).

[比較例4]
2−(2−ブトキシエトキシ)エタノールをN−メチルピロリドン(和光純薬工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Comparative Example 4]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.).

[比較例5]
2−(2−ブトキシエトキシ)エタノールをエチレングリコール(和光純薬工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Comparative Example 5]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to ethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.).

[比較例6]
2−(2−ブトキシエトキシ)エタノールをp−イソプロピルベンジルアルコール(東京化成工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Comparative Example 6]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to p-isopropylbenzyl alcohol (manufactured by Tokyo Chemical Industry Co., Ltd.).

[比較例7]
2−(2−ブトキシエトキシ)エタノールをN,N−ジメチルプロピルアミド(東京化成工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Comparative Example 7]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to N, N-dimethylpropylamide (manufactured by Tokyo Chemical Industry Co., Ltd.).

[比較例8]
2−(2−ブトキシエトキシ)エタノールをイソホロン(東京化成工業(株)製)に変更したこと以外は実施例1と同様にして導電性基材を得た。
[Comparative Example 8]
A conductive substrate was obtained in the same manner as in Example 1 except that 2- (2-butoxyethoxy) ethanol was changed to isophorone (manufactured by Tokyo Chemical Industry Co., Ltd.).

実施例及び比較例で得られた導電性基材の評価結果を表1に示す。   Table 1 shows the evaluation results of the conductive substrates obtained in Examples and Comparative Examples.

Figure 0006457298
Figure 0006457298

実施例で得られた導電性基材は、導電性が高い上に、割れなく、密着性が高かった。一方、比較例1,2,4及び7で得られた導電性基材では、割れが発生した。また、比較例3,5,6及び8の導電性基材では、割れは発生しなかったものの、密着性が低かった。   The conductive base materials obtained in the examples had high conductivity, were not cracked, and had high adhesion. On the other hand, cracks occurred in the conductive substrates obtained in Comparative Examples 1, 2, 4, and 7. Moreover, in the electroconductive base materials of Comparative Examples 3, 5, 6 and 8, although no crack was generated, the adhesion was low.

本発明の導電性基材及びその前駆体は、各種の導電体、例えば、液晶ディスプレイ(LCD)、有機エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示管(VFD)、プラズマディスプレイパネル(PDP)などの表示装置、タッチパネル式表示装置などの電極、RFIDタグ、電磁波シールド、家庭又は学習用配線キットなどに使用される導電膜、導電性接合剤などとして利用できる。   The conductive substrate of the present invention and its precursor are various conductors such as liquid crystal display (LCD), organic electroluminescence display (ELD), fluorescent display tube (VFD), plasma display panel (PDP) display, etc. It can be used as an electrode for a device, a touch panel display device, an RFID tag, an electromagnetic wave shield, a conductive film used for home or a learning wiring kit, a conductive bonding agent, and the like.

Claims (4)

ポリカーボネート基材とこの基材の上に積層された塗膜とを含む導電性基材の前駆体であって、前記塗膜が、銀ナノ粒子及び保護コロイドを含む銀コロイド粒子と分散媒としての表面改質剤とを含み、前記銀ナノ粒子の最大一次粒径が200nm以下であり、前記保護コロイドが高分子分散剤を含み、かつ前記表面改質剤が、140〜250℃の沸点を有し、かつヒドロキシル基及びエーテル結合を有する化合物からなる導電性基材の前駆体。 A conductive base material precursor comprising a polycarbonate base material and a coating film laminated on the base material, wherein the coating film comprises silver colloidal particles containing silver nanoparticles and protective colloid and a dispersion medium. The silver nanoparticles have a maximum primary particle size of 200 nm or less, the protective colloid contains a polymer dispersant, and the surface modifier has a boiling point of 140 to 250 ° C. and and a hydroxyl group and a precursor of the electroconductive substrate ing from a compound having an ether bond. 表面改質剤が、分子内にヒドロキシル基及びエーテル結合を有する脂肪族炭化水素である請求項1記載の前駆体。   The precursor according to claim 1, wherein the surface modifier is an aliphatic hydrocarbon having a hydroxyl group and an ether bond in the molecule. 銀コロイド粒子と表面改質剤との質量割合が、前者/後者=40/60〜95/5である請求項1又は2記載の前駆体。 The precursor according to claim 1 or 2 , wherein the mass ratio of the silver colloid particles and the surface modifier is the former / the latter = 40/60 to 95/5. 塗膜が樹脂成分を含まない請求項1〜のいずれかに記載の前駆体。 The precursor according to any one of claims 1 to 3 , wherein the coating film does not contain a resin component.
JP2015035708A 2014-03-10 2015-02-25 Conductive substrate, method for producing the same, and precursor Active JP6457298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015035708A JP6457298B2 (en) 2014-03-10 2015-02-25 Conductive substrate, method for producing the same, and precursor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014046462 2014-03-10
JP2014046462 2014-03-10
JP2015035708A JP6457298B2 (en) 2014-03-10 2015-02-25 Conductive substrate, method for producing the same, and precursor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2018135052A Division JP6666963B2 (en) 2014-03-10 2018-07-18 Conductive substrate and method for producing the same
JP2018135051A Division JP6626163B2 (en) 2014-03-10 2018-07-18 Precursor for conductive substrate

Publications (2)

Publication Number Publication Date
JP2015187976A JP2015187976A (en) 2015-10-29
JP6457298B2 true JP6457298B2 (en) 2019-01-23

Family

ID=54430104

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015035708A Active JP6457298B2 (en) 2014-03-10 2015-02-25 Conductive substrate, method for producing the same, and precursor
JP2018135051A Active JP6626163B2 (en) 2014-03-10 2018-07-18 Precursor for conductive substrate
JP2018135052A Active JP6666963B2 (en) 2014-03-10 2018-07-18 Conductive substrate and method for producing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018135051A Active JP6626163B2 (en) 2014-03-10 2018-07-18 Precursor for conductive substrate
JP2018135052A Active JP6666963B2 (en) 2014-03-10 2018-07-18 Conductive substrate and method for producing the same

Country Status (1)

Country Link
JP (3) JP6457298B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6903974B2 (en) * 2017-03-21 2021-07-14 凸版印刷株式会社 Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143571A (en) * 2001-11-22 2004-05-20 Fuji Photo Film Co Ltd Board and ink for drawing conductive pattern and method for forming conductive pattern
JP2003331648A (en) * 2002-05-10 2003-11-21 Tsuchiya Co Ltd Conductive paste and manufacturing method for electric circuit
JP2009238625A (en) * 2008-03-27 2009-10-15 Mitsuboshi Belting Ltd Metal nanoparticle paste and pattern forming method
JP5431071B2 (en) * 2008-08-28 2014-03-05 三ツ星ベルト株式会社 Conductive substrate, precursor thereof, and production method thereof
JP5431073B2 (en) * 2008-09-01 2014-03-05 三ツ星ベルト株式会社 Method for producing a conductive substrate
JP5661273B2 (en) * 2008-11-26 2015-01-28 三ツ星ベルト株式会社 Colloidal metal particles, paste thereof and method for producing the same
JP5502434B2 (en) * 2008-11-26 2014-05-28 三ツ星ベルト株式会社 Bonding agent for inorganic material and bonded body of inorganic material
JP2010177084A (en) * 2009-01-30 2010-08-12 Mitsuboshi Belting Ltd Metal nanoparticle paste and conductive base material
JP5399100B2 (en) * 2009-03-04 2014-01-29 三ツ星ベルト株式会社 Metal colloidal particle aggregate and method for producing the same
JP5632176B2 (en) * 2009-09-30 2014-11-26 三ツ星ベルト株式会社 Laminated body, conductive substrate using the laminated body, and method for producing the same
JP5558069B2 (en) * 2009-09-30 2014-07-23 三ツ星ベルト株式会社 Laminated body, conductive substrate using the laminated body, and method for producing the same
JP5924481B2 (en) * 2012-02-02 2016-05-25 戸田工業株式会社 Method for producing silver fine particles, silver fine particles obtained by the method for producing silver fine particles, and conductive paste containing the silver fine particles

Also Published As

Publication number Publication date
JP6666963B2 (en) 2020-03-18
JP2015187976A (en) 2015-10-29
JP6626163B2 (en) 2019-12-25
JP2018198210A (en) 2018-12-13
JP2018198211A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP2021167425A (en) Metal nanowire ink for formation of transparent conductive film with fused network
JP6644684B2 (en) Transparent conductive coating based on metal nanowires and polymer binder, solution treatment thereof, and patterning method
US7488434B2 (en) Conductive paste for conductive substrate or conductive film
JP5560014B2 (en) Conductive paste
TW201538644A (en) Conductive composition for printing thin film and method of forming thin film conductive pattern
JP6485917B2 (en) Conductive structure with metal thin film
JP2013149596A (en) Heat-curable conductive paste
TWI588171B (en) Metal particle dispersion for electrically conductive substrate and method for producing the same, and method for producing electrically conductive substrate
JPWO2012014481A1 (en) Conductive paste for offset printing
JP2016184741A5 (en)
TW201108255A (en) Conductive composition for forming electrode
TW201245348A (en) Electroconductive aqueous ink for ink-jet recording
TW200531079A (en) Thick film conductor compositions for use in membrane switch applications
JP2014089818A (en) Heat curable conductive paste
JP5608501B2 (en) Conductive pattern forming paste composition, conductive pattern and method for forming the same
JP6666963B2 (en) Conductive substrate and method for producing the same
JP2016110691A (en) Method for manufacturing conductive substrate and conductive substrate
JP5526576B2 (en) Conductive ink
WO2020153101A1 (en) Electroconductive paste, substrate equipped with electroconductive film, and method for manufacturing substrate equipped with electroconductive film
JP5151229B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
TWI597319B (en) Dispersant, metal particle dispersion for electroconductive substrate, and method for producing electroconductive substrate
KR102495578B1 (en) Silver microparticle dispersion
WO2016194389A1 (en) Method for manufacturing metal thin film, and electroconductive structure
TW201510015A (en) Conductive paste and substrate attached with conductive film
WO2021192523A1 (en) Copper ink and method for forming electroconductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181220

R150 Certificate of patent or registration of utility model

Ref document number: 6457298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250