JP6452335B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP6452335B2
JP6452335B2 JP2014147868A JP2014147868A JP6452335B2 JP 6452335 B2 JP6452335 B2 JP 6452335B2 JP 2014147868 A JP2014147868 A JP 2014147868A JP 2014147868 A JP2014147868 A JP 2014147868A JP 6452335 B2 JP6452335 B2 JP 6452335B2
Authority
JP
Japan
Prior art keywords
group
epoxy resin
resin composition
halogen atom
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014147868A
Other languages
Japanese (ja)
Other versions
JP2015057465A (en
Inventor
奈央樹 佐瀬
奈央樹 佐瀬
栄次郎 青柳
栄次郎 青柳
英則 野沢
英則 野沢
雅男 軍司
雅男 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2014147868A priority Critical patent/JP6452335B2/en
Publication of JP2015057465A publication Critical patent/JP2015057465A/en
Application granted granted Critical
Publication of JP6452335B2 publication Critical patent/JP6452335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Description

本発明は、低誘電特性、高耐熱性、低吸湿性に優れた硬化物を与えるエポキシ樹脂組成物及びその硬化物に関するものである。   The present invention relates to an epoxy resin composition that provides a cured product excellent in low dielectric properties, high heat resistance, and low moisture absorption, and a cured product thereof.

近年、携帯電話等の情報通信機器の信号帯域、コンピュータのCPUクロックタイムはGHz帯に達し、高周波化が進行している。   In recent years, the signal band of information communication devices such as mobile phones and the CPU clock time of computers have reached the GHz band, and the frequency has been increasing.

電気信号の誘電損失は、回路を形成する絶縁体の比誘電率の平方根、誘電正接および使用される信号の周波数の積に比例する。そのため、使用される信号の周波数が高いほど誘電損失が大きくなる。   The dielectric loss of an electrical signal is proportional to the product of the square root of the dielectric constant of the insulator forming the circuit, the dielectric loss tangent and the frequency of the signal used. Therefore, the higher the frequency of the signal used, the greater the dielectric loss.

誘電損失は、電気信号を減衰させて信号の信頼性を損なうので、これを抑制するために絶縁体には誘電率、誘電正接の小さな材料を選定する必要がある(特許文献1)。   Dielectric loss attenuates the electrical signal and impairs the reliability of the signal. Therefore, in order to suppress this, it is necessary to select a material having a small dielectric constant and dielectric loss tangent for the insulator (Patent Document 1).

こういった特性を有する熱硬化性樹脂組成物を提供する材料そして、フェノールノボラック樹脂中のフェノール性水酸基をアリールエステル化して得られる活性エステル化合物をエポキシ樹脂用硬化剤として用いる技術が知られているが、耐熱性が十分ではなかった(特許文献2、3)。   A material for providing a thermosetting resin composition having such characteristics and a technique using an active ester compound obtained by arylesterifying a phenolic hydroxyl group in a phenol novolak resin as a curing agent for an epoxy resin are known. However, the heat resistance was not sufficient (Patent Documents 2 and 3).

特開2012−221968号公報JP 2012-221968 A 特開平11−130939号公報JP-A-11-130939 特開平7−82348号公報JP 7-82348 A

従って、本発明が解決しようとする課題は、低誘電性、高耐熱性に優れた性能を有し、積層、成型、注型、接着等の用途に有用なエポキシ樹脂組成物及びその硬化物を提供するものである。   Therefore, the problem to be solved by the present invention is to provide an epoxy resin composition having a performance excellent in low dielectric property and high heat resistance, and useful for lamination, molding, casting, adhesion and the like, and a cured product thereof. It is to provide.

すなわち、本発明は、
下記一般式(1)で表されるエポキシ当量が2000g/eq以下のエポキシ樹脂(A)と硬化剤(B)を含有するエポキシ樹脂組成物である。
That is, the present invention
An epoxy resin composition containing an epoxy resin (A) having an epoxy equivalent represented by the following general formula (1) of 2000 g / eq or less and a curing agent (B).

Figure 0006452335
(式中、mは繰り返し数で、平均値は0<m<であり、nは繰り返し数で、平均値は0≦n<であり、Xはそれぞれ独立して、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または下記一般式(2)で表される基のいずれかであり、Yはそれぞれ独立して、フェニレン基、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するフェニレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または下記一般式(2)で表される基のいずれかであり、Gはグリシジル基である。)
Figure 0006452335
(In the formula, m is the number of repetitions, the average value is 0 <m < 5 , n is the number of repetitions, the average value is 0 ≦ n < 3 , and X is independently a naphthylene group or a substituent. As a hydrocarbon group having 1 to 10 carbon atoms or a naphthylene group having a halogen atom, or a group represented by the following general formula (2), and each Y is independently a phenylene group, a naphthylene group, or a substituent. A phenylene group having 1 to 10 carbon atoms or a halogen atom as a group, a naphthylene group having 1 to 10 carbon atoms or a halogen atom as a substituent, or the following general formula (2) Any of the groups, and G is a glycidyl group.)

Figure 0006452335
(式中、Rはそれぞれ独立して、水素原子、炭素数1〜10の炭化水素基、またはハロゲン原子のいずれかであり、Rは単結合または二価の基である。)
Figure 0006452335
(In the formula, each R 1 is independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogen atom, and R 2 is a single bond or a divalent group.)

また、前記エポキシ樹脂(A)は、下記一般式(3)で表されるジヒドロキシ化合物(a)1モルに対し、下記一般式(4)で表されるハロゲン化メチル基含有化合物(b)0.001〜1.0モルを反応させて下記一般式(5)で表されるジヒドロキシ化合物(c)を得た後、そのジヒドロキシ化合物(c)とエピクロルヒドリンとを反応させることによって得られるエポキシ樹脂であることが好ましい。 The epoxy resin (A) is a halogenated methyl group-containing compound (b) 0 represented by the following general formula (4) with respect to 1 mol of the dihydroxy compound (a) represented by the following general formula (3). An epoxy resin obtained by reacting 0.001 to 1.0 mol to obtain a dihydroxy compound (c) represented by the following general formula (5) and then reacting the dihydroxy compound (c) with epichlorohydrin. Preferably there is.

Figure 0006452335
(式中、Yは前記一般式(1)のYと同義である。)
Figure 0006452335
(In the formula, Y has the same meaning as Y in formula (1)).

Figure 0006452335
(式中、Xは前記一般式(1)のXと同義であり、Zはハロゲン原子を示す。)
Figure 0006452335
(In the formula, X has the same meaning as X in formula (1), and Z represents a halogen atom.)

Figure 0006452335
(式中、m,X,Yは前記一般式(1)のm,X,Yとそれぞれ同義である。)
Figure 0006452335
(In the formula, m, X, and Y are respectively synonymous with m, X, and Y in the general formula (1).)

また、前記エポキシ樹脂組成物は、前記エポキシ樹脂(A)のエポキシ基1モルに対して前記硬化剤(B)の活性水素基が0.4〜1.2モルの範囲であることが好ましい。 Moreover, it is preferable that the active hydrogen group of the said hardening | curing agent (B) is 0.4-1.2 mol in the said epoxy resin composition with respect to 1 mol of epoxy groups of the said epoxy resin (A).

また、本発明は前記エポキシ樹脂組成物から得られるプリプレグ、接着シート、エポキシ樹脂積層板、エポキシ樹脂封止材、またはエポキシ樹脂注型材である。また、本発明は前記エポキシ樹脂組成物を硬化して得られる硬化物である。   Moreover, this invention is a prepreg obtained from the said epoxy resin composition, an adhesive sheet, an epoxy resin laminated board, an epoxy resin sealing material, or an epoxy resin casting material. Moreover, this invention is a hardened | cured material obtained by hardening | curing the said epoxy resin composition.

本発明のエポキシ樹脂組成物は低誘電性、高耐熱性に優れた硬化物を与え、積層、成型、注型、接着等の用途に好適に使用することが可能である。 The epoxy resin composition of the present invention gives a cured product excellent in low dielectric property and high heat resistance, and can be suitably used for applications such as lamination, molding, casting and adhesion.

本発明のエポキシ樹脂組成物は、前記一般式(1)で表されるエポキシ樹脂(A)と前記硬化剤(B)を必須成分とする。 The epoxy resin composition of the present invention comprises the epoxy resin (A) represented by the general formula (1) and the curing agent (B) as essential components.

前記一般式(1)で表されるエポキシ樹脂(A)において、mは繰り返し数であり、平均値は0<m<10であることが必要であり、好ましくは0.01<m<8であり、より好ましくは0.05<m<5である。mが0では水酸基量の低減が十分でなく、低誘電特性に効果がなく、mが10以上では高粘度となる恐れがある。また、nは繰り返し数であり、平均値は0≦n<10であることが必要であり、好ましくは0≦n<5であり、より好ましくは0≦n<4であり、さらに好ましくは0≦n<3である。nが10以上では高粘度となる恐れがある。また、エポキシ当量は特に規定がないが、2000g/eq.以下が好ましく、1000g/eq.以下がより好ましい。エポキシ当量が2000g/eq.より大きいと分子量が大きくなるために高粘度となる恐れがある。ここで、平均値は数平均である。   In the epoxy resin (A) represented by the general formula (1), m is the number of repetitions, and the average value needs to satisfy 0 <m <10, and preferably 0.01 <m <8. Yes, more preferably 0.05 <m <5. When m is 0, the amount of hydroxyl groups is not sufficiently reduced, and the low dielectric properties are not effective. When m is 10 or more, the viscosity may be high. N is the number of repetitions, and the average value must be 0 ≦ n <10, preferably 0 ≦ n <5, more preferably 0 ≦ n <4, and still more preferably 0. ≦ n <3. If n is 10 or more, there is a risk of high viscosity. The epoxy equivalent is not particularly specified, but is 2000 g / eq. The following is preferable, and 1000 g / eq. The following is more preferable. Epoxy equivalent is 2000 g / eq. If it is larger, the molecular weight becomes large, so that there is a risk of high viscosity. Here, the average value is a number average.

また、前記一般式(1)のXはそれぞれ独立して、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または前記一般式(2)で表される基のいずれかである。Yはそれぞれ独立して、フェニレン基、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するフェニレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または前記一般式(2)で表される基のいずれかである。なお、置換基としての炭素数1〜10の炭化水素基の具体例としては、後述する前記一般式(2)中のRと同じものが挙げられる。 Moreover, X of the said General formula (1) is respectively independently represented by the naphthylene group, the C1-C10 hydrocarbon group or naphthylene group which has a halogen atom as a substituent, or the said General formula (2). One of the groups. Y each independently has a phenylene group, a naphthylene group, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom as a substituent, and a hydrocarbon group or halogen atom having 1 to 10 carbon atoms as a substituent. It is either a naphthylene group or a group represented by the general formula (2). As specific examples of the hydrocarbon group having 1 to 10 carbon atoms as a substituent are the same as those of R 1 in the general formula (2) to be described later.

前記一般式(2)中、Rはそれぞれ独立して、水素原子、炭素数1〜10の炭化水素基、またはハロゲン原子のいずれかである。炭素数1〜10の炭化水素基の具体的な例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基等の炭素数1〜10の直鎖または分岐アルキル基や、シクロヘキシル基等の炭素数4〜10の環状アルキル基や、フェニル基、ナフチル基、トリル基、キシリル基、インダニル基等の炭素数6〜10の置換基を有していてもよいアリール基や、ベンジル基、フェネチル基、2−メチルベンジル基、3−メチルベンジル基、4−メチルベンジル基、2,6−ジメチルベンジル基、3,5−ジメチルベンジル基、α−メチルベンジル基等の炭素数7〜10の置換基を有していてもよいアラルキル基等の置換基が挙げられ、好ましい置換基はメチル基、エチル基、tert−ブチル基、シクロヘキシル基、フェニル基、α−メチルベンジル基である。 In the general formula (2), each R 1 is independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogen atom. Specific examples of the hydrocarbon group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n A linear or branched alkyl group having 1 to 10 carbon atoms such as a pentyl group or an n-hexyl group, a cyclic alkyl group having 4 to 10 carbon atoms such as a cyclohexyl group, a phenyl group, a naphthyl group, a tolyl group, or a xylyl group. An aryl group optionally having a substituent having 6 to 10 carbon atoms such as an indanyl group, a benzyl group, a phenethyl group, a 2-methylbenzyl group, a 3-methylbenzyl group, a 4-methylbenzyl group, 2, Preferred examples include substituents such as 6-dimethylbenzyl group, 3,5-dimethylbenzyl group and α-methylbenzyl group, which may have 7 to 10 carbon atoms, and an aralkyl group. Substituents are methyl, ethyl, tert- butyl group, a cyclohexyl group, a phenyl group, a α- methylbenzyl group.

また、前記一般式(2)中、Rは単結合または二価の基であり、ハロゲン原子及び硫黄原子、窒素原子、酸素原子等のヘテロ原子を含んでいてもよい。二価の基の具体的な例としては、−CH−、−C(CH−、−CH(CH)−、−C(CF−、−CO−、−COO−、−O−、−S−、−SO−、ベンジリデン基、α−メチルベンジリデン基、シクロヘキシリデン基、シクロペンチリデン基、9H−フルオレン−9−イリデン基、またはシクロヘキセニル基等が挙げられ、これらの基の芳香族骨格にはさらにRと同義の置換基を有していてもよい。好ましい二価の基としては、−CH−、−C(CH−、−CO−、−COO−、−O−、−S−、−SO−、9H−フルオレン−9−イリデン基である。 In the general formula (2), R 2 is a single bond or a divalent group, and may contain a hetero atom such as a halogen atom, a sulfur atom, a nitrogen atom, or an oxygen atom. Specific examples of the divalent group include —CH 2 —, —C (CH 3 ) 2 —, —CH (CH 3 ) —, —C (CF 3 ) 2 —, —CO—, —COO—. , —O—, —S—, —SO 2 —, benzylidene group, α-methylbenzylidene group, cyclohexylidene group, cyclopentylidene group, 9H-fluorene-9-ylidene group, or cyclohexenyl group. The aromatic skeleton of these groups may further have a substituent having the same meaning as R 1 . Preferred divalent groups include —CH 2 —, —C (CH 3 ) 2 —, —CO—, —COO—, —O—, —S—, —SO 2 —, 9H-fluorene-9-ylidene. It is a group.

また、前記一般式(1)〜(5)において、同一の記号は、特段の断りがない限り、同一の意味を有する。 In the general formulas (1) to (5), the same symbols have the same meanings unless otherwise specified.

前記エポキシ樹脂(A)は、まず、前記ジヒドロキシ化合物(a)と前記ハロゲン化メチル基含有化合物(b)を反応させて前記ジヒドロキシ化合物(c)を得た後、そのジヒドロキシ化合物(c)とエピクロルヒドリンを反応させて水酸基をグリシジルエーテル化とすることで得られる。その反応の際に、エポキシ基が開環して重合した構造の成分が少量生成することがあるが、このような成分が混入していても差し支えない。 The epoxy resin (A) is obtained by first reacting the dihydroxy compound (a) with the halogenated methyl group-containing compound (b) to obtain the dihydroxy compound (c), and then the dihydroxy compound (c) and epichlorohydrin. To obtain a glycidyl etherified hydroxyl group. In the reaction, a small amount of a component having a structure in which an epoxy group is ring-opened and polymerized may be produced, but such a component may be mixed.

従来より、水酸基をアルカリ金属塩としハロゲン化物との反応によるポリエーテル合成が知られており、前記ヒドロキシ化合物(c)を得るための前記ジヒドロキシ化合物(a)と前記ハロゲン化メチル基含有化合物(b)との反応ではこのポリエーテル合成法を用いることができる。なお、前記一般式(1)と(5)のmは同義であるが、mは前記ジヒドロキシ化合物(a)と前記ハロゲン化メチル基含有化合物(b)のモル比からおよその計算が可能であり、モル比が1に近いほどmが大きくなる。しかし、両末端がヒドロキシ基となる必要があることから、(a)/(b)比は1より大きい。 Conventionally, it has been known to synthesize a polyether by reacting a hydroxyl group with an alkali metal salt and a halide. The dihydroxy compound (a) and the halogenated methyl group-containing compound (b) for obtaining the hydroxy compound (c) are known. This polyether synthesis method can be used in the reaction with (A). Note that m in the general formulas (1) and (5) is synonymous, but m can be roughly calculated from the molar ratio of the dihydroxy compound (a) and the halogenated methyl group-containing compound (b). As the molar ratio is closer to 1, m increases. However, the ratio (a) / (b) is greater than 1 because both ends need to be hydroxy groups.

前記ジヒドロキシ化合物(a)を具体的に例示すれば、ハイドロキノン、レゾルシン、カテコール等のフェニレン基含有ジヒドロキシ化合物、1,4−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のナフタレンジオール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールB、ビスフェノールE、ビスフェノールC、ビスフェノールZ、4,4’−オキシビスフェノール、4,4’−カルボニルビスフェノール、ビスフェノールフルオレン、4,4’−ビフェノール、2,2’−ビフェノール、ビスフェノールアセトフェノン、4−ヒドロキシ安息香酸−4−ヒドロキシフェニル等の2価のフェノール類が挙げられ、さらに前記一般式(2)のRと同義の、炭素数1〜10の炭化水素基またはハロゲン原子を置換基として有するこれらの化合物等が挙げられる。好ましくは、4−ヘキシルレゾルシノール、2,5−ジ−tert−ブチルヒドロキノン、2−tert−ブチルヒドロキノン、1,6−ジヒドロキシナフタレン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、テトラメチルビフェノール、4,4’−オキシビスフェノール、4,4’−カルボニルビスフェノール、ビスフェノールフルオレン、テトラブロモビスフェノールAが挙げられ、より好ましくは、テトラメチルビスフェノールS、ビスフェノールフルオレン、テトラブロモビスフェノールAが挙げられる。 Specific examples of the dihydroxy compound (a) include phenylene group-containing dihydroxy compounds such as hydroquinone, resorcin, and catechol, 1,4-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2, Naphthalenediols such as 7-dihydroxynaphthalene, bisphenol A, bisphenol F, bisphenol S, bisphenol B, bisphenol E, bisphenol C, bisphenol Z, 4,4′-oxybisphenol, 4,4′-carbonylbisphenol, bisphenolfluorene, Divalent phenols such as 4,4′-biphenol, 2,2′-biphenol, bisphenolacetophenone, 4-hydroxyphenyl-4-hydroxyphenyl, and the like Wherein the R 1 as defined in (2), etc. These compounds having as a substituent a hydrocarbon group or a halogen atom having 1 to 10 carbon atoms. Preferably, 4-hexyl resorcinol, 2,5-di-tert-butylhydroquinone, 2-tert-butylhydroquinone, 1,6-dihydroxynaphthalene, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol S, tetramethyl Biphenol, 4,4′-oxybisphenol, 4,4′-carbonylbisphenol, bisphenol fluorene, and tetrabromobisphenol A are preferable, and tetramethylbisphenol S, bisphenol fluorene, and tetrabromobisphenol A are more preferable.

前記ハロゲン化メチル基含有化合物(b)を具体的に例示すれば、ビスクロロメチルナフタレン、ビスクロロメチルビフェニル、ビスブロモメチルビフェニル、ビスクロロメチルフルオレン等であり、さらに前記一般式(2)のRと同義の、炭素数1〜10の炭化水素基またはハロゲン原子を有するこれらの化合物等が挙げられる。 Specific examples of the halogenated methyl group-containing compound (b) include bischloromethylnaphthalene, bischloromethylbiphenyl, bisbromomethylbiphenyl, bischloromethylfluorene, and the like, and R in the general formula (2) 1 synonymous, etc. these compounds having a hydrocarbon group or a halogen atom having 1 to 10 carbon atoms.

前記エポキシ樹脂(A)に適した前記ジヒドロキシ化合物(c)を得るためには、前記で例示したジヒドロキシ化合物(a)と前記で例示したハロゲン化メチル基含有化合物(b)とをどのように組み合わせてもよいが、前記ジヒドロキシ化合物(a)と前記ハロゲン化メチル基含有化合物(b)とのより好ましい組み合わせは、ビスクロロメチルナフタレンとテトラメチルビスフェノールS、ビスクロロメチルナフタレンとテトラメチルビフェノール、ビスクロロメチルナフタレンとジヒドロキシナフタレン、ビスクロロメチルナフタレンとビスフェノールA、ビスクロロメチルナフタレンとテトラメチルビスフェノールA、ビスクロロメチルナフタレンとテトラメチルビスフェノールF、ビスクロロメチルナフタレンと2,5−ジ−tert−ブチルヒドロキノン、ビスクロロメチルナフタレンと置換基としてα−メチルベンジル基を有するビスフェノールF、ビスクロロメチルビフェニルとテトラメチルビスフェノールS、ビスクロロメチルビフェニルとテトラメチルビフェノール、ビスクロロメチルビフェニルとジヒドロキシナフタレン、ビスクロロメチルビフェニルとビスフェノールA、ビスクロロメチルビフェニルとテトラメチルビスフェノールA、ビスクロロメチルビフェニルとテトラメチルビスフェノールF、ビスクロロメチルビフェニルと2,5−ジ−tert−ブチルヒドロキノンと、ビスクロロメチルビフェニルと置換基としてα−メチルベンジル基を有するビスフェノールF、ビスブロモメチルビフェニル、とテトラメチルビスフェノールF、ビスクロロメチルフルオレンとテトラメチルビスフェノールF等が挙がられる。これらの中でもさらに好ましい組み合わせとして、接着性の点からビスクロロメチルナフタレンとテトラメチルビスフェノールS、ビスクロロメチルビフェニルとテトラメチルビスフェノールS、ビスクロロメチルビフェニルとテトラメチルビスフェノールF、ビスクロロメチルビフェニルと置換基としてα−メチルベンジル基を有するビスフェノールFが、耐熱性の点からビスクロロメチルナフタレンとテトラメチルビスフェノールS、ビスクロロメチルナフタレンとジヒドロキシナフタレン、ビスクロロメチルナフタレンと2,5−ジ−tert−ブチルヒドロキノン、ビスクロロメチルビフェニルとテトラメチルビスフェノールS、ビスクロロメチルビフェニルとテトラメチルビフェノール、ビスクロロメチルビフェニルとテトラメチルビスフェノールFが挙げられる。 In order to obtain the dihydroxy compound (c) suitable for the epoxy resin (A), how to combine the dihydroxy compound (a) exemplified above and the halogenated methyl group-containing compound (b) exemplified above However, more preferable combinations of the dihydroxy compound (a) and the halogenated methyl group-containing compound (b) are bischloromethylnaphthalene and tetramethylbisphenol S, bischloromethylnaphthalene and tetramethylbiphenol, bischloro. Methylnaphthalene and dihydroxynaphthalene, bischloromethylnaphthalene and bisphenol A, bischloromethylnaphthalene and tetramethylbisphenol A, bischloromethylnaphthalene and tetramethylbisphenol F, bischloromethylnaphthalene and 2,5-di-te t-butylhydroquinone, bischloromethylnaphthalene and bisphenol F having an α-methylbenzyl group as a substituent, bischloromethylbiphenyl and tetramethylbisphenol S, bischloromethylbiphenyl and tetramethylbiphenol, bischloromethylbiphenyl and dihydroxynaphthalene, Bischloromethylbiphenyl and bisphenol A, bischloromethylbiphenyl and tetramethylbisphenol A, bischloromethylbiphenyl and tetramethylbisphenol F, bischloromethylbiphenyl and 2,5-di-tert-butylhydroquinone, and bischloromethylbiphenyl Bisphenol F having an α-methylbenzyl group as a substituent, bisbromomethylbiphenyl, tetramethylbisphenol F, bischlorome Rufuruoren and tetramethyl bisphenol F or the like is go up. Among these, more preferred combinations include bischloromethylnaphthalene and tetramethylbisphenol S, bischloromethylbiphenyl and tetramethylbisphenol S, bischloromethylbiphenyl and tetramethylbisphenol F, and bischloromethylbiphenyl and substituents from the viewpoint of adhesiveness. Bisphenol F having an α-methylbenzyl group as bischloromethylnaphthalene and tetramethylbisphenol S, bischloromethylnaphthalene and dihydroxynaphthalene, bischloromethylnaphthalene and 2,5-di-tert-butylhydroquinone from the viewpoint of heat resistance Bischloromethylbiphenyl and tetramethylbisphenol S, bischloromethylbiphenyl and tetramethylbiphenol, bischloromethylbiphenyl and tetramethyl Bisphenol F and the like.

また、前記エポキシ樹脂(A)に適した前記ジヒドロキシ化合物(c)を得るためには、前記ジヒドロキシ化合物(a)1.0モルに対し、前記ハロゲン化メチル基含有化合物(b)を0.001〜1.0モルの範囲で反応させることが必要であり、好ましい範囲は0.01〜0.9モルであり、より好ましい範囲は0.05〜0.8モルであり、さらに好ましい範囲は0.1〜0.7モルである。前記ハロゲン化メチル基含有化合物(b)が1モルを超えると、前記ジヒドロキシ化合物(c)の末端基がハロゲンになるため前記一般式(1)で表される前記エポキシ樹脂(A)が得られない。 Moreover, in order to obtain the said dihydroxy compound (c) suitable for the said epoxy resin (A), the said halogenated methyl group containing compound (b) is 0.001 with respect to 1.0 mol of said dihydroxy compounds (a). It is necessary to make it react in the range of -1.0 mol, a preferable range is 0.01-0.9 mol, a more preferable range is 0.05-0.8 mol, and a still more preferable range is 0. .1 to 0.7 mol. When the halogenated methyl group-containing compound (b) exceeds 1 mol, the end group of the dihydroxy compound (c) becomes halogen, so that the epoxy resin (A) represented by the general formula (1) is obtained. Absent.

前記ジヒドロキシ化合物(a)と前記ハロゲン化メチル基含有化合物(b)との反応は炭酸カリウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に行うことができ、アルカリ金属水酸化物の使用量は前記ジヒドロキシ化合物(a)1.0モルに対し1.8〜2.5モルが好ましく、2.0〜2.2モルがより好ましい。また、反応温度は20〜100℃であり、好ましくは40〜80℃であり、より好ましくは50〜60℃である。反応時間は1〜10時間であり、好ましくは2〜5時間である。20℃以下では反応が進行せず、100℃以上では副反応として親電子置換反応が起きる恐れがある。   The reaction between the dihydroxy compound (a) and the halogenated methyl group-containing compound (b) can be carried out in the presence of an alkali metal hydroxide such as potassium carbonate, sodium hydroxide, potassium hydroxide, etc. 1.8-2.5 mol is preferable with respect to 1.0 mol of said dihydroxy compounds (a), and, as for the usage-amount of an oxide, 2.0-2.2 mol is more preferable. Moreover, reaction temperature is 20-100 degreeC, Preferably it is 40-80 degreeC, More preferably, it is 50-60 degreeC. The reaction time is 1 to 10 hours, preferably 2 to 5 hours. The reaction does not proceed at 20 ° C. or lower, and an electrophilic substitution reaction may occur as a side reaction at 100 ° C. or higher.

前記ジヒドロキシ化合物(a)と前記ハロゲン化メチル基含有化合物(b)を反応させて得られた前記ジヒドロキシ化合物(c)を、さらにエピクロルヒドリンを反応させることにより、前記エポキシ樹脂(A)を得ることができる。例えば、前記ジヒドロキシ化合物(c)を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、20〜150℃、好ましくは、30〜80℃の範囲で1〜10時間反応させ、エポキシ化反応終了後、過剰のエピクロルヒドリンを留去し、残留分をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより目的の前記エポキシ樹脂(A)を得ることができる。 The epoxy resin (A) can be obtained by further reacting the dihydroxy compound (c) obtained by reacting the dihydroxy compound (a) and the halogenated methyl group-containing compound (b) with epichlorohydrin. it can. For example, after the dihydroxy compound (c) is dissolved in excess epichlorohydrin, it is in the range of 20 to 150 ° C., preferably 30 to 80 ° C. in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. For 1 to 10 hours, and after the epoxidation reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then The target epoxy resin (A) can be obtained by distilling off the solvent.

この際のアルカリ金属水酸化物の使用量は、前記ジヒドロキシ化合物(c)の水酸基1モルに対して、0.8〜2.5モル、好ましくは0.85〜2.0モル、より好ましくは0.9〜1.5モルの範囲である。 The amount of the alkali metal hydroxide used at this time is 0.8 to 2.5 mol, preferably 0.85 to 2.0 mol, more preferably relative to 1 mol of the hydroxyl group of the dihydroxy compound (c). The range is 0.9 to 1.5 mol.

また、エピクロルヒドリンの使用量は前記ジヒドロキシ化合物(c)中の水酸基に対して過剰に用いられ、通常、水酸基1モルに対して、1.5〜15モル、好ましくは2〜10モルの範囲である。 Moreover, the usage-amount of epichlorohydrin is used excessively with respect to the hydroxyl group in the said dihydroxy compound (c), and is 1.5-15 mol normally with respect to 1 mol of hydroxyl groups, Preferably it is the range of 2-10 mol. .

前記エポキシ樹脂(A)を得るより好ましい方法としては、前記ジヒドロキシ化合物(a)と前記ハロゲン化メチル基含有化合物(b)を反応した後、中和工程を経て前記ジヒドロキシ化合物(c)として反応系外に取り出すことをしないで、直ちにエピクロルヒドリンと反応させる方法が挙げられる。この方法では、前記ジヒドロキシ化合物(a)と前記ハロゲン化メチル基含有化合物(b)との反応で残存したアルカリ金属水酸化物もエポキシ化反応に使用するアルカリ金属水酸化物として加算して考える。 As a more preferable method for obtaining the epoxy resin (A), the dihydroxy compound (a) and the halogenated methyl group-containing compound (b) are reacted and then subjected to a neutralization step as the dihydroxy compound (c). There is a method of reacting with epichlorohydrin immediately without taking it out. In this method, the alkali metal hydroxide remaining in the reaction between the dihydroxy compound (a) and the halogenated methyl group-containing compound (b) is also considered as an alkali metal hydroxide used for the epoxidation reaction.

なお、前記一般式(1)のnの平均値は、前記エポキシ樹脂(A)のエポキシ当量から計算で求めることができる。 In addition, the average value of n of the said General formula (1) can be calculated | required by calculation from the epoxy equivalent of the said epoxy resin (A).

本発明のエポキシ樹脂組成物に用いる前記硬化剤(B)としては、各種フェノール樹脂類や酸無水物類、アミン類、ヒドラジッド類、活性エステル類等の通常使用されるエポキシ樹脂用硬化剤を使用することができ、これらの硬化剤は単独で使用しても2種類以上併用してもよい。また、低誘電正接化には硬化後に官能基濃度の低くなる硬化剤が好ましく、高水酸基当量フェノール樹脂や活性エステル類が好ましい。   As said hardening | curing agent (B) used for the epoxy resin composition of this invention, normally used hardening | curing agent for epoxy resins, such as various phenol resins, acid anhydrides, amines, hydrazides, and active esters, is used. These curing agents may be used alone or in combination of two or more. Further, for lowering the dielectric loss tangent, a curing agent having a lower functional group concentration after curing is preferable, and a high hydroxyl equivalent phenol resin and active esters are preferable.

前記フェノール樹脂類を具体的に例示すれば、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ジシクロペンタジエン型フェノール樹脂、フェノールアラルキル樹脂等に代表される3価以上のフェノール化合物、さらにはフェノール類、ナフトール類、または、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール等の2価フェノール類とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール、p−キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル類、ジビニルビフェニル、ジイソプロペニルビフェニル類等の架橋剤との反応により合成される多価フェノール化合物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類等が挙げられる。 Specific examples of the phenol resins include tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, o-cresol novolak, naphthol novolak, Trivalent or higher phenolic compounds represented by dicyclopentadiene type phenol resin, phenol aralkyl resin and the like, and also phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol , 2,2'-biphenol, hydroquinone, resorcin, catechol, naphthalene diol and the like, and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylyl Polyphenol compounds synthesized by reaction with cross-linking agents such as diglycol, p-xylylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxymethylbiphenyls, divinylbiphenyl, diisopropenylbiphenyls, and phenols Examples thereof include biphenyl aralkyl type phenol resins obtained from bischloromethylbiphenyl and the like, naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride and the like.

前記酸無水物類を具体的に例示すれば、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、メチルナジック酸無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物等が挙げられる。 Specific examples of the acid anhydrides include methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, methylnadic acid anhydride, benzophenonetetracarboxylic dianhydride Products, biphenyltetracarboxylic dianhydride and the like.

前記アミン類を具体的に例示すれば、ジエチレントリアミン、トリエチレンテトラミン、メタキシレンジアミン、イソホロンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノジフェニルエーテル、ジシアンジアミドやダイマー酸等の酸類とポリアミン類との縮合物であるポリアミドアミン等のアミン系化合物等が挙げられる。 Specific examples of the amines include condensates of acids such as diethylenetriamine, triethylenetetramine, metaxylenediamine, isophoronediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, dicyandiamide, and dimer acid with polyamines. Examples include amine compounds such as polyamide amine.

前記ヒドラジッド類を具体的に例示すれば、アジピン酸ヒドラジッド、セパチン酸ヒドラジッド、イソフタル酸ヒドラジッド等が挙げられる。 Specific examples of the hydrazides include adipic acid hydrazide, sepatin hydrazide, isophthalic acid hydrazide, and the like.

前記活性エステル類を具体的に例示すれば、EPICLON HPC−8000−65T(DIC株式会社製)が挙げられる。 Specific examples of the active esters include EPICLON HPC-8000-65T (manufactured by DIC Corporation).

本発明のエポキシ樹脂組成物において、前記エポキシ樹脂(A)のエポキシ基1モルに対して、前記硬化剤(B)の活性水素基が0.4〜1.2モルの範囲が好ましく、0.5〜1.1モルがより好ましく、0.7〜1.0モルがさらに好ましい。 In the epoxy resin composition of the present invention, the active hydrogen group of the curing agent (B) is preferably in the range of 0.4 to 1.2 mol with respect to 1 mol of the epoxy group of the epoxy resin (A). 5-1.1 mol is more preferable and 0.7-1.0 mol is still more preferable.

本発明のエポキシ樹脂組成物には必要に応じて硬化促進剤を使用することができる。使用できる硬化促進剤を具体的に例示すれば、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィントリフェニルボラン等のホスフィン類、オクチル酸スズ等の金属化合物が挙げられる。これらの硬化促進剤は単独で使用しても2種類以上併用してもよい。これらの硬化促進剤は本発明のエポキシ樹脂組成物中の前記エポキシ樹脂(A)100質量部に対して0.02〜5.0質量部が必要に応じて用いられる。これらの硬化促進剤を用いることにより、硬化温度を下げたり、硬化時間を短縮することができる。   A curing accelerator can be used in the epoxy resin composition of the present invention as necessary. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, and 1,8-diaza. -Tertiary amines such as bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, tricyclohexylphosphine and triphenylphosphine triphenylborane, and metal compounds such as tin octylate. These curing accelerators may be used alone or in combination of two or more. As for these hardening accelerators, 0.02-5.0 mass parts is used as needed with respect to 100 mass parts of said epoxy resins (A) in the epoxy resin composition of this invention. By using these curing accelerators, the curing temperature can be lowered or the curing time can be shortened.

本発明のエポキシ樹脂組成物は、エポキシ樹脂成分として前記一般式(1)で表される前記エポキシ樹脂(A)を必須のエポキシ樹脂としているが、本発明の目的を損なわない範囲で他のエポキシ樹脂を併用することもできる。   In the epoxy resin composition of the present invention, the epoxy resin (A) represented by the general formula (1) is an essential epoxy resin as an epoxy resin component, but other epoxy is used as long as the object of the present invention is not impaired. A resin can also be used in combination.

併用できる他のエポキシ樹脂を具体的に例示すれば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールフルオレン、4,4’−ビフェノール、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニル、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類から得られる共縮合樹脂のエポキシ化物、クレゾール類とホルムアルデヒドとアルコキシ基置換ナフタレン類から得られる共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から得られるフェノールアラルキル樹脂のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は単独で使用しても2種類以上併用してもよい。これらの配合量は、本発明の目的を損なわない範囲であればよいが、前記一般式(1)で表される前記エポキシ樹脂(A)と他のエポキシ樹脂の合計に対して、好ましくは50質量%未満であり、より好ましくは40質量%未満であり、さらに好ましくは25質量%未満である。   Specific examples of other epoxy resins that can be used in combination include bisphenol A, bisphenol F, bisphenol S, bisphenol fluorene, 4,4′-biphenol, 3,3 ′, 5,5′-tetramethyl-4,4 ′. -Epoxidized products of divalent phenols such as dihydroxybiphenyl, resorcin, naphthalenediols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, Epoxides of tri- or higher valent phenols such as o-cresol novolak, epoxidized products of co-condensation resins obtained from dicyclopentadiene and phenols, epoxies of co-condensation resins obtained from cresols, formaldehyde and alkoxy-substituted naphthalenes Chemicals, phenols and Epoxy products of phenol aralkyl resins obtained from xylylene dichloride, epoxidized products of biphenyl aralkyl type phenol resins obtained from phenols and bischloromethylbiphenyl, naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride, etc. And epoxidized products thereof. These epoxy resins may be used alone or in combination of two or more. These blending amounts may be in a range that does not impair the object of the present invention, but are preferably 50 with respect to the total of the epoxy resin (A) represented by the general formula (1) and other epoxy resins. It is less than mass%, more preferably less than 40 mass%, still more preferably less than 25 mass%.

本発明のエポキシ樹脂組成物には、粘度調整用として有機溶剤も用いることができる。用いることができる有機溶剤を具体的に例示すれば、N,N−ジメチルホルムアミド等のアミド類、エチレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール等のアルコール類、ベンゼン、トルエン等の芳香族炭化水素類が挙げられる。これらの有機溶剤は単独で使用しても2種類以上混合して使用してもよい。   In the epoxy resin composition of the present invention, an organic solvent can also be used for viscosity adjustment. Specific examples of organic solvents that can be used include amides such as N, N-dimethylformamide, ethers such as ethylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol and ethanol, Aromatic hydrocarbons such as benzene and toluene are exemplified. These organic solvents may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物は、特性を損ねない範囲でエポキシ樹脂以外の硬化性樹脂や熱可塑性樹脂を配合してもよい。具体的に例示すれば、フェノール樹脂、アクリル樹脂、石油樹脂、インデン樹脂、インデンクマロン樹脂、フェノキシ樹脂、シアネート樹脂、エポキシアクリレート樹脂、ビニル化合物、ポリウレタン、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ビスマレイミドトリアジン樹脂、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリビニルホルマール等が挙げられるが、これらに限定されるものではない。   The epoxy resin composition of the present invention may be blended with a curable resin or a thermoplastic resin other than the epoxy resin as long as the characteristics are not impaired. Specifically, phenol resin, acrylic resin, petroleum resin, indene resin, indene coumarone resin, phenoxy resin, cyanate resin, epoxy acrylate resin, vinyl compound, polyurethane, polyester, polyamide, polyimide, polyamideimide, polyether Examples thereof include, but are not limited to, imide, bismaleimide triazine resin, polyethersulfone, polysulfone, polyetheretherketone, polyphenylene sulfide, and polyvinyl formal.

本発明のエポキシ樹脂組成物には必要に応じてフィラーを用いることができる。具体的に例示すれば、水酸化アルミニウム、水酸化マグネシウム、タルク、焼成タルク、クレー、カオリン、水酸化チタン、ガラス粉末、シリカバルーン等の無機フィラーが挙げられるが、有機系または無機系の耐湿顔料、鱗片状顔料等顔料等を配合してもよい。一般的無機充填剤を用いる理由として、耐衝撃性の向上が挙げられる。また、ガラス繊維、パルプ繊維、合成繊維、セラミック繊維等の繊維質充填剤や、微粒子ゴム、熱可塑性エラストマー等の有機充填剤等を配合することができる。   A filler can be used for the epoxy resin composition of this invention as needed. Specific examples include inorganic fillers such as aluminum hydroxide, magnesium hydroxide, talc, calcined talc, clay, kaolin, titanium hydroxide, glass powder, silica balloon, etc., but organic or inorganic moisture-resistant pigments In addition, pigments such as scaly pigments may be blended. The reason for using a general inorganic filler is an improvement in impact resistance. Moreover, fibrous fillers, such as glass fiber, a pulp fiber, a synthetic fiber, a ceramic fiber, organic fillers, such as fine particle rubber and a thermoplastic elastomer, etc. can be mix | blended.

また、本発明のエポキシ樹脂組成物中には、必要に応じて、難燃剤、揺変性付与材、流動性向上剤等の添加剤を配合してもよい。揺変性付与材としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げ類ことができる。更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックス等の離型剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の潤滑剤を配合できる。   Moreover, you may mix | blend additives, such as a flame retardant, a thixotropic agent, and a fluidity improver, in the epoxy resin composition of this invention as needed. Examples of the thixotropic agent include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite. Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a colorant such as carbon black, a flame retardant such as antimony trioxide, a low stress agent such as silicon oil, A lubricant such as calcium stearate can be blended.

次に、本発明のエポキシ樹脂組成物を用いて得られるプリプレグについて説明する。シート状基材としては、ガラス等の無機繊維や、ポリエステル等、ポリアミン、ポリアクリル、ポリイミド、ケブラー等の有機質繊維の織布または不織布を用いることができるが、これに限定されるものではない。本発明のエポキシ樹脂組成物及び基材からプリプレグを製造する方法としては、特に限定するものではなく、例えば前記シート状基材を、前記エポキシ樹脂組成物を溶剤で粘度調整した樹脂ワニスに浸漬して含浸した後、加熱乾燥して樹脂成分を半硬化(Bステージ化)して得られるものであり、例えば100〜200℃で1〜40分間加熱乾燥することができる。ここで、プリプレグ中の樹脂量は、樹脂分30〜80質量%とすることが好ましい。   Next, the prepreg obtained by using the epoxy resin composition of the present invention will be described. As the sheet-like substrate, inorganic fibers such as glass, or woven or non-woven fabrics of organic fibers such as polyester, polyamine, polyacryl, polyimide, Kevlar, etc. can be used, but it is not limited thereto. The method for producing the prepreg from the epoxy resin composition and the substrate of the present invention is not particularly limited. For example, the sheet-like substrate is immersed in a resin varnish whose viscosity is adjusted with a solvent of the epoxy resin composition. After impregnation, the resin component is obtained by drying by heating and semi-curing (B-stage). For example, it can be dried by heating at 100 to 200 ° C. for 1 to 40 minutes. Here, the amount of resin in the prepreg is preferably 30 to 80% by mass.

次に、本発明のエポキシ樹脂組成物を用いて得られる接着シートについて説明する。接着シートを製造する方法としては、特に限定するものではないが、例えばポリエステルフィルム、ポリイミドフィルム等のエポキシ樹脂組成物に溶解しないキャリアフィルム上に、本発明のエポキシ樹脂組成物を好ましくは5〜100μmの厚みに塗布した後、100〜200℃で1〜40分間加熱乾燥してシート状に成型する。一般にキャスティング法と呼ばれる方法で樹脂シートが形成されるものである。この時エポキシ樹脂組成物を塗布するシートにはあらかじめ離型剤にて表面処理を施しておくと、成型された接着シートを容易に剥離することができる。ここで接着シートの厚みは5〜80μmに形成することが望ましい。このようにして得られた接着シートは通常、絶縁を有する絶縁接着シートとなるが、前記エポキシ樹脂組成物に導電性を有する金属や金属コーティングされた微粒子を混合することで、導電性接着シートを得ることができる。   Next, an adhesive sheet obtained using the epoxy resin composition of the present invention will be described. Although it does not specifically limit as a method to manufacture an adhesive sheet, For example, on the carrier film which does not melt | dissolve in epoxy resin compositions, such as a polyester film and a polyimide film, Preferably the epoxy resin composition of this invention is 5-100 micrometers. After being applied to the thickness of the film, it is dried by heating at 100 to 200 ° C. for 1 to 40 minutes to form a sheet. A resin sheet is generally formed by a method called a casting method. At this time, if the sheet to which the epoxy resin composition is applied is previously surface-treated with a release agent, the molded adhesive sheet can be easily peeled off. Here, the thickness of the adhesive sheet is preferably 5 to 80 μm. The adhesive sheet thus obtained usually becomes an insulating adhesive sheet having insulation, but the conductive adhesive sheet is obtained by mixing conductive metal or metal-coated fine particles with the epoxy resin composition. Can be obtained.

次に、本発明のプリプレグや絶縁接着シートを用いて積層板を製造する方法を説明する。プリプレグを用いて積層板を形成する場合は、プリプレグを一枚または複数枚積層し、片側または両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を用いることができる。積層物を加熱加圧する条件としては、エポキシ樹脂組成物が硬化する条件で適宜調整して加熱加圧すればよいが、加圧の圧量があまり低いと、得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があるため、成型性を満足する条件で加圧することが望ましい。例えば温度を160〜220℃、圧力を0.49〜4.9MPa(5〜50kgf/cm)、加熱時間を40〜240分間にそれぞれ設定することができる。更にこのようにして得られた単層の積層板を内層材として、多層板を作成することができる。この場合、まず積層板にアディティブ法やサブトラクティブ法等にて回路形成を施し、形成された回路表面を酸溶液で処理して黒化処理を施して、内層材を得る。この内層材の、片面または両側の回路形成面に、プリプレグや絶縁接着シートにて絶縁層を形成するとともに、絶縁層の表面に導体層を形成して、多層板を形成するものである。絶縁接着シートにて絶縁層を形成する場合は、複数枚の内層材の回路形成面に絶縁接着シートを配置して積層物を形成する。あるいは内層材の回路形成面と金属箔の間に絶縁接着シートを配置して積層物を形成する。そしてこの積層物を加熱加圧して一体成型することにより、絶縁接着シートの硬化物を絶縁層として形成するとともに、内層材の多層化を形成する。あるいは内層材と導体層である金属箔を絶縁接着シートの硬化物を絶縁層として形成するものである。ここで、金属箔としては、内層材として用いられる積層板に用いたものと同様のものを用いることができる。また加熱加圧成形は、内層材の成型と同様の条件にて行うことができる。積層板にエポキシ樹脂組成物を塗布して絶縁層を形成する場合は、内層材の最外層の回路形成面樹脂を前記エポキシ樹脂組成物を好ましくは5〜100μmの厚みに塗布した後、100〜200℃で1〜90分加熱乾燥してシート状に形成する。一般にキャスティング法と呼ばれる方法で形成されるものである。乾燥後の厚みは5〜80μmに形成することが望ましい。このようにして形成された多層積層板の表面に、更にアディティブ法やサブストラクティブ法にてバイアホール形成や回路形成を施して、プリント配線板を形成することができる。また更にこのプリント配線板を内層材として前記工法を繰り返すことにより、更に多層の積層板を形成することができるものである。またプリプレグにて絶縁層を形成する場合は、内層材の回路形成面に、プリプレグを一枚または複数枚を積層したものを配置し、さらにその外側に金属箔を配置して積層物を形成する。そしてこの積層物を加熱加圧して一体成型することにより、プリプレグの硬化物を絶縁層として形成するとともに、その外側の金属箔を導体層として形成するものである。ここで、金属箔としては、内層板として用いられる積層板に用いたものと同様のものを用いることもできる。また加熱加圧成形は、内層材の成型と同様の条件にて行うことができる。このようにして成形された多層積層板の表面に、更にアディティブ法やサブトラクティブ法にてバイアホール形成や回路形成を施して、プリント配線板を成型することができる。また更にこのプリント配線板を内層材として前記工法を繰り返すことにより、更に多層の多層板を形成することができるものである。 Next, a method for producing a laminate using the prepreg or insulating adhesive sheet of the present invention will be described. When forming a laminated board using prepreg, one or more prepregs are laminated, a metal foil is placed on one or both sides to form a laminate, and this laminate is heated and pressed to integrate the laminate. To do. Here, as the metal foil, a single, alloy, or composite metal foil of copper, aluminum, brass, nickel or the like can be used. Conditions for heating and pressurizing the laminate may be adjusted as appropriate under the conditions for curing the epoxy resin composition, and heating and pressurizing. However, if the amount of pressurization is too low, bubbles are generated inside the resulting laminate. Since it may remain and electrical characteristics may deteriorate, it is desirable to apply pressure under conditions that satisfy moldability. For example, the temperature can be set to 160 to 220 ° C., the pressure can be set to 0.49 to 4.9 MPa (5 to 50 kgf / cm 2 ), and the heating time can be set to 40 to 240 minutes. Furthermore, a multilayer board can be produced using the single-layer laminated board thus obtained as an inner layer material. In this case, first, a circuit is formed on the laminate by an additive method, a subtractive method, or the like, and the formed circuit surface is treated with an acid solution to perform a blackening process to obtain an inner layer material. An insulating layer is formed by prepreg or an insulating adhesive sheet on one or both sides of the circuit forming surface of the inner layer material, and a conductor layer is formed on the surface of the insulating layer to form a multilayer board. When forming an insulating layer with an insulating adhesive sheet, an insulating adhesive sheet is arrange | positioned on the circuit formation surface of several inner-layer material, and a laminated body is formed. Alternatively, an insulating adhesive sheet is disposed between the circuit forming surface of the inner layer material and the metal foil to form a laminate. Then, the laminate is heated and pressed to be integrally molded, thereby forming a cured product of the insulating adhesive sheet as an insulating layer, and forming a multilayered inner layer material. Alternatively, the inner layer material and the metal foil as the conductor layer are formed by using the cured product of the insulating adhesive sheet as the insulating layer. Here, as a metal foil, the thing similar to what was used for the laminated board used as an inner layer material can be used. Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material. When an insulating layer is formed by applying an epoxy resin composition to a laminate, the outermost circuit-forming surface resin of the inner layer material is preferably applied to the epoxy resin composition to a thickness of 5 to 100 μm, and then 100 to 100- It is heated and dried at 200 ° C. for 1 to 90 minutes to form a sheet. It is generally formed by a method called a casting method. The thickness after drying is preferably 5 to 80 μm. A printed wiring board can be formed by further forming a via hole or a circuit by the additive method or the subtractive method on the surface of the multilayer laminate thus formed. Further, by repeating the above method using this printed wiring board as an inner layer material, a multilayer laminate can be formed. When an insulating layer is formed with a prepreg, a laminate is formed by placing one or a plurality of laminated prepregs on the circuit forming surface of the inner layer material, and further placing a metal foil on the outside thereof. . Then, this laminate is heated and pressed to be integrally formed, whereby a cured product of the prepreg is formed as an insulating layer, and the outer metal foil is formed as a conductor layer. Here, as a metal foil, the thing similar to what was used for the laminated board used as an inner layer board can also be used. Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material. A printed wiring board can be molded by further forming via holes or circuits by the additive method or the subtractive method on the surface of the multilayer laminate thus formed. Further, by repeating the above method using the printed wiring board as an inner layer material, a multilayer board can be formed.

また、本発明のエポキシ樹脂組成物を加熱硬化させれば、エポキシ樹脂硬化物とすることができ、この硬化物は低誘電特性、耐熱性、低吸湿性等の点で優れたものとなる。また、この硬化物は、エポキシ樹脂組成物を注型、圧縮形成、トランスファー形成等の方法により、成型加工して得ることができる。この際の温度は通常、120〜250℃の範囲である。   Moreover, if the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained, and this cured product is excellent in terms of low dielectric properties, heat resistance, low hygroscopicity, and the like. Moreover, this hardened | cured material can be obtained by shape | molding an epoxy resin composition by methods, such as casting, compression formation, and transfer formation. The temperature at this time is usually in the range of 120 to 250 ° C.

本発明のエポキシ樹脂組成物とその組成物を使用して得られたプリプレグ、接着シート、積層板、封止剤、注型物、硬化物は、優れた低誘電特性、耐熱性、低吸湿性、接着性に優れた特性を示すものであった。   The epoxy resin composition of the present invention and the prepreg, adhesive sheet, laminate, sealant, cast product, and cured product obtained using the composition have excellent low dielectric properties, heat resistance, and low hygroscopicity. In addition, the material exhibited excellent adhesive properties.

以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれに限定されるものではない。実施例において、特に断りがない限り「部」は質量部を表し、「%」は質量%を表す。また、本発明では以下の試験方法を使用した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to this. In Examples, unless otherwise specified, “part” represents part by mass, and “%” represents mass%. In the present invention, the following test method was used.

(1)エポキシ当量の測定
JIS K 7236規格に準拠して測定した。具体的には、電位差滴定装置を用い、溶媒としてメチルエチルケトンを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸−酢酸溶液を用いた。
(1) Measurement of epoxy equivalent It measured based on JISK7236 specification. Specifically, a potentiometric titrator was used, methyl ethyl ketone was used as a solvent, a brominated tetraethylammonium acetic acid solution was added, and a 0.1 mol / L perchloric acid-acetic acid solution was used.

(2)軟化点の測定
JIS K 7234規格、環球法に準拠して測定した。具体的には、自動軟化点装置(株式会社メイテック製、ASP−MG4)を用いた。
(2) Measurement of softening point Measured according to JIS K 7234 standard and ring and ball method. Specifically, an automatic softening point apparatus (manufactured by Meitec Co., Ltd., ASP-MG4) was used.

(3)ガラス転移温度の測定
JIS K 7121、示差走査熱量測定に準拠して測定した。SII社製EXTER DSC6200を使用して、20℃から10℃/分の昇温速度により測定し、2サイクル目に得られたDSCチャートの補外ガラス転移開始温度(Tig)より求めた。
(3) Measurement of glass transition temperature It measured based on JISK7121, differential scanning calorimetry. Using an EXTER DSC6200 manufactured by SII, the temperature was measured at a rate of temperature increase from 20 ° C. to 10 ° C./min, and obtained from the extrapolated glass transition start temperature (Tig) of the DSC chart obtained in the second cycle.

(4)比誘電率及び誘電正接の測定
空洞共振法(ベクトルネットワークアナライザー(VNA)E8363B(アジレント・テクノロジー製)、空洞共振器摂動法誘電率測定装置(関東電子応用開発製))によって、1GHzの値を測定した。
(4) Measurement of relative permittivity and dielectric loss tangent 1 GHz by cavity resonance method (vector network analyzer (VNA) E8363B (manufactured by Agilent Technologies), cavity resonator perturbation method permittivity measurement device (manufactured by Kanto Electronics Co., Ltd.)) The value was measured.

(5)接着力の測定
JIS K 6854−1に準拠し、島津製作所製オートグラフにて、25℃雰囲気下、50mm/min.により測定した。
(5) Measurement of adhesive strength In accordance with JIS K 6854-1, an autograph manufactured by Shimadzu Corporation under an atmosphere of 25 ° C. and 50 mm / min. It was measured by.

(6)耐水性の測定
耐水性の指標としてPCT後ハンダ耐熱を測定した。JIS C 6481に準じて作製した試験片を121℃、0.2MPaのオートクレーブ中に3時間処理した後、260℃のハンダ浴中につけて、20分以上膨れやはがれが生じなかったものを○とし、10分以内に膨れやはがれが生じたものを×とし、それ以外を△と評価した。
(6) Measurement of water resistance Solder heat resistance after PCT was measured as an index of water resistance. A test piece prepared according to JIS C 6481 was treated in an autoclave at 121 ° C. and 0.2 MPa for 3 hours, then placed in a 260 ° C. solder bath, and no swelling or peeling occurred for 20 minutes or more. The case where swelling or peeling occurred within 10 minutes was evaluated as x, and the others were evaluated as Δ.

(7)引張り強度
JIS K 7113に準じた。
(7) Tensile strength According to JIS K 7113.

合成例1(エポキシ樹脂(A1)の合成)
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、メタノールを806部と水酸化カリウムを201.5部仕込み撹拌しながら、これにジヒドロキシ化合物(a)としてビス(4−ヒドロキシ−3,5−ジメチルフェニル)スルホン(以下、TMBPSと略す)を550部投入し、アルカリ金属塩とした。その後、ハロゲン化メチル基含有化合物(b)として4,4’−ビスクロロメチルビフェニル(以下、BCMBと略す)を4.5部と溶剤としてビス(2−メトキシエチル)エーテル(以下、DEDMと略す)を488部投入し、撹拌しながら75℃まで昇温させ、2時間反応した。反応終了後、0.0067MPa(50mmHg)の減圧下100℃まで昇温し、メタノール全量を留去したのち、エピクロルヒドリンを1644部入れ撹拌溶解させた。均一に溶解後、0.024MPa(180mmHg)の減圧下75℃に保ち、48%水酸化ナトリウム水溶液148部を2時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、淡黄色固形状のエポキシ樹脂600部を得た。得られたエポキシ樹脂のエポキシ当量は212g/eq.であり、軟化点は60℃であった。
Synthesis Example 1 (Synthesis of epoxy resin (A1))
A four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device was charged with 806 parts of methanol and 201.5 parts of potassium hydroxide, and the dihydroxy compound ( As a), 550 parts of bis (4-hydroxy-3,5-dimethylphenyl) sulfone (hereinafter abbreviated as TMBPS) was added to obtain an alkali metal salt. Thereafter, 4.5 parts of 4,4′-bischloromethylbiphenyl (hereinafter abbreviated as BCMB) as the halogenated methyl group-containing compound (b) and bis (2-methoxyethyl) ether (hereinafter abbreviated as DEDM) as the solvent. ) Was charged, and the temperature was raised to 75 ° C. while stirring and reacted for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 0.0067 MPa (50 mmHg), and after distilling out the total amount of methanol, 1644 parts of epichlorohydrin was added and dissolved by stirring. After uniformly dissolving, 148 parts of 48% aqueous sodium hydroxide solution was added dropwise over 2 hours under a reduced pressure of 0.024 MPa (180 mmHg), and the refluxed water and epichlorohydrin were added in a separate layer. After separation, epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 600 parts of a pale yellow solid epoxy resin. The epoxy equivalent of the obtained epoxy resin is 212 g / eq. The softening point was 60 ° C.

合成例2(エポキシ樹脂(A2)の合成)
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、メタノールを366部と水酸化カリウムを91.6部仕込み撹拌しながら、これにジヒドロキシ化合物(a)としてTMBPSを125部と4,4’−ジヒドロキシジフェニルスルホンを90部投入し、アルカリ金属塩とした。その後、ハロゲン化メチル基含有化合物(b)としてBCMBを61.5部と溶剤としてDEDMを360部投入し、撹拌しながら75℃まで昇温させ、2時間反応した。反応終了後、50mmHgの減圧下100℃まで昇温し、メタノール全量とDEDM43部を留去したのち、エピクロルヒドリンを528部入れ撹拌溶解させた。均一に溶解後、180mmHgの減圧下75℃に保ち、48%水酸化ナトリウム水溶液48部を1時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、淡黄色固形状のエポキシ樹脂253部を得た。得られたエポキシ樹脂のエポキシ当量は313g/eq.であり、軟化点は92℃であった。
Synthesis Example 2 (Synthesis of epoxy resin (A2))
A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device was charged with 366 parts of methanol and 91.6 parts of potassium hydroxide, and the dihydroxy compound ( As a), 125 parts of TMBPS and 90 parts of 4,4′-dihydroxydiphenylsulfone were added to obtain an alkali metal salt. Thereafter, 61.5 parts of BCMB as the halogenated methyl group-containing compound (b) and 360 parts of DEDM as the solvent were added, the temperature was raised to 75 ° C. with stirring, and the reaction was performed for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 50 mmHg, and after methanol and 43 parts of DEDM were distilled off, 528 parts of epichlorohydrin was added and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 180 mmHg, 48 parts of 48% aqueous sodium hydroxide solution is added dropwise over 1 hour, and water and epichlorohydrin distilled off during the addition are separated in a separation layer, and epichlorohydrin is reacted. It returned to the container and water was removed out of the system and reacted. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 253 parts of a pale yellow solid epoxy resin. The epoxy equivalent of the obtained epoxy resin is 313 g / eq. The softening point was 92 ° C.

合成例3(エポキシ樹脂(A3)の合成)
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、メタノールを293部と水酸化カリウムを73.3部仕込み撹拌しながら、これにジヒドロキシ化合物(a)としてTMBPSを200部投入し、アルカリ金属塩とした。その後、ハロゲン化メチル基含有化合物(b)としてBCMBを114.8部と溶剤としてDEDMを440部投入し、撹拌しながら75℃まで昇温させ、2時間反応した。 反応終了後、50mmHgの減圧下100℃まで昇温し、メタノール全量とDEDM333部を留去したのち、エピクロルヒドリンを182部入れ撹拌溶解させた。均一に溶解後、180mmHgの減圧下75℃に保ち、48%水酸化ナトリウム水溶液10部を30分間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに90分間反応を継続した。反応終了後、濾過により生成した塩を除き、エピクロルヒドリンを留去し、淡黄色固形状のエポキシ樹脂247部を得た。得られたエポキシ樹脂のエポキシ当量は776g/eq.であり、軟化点は135℃であった。
Synthesis Example 3 (Synthesis of epoxy resin (A3))
A four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device was charged with 293 parts of methanol and 73.3 parts of potassium hydroxide. As a), 200 parts of TMBPS was added to obtain an alkali metal salt. Thereafter, 114.8 parts of BCMB as the halogenated methyl group-containing compound (b) and 440 parts of DEDM as the solvent were added, and the temperature was raised to 75 ° C. with stirring, followed by reaction for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 50 mmHg. After distilling out the total amount of methanol and 333 parts of DEDM, 182 parts of epichlorohydrin was added and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 180 mmHg, 10 parts of a 48% aqueous sodium hydroxide solution is added dropwise over 30 minutes, and water and epichlorohydrin distilled under reflux are separated in a separation layer, and epichlorohydrin is reacted. It returned to the container and water was removed out of the system and reacted. After completion of the dropwise addition, the reaction was continued for 90 minutes under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and epichlorohydrin was distilled off to obtain 247 parts of a pale yellow solid epoxy resin. The epoxy equivalent of the obtained epoxy resin was 776 g / eq. The softening point was 135 ° C.

合成例4(エポキシ樹脂(A4)の合成)
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、メタノールを366部と水酸化カリウムを99部仕込み撹拌しながら、これにジヒドロキシ化合物(a)として4,4’−メチレンビス(2,6−ジメチルフェノール)(以下、TMBPFと略す)を250部投入し、アルカリ金属塩とした。その後、ハロゲン化メチル基含有化合物(b)としてBCMBを122.5部と溶剤としてDEDMを265部投入し、撹拌しながら75℃まで昇温させ、2時間反応した。反応終了後、50mmHgの減圧下100℃まで昇温し、メタノール全量を留去したのち、エピクロルヒドリンを632部入れ撹拌溶解させた。均一に溶解後、180mmHgの減圧下75℃に保ち、48%水酸化ナトリウム水溶液27部を1時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、淡黄色固形状のエポキシ樹脂285部を得た。得られたエポキシ樹脂のエポキシ当量は454g/eq.であり、軟化点は67℃であった。
Synthesis Example 4 (Synthesis of epoxy resin (A4))
A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device was charged with 366 parts of methanol and 99 parts of potassium hydroxide, and the dihydroxy compound (a) was stirred into the flask. As an alkali metal salt, 250 parts of 4,4′-methylenebis (2,6-dimethylphenol) (hereinafter abbreviated as TMBPF) was added. Thereafter, 122.5 parts of BCMB as the halogenated methyl group-containing compound (b) and 265 parts of DEDM as the solvent were added, the temperature was raised to 75 ° C. with stirring, and the reaction was performed for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 50 mmHg, and after all the methanol was distilled off, 632 parts of epichlorohydrin was added and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 180 mmHg, 27 parts of a 48% aqueous sodium hydroxide solution are added dropwise over 1 hour, and water and epichlorohydrin distilled off during the addition are separated in a separation layer, and epichlorohydrin is reacted. It returned to the container and water was removed out of the system and reacted. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 285 parts of a pale yellow solid epoxy resin. The epoxy equivalent of the obtained epoxy resin is 454 g / eq. The softening point was 67 ° C.

合成例5(エポキシ樹脂(A5)の合成)
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、メタノールを256部と水酸化カリウムを676部仕込み撹拌しながら、これにジヒドロキシ化合物(a)として9,9−ビス(4−ヒドロキシフェニル)フルオレン(以下、BPFLと略す)200部投入し、アルカリ金属塩とした。その後、ハロゲン化メチル基含有化合物(b)としてBCMBを71.7部と溶剤としてDEDMを378部投入し、撹拌しながら75℃まで昇温させ、2時間反応した。反応終了後、50mmHgの減圧下100℃まで昇温し、メタノール全量を留去したのち、エピクロルヒドリンを264部入れ撹拌溶解させた。均一に溶解後、180mmHgの減圧下75℃に保ち、48%水酸化ナトリウム水溶液25部を1時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、エピクロルヒドリンを留去し、淡黄色固形状のエポキシ樹脂226部を得た。得られたエポキシ樹脂のエポキシ当量は497g/eq.であり、軟化点は147℃であった。
Synthesis Example 5 (Synthesis of epoxy resin (A5))
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 256 parts of methanol and 676 parts of potassium hydroxide were charged, and the dihydroxy compound (a) was stirred. As an alkali metal salt, 200 parts of 9,9-bis (4-hydroxyphenyl) fluorene (hereinafter abbreviated as BPFL) was added. Thereafter, 71.7 parts of BCMB as the halogenated methyl group-containing compound (b) and 378 parts of DEDM as the solvent were added, the temperature was raised to 75 ° C. with stirring, and the reaction was performed for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 50 mmHg, and after all the methanol was distilled off, 264 parts of epichlorohydrin was added and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 180 mmHg, 25 parts of 48% aqueous sodium hydroxide solution is added dropwise over 1 hour, and water and epichlorohydrin distilled under reflux are separated in a separation layer, and epichlorohydrin is reacted. It returned to the container and water was removed out of the system and reacted. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt generated by filtration was removed, and epichlorohydrin was distilled off to obtain 226 parts of a pale yellow solid epoxy resin. The epoxy equivalent of the obtained epoxy resin was 497 g / eq. The softening point was 147 ° C.

合成例6(エポキシ樹脂(A6)の合成)
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、メタノールを185部と水酸化カリウムを62部仕込み撹拌しながら、これにジヒドロキシ化合物(a)としてTMBPFを125部投入し、アルカリ金属塩とした。その後、ハロゲン化メチル基含有化合物(b)としてBCMN(1,4−ビス(クロロメチル)ナフタレンと1,5−ビス(クロロメチル)ナフタレンの混合物)を55部と溶剤としてDEDMを220部投入し、撹拌しながら75℃まで昇温させ、4時間反応した。 反応終了後、50mmHgの減圧下100℃まで昇温し、メタノール全量とDEDM180部を留去したのち、エピクロルヒドリンを310部入れ撹拌溶解させた。均一に溶解後、180mmHgの減圧下75℃に保ち、48%水酸化ナトリウム水溶液29部を1時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、エピクロルヒドリンを留去し、淡黄色固形状のエポキシ樹脂115部を得た。得られたエポキシ樹脂のエポキシ当量は396g/eq.であり、軟化点は71℃であった。
Synthesis Example 6 (Synthesis of epoxy resin (A6))
A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device was charged with 185 parts of methanol and 62 parts of potassium hydroxide, and the dihydroxy compound (a) was stirred. As an alkali metal salt, 125 parts of TMBPF was added. Then, 55 parts BCMN (mixture of 1,4-bis (chloromethyl) naphthalene and 1,5-bis (chloromethyl) naphthalene) as a halogenated methyl group-containing compound (b) and 220 parts DEDM as a solvent were added. While stirring, the temperature was raised to 75 ° C. and reacted for 4 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 50 mmHg, and after distilling off the total amount of methanol and 180 parts of DEDM, 310 parts of epichlorohydrin was added and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 180 mmHg, 29 parts of 48% aqueous sodium hydroxide solution is added dropwise over 1 hour, and water and epichlorohydrin distilled under reflux are separated in a separation layer, and epichlorohydrin is reacted. It returned to the container and water was removed out of the system and reacted. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt formed by filtration was removed, and epichlorohydrin was distilled off to obtain 115 parts of a pale yellow solid epoxy resin. The epoxy equivalent of the obtained epoxy resin is 396 g / eq. The softening point was 71 ° C.

合成例7(エポキシ樹脂(A7)の合成)
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、メタノールを366部と水酸化カリウムを91.6部仕込み撹拌しながら、これにジヒドロキシ化合物(a)として2,5−ジ−tert−ブチルヒドロキノン(以下、DBHQと略す)を182部投入し、アルカリ金属塩とした。その後、ハロゲン化メチル基含有化合物(b)としてBCMBを61.7部と溶剤としてDEDMを360部投入し、撹拌しながら75℃まで昇温させ、2時間反応した。反応終了後、50mmHgの減圧下100℃まで昇温し、メタノール全量とDEDM43部を留去したのち、エピクロルヒドリンを528部入れ撹拌溶解させた。均一に溶解後、180mmHgの減圧下75℃に保ち、48%水酸化ナトリウム水溶液48部を1時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離層で分離しエピクロルヒドリンは反応容器に戻し、水は系外に除いて反応した。滴下終了後、同条件でさらに1時間反応を継続した。反応終了後、濾過により生成した塩を除き、更に水洗したのちエピクロルヒドリンを留去し、淡黄色固形状のエポキシ樹脂286部を得た。得られたエポキシ樹脂のエポキシ当量は270g/eq.であり、軟化点は104℃であった。
Synthesis Example 7 (Synthesis of epoxy resin (A7))
A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device was charged with 366 parts of methanol and 91.6 parts of potassium hydroxide, and the dihydroxy compound ( As a), 182 parts of 2,5-di-tert-butylhydroquinone (hereinafter abbreviated as DBHQ) was added to obtain an alkali metal salt. Thereafter, 61.7 parts of BCMB as the halogenated methyl group-containing compound (b) and 360 parts of DEDM as the solvent were added, the temperature was raised to 75 ° C. with stirring, and the reaction was performed for 2 hours. After completion of the reaction, the temperature was raised to 100 ° C. under a reduced pressure of 50 mmHg, and after methanol and 43 parts of DEDM were distilled off, 528 parts of epichlorohydrin was added and dissolved by stirring. After uniformly dissolving, maintaining at 75 ° C. under a reduced pressure of 180 mmHg, 48 parts of 48% aqueous sodium hydroxide solution is added dropwise over 1 hour, and water and epichlorohydrin distilled off during the addition are separated in a separation layer, and epichlorohydrin is reacted. It returned to the container and water was removed out of the system and reacted. After completion of the dropwise addition, the reaction was continued for an additional hour under the same conditions. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 286 parts of a pale yellow solid epoxy resin. The epoxy equivalent of the obtained epoxy resin is 270 g / eq. The softening point was 104 ° C.

実施例及び比較例で使用した、エポキシ樹脂、硬化剤、硬化促進剤は以下の通りである。 Epoxy resins, curing agents, and curing accelerators used in Examples and Comparative Examples are as follows.

エポキシ樹脂(A)
(A1):合成例1のエポキシ樹脂
(A2):合成例2のエポキシ樹脂
(A3):合成例3のエポキシ樹脂
(A4):合成例4のエポキシ樹脂
(A5):合成例5のエポキシ樹脂
(A6):合成例6のエポキシ樹脂
(A7):合成例7のエポキシ樹脂
(A8):TX−0902(新日鉄住金化学株式会社製、TMBPSとエピクロルヒドリンの反応生成物、エポキシ当量=212g/eq.、軟化点=56℃)
(A9):エポトートYD−011(新日鉄住金化学株式会社製、ビスフェノールA型固形エポキシ樹脂、エポキシ当量=475g/eq.、軟化点=68℃)
(A10):エポトートYD−903N(新日鉄住金化学株式会社製、ビスフェノールA型固形エポキシ樹脂、エポキシ当量=812g/eq.、軟化点=96℃)
(A11):エポトートYDC−1312(新日鉄住金化学株式会社製、DBHQとエピクロルヒドリンの反応生成物、エポキシ当量=178g/eq.、融点=142℃)
Epoxy resin (A)
(A1): Epoxy resin of Synthesis Example 1 (A2): Epoxy resin of Synthesis Example 2 (A3): Epoxy resin of Synthesis Example 3 (A4): Epoxy resin of Synthesis Example 4 (A5): Epoxy resin of Synthesis Example 5 (A6): Epoxy resin of Synthesis Example 6 (A7): Epoxy resin of Synthesis Example 7 (A8): TX-0902 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., reaction product of TMBPS and epichlorohydrin, epoxy equivalent = 212 g / eq. , Softening point = 56 ° C)
(A9): Epototo YD-011 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol A type solid epoxy resin, epoxy equivalent = 475 g / eq., Softening point = 68 ° C.)
(A10): Epototo YD-903N (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol A type solid epoxy resin, epoxy equivalent = 812 g / eq., Softening point = 96 ° C.)
(A11): Epototo YDC-1312 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., reaction product of DBHQ and epichlorohydrin, epoxy equivalent = 178 g / eq., Melting point = 142 ° C.)

硬化剤(B)
(B1):ショウノールBRG−557(昭和電工株式会社製、フェノールノボラック樹脂、フェノール性水酸基当量=105g/eq.、軟化点=86℃)
(B2):ジシアンジアミド(DICY、活性水素当量=21g/eq.)
(B3):リカシッドMH−700(新日本理化株式会社製、4−メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸の混合物、活性水素当量=164g/eq.)
(B4):カヤハードAA(日本化薬株式会社製、ジエチルジアミノジフェニルメタン、活性水素当量=63g/eq.、粘度=2,500mPa・s)
Curing agent (B)
(B1): Shonor BRG-557 (manufactured by Showa Denko KK, phenol novolac resin, phenolic hydroxyl group equivalent = 105 g / eq., Softening point = 86 ° C.)
(B2): Dicyandiamide (DICY, active hydrogen equivalent = 21 g / eq.)
(B3): Ricacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd., a mixture of 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, active hydrogen equivalent = 164 g / eq.)
(B4): Kayahard AA (manufactured by Nippon Kayaku Co., Ltd., diethyldiaminodiphenylmethane, active hydrogen equivalent = 63 g / eq., Viscosity = 2500 mPa · s)

硬化促進剤
(C1):2E4MZ(四国化成株式会社製、2−エチル−4−メチルイミダゾール)
(C2):DCMU(保土谷化学工業株式会社製、3,4−ジクロロフェニル−1,1−ジメチルウレア)
Curing accelerator (C1): 2E4MZ (manufactured by Shikoku Kasei Co., Ltd., 2-ethyl-4-methylimidazole)
(C2): DCMU (Hodogaya Chemical Co., Ltd., 3,4-dichlorophenyl-1,1-dimethylurea)

実施例1〜5、及び比較例1〜2
表1に示す配合処方によりエポキシ樹脂(A)、硬化剤(B)、硬化促進剤、及び溶剤を配合し、不揮発分が50%のエポキシ樹脂組成物ワニスを得た。エポキシ樹脂(A)、硬化剤(B)、及び硬化促進剤は予めメチルエチルケトン(MEK)に溶解して使用した。得られたエポキシ樹脂組成物ワニスをガラスクロス(日東紡株式会社製、IPC規格の2116)に含浸させた後、その含浸クロスを熱風循環オーブン中にて、150℃で8分間乾燥させ、Bステージ状のプリプレグを得た。さらに、得られたプリプレグ4枚と銅箔(三井金属鉱業株式会社製、3EC−III、厚み35μm)を重ね、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、0.5mm厚の両面銅張積層板を得た。得られた両面銅張積層板を用いて、ガラス転移温度、接着力、及び耐水性の評価を行った。また、Bステージ状のプリプレグのガラスクロスからBステージ状の樹脂組成物を分離し、190℃×80分の温度条件で2MPaの真空プレスを行い、比誘電率及び誘電正接評価用の硬化物を得た。評価結果を表1に示す。
Examples 1-5 and Comparative Examples 1-2
An epoxy resin (A), a curing agent (B), a curing accelerator, and a solvent were blended according to the formulation shown in Table 1 to obtain an epoxy resin composition varnish having a nonvolatile content of 50%. The epoxy resin (A), the curing agent (B), and the curing accelerator were used by dissolving in advance in methyl ethyl ketone (MEK). After impregnating the obtained epoxy resin composition varnish into a glass cloth (Nittobo Co., Ltd., IPC standard 2116), the impregnated cloth was dried in a hot air circulating oven at 150 ° C. for 8 minutes, and B stage A prepreg was obtained. Furthermore, 4 sheets of the obtained prepreg and copper foil (Mitsui Metal Mining Co., Ltd., 3EC-III, thickness 35 μm) are stacked, and a vacuum press of 2 MPa is performed at a temperature condition of 130 ° C. × 15 minutes + 190 ° C. × 80 minutes, A double-sided copper-clad laminate with a thickness of 0.5 mm was obtained. Using the obtained double-sided copper-clad laminate, glass transition temperature, adhesive strength, and water resistance were evaluated. Also, the B-stage resin composition is separated from the glass cloth of the B-stage prepreg and vacuum-pressed at 2 MPa under a temperature condition of 190 ° C. × 80 minutes to obtain a cured product for evaluation of relative dielectric constant and dielectric loss tangent. Obtained. The evaluation results are shown in Table 1.

Figure 0006452335
Figure 0006452335

実施例6〜9及び比較例3〜5
表2に示す配合処方によりエポキシ樹脂(A)、硬化剤(B)、及び硬化促進剤を配合し、加熱ニーダーに入れて加熱混合し、樹脂組成物を得た。次に高強度炭素繊維(東レ株式会社製、T700、引張り強さ4.8GPa、引張弾性率235GPa)を一方向に引き揃えた後に、得られた樹脂組成物を加熱溶融し、圧力を加えて含浸させて樹脂含有率35%の一方向炭素繊維プリプレグを得た。得られたプリプレグを長さ30cm、幅30cmに裁断したものを繊維方向が同一になるように17枚積層して積層体を形成し、リリースクロスを重ねた後、ブリーダークロスを重ね、更にブリーダークロスを重ね、ナイロンパックで包み、成形用スタックを形成した。この形成用スタックを130℃、1時間の条件下でオートクレーブ成形して、繊維体積含有率60%の炭素繊維複合材料を得た。得られた炭素繊維複合材料を用いて、ガラス転移温度、曲げ強度、及び曲げ弾性率の評価を行った。なお、プリプレグ中の樹脂含有率の測定法はJIS K 7071に、繊維体積含有率はJIS H 7401に準じて測定した。また、加熱ニーダーに入れて加熱混合した樹脂組成物を、190℃×80分の温度条件で2MPaの真空プレスを行い、比誘電率及び誘電正接評価用の硬化物を得た。評価結果を表2に示す。
Examples 6-9 and Comparative Examples 3-5
An epoxy resin (A), a curing agent (B), and a curing accelerator were blended according to the blending formulation shown in Table 2, and the mixture was heated and mixed in a heating kneader to obtain a resin composition. Next, after aligning high-strength carbon fibers (Toray Industries, Inc., T700, tensile strength 4.8 GPa, tensile modulus 235 GPa) in one direction, the obtained resin composition is heated and melted, and pressure is applied. Impregnation was performed to obtain a unidirectional carbon fiber prepreg having a resin content of 35%. The obtained prepreg was cut into a length of 30 cm and a width of 30 cm to form a laminate by laminating 17 sheets so that the fiber directions would be the same, and after overlapping the release cloth, the bleeder cloth was laminated, and further the bleeder cloth And wrapped with a nylon pack to form a molding stack. This forming stack was autoclaved at 130 ° C. for 1 hour to obtain a carbon fiber composite material having a fiber volume content of 60%. Using the obtained carbon fiber composite material, glass transition temperature, bending strength, and bending elastic modulus were evaluated. In addition, the measurement method of the resin content rate in a prepreg was measured according to JISK7071, and the fiber volume content rate was measured according to JISH7401. Further, the resin composition that was heated and mixed in a heating kneader was vacuum-pressed at 2 MPa under a temperature condition of 190 ° C. × 80 minutes to obtain a cured product for evaluation of relative dielectric constant and dielectric loss tangent. The evaluation results are shown in Table 2.

Figure 0006452335
Figure 0006452335

実施例10〜13及び比較例6〜8
表3に示す配合処方によりエポキシ樹脂(A)、硬化剤(B)、及び硬化促進剤を配合し、120℃に加熱しながら、撹枠し均一化してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を減圧下で脱泡した後、金型に注型し、熱風循環オーブン中にて、150℃で2時間、次いで、180℃で3時間硬化して注型硬化物を得た。得られた注型硬化物を用いて、ガラス転移温度、比誘電率、及び誘電正接の評価を行った。評価結果を表3に示す。
Examples 10-13 and Comparative Examples 6-8
An epoxy resin (A), a curing agent (B), and a curing accelerator were blended according to the formulation shown in Table 3, and the mixture was stirred and homogenized while heating to 120 ° C. to obtain an epoxy resin composition. The obtained epoxy resin composition was degassed under reduced pressure, then poured into a mold, and cured in a hot air circulating oven at 150 ° C. for 2 hours and then at 180 ° C. for 3 hours, to obtain a cast cured product. Got. The obtained cast cured product was evaluated for glass transition temperature, relative dielectric constant, and dielectric loss tangent. The evaluation results are shown in Table 3.

Figure 0006452335
Figure 0006452335

Claims (9)

下記一般式(1)で表されるエポキシ当量が2000g/eq以下のエポキシ樹脂(A)と硬化剤(B)を含有するエポキシ樹脂組成物。
Figure 0006452335
(式中、mは繰り返し数で、平均値は0<m<であり、nは繰り返し数で、平均値は0≦n<であり、Xはそれぞれ独立して、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または下記一般式(2)で表される基のいずれかであり、Yはそれぞれ独立して、フェニレン基、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するフェニレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または下記一般式(2)で表される基のいずれかであり、Gはグリシジル基である。)
Figure 0006452335
(式中、Rはそれぞれ独立して、水素原子、炭素数1〜10の炭化水素基、またはハロゲン原子のいずれかであり、Rは単結合または二価の基である。)
The epoxy resin composition containing the epoxy resin (A) and the hardening | curing agent (B) whose epoxy equivalent represented by following General formula (1) is 2000 g / eq or less .
Figure 0006452335
(In the formula, m is the number of repetitions, the average value is 0 <m < 5 , n is the number of repetitions, the average value is 0 ≦ n < 3 , and X is independently a naphthylene group or a substituent. As a hydrocarbon group having 1 to 10 carbon atoms or a naphthylene group having a halogen atom, or a group represented by the following general formula (2), and each Y is independently a phenylene group, a naphthylene group, or a substituent. A phenylene group having 1 to 10 carbon atoms or a halogen atom as a group, a naphthylene group having 1 to 10 carbon atoms or a halogen atom as a substituent, or the following general formula (2) Any of the groups, and G is a glycidyl group.)
Figure 0006452335
(In the formula, each R 1 is independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogen atom, and R 2 is a single bond or a divalent group.)
前記エポキシ樹脂(A)が、下記一般式(3)で表されるジヒドロキシ化合物(a)1モルに対し、下記一般式(4)で表されるハロゲン化メチル基含有化合物(b)を0.001〜1.0モルの範囲で反応させて得られる下記一般式(5)で表されるジヒドロキシ化合物(c)を、さらにエピクロルヒドリンと反応させることによって得られるエポキシ樹脂である請求項1に記載のエポキシ樹脂組成物。
Figure 0006452335
(式中、Yはフェニレン基、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するフェニレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または下記一般式(2)で表される基のいずれかである。)
Figure 0006452335
(式中、Rはそれぞれ独立して、水素原子、炭素数1〜10の炭化水素基、またはハロゲン原子のいずれかであり、Rは単結合または二価の基である。)
Figure 0006452335
(式中、Xはナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または下記一般式(2)で表される基のいずれかであり、Zはハロゲン原子を示す。)
Figure 0006452335
(式中、Rはそれぞれ独立して、水素原子、炭素数1〜10の炭化水素基、またはハロゲン原子のいずれかであり、Rは単結合または二価の基である。)
Figure 0006452335
(式中、mは繰り返し数で、平均値は0<m<であり、Xはそれぞれ独立して、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または下記一般式(2)で表される基のいずれかであり、Yはそれぞれ独立して、フェニレン基、ナフチレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するフェニレン基、置換基として炭素数1〜10の炭化水素基もしくはハロゲン原子を有するナフチレン基、または下記一般式(2)で表される基のいずれかである。)
Figure 0006452335
(式中、Rはそれぞれ独立して、水素原子、炭素数1〜10の炭化水素基、またはハロゲン原子のいずれかであり、Rは単結合または二価の基である。)
The epoxy resin (A) is a halogenated methyl group-containing compound (b) represented by the following general formula (4) with respect to 1 mol of the dihydroxy compound (a) represented by the following general formula (3). The epoxy resin obtained by further reacting the dihydroxy compound (c) represented by the following general formula (5) obtained by reacting in the range of 001 to 1.0 mol with epichlorohydrin. Epoxy resin composition.
Figure 0006452335
(In the formula, Y is a phenylene group, a naphthylene group, a phenylene group having a C 1-10 hydrocarbon group or a halogen atom as a substituent, and a naphthylene having a C 1-10 hydrocarbon group or a halogen atom as a substituent. Either a group or a group represented by the following general formula (2).)
Figure 0006452335
(In the formula, each R 1 is independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogen atom, and R 2 is a single bond or a divalent group.)
Figure 0006452335
(Wherein X is a naphthylene group, a hydrocarbon group having 1 to 10 carbon atoms or a naphthylene group having a halogen atom as a substituent, or a group represented by the following general formula (2); Indicates an atom.)
Figure 0006452335
(In the formula, each R 1 is independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogen atom, and R 2 is a single bond or a divalent group.)
Figure 0006452335
(In the formula, m is the number of repeats, the average value is 0 <m < 5 , and X is independently a naphthylene group, a naphthylene group having a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom as a substituent. Or any one of the groups represented by the following general formula (2), and each Y independently represents a phenylene group, a naphthylene group, a phenylene having a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom as a substituent. A group, a hydrocarbon group having 1 to 10 carbon atoms or a naphthylene group having a halogen atom as a substituent, or a group represented by the following general formula (2).
Figure 0006452335
(In the formula, each R 1 is independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogen atom, and R 2 is a single bond or a divalent group.)
前記エポキシ樹脂(A)のエポキシ基1モルに対して、前記硬化剤(B)の活性水素基が0.4〜1.2モルの範囲である請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the active hydrogen group of the curing agent (B) is in the range of 0.4 to 1.2 mol with respect to 1 mol of the epoxy group of the epoxy resin (A). 請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とするプリプレグ。 A prepreg using the epoxy resin composition according to any one of claims 1 to 3. 請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とする接着シート。 An adhesive sheet using the epoxy resin composition according to any one of claims 1 to 3. 請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とするエポキシ樹脂積層板。 The epoxy resin laminated board characterized by using the epoxy resin composition of any one of Claims 1-3. 請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とするエポキシ樹脂封止材。 An epoxy resin sealing material using the epoxy resin composition according to claim 1. 請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物を用いることを特徴とするエポキシ樹脂注型材。   An epoxy resin casting material comprising the epoxy resin composition according to claim 1. 請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物を硬化させた硬化物。   Hardened | cured material which hardened the epoxy resin composition of any one of Claims 1-3.
JP2014147868A 2013-08-09 2014-07-18 Epoxy resin composition and cured product thereof Active JP6452335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147868A JP6452335B2 (en) 2013-08-09 2014-07-18 Epoxy resin composition and cured product thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013166859 2013-08-09
JP2013166859 2013-08-09
JP2014147868A JP6452335B2 (en) 2013-08-09 2014-07-18 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2015057465A JP2015057465A (en) 2015-03-26
JP6452335B2 true JP6452335B2 (en) 2019-01-16

Family

ID=52498092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147868A Active JP6452335B2 (en) 2013-08-09 2014-07-18 Epoxy resin composition and cured product thereof

Country Status (4)

Country Link
JP (1) JP6452335B2 (en)
KR (1) KR102168903B1 (en)
CN (1) CN104341581B (en)
TW (1) TWI639628B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776577B2 (en) 2016-03-28 2020-10-28 味の素株式会社 Resin composition
JP7074053B2 (en) * 2016-04-12 2022-05-24 三菱瓦斯化学株式会社 Epoxy resin curing agent, epoxy resin composition, carbon fiber reinforced composite material
US20190276586A1 (en) * 2016-09-26 2019-09-12 Sabic Global Technologies B.V. High heat composite compositions, articles, and uses thereof
DE112020001629T5 (en) * 2019-03-29 2021-12-23 Tdk Corporation EPOXY RESIN, RESIN COMPOSITION, RESIN FILM, CURED RESIN PRODUCT, RESIN SUBSTRATE AND MULTI-LAYER SUBSTRATE
TW202106796A (en) * 2019-04-26 2021-02-16 日商Dic股份有限公司 Curable resin composition
CN113728030B (en) * 2019-04-26 2023-08-15 Dic株式会社 Curable resin composition
JPWO2020250684A1 (en) * 2019-06-12 2020-12-17
CN111286006B (en) * 2020-03-06 2021-08-20 江苏澳盛复合材料科技有限公司 Epoxy resin condensate, composite material and preparation method thereof
JP7128598B1 (en) * 2021-08-04 2022-08-31 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition and cured product thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782348A (en) 1993-07-22 1995-03-28 Hitachi Chem Co Ltd Epoxy resin composition and cured product thereof
JPH11130939A (en) 1997-10-29 1999-05-18 Hitachi Chem Co Ltd Epoxy resin composition and cured product thereof
JP4529234B2 (en) * 2000-05-19 2010-08-25 Dic株式会社 Epoxy resin composition and cured product thereof
JP2002088229A (en) * 2000-09-18 2002-03-27 Asahi Denka Kogyo Kk Aqueous resin composition
WO2006098329A1 (en) * 2005-03-15 2006-09-21 Nippon Kayaku Kabushki Kaisha Epoxy resin, epoxy resin composition, and utilizing the same, prepreg and laminated plate
JP5209556B2 (en) * 2009-03-26 2013-06-12 新日鉄住金化学株式会社 Epoxy resin composition and molded article
JP2011057908A (en) * 2009-09-14 2011-03-24 Hitachi Chem Co Ltd Epoxy resin cured product
TW201122014A (en) * 2009-12-25 2011-07-01 Nippon Steel Chemical Co Epoxy resin, epoxy resin composition and cured article thereof
JP5734603B2 (en) * 2010-08-30 2015-06-17 新日鉄住金化学株式会社 Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP5708160B2 (en) * 2011-04-04 2015-04-30 Jsr株式会社 Resin substrate for high frequency circuit board and high frequency circuit board
JP5885331B2 (en) * 2011-07-27 2016-03-15 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg and cured products thereof
JP6043151B2 (en) * 2012-10-29 2016-12-14 新日鉄住金化学株式会社 Thermoplastic polyhydroxypolyether resin and insulating film molded therefrom
JP6138607B2 (en) * 2012-10-29 2017-05-31 新日鉄住金化学株式会社 Epoxy resin and method for producing the epoxy resin

Also Published As

Publication number Publication date
TWI639628B (en) 2018-11-01
CN104341581A (en) 2015-02-11
CN104341581B (en) 2018-01-09
KR102168903B1 (en) 2020-10-22
JP2015057465A (en) 2015-03-26
KR20150018406A (en) 2015-02-23
TW201509980A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6452335B2 (en) Epoxy resin composition and cured product thereof
JP6429569B2 (en) Epoxy resin composition and cured product thereof
JP5655284B2 (en) Soluble imide skeleton resin, soluble imide skeleton resin solution composition, curable resin composition, and cured product thereof
JPWO2006098329A1 (en) Epoxy resin, epoxy resin composition, prepreg and laminate using the same
KR20210037606A (en) Curable composition, prepreg, resin sheet, metal foil clad laminate and printed wiring board
JP2018162362A (en) Oxazolidone ring-containing epoxy resin composition, method for producing the same, curable resin composition, and cured product
JP2009001787A (en) Polyphenylene ether resin composition and electronic member
KR102230098B1 (en) Epoxy resin composition and cured product thereof
JP6429570B2 (en) Epoxy resin composition and cured product thereof
JP7132784B2 (en) Epoxy resin composition, prepreg, laminate and printed wiring board
JP5192198B2 (en) Polyfunctional epoxidized polyphenylene ether resin and method for producing the same
JP6183918B2 (en) Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JP5195107B2 (en) Imide skeleton resin, curable resin composition, and cured product thereof
JP6335562B2 (en) Method for producing epoxy resin, and composition and cured product containing epoxy resin obtained by the method
TWI641628B (en) Epoxy resin composition and cured article thereof
JP5432791B2 (en) Epoxy resin composition, prepreg, resin sheet with metal foil, resin sheet, laminated board, multilayer board
JP2008231428A (en) High-molecular weight epoxy resin, resin composition for electrical laminate, and electrical laminate
JP5504553B2 (en) Epoxy resin composition, cured product thereof, resin composition for build-up film insulating layer, and novel epoxy resin
JP2019104821A (en) Epoxy resin composition and cured product of the same
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2024054289A (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
JP2013067685A (en) Prepreg and multilayer sheet
JPH06244513A (en) Resin composition for laminated plate and the laminated plate

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20150206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181211

R150 Certificate of patent or registration of utility model

Ref document number: 6452335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250